Statistics Review I: Visualizing and Describing Data

Paul Vos
vosp@mail.ecu.edu

February 9, 2004

Home Page

Title Page
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Page 1 of 100

Go Back

Full Screen

Close

1. Preliminaries

1.1. Basic Terms

- Individuals: (cases, subjects, units) People, animals, or any object being studied.
- Variable: Some characteristic of the individuals (that varies among individuals)

Title Page

- Data: The values of one or more variables for each
of a group of individuals.

Page 2 of 100

Go Back

Full Screen

1.2. Types of Data

- Examples

Consider a collection of n people: obtain data by "observing" BP, marital status, sex, age, height, no. days absent, opinion

- Classifying Data/Variables
- Numerical (or, Quantitative)
* discrete (counts)
* continuous
- Categorical (or, Qualitative)
* nominal
* ordinal

Page 3 of 100

Go Back

Full Screen

- NOTE: Numerical data can always be categorized; eg, income or age on consumer questionnaires.
- CAUTION: Considering data without regard to the variables being measured - both how they are defined and how they are measured - can lead to incorrect conclusions. Especially variables such as reading ability, psychological traits, and economic indicators
- Example: (Moore \& McCabe, 2000) In 1989, 5426 drivers aged $65+$ were involved in fatal accidents, while 2900 drivers aged 16-17 were involved in fatal accidents. Therefore, older drivers have more fatal accidents. Discuss.
fatality rate is more relevant
65+: 26 deaths per 100,000; 16-17: 70 deaths per 100,000

Page 4 of 100

Go Back

Full Screen

- Example: Data for States

State	Region	Pop. $(\mathbf{1 , 0 0 0})$	SAT Verbal	SAT Math	Percent Taking	Percent No HS	T.Pay $\mathbf{(\$ 1 , 0 0 0)}$
AL	ESC	4,273	565	558	8	33.1	31.3
AK	PAC	607	521	513	47	13.4	49.6
AZ	MTN	4,428	525	521	28	21.3	32.5
AR	WSC	2,510	566	550	6	33.7	29.3
CA	PAC	31,878	495	511	45	23.8	43.1
\vdots							

- State list of individuals; not a variable
- Region categorical
- Population,. ..,Teacher's Pay numerical

Page 5 of 100
Visualize 1 Variable
Summarize 1 Variable Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Go Back

Full Screen

- Example: Survey Results

Person	Age	Gender	Vote	Attitude
1	20	0	0	2
2	27	0	0	1
3	19	1	1	1
4	38	1	0	3
5	38	1	1	3
\vdots	\vdots	\vdots	\vdots	\vdots

- Person label
- Age numerical
- Gender $(0=\mathrm{F}, 1=\mathrm{M})$ categorical
- Vote ($0=$ Dem, $1=$ Rep, $2=$ Other) categorical
- Attitude (1=oppose, $2=$ neutral, $3=$ favor) categorical

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+$
Model 2+ Variables
Review/Omissions

Home Page

Title Page
"

Page 6 of 100

Go Back

Full Screen

1.3. Overview/Preview

- One Variable
- Visualizing data
* Numeric
* Categorical

Title Page

- Summarizing data
$44 \quad \gg$
* Numeric (categorical)

- Modeling data

Page 7 of 100

* Numeric - Normal
* (Categorical - Binomial)

Go Back

Full Screen

2. Visualize 1 Variable

2.1. Visualizing Numeric Data

- Stem plot
- Frequency and relative frequency tables
- Histogram (3 kinds)
- Frequency - height gives count
- Rel. Freq - height gives proportion
- Density - area gives proportion

Page 8 of 100

- Two things to look for:

Go Back

- Overall shape: skewed, symmetric, irregular

Full Screen

- Departures from overall shape - outliers
- Example: Cavendish's (1798) density-of-earth:

5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65	5.57
5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.27	5.39	5.42	5.47
5.63	5.34	5.46	5.30	5.75	5.68	5.85				

- Stem (-and-leaf) plot

48	8
49	
50	7
51	0
52	6799
53	04469
54	2467
55	03578
56	12358
57	59
58	5

Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables Lurking Variables

Summarize $2+$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 9 of 100

Go Back

Full Screen

Close

Preliminaries

Visualize 1 Variable

Summarize 1 Variable Model 1 Variable

Visualize 2+ Variables Lurking Variables

Summarize $2+$.
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 10 of 100

Go Back

Full Screen

Close

- Histogram

Model 1 Variable
Visualize 2+ Variables Lurking Variables

Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 11 of 100

Go Back

Full Screen

Close

- Example: Head circumference at birth (cm) for male humans

```
33.1
34.2
```



```
    Stem plot Split-Stem plot
33 1467789
34 012222233556667789
35 1122368
36 015
                                    33 14
                                    33 67789
                            34 012222233
                            34 556667789
                            35 11223
                            68
36 01
36 5
```

Summarize 1 Variable Model 1 Variable

Visualize $2+$ Variables Lurking Variables Summarize $2+$

Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 12 of 100

Go Back

Full Screen

- Example: Cardiac output

2.60	5.16	6.18	3.22	4.99	3.62	3.31	4.11
5.24	4.27	3.42	4.70	5.42	5.36	2.63	3.70
5.39	5.44	3.86	6.68	5.35	3.26	4.06	2.64
5.40	5.93	5.90	4.11	4.44			

- Rounded Data:
2.6
5.2
6.2
3.2
$5.0 \quad 3.6$
3.3
4.1
5.24 .3
3.4
4.7
5.4
5.4
2.6
3.7
5.4
5.4
$\begin{array}{ll}.9 & 6.7\end{array}$
$5.4 \quad 3.3$
4.1
2.6

5.

5.9
5.9
4.1
4.4

- Stem plot of rounded data:

2666
32334679

Model 1 Variable

Visualize 2+ Variables Lurking Variables

Summarize $2+$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 13 of 100

Go Back

Full Screen

Close

- Example: Honolulu Heart Study (Systolic BP) (Kuzma and Bohnenblust, 2001, pp 25-27)

Nonsmokers		Smokers	
	8642	9	8
- Back-to-back stem plot:	888640	10	2248
8888888844422220	11	2244666668	
	844444422000	13	02266
	644200	14	000026
6444422	15	00	
22	16	2	
20	17	68	
	18		
		19	0
	20	8	

Summarize 1 Variable

 Model 1 VariableVisualize 2+ Variables Lurking Variables

Summarize $2+$.
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 14 of 100

Go Back

- Histograms of six data sets (Figure 1)

2.2. Visualizing Categorical Data

- Frequency and Relative Frequency tables
- Pie chart
- Bar plot

Home Page

Title Page
$44>$

Page 15 of 100

Go Back

Full Screen

Close

- Example: Titanic Data (Hinde, P., 1998. Encyclopedia Titanica, OzDASL)
- Frequency and Relative Frequency table

Summarize 1 Variable Model 1 Variable

Visualize 2+ Variables Lurking Variables Summarize $2+$

Model 2+ Variables
Review/Omissions

Home Page

Title Page

Class	Frequency	Rel. Frequency
1st	322	$.245=322 / 1313$
2nd	280	$.213=280 / 1313$
3rd	711	.542
	1313	1.000

$44 \mid \gg$

Page 16 of 100

Go Back

Full Screen

Close

- Example: Titanic (cont)

Bar Plot

Pie Chart

Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables Lurking Variables

Summarize $2+$. .
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 17 of 100

- Height of bar gives Frequency (could give Rel. Freq.)
- Area of slice gives Relative Frequency

Go Back

Full Screen

- Example: Titanic (cont)
- Tables for Variable Class*Survival

Class*Survival	Frequency	Rel. Frequency
1st\&Died	129	.098
1st\&Alive	193	.147
2nd\&Died	161	.123
2nd\&Alive	119	.091
3rd\&Died	573	.436
3rd\&Alive	138	.105
	1313	1.000

- NOTE: There is a better way to compare Class and Survival

Go Back

Full Screen

- Example: Titanic (cont)
- 4 graphs to visualize this table * (a) and previous graph

Height of stacked bars in (a) same as before. * (a) and (b)
(b) shows Rel. Freq., (a) shows Freq.

* (b) and (c)

Stacked bars put along side.

* (c) and (d)

Re-group the bars.

- Bar graphs for this table are in Figure 2.

Page 19 of 100

Go Back

Full Screen

3. Summarize 1 Variable

3.1. Measuring Center

- Notation:

| data | 9, 4, 5
 generic data x_{1}, x_{2},
 x_{3} |
| ---: | :--- | :--- | :--- |

In general, $x_{1}, x_{2}, \ldots, x_{n}$
Home Page

Title Page

- Mean \bar{x} (average)
$\frac{9+4+5}{3}=6$ or $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$ or $\frac{\sum x_{i}}{n}$.
Notation: $\bar{x}=\frac{\sum x_{i}}{n}=\frac{1}{n} \sum x_{i}$.

Page 20 of 100

- Median ('middle of ordered values')

Go Back
n odd: $9,4,5 \longrightarrow 4,5,9 \longrightarrow$ median $=5$
n even: $9,4,5,9 \longrightarrow 4,5,9,9 \longrightarrow$ median $=\frac{5+9}{2}=$ 7

- (Mode) (most frequent observation(s))
- Not a measure of center.
- $9,4,5,9$ has mode 9 .
- Mean vs. Median
- If the data are roughly symmetric and there are no outliers, mean and median are roughly the same. Mean is usually used.
- For skewed data, median is often used.
- Median is resistant to outliers; Mean is not.

Page 21 of 100 9, 4,5 has mean 6

Go Back
99, 4,5 has mean 36
median is 5 in either case.

- Examples

- Cavendish data:

$$
\bar{x}=\frac{4.88+5.07+\cdots+5.85}{29}=5.45
$$

median is ${ }_{5.46}^{29}$ (5.46 is 15 th observation since
Home Page

Title Page $n=29$,
modes are at 5.34 and 5.29 (each occurs twice).

- Passenger Class (Titanic data):
mean and median? Meaningless.
Mode is "3rd class" (Not 711 or .542).

Page 22 of 100
"/"

Go Back

Full Screen

Close

3.2. Measures of Spread (Variability)

- Variance s^{2} ("average" squared deviation)

x_{i}	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$
9	$(9-6)=3$	9
4	$(4-6)=-2$	4
5	$(5-6)=-1$	1
18	0	14

* mean $\bar{x}=\frac{18}{3}=6$; variance $=\frac{14}{2}$.
* In general, variance $s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}$.
* Units: square of units of x
- Standard Deviation s (square root of variance)

Go Back

* $s=\sqrt{s^{2}} ; s=\sqrt{7}=2.65$

Full Screen

* Units: same as x
- Range

Maximum - Minimum

- IQR (Inter Quartile Range)
* Q_{1} is 1st Quartile (25th percentile)
* Q_{3} is 3rd Quartile (75th percentile)
* $\mathrm{IQR}=Q_{3}-Q_{1}$
* Units same as x
- Interpretation
* IQR: Length of the interval needed to contain the middle 50% of the data; resistant to outliers.

Page 24 of 100

Go Back

* standard deviation: Difficult to interpret for non-Normal data; sensitive to outliers.

- Examples

- Cavendish data

$$
\begin{aligned}
& * s^{2}=.0488, s=\sqrt{.0488}=.22 \\
& * \mathrm{IQR}=Q_{3}-Q_{1}=5.61-5.30=.31
\end{aligned}
$$

- Systolic BP for Non-smokers

$$
\begin{aligned}
& * s^{2}=344.0, s=\sqrt{334.0}=18.55 \mathrm{mmHg} \\
& * \mathrm{IQR}=Q_{3}-Q_{1}=140-118=22 \mathrm{mmHg}
\end{aligned}
$$

- Systolic BP for Smokers
$* s^{2}=639.1, s=\sqrt{639.1}=25.28 \mathrm{mmHg}$
* $\mathrm{IQR}=Q_{3}-Q_{1}=140-116=24 \mathrm{mmHg}$
- Notice spread is greater for smokers, especially when measured by s (see slide 1.).
- Visualizing/Summarizing Data - Box Plot
- Five Number Summary

Generic	Cavendish
Median	5.46
$Q_{1} \quad Q_{3}$	$5.30 \quad 5.61$
Min Max	$4.88 \quad 5.85$

- Box-and-Whiskers Plot (unmodified)

Page 26 of 100

Go Back

Full Screen

- Example: Cavendish Data

- Modified Box Plot (default)
- Whisker at most $1.5 \times \mathrm{IQR}$
- One definition of Outlier: Points more than $1.5 \times \mathrm{IQR}$ below Q_{1} or above Q_{3}

Go Back

Full Screen

- Outliers drawn outside whiskers

Visualize 1 Variable

Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 28 of 100

Go Back

Full Screen

Close

- What to look for in a Box plot:

Home Page

- Center (median)

Title Page

- Spread (IQR)
- Outliers
- Shape (see Figure 3)

Page 29 of 100

Go Back

Full Screen

Close

- Sample Percentiles
- Generalization of Quartiles $\left(Q_{1}\right.$ is 25 th percentile).
- 90th percentile is value such that 90% of the data are smaller.
- Knowing all percentiles \longleftrightarrow data
- Example: Systolic BPs
- 90th Percentile for Non Smokers
$x_{.90}=154 \mathrm{mmHG}(63$ nonsmokers; $.90 \times 63=57$; 57 th ordered observation from stemplot on slide 1.)
- 90th Percentile for Smokers

Go Back
$x_{.90}=162 \mathrm{mmHG}(37$ smokers; $.90 \times 37=33$; 33rd ordered observation from stemplot on slide 1.)

Review/Preview

- Data Classification
- Visualizing Data
- Numerical Summaries of Data
- Modeling Data
- Numeric Data
* Normal Model
* Other Models

Page 31 of 100

- Categorical Data

Go Back

* Binomial Model
* Other Models

4. Model 1 Variable

- Normal Model (Distn)
- Area (Density) Histograms
* Histograms where Area of bar $=$ Rel. Freq.
$*$ Total Area of all bars $=1$.
- Family of Bell-shaped (Normal) Curves
* Area under each curve $=1$.
* Each curve is symmetric
* center denoted μ (called mean)
* spread denoted σ (called standard deviation)
* Each curve completely specified by μ and σ
* Notation: $N(\mu, \sigma)$

Go Back

Page 32 of 100

Full Screen

- 3 Curves from the Normal Family

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 33 of 100

Go Back

Full Screen

Close

- Basic Idea - Superimpose Normal Curve on Area Histogram

Basic Idea: Superimpose Curve on Area Histogram

Page 34 of 100

Go Back

Full Screen

- 68-95-99.7 Rule

If the "normal model holds":

- 68% of the data fall within 1 SD of \bar{x}.
- 95% of the data fall within 2 SD of \bar{x}.
- 99.7% of the data fall within 3 SD of \bar{x}.
- Example: Heights
- Heights from Study on Pulse Rates and Exercise (Dr. Richard J. Wilson, Department of Mathematics, University of Queensland, OzDASL)

Page 35 of 100

Go Back

Full Screen

Close

- Example: Heights (cont)

Histogram of heights

heights (cm)

Normal Q-Q Plot

Sample Quantiles

Preliminaries

Visualize 1 Variable
Summarize 1 Variable

Visualize 2+ Variables

Lurking Variables
Summarize $2+$. .
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 36 of 100

Go Back

- Checking the 68-95-99.7 Rule for these data
- Mean of Heights $=173.3 ;$ SD of Heights $=10.1$; $n=108$
- Mean $\pm \mathrm{SD}=173.3 \pm 10.1=(163.2,183.4)$
* Data: 74 fall in this range (see next slide)
* Rule: 68% of 108 is 73.44
- Mean ± 2 SD $=173.3 \pm 20.2=(153.1,193.5)$
* Data: 103 fall in this range
* Rule: 95% of 108 is 102.60
- Mean ± 3 SD $=173.3 \pm 30.3=(143.0,203.6)$
* Data: 107 fall in this range
* Rule: 99.7% of 108 is 107.68

Page 37 of 100

Go Back

Full Screen

- Height Data(in cm; sorted, two extreme outliers removed)
[1] 1401511515155155157158160160161
[11] 162162162163163163163164164164
[21] 164164165165165165166166167167
[31] 167167168168169169170170170170
[91] 183184184185185185186186187188
[101] 189189190191192194194195

Go Back

Page 38 of 100

Full Screen

- Normal Quantile-Quantile Plots

(a) Normal Q-Q Plot

(c) Normal Q-Q Plot

Sample Quantiles
(b) Normal Q-Q Plot

(d) Normal Q-Q Plot

Sample Quantiles

Preliminaries

Visualize 1 Variable
Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize 2+
Model 2+ Variables
Review/Omissions

Home Page

Title Page
$44 \rightarrow$

Page 39 of 100

Go Back

Full Screen

Close

- Discussion of Normal Q-Q Plots on slide 1.
x-axis Ordered values as predicted by the Normal model
y-axis Ordered values actually observed
(a) 108 observations generated from the Normal model
(b) Same data in (a) except rounded to nearest 5 cm
(c) Not normal; heavy tails (t-distn w/2df)
(d) Not normal; skewed to the right (χ^{2} w/ 2df)

Page 40 of 100

Go Back

Full Screen

Close

- Refining the 68-95-99.7 Rule
- Notation:
* $N(\mu, \sigma)$ is the curve from the Normal family that has center μ and spread σ.
* Uppercase letters (eg, X, Y) will stand for collections of values.
* X is the sample; ie, $X=x_{1}, x_{2}, \ldots, x_{n}$.
* $X \sim N(110,20)$ means

AREA histogram for the data X follows a bell-shaped curve with center (mean) at 110 and spread (standard deviation) 20

* $\operatorname{Pr}(X \leq 110)$ is shorthand for Proportion of the sample X that is less than 110

Go Back

Page 41 of 100

Full Screen

- Refining the 68-95-99.7 Rule (cont)
- The area under the curve $N(\mu, \sigma)$ between two points a and b (or, the proportion of the data X between a and b) depends only on how many standard deviations a and b are from μ.
$-z$ is the number of standard deviations x is from its mean.

Title Page

Let $X \sim N(110,20)$| x | z | |
| ---: | ---: | ---: |
| | 150 | 2 |
| 130 | 1 | |
| | 110 | 0 |
| | 90 | -1 |

$44 \mid \mapsto$

Page 42 of 100

Go Back

Full Screen

- This area can be obtained from a Table for the Standard Normal distribution.
- Normal Model Calculations:

The amount of time necessary for people to take a certain test has a normal distribution with mean 38.7 minutes and standard deviation 10.2 minutes.

- What proportion of people need more than 45 minutes to finish this test?

- What proportion of people take less than 40 minutes to finish this test?

$$
\begin{aligned}
& z=\frac{40-38.7}{10.2}=0.13 ; \\
& \text { Answer }=\text { Area }=.5517 .
\end{aligned}
$$

Page 43 of 100

Go Back

Full Screen

- Normal Model Calculations (cont)
- What proportion of people take between 35 and 45 minutes to finish this test?

$$
\begin{aligned}
& z=\frac{45-38.7}{10.2}=0.62 ; \\
& z=\frac{35-3.7}{10.2}=-0.36 ; \\
& \text { Answer }=\text { Area }=.3730
\end{aligned}
$$

- The slowest 10% take at least how long to finish the exam?

Page 44 of 100

Go Back

Full Screen

Answer $=x_{.90}=38.7+1.28 \times 10.2=51.8 \mathrm{~min}$.

Review/Preview

One Variable			
Data Classification Variables			
- Visualizing Data	• Visualizing Relationships		
- Numerical Summaries of Data	• Numerical Summaries of Relationships		
- Modeling Data	• Modeling Relationships		
Model Checking			

Summarize 1 Variable

 Model 1 Variable

Page 45 of 100

Go Back

Full Screen

5. Visualize 2+ Variables

- 'Tools' to Visualize Relationships
- (Two-Way Frequency Tables)
- Segmented Barplots; Side-by-Side Barplots
- Scatter Plots
- Side-by-Side Boxplots
5.1. Visualizing Categorical-Categorical Relationships

Page 46 of 100

- Two-Way Frequency Tables

Go Back

* Frequency

Full Screen

* Relative Frequency
* Relative Frequency within Group
- Example: Titanic Data
(a) Frequency Table

	1st	2nd	3rd	Total
Died	129	161	573	863
Alive	193	119	138	450
Total	322	280	711	1313

(b) Rel. Freq. w/in Row

	1st	2nd	3rd	Total
Died	$\frac{129}{863}$	$\frac{161}{863}$	$\frac{573}{863}$	$\frac{863}{863}$
Alive	$\frac{193}{450}$	$\frac{119}{450}$	$\frac{138}{450}$	$\frac{450}{450}$

(d) Rel. Freq. Table

	1 st	2nd	3rd	Total
Died	$\frac{129}{1313}$	$\frac{161}{1313}$	$\frac{573}{1313}$	$\frac{863}{1313}$
Alive	$\frac{193}{1313}$	$\frac{119}{1313}$	$\frac{138}{1313}$	$\frac{450}{1313}$
Total	$\frac{322}{1313}$	$\frac{280}{1313}$	$\frac{711}{1313}$	$\frac{1313}{1313}$

Preliminaries

Visualize 1 Variable

Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+$.
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 47 of 100

Go Back

Full Screen

- Example: Titanic Data (cont1)

(a) Frequency Table				
	1st	2nd	3rd	Total
Died	129	161	573	863
Alive	193	119	138	450
Total	322	280	711	1313

(b) Rel. Freq. w/in Row				
	1st	2nd	3rd	Total
Died	. 149	. 187	. 664	1.000
Alive	. 429	. 264	. 307	1.000

Summarize 1 Variable Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+$.
Model 2+ Variables
Review/Omissions

Home Page

Title Page
(c) Rel. Freq. w/in Column

	1st	2nd	3rd
Died	. 401	. 575	. 806
Alive	. 599	. 425	. 194

Total $1.000 \quad 1.000 \quad 1.000$
(d) Rel. Freq. Table

	1st	2nd	3rd	Total
Died	.098	.123	.436	.657
Alive	.147	.091	.105	.343
Total	.245	.213	.542	1.000

Page 48 of 100

Go Back

Full Screen

- Statistical Jeopardy
- Table (b) Answer: . 264

What proportion of survivors came from 2nd class?

- Table (b) Answer: . 307

What proportion of survivors came from 3rd class?

- Table (c) Answer: . 425

What proportion of 2nd class passengers survived?
Title Page

- Table (c) Answer: . 194

What proportion of 3rd class passengers survived?

- Table (d) Answer: . 091

What proportion of Titanic passengers were in 2nd class and survived?

Page 49 of 100

- Table (d) Answer: . 105

Go Back
What proportion of Titanic passengers were in 3rd class and survived?

- Visualization of Table (c) (Figure 4)
- (c-1) Segmented Bar Graph of Survived within Class
Heights of segments give proportion Dead and Alive within each class.
- (c-2) Side-by-Side Bar Graph of Survived within Class
Bar segments from (c-1) moved to baseline to make height easier to read.
- (c-3) Side-by-Side Bar Graph of Survived within Class
Same bars as in (c-2) but grouped by the variable survived.
- (c-4) Bar Graph of Proportion Alive

Three bars from right side of (c-3); since survived has only two categories, proportion Dead

Page 50 of 100

Go Back

Full Screen is redundant information.

5.2. Visualizing Numeric-Numeric Relationships (Scatter Plot)

- Response and Explanatory Variables
* Response variable is the variable that responds to changes in another variable, called the explanatory variable.
* Response variable also called dependent variable; explanatory variable also called independent variable.
* NOTE: Nomenclature is to distinguish how the variables are used in visualizing (plotting) and modeling the relation. There need be no cause-and-effect relationship.
* In some cases, either variable can be treated as the explanatory variable.

Page 51 of 100

Go Back

Full Screen

- Example: Erosion and Flow Rate

Flow (liter/sec)	3.75	2.47	1.26	0.85	0.31
Erosion (kg)	6.07	3.01	2.18	1.95	0.82

- Pairs of observations
- Explanatory variable along \mathbf{x}-axis

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+$
Model 2+ Variables
Review/Omissions

Home Page

Flow Rate

44 |

Page 52 of 100

Go Back

Full Screen

Close

- What to look for in a scatter plot
- Association
* positive (Figure 5)

Large x associated with Large y (Small x associated with Small y)

* negative (Figure 6)

Large x associated with Small y
Small x associated with Large y

* no association (Figure 7)
- Shape
* Linear - line can be place in center of the point cloud
* Non-linear

Go Back

- Departures from Overall Shape
* Outliers
* Heteroscedasticity
- Discussion of Scatter Plots in Figures 5, 6, and 7.
- Linear Model (Regression) can be used for data in top six graphs
- Requirement is Linear shape with no departures from shape.
- Pos Assoc: lower plots show nonlinearity and heteroscedasticity.
- Neg Assoc: lower plots show outliers (one has high leverage).

Page 54 of 100

- No Assoc: lower plots show no assoc \neq no relationship.

Go Back

Full Screen

- Example: Fisher's Iris Data
- Reference: Fisher, R. A. (1936). The Use of Multiple Measurements in Axonomic Problems. Annals of Eugenics 7, 179-188.
- Description: Data set containing five variables with 150 observations (50 from each of three species of iris).
- Variable Names:

Species: Iris setosa, I. versicolor, and I. virginica
Petal.Width: Petal Width (cm)
Petal.Length: Petal Length (cm)
Sepal.Width: Sepal Width (cm)
Sepal.Length: Sepal Length (cm)

Page 55 of 100

Go Back

Full Screen

- Example: Iris Data - Scatter Plot w/ Color

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 56 of 100

Go Back

Full Screen

Close

Preliminaries

Visualize 1 Variable

Summarize 1 Variable

Model 1 Variable

Visualize $2+$ Variables

Lurking Variables
Given : Species

Title Page

Page 57 of 100

Go Back

Full Screen

Close

Petal.Width

- Example: Iris Data - Conditioning Plot (cont)

Given : Sepal.Length

Petal.Width

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize $2+$ Variables
Lurking Variables
Summarize 2+
Model $2+$ Variables
Review/Omissions

Home Page

Title Page

Page 58 of 100

Go Back

Full Screen

- Advantages of Conditioning Plot

Home Page

- Separates groups of overlaid points.

Title Page

- Works better than colors when there are many categories.
- Can be used to condition on continuous data.

Page 59 of 100

Go Back

Full Screen

Close

5.3. Visualizing Numeric-Categorical Relationships (Box Plot)

- Categorical variable partitions data
- One boxplot for each subgroup
- All boxplots share common reference line
- Example: Iris Data (cont)

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables

Summarize $2+$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

"/"

Page 60 of 100

Go Back

Full Screen

Close

6. Lurking Variables

- Example: Salary and Experience at University A
- Salary: Faculty Salaries
- Experience: Years in profession
- Association: expect positive
- (fictitious data)
- Salary versus Experience (Figure 8)

Title Page
$44 \rightarrow$

- Salary vs Experience given Dept (Figures 9, 10)
- Salary vs Dept and Experience vs Dept (Figure 13)
- Discussion
- This is an example of Simpson's Paradox.
- The relationship between two variables can reverse when a third variable is taken into account.
- In this example, we measured the variable (Dept).
- But what about Lurking variables - variables that affect the relationship but are not measured.
- The problem of lurking variables is important even if they do not reverse the relationship (see

Page 62 of 100

Go Back

Full Screen

7. Summarize 2+ Variables

- Informal definition

Measure of the strength of the linear relationship between two variables.

Title Page

- Formal definition

$$
r=r_{x y}=\frac{1}{n-1} \sum\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

Page 63 of 100

Go Back
where s_{x} is the standard deviation of x and s_{y} is the standard deviation of y.

- Example: Alcohol and Cirrhosis Mortality (Ander-

Lurking Variables

 son \& Finn)| | Alcohol | Mortality | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Observation | x_{i} | y_{i} | $\frac{x_{i}-\bar{x}}{s_{x}}$ | $\frac{y_{i}-\bar{y}}{s_{y}}$ | $\frac{x_{i}-\bar{x}}{s_{x}} \frac{y_{i}-\bar{y}}{s_{y}}$ |
| 1 Pr. Edward Is. | 11.00 | 6.5 | 0.010 | -1.513 | -0.015 |
| 2 Newfoundland | 10.68 | 10.2 | -0.260 | -0.876 | 0.228 |
| 3 Nova Scotia | 10.32 | 10.6 | -0.565 | -0.807 | 0.456 |
| 4 Saskatchewan | 10.14 | 13.4 | -0.717 | -0.325 | 0.233 |
| 5 New Brunswick | 9.23 | 14.5 | -1.486 | -0.136 | 0.202 |
| 6 Alberta | 13.05 | 16.4 | 1.743 | 0.191 | 0.333 |
| 7 Manitoba | 10.68 | 16.6 | -0.260 | 0.226 | -0.059 |
| 8 Ontario | 11.50 | 18.2 | 0.433 | 0.501 | 0.217 |
| 9 Quebec | 10.46 | 19.0 | -0.446 | 0.639 | -0.285 |
| 10 Brit. Columbia | 12.82 | 27.5 | 1.549 | 2.102 | 3.255 |
| Total: | 109.88 | 152.9 | 0 | 0 | 4.566 |
| Mean*: | 10.988 | 15.29 | 0 | 0 | .507 |

Correlation $r_{x y}=.507$.

Go Back

Full Screen

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 65 of 100

Go Back

Full Screen

Close

Alcohol

- Properties of $r_{x y}$
$-r$ is symmetric: $r_{x y}=r_{y x}=r$
- Range of $r:-1 \leq r \leq 1$
- Meaning of $r=-1$ or $r=1$:

Points fall exactly on a line with positive slope
$(r=1)$ or with negative slope $(r=-1)$.

- What $r=0$ does NOT mean:

It does NOT mean there is no relationship; rather, there is no linear relationship.
$-r$ has no units.
Go Back
$-r$ is not resistant to outliers.

- Ecologic Correlation When correlations are calculated on grouped data,

Home Page

- Ecologic Fallacy

It is possible that the correlation obtained from grouped data has opposite sign of the ungrouped data.

Title Page

Page 67 of 100

Go Back

Full Screen

Close

Plot of Ungrouped Data Color Shows Group

Plot of Group Means

Title Page

Page 68 of 100

Go Back

Full Screen

8. Model 2+ Variables

Home Page

Title Page

- Preview
- Review of linear equations
- Least Squares Line
- Interpretation
- Model Assumptions/Model Checking

Go Back

Full Screen

8.1. Review of linear equations

Example: $y=2 x-1 |$| x | -1 | 0 | 1 | 2 | 3 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| y | -3 | -1 | 1 | 3 | 5 | 9 |

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+$.
Model $2+$ Variables
Review/Omissions

Home Page

Title Page

Page 70 of 100

Go Back

Full Screen

- General Equation: $y=b x+a$
$-b$ is slope; Rise
$-a$ is y-intercept
- Every (non-vertical) line described by particular val-

Title Page ues for b and a.

- Usually more interested in b than in a.
- b shows how changes in x are related to changes in y.

Page 71 of 100

- Units of b : $\frac{\text { units of } y}{\text { units of } x}$

Go Back

Full Screen

Close

8.2. Least Squares Regression Line

- slope $\hat{b}=r \frac{S_{y}}{S_{x}}$
$-y$-intercept $\hat{a}=\bar{y}-\hat{b} \bar{x}$
- equation of Least Squares Line: $y=\hat{b} x+\hat{a}$
- fitted (model) values $\hat{y}_{i}=\hat{b} x_{i}+\hat{a}$ where x_{i} is the x-value of the ith pair $\left(x_{i}, y_{i}\right)$.
$-\operatorname{residual} r_{i}=y_{i}-\hat{y}_{i}$.

Page 72 of 100

Go Back

Full Screen

Close

- Example: Erosion (cont from slide 1.)

Flow Rate

$$
\begin{array}{l|lllll|}
\hline x_{i}=\text { Flow }(\text { liter } / \mathrm{sec}) & 3.75 & 2.47 & 1.26 & 0.85 & 0.31 \\
y_{i}=\text { Erosion }(\mathrm{kg}) & 6.07 & 3.01 & 2.18 & 1.95 & 0.82 \\
\hline
\end{array}
$$

Preliminaries

Visualize 1 Variable
Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+$.
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 73 of 100

Go Back

- Example: Erosion (cont)
- parameters of l.s. line: $\hat{b}=1.389, \hat{a}=.4057$
- Equation of l.s. line: $y=1.389 x+.4057$

$$
(\text { Or, Erosion }=1.389 \times \text { Flow }+.4057)
$$

- First fitted value $\hat{y}_{1}=1.389 \times 3.75+.4057=5.61$
- First Residual $r_{1}=y_{1}-\hat{y}_{1}=6.07-5.61=.46$

i	1	2	3	4	5
$x_{i}=$ Flow $($ liter $/ \mathrm{sec})$	3.75	2.47	1.26	0.85	0.31
$y_{i}=$ Erosion (kg)	6.07	3.01	2.18	1.95	0.82
\hat{y}_{i}	5.61	3.84	2.16	1.59	0.84
r_{i}	0.46	-0.83	0.02	0.36	-0.02

- Example: Erosion (cont)

Linear Model

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 75 of 100

Go Back

Full Screen

Close

- Example: Erosion (cont)

Model of No Relationship

Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 76 of 100

Go Back

Full Screen

Close

- Properties of Least Squares Line
- Line must contain (\bar{x}, \bar{y})
- Line minimizes the sum of squared residuals
- Line is unique
- Sensitive to outliers, high leverage points.
- Relationship to r^{2} : Proportion of variability explained by x.

Total Variability	Sum of squared lengths in 1.	15.76
Variability Unexplained by L. S. line	Sum of squared lengths in 1.	1.03
Variability Explained by L. S. line	Difference	14.73
Prop. Explained	Difference/Total	.935

- Two regression lines: $Y \mid x$ and $X \mid y$.

Page 77 of 100

Go Back

Full Screen

8.3. Interpretation of the Regression Model

- Example: SAT Verbal and Math Scores (made-up data) See Figure 15.
$-X=$ Verbal SAT; $Y=$ Math SAT
$-\bar{X}=503.0, \bar{Y}=499.3, s_{X}=93.34, s_{Y}=86.85$, $r=.6926$
- equation of Least Squares line: $y=.64 x+177.4$.
- Regression Model: Mean (Math SAT) $=.64 \times$ (Verbal SAT) +177.4
- At $x=450$ (i.e., 450 on verbal), model predicts Mean Math SAT $=.64 \times(350)+177.4=465$

Home Page
$44 \rightarrow$

Page 78 of 100

Go Back

- At $x=600$ (i.e., 600 on verbal), model predicts Mean Math SAT $=.64 \times(600)+177.4=561$

8.4. Model Checking

- Regression Model Assumptions.
- Assumptions about $Y \mid x$ for different values of x
- Center: $\quad \operatorname{Mean}(Y \mid x)$ is linear in x; $\operatorname{Mean}(Y \mid x)=b x+a$ for some values a and b.
- Spread: $\mathrm{SD}(Y \mid x)$ is constant
- No outliers
- (Shape: Normal; $Y \mid x \sim N(b x+a, \sigma))$
- Residual Plots
- Residual $=$ Observed value - Model value
$-r_{i}=y_{i}-\hat{y}_{i}$
$-\operatorname{Plot}\left(x_{i}, r_{i}\right)$ or $\left(\hat{y}_{i}, r_{i}\right) ;$ NOT $\left(y_{i}, r_{i}\right)$
- Example: Iris Virginica Data (slide 1.)

Regress Petal.Length on Petal.Width

INCORRECT Plot

Normal Q-Q Plot

Preliminaries

Visualize 1 Variable
Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+$
Model $2+$ Variables
Review/Omissions

Home Page

Title Page

Page 80 of 100

Go Back

Full Screen

- Indications of Problems:

- Nonlinear shapes
- Outliers
- Changing Spread
- Danger of Extrapolation

Two statisticians were traveling in an airplane from LA to New York. About an hour into the flight, the pilot announced that they had lost an engine, but don't worry, there are three left. However, instead of 5 hours it would take 7 hours to get to New York. A little later, he announced that a second engine failed, and they still had two left, but it would take 10 hours to get to New York. Somewhat later, the pilot again came on the intercom and announced that a third engine had died. Never fear, he announced, because the plane could fly on a single engine. However, it would now take 18 hours to

Go Back get to new York. At this point, one statistician turned to the other and said, "Gee, I hope we don't lose that last engine, or we'll be up here forever!"

- Danger of Extrapolation (cont)

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 82 of 100

Go Back

Full Screen

Close

No. of Engines Lost

9. Review/Omissions

One Variable Two or More Variables

- Data Classification
- (n) numeric data
- (c) categorical data
- Visualizing Data
- freq tables (2)
- (n) stemplot, histogram, boxplot
- (c) pie, bar plots
- Visualizing Relationships
- freq tables (4)
- (n-n) scatter plot
- ($\mathrm{n}-\mathrm{c}$) side-by-side boxplots
- (c-c) segmented barplots

Page 83 of 100

Go Back

Full Screen

Descriptive Statistics Review (cont)

One Variable Two or More Variables

- Summarizing Data
- center: mean, median
- spread: st. dev., IQR
- 5 Number Summary
- (c) mode
- Summarizing Relationships
- (n-n) correlation
$-(n-c)$
- (c-c) odds ratio
relative risk

Title Page

Page 84 of 100

Go Back

Full Screen

Close

Descriptive Statistics Review (cont)

One Variable Two or More Variables

- Modeling Data
- (n) Normal Distn
- (n) Exponential Distn
- (c) Binomial Distn
- (c) Poisson Distn
- Modeling Relationships
- ($\mathrm{n} \sim \mathrm{nc}$) linear regression
- ($\mathrm{n} \sim \mathrm{nc}$) nonlinear regression
- ($\mathrm{n} \sim \mathrm{c}$) ANOVA
- ($\mathrm{n} \sim \mathrm{cn}$) ANCOVA
- (c~nc) logistic regression
- (c~c) contingency tables
- Model Checking

Page 85 of 100

- Q-Q plots
- Residual plots

Go Back

Full Screen

Skewed Right

Skewed Left

Symmetric

Preliminaries
Visualize 1 Variable
Summarize 1 Variable Model 1 Variable

Visualize 2+ Variables Lurking Variables

Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page
Bimodal

Page 86 of 100

Figure 1: Histograms for six data sets.

Preliminaries
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 87 of 100

Go Back

Full Screen

Close

Figure 2: Bar graphs for the variable Class*Survived (Titanic Data).

Skewed Left

Symmetric

Preliminaries
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page
Bimodal

Page 88 of 100

Go Back

Full Screen

Close

Preliminaries
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page
$44 \quad \mapsto$

Page 89 of 100

Go Back

Full Screen

Figure 4: Bar graphs of the 2-way table of Survived within Class. Compare with Figure 2.

Pos. Assoc. / Linear Shape

Pos. Assoc. / Linear Shape

Preliminaries

Visualize 1 Variable
Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Home Page

Title Page
Pos. Assoc. / Linear / Inc. Var.

$44 \mid \gg$

Page 90 of 100

Go Back

Full Screen

Close

Figure 5: Scatter plots having positive association.

Neg. Assoc. / Linear Shape

Neg. Assoc. / Linear Shape

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Home Page

Title Page

Neg. Assoc. / Linear / Outlier

$44 \mid \mapsto$

Page 91 of 100

Go Back

Full Screen

Close

Figure 6: Scatter plots having negative association.

No Assoc. / Linear Shape

No Assoc. / Linear Shape

Preliminaries

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Home Page

Title Page

No Assoc. / Non Linear

No Assoc. / Non Linear

Page 92 of 100

Go Back

Full Screen

Figure 7: Scatter plots having no association.

Home Page

Title Page

Page 93 of 100

Go Back

Full Screen

Experience

Close
Figure 8: Data from University A.

Experience

Preliminaries
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 94 of 100

Go Back

Full Screen

Figure 9: Data from University A. (Compare with University B in Figure 11.)

Given : Dept

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Review/Omissions

Home Page

Title Page

Page 95 of 100

Go Back

Full Screen

Experience

Figure 10: Data from University A. (Compare with University B in Figure 12.)

Experience

Preliminaries
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables
Review/Omissions

Home Page

Title Page

Page 96 of 100

Go Back

Full Screen

Figure 11: Data from University B. (Compare with University A in Figure 9.)

Given : Dept

Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Review/Omissions

Home Page

Title Page

Page 97 of 100

Go Back

Full Screen

Experience

Figure 12: Data from University B.(Compare with University A in Figure 10.)

Preliminaries
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Home Page

Title Page

Page 98 of 100

Go Back

Figure 13: Data from University A. (Compare with University B in Figure 14.)

Preliminaries
Visualize 1 Variable
Summarize 1 Variable
Model 1 Variable
Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Home Page

Title Page

Page 99 of 100

Go Back
Figure 14: Data from University B. (Compare with University A in Figure 13.)

Preliminaries

Visualize 1 Variable
Summarize 1 Variable

Model 1 Variable

Visualize 2+ Variables
Lurking Variables
Summarize $2+\ldots$
Model 2+ Variables

Home Page

Title Page
$44 \quad \mid \gg$

Page 100 of 100

Go Back

Full Screen

Figure 15: SAT scores.

