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Confidence Intervals

Objectives: To be able to answer questions such as:

1 What does it mean that (43.2, 47.2) is a 95% confidence
interval for the mean?

2 The p-value is .03. What does this mean?

3 What does it mean that the study is significant?

4 What is the difference between practical and statistical
significance?

To answer these questions, we need

Descriptive statistics (are assumptions reasonable?)
To know how the data were obtained.
Randomization
Probability to describe BOTH randomization and uncertainty.
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Examples of Observational Studies

Ann Landers Poll: Would you have kids again?

– 70% said no.

http://www.stats.uwo.ca/faculty/bellhouse/stat353annlanders.pdf
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Examples of Observational Studies (cont)

Smoking and lung cancer in humans
– We observe two groups: smokers and nonsmokers, these
groups are as much alike as possible other than smoking.

– The incidence of lung cancer is much higher in the smoking
group, however, ...
– Tobacco Co: Cancer in both groups was due to genetics and
the gene that causes cancer is also responsible for making
smoking especially enjoyable for these individuals.
– Other claims: real cause of cancer is something else and this
real cause is confounded with smoking.
– The real cause is a lurking variable.
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Examples of Observational Studies (cont)

Salk Vaccine Trial (pt I)

– Study to find a safe, effective vaccine for polio
– Severe polio less prevalent among the poor.
– Second graders received vaccine; 1st and 3rd graders did
not; a controlled observational study

What problems might there be?
– Diagnosis is somewhat subjective, especially for mild cases,
and the study is not blind
– Not all second graders received the vaccine since it required
parental consent.
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Random Samples

Ann Landers revisited: Same question (Would you have
kids again?) but now use a random sample.

– now 10% say No.

What is a (simple) random sample of size n = 30?

Definition

A simple random sample of size n = 30 is a sample of 30 elements
chosen from the population such that each sample of size 30 has
an equal chance of being selected.

What is the population in the Ann Landers study?
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Randomized Experiments

Smoking and lung cancer in mice

– Take 100 mice and randomly assign 50 to Treatment 1
(Smoke exposure) and the remainder to Treatment 2
(Smoke-free control).
– Suppose 40% (20) from Treatment 1 have cancer while 4%
(2) from Treatment 2 have cancer.

How can we respond to the claim: “22 mice were going to get
cancer regardless of treatment, we just happened by chance to
put only 2 in the control group, the other 20 happened to get
assigned to the smoking group.”

This is possible, but not likely and we can calculate how
unlikely (p-value).
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Randomized Experiments (cont)

Salk Vaccine Trial (pt II)

– A random sample of children selected from those whose
parents gave consent.
– Each child in the sample was randomly assigned to one of
two groups: Vaccine or Placebo
– Neither the child (parents) or the physician knew whether
the injection was vaccine or placebo.

Randomized, controled, double-blind study (gold standard)

This design addresses selection bias, diagnosis bias, and
lurking variables.

The difference between vaccine and placebo is due either to
the vaccine or chance. http://wps.aw.com/wps/media/objects/14/

15269/projects/ch12_salk/index.html
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HIP (Health Insurance Plan) trial
discussion from Freedman 2009

Does screening for breast cancer save lives?

– Early 1960s, 62,000 women, age 40-64
– randomly assigned to treatment or control
– treatment: offered mammography; control: standard care
– about 1/3 of treatment group refused screening
– data: 5 year death count and rate (per 1000)

Paul Vos Statistical Inference



Data Production & Randomization
Random Phenomena & Probability

Sampling distribution
Testing & the logic of inference

Confidence Intervals

Types of Studies
Randomization

HIP (Health Insurance Plan) trial
discussion from Freedman 2009

Does screening for breast cancer save lives?
– Early 1960s, 62,000 women, age 40-64
– randomly assigned to treatment or control
– treatment: offered mammography; control: standard care
– about 1/3 of treatment group refused screening
– data: 5 year death count and rate (per 1000)

Paul Vos Statistical Inference



Data Production & Randomization
Random Phenomena & Probability

Sampling distribution
Testing & the logic of inference

Confidence Intervals

Types of Studies
Randomization

HIP trial (cont)

Deaths in 5 years of followup

Group Breast cancer All other
Size No. Rate No. Rate

Treatment
Screened 20,200 23 1.1 428 21
Refused 10,800 16 1.5 409 38
Total 31,000 39 1.3 837 27

Control 31,000 63 2.0 879 28

Which groups should be compared to determine if
mammography save lives?

– What about Screened vs. Refused?
– To keep benefits of randomization use Trt vs Cont.

Intention-to-treat analysis
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Role of Randomization

Benefits of Randomization

Addresses the problem of lurking variables

Allows the quantification of uncertainty

Statistical inferences (p-values, 95% CI) are based on
randomization

Many important studies do not use randomization

Statistical inference sometimes proceeds assuming the data
were obtained using randomization

How the data were obtained is v. important to inference, but
is not part of formal calculations
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Inference without Randomization

It is better not to do formal inference (p-values and
confidence intervals) when there are glaring violations of
assumptions (e.g., randomization).

Reasonable inferences may still be possible but are better
communicated through descriptive statistics.

”Parachute use to prevent death and major trauma related to
gravitational challenge: systematic review of randomised
controlled trials” in BMJ (327, 2003, pp. 1459-1461).
http://www.bmj.com/content/vol327/issue7429/
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Random Events – Structured Uncertainty
Probability

Examples of Random Phenomena

Examples:

Flipping a coin

Drawing from a well-shuffled deck of cards

Rolling a pair of dice.

Time to first detection of an α particle

What are the common features of these examples?
What about: Guessing game between two people?

– Rock, Paper, Scissors: Win or Lose.
– How are the outcomes (Win/Lose) not random?
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Characteristics of Randomness

Properties of Random Phenomena

1 Individual outcomes are uncertain

2 There is structure in the aggregate of all outcomes

Statistical inference utilizes this structure to quantify
uncertainty.

This structure allows us to quantify how uncertain outcomes
are/were.

The structure applies before data have been observed AND
after.
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Probability of Random Events

The structure in random phenomena allow assignment of
numeric/objective probabilities.

Examples of events:

Coin lands Heads up.
First card drawn is red.
The dice roll summed to 7.
The first α particle was detected b/t .80 and .85 ms.

The probability of an event is the proportion of outcomes in
the aggregate of all outcomes that result in the event
occurring.

Sometimes this is called the limiting relative frequency
interpretation of probability.
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Properties of Probability

P(A) =
number of outcomes in A

Total number of outcomes

A and B are events; e.g. A = card is ♥ , B = card is ♠ or ♣
Probability of any event is between 0 and 1: 0 ≤ P(A) ≤ 1

P(notA) = 1− P(A)

P(A or B) = P(A) + P(B) if A and B disjoint.
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Conditional Probability

P(A|B) is the probability of A occurring if B has occurred.

P(A|B) can be very different from P(B|A)

Consider choosing an individual randomly and A = ’US
senator’ and B = ’male’

– P(A|B) is very small but P(B|A) = 83/100

Or, A = ’pregnant’ and B = ’female’
– P(′pregnant ′|′female ′) vs. P(′female ′|′pregnant ′)
ACI: testing for a rare disease and A = ’test is positive’ and
B = ’disease’
– P(′test is positive ′|′disease ′) = .95
– P(′disease ′|′test is positive ′) =??

http://myweb.ecu.edu/vosp/ofe/Click&Clack-Epi.mp3
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Dealing a straight flush

Modified Example attributed to John Maynard Keynes

if Billy Graham were playing poker, the probability
he would deal himself a straight flush given honest
play on his part is not the same as the probability of
honest play on his part given that he as dealt himself
a straight flush. [Finkelstein, 2009]

P(A|B) 6= P(B|A); A = ’straight flush’, B = ’fair play’

But, A and B are different types of “events” (B is not an
event).

P(A|B) can be calculated 36
2,598,960 . Determining P(B|A), the

probability that Rev. Graham cheated, is more difficult.

For us, A = ’unlikely data’, B = ’two treatments are the
same’. We calculate P(A|B) but we are interested in P(B|A).
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Probability and Uncertainty

Probability assigned to random events describes the
uncertainty in outcomes
The term probability is also used to describe a degree-of-belief
(DOB):

Trump will still be president in 2018.
I will probably get selected for jury duty next year.
There probably is a God who created the universe (Pascal).

DOB probability differs from stochastic probability (of random
events):

Stochastic probabilities are obtained from the aggregate
structure of random phenomena.
Stochastic probabilities are objective (all people would agree to
numeric value).
DOB probabilities are subjective/difficult to assign numeric
value
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Probability and Uncertainty (cont)

DOB probability is related to stochastic probability

Observing an unlikely event elicits surprise
Discovering that a belief held with high certainty is false elicits
surprise

Stochastic probability and DOB probability are related but
distinct concepts.

Do not assign the numeric stochastic probability to a DOB
probability.

Statistical inference exploits the stochastic structure in data
obtained by randomization to address the DOB uncertainty
regarding claims about nature/population.
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Duality of Probability

Worksheet: http://myweb.ecu.edu/vosp/7021/wsjanus.pdf

Stochastic/DOB Duality

Both types of probability play a role in statistical inference, but
great care needs to be exercised to keep these from being confused.

A p-value of .04 DOES NOT mean that the probability is .04
that the “treatment has no effect” (null hypothesis) is true.

A p-value of .04 DOES mean that the data observed are
unlikely, values this extreme occur by chance with probability
.04 IF the null is true (as well as additional assumptions).
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Construction
First Steps

Motivating Example – Head Circumference

– We are interested in the Mean (and distribution) of
circumference in a target population Return
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Urn model – Construction

For each head circum., select a ball , write the value on the
ball, and place in the urn X . For example, head circum. 19.2

is represented by .

Take a sample of n = 30 from the population, calculate the
sample mean x̄ = (x1 + x2 + · · ·+ xn)/n, and place this

numeric value on a dark blue ball .
Repeat for all possible samples of size n = 30.
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Repeat for all possible samples of size n = 30.
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Mean µ

Standard Deviation σ

Shape: Normal/Other

Mean µ

Standard Deviation σ/
√
n

(aka standard error)

Shape: Normal∗

∗ if n is large enough.
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Visualizing the Sampling Distribution

Area Histogram:

A bargraph where the area of each bar gives relative frequency
of data falling in the range specified by the bars width

The number of values in the sampling distribution is HUGE,
so many bars can be used:
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First Steps

Example - Head Sizes

SRS of n = 25 from target pop. gives x̄ = 18.8 inches
Compare with US (36 mos): µ = 19.6, σ = .7 Return
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First Steps (cont)

Could µ = 19? µ = 19.1 (still assuming σ = .7)
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First Steps (cont)

Could µ = 19? µ = 19.1 (still assuming σ = .7)
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First Steps - Summary

We conceptually construct all possible sample means of size
n = 25: X

The distribution of X depends on the value assigned to
population mean µ

The observed sample mean x̄ is compared to the value
assigned to µ using X

Same ideas hold for other parameters, such as success
proportion p

P̂ is the collection of all sample proportions (n fixed)

The distribution of P̂ depends on the value assigned to
population proportion p

The observed sample proportion p̂ is compared to the value
assigned to p using P̂
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Reductio ad absurdum

Proof by reductio ad absurdum
Euclid’s proof regarding largest prime number.

Theorem

There is no largest prime number.

Proof.

1 Suppose p were the largest prime number.

2 Let q be the product of the first p numbers.

3 Then q + 1 is not divisible by any of them.

4 Thus, q + 1 is prime and greater than p which is impossible
(probability = 0).
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Reductio ad absurdum

Argument by reduction to an unlikely observation
Inference

Claim

Mean head size in target pop. differs from US (19.6 in.)

Argument

1 Suppose H0 : µ = 19.6 is true.

2 H0 together with other assumptions (SRS, σ = .7,. . .) allow
construction of X̄ .

3 x̄ = 18.8 is an extreme observation in X̄ . Goto

4 Thus, observing x̄ = 18.8 is unlikely if H0 is true.

Either H0 is false or the data observed were unlikely.
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Reductio ad absurdum

Argument when observation is NOT unlikely
Inference

Claim

Mean head size in target pop. is less than 19 inches

Argument

1 Suppose H0 : µ = 19 (H0 : µ ≥ 19) is true.

2 H0 together with other assumptions (SRS, σ = .7,. . .) allow
construction of X̄ .

3 x̄ = 18.8 is not that unlikely to observe in X̄ .

4 Thus, observing x̄ = 18.8 provides little evidence against H0.

If H0 is true, observing x̄ = 18.8 is not that unlikely.
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Reductio ad absurdum

The null hypothesis

Research Hypothesis: What one believes or fears to be true.

Men are paid more than women.
Grocer is cheating consumers.
New treatment is better than existing treatment.
New treatment is equivalent to the existing treatment.

Null Hypothesis: Negation of the research hypothesis after a
suitable quantification (e.g., what constitutes a better
treatment).

H0 : µmen = µwomen

H0 : µ 6= 16
H0 : µnew = µold

H0 : |µnew − µold| ≥ δ
Caution: Null specifies Exact equality

Not H0 : There is no significant difference between the mean
salary of men and women.
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Reductio ad absurdum

The p-value

Definition

The p-value is the probability of observing data as extreme as what
was observed if H0 is true.

Extreme data can mean, small values, large values, or both.

p-value is a measure of how unlikely the observed data are if
H0 is true.

When the p-values is smaller than a certain value (called the
significance level α; usually α = .05) the data are said to be
statistically significant, and, too often, simply as significant.

Statistical significance means the observed data were unlikely
if the null is true; we reject H0.

Court room analogy: H0 is on trial.
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Statistical vs Practical Significance

Consider H0 : µmen = µwomen. Suppose p-value= .04.

Statistical significance means that the observed data are
unlikely (probability less than .05) if the null is true, that is, if
the mean salaries for men and women are the same.

Statistical significance also means the null is not likely to be
true (a DOB probability, so cannot assign .05 to this).

Statistical significance does NOT mean the difference between
men and women is large or important.

Statistical significance need not be the same as practical or
clinical significance.
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Construction of Confidence Intervals

The sample mean x̄ is an estimate for the population mean µ

An estimate is an educated guess.

The standard error is an estimate for the standard deviation of
the sampling distribution for the estimator.

The standard error describes the variability of x̄ across all
possible samples (i.e., sampling distribution).

95% CI for µ : x̄ ± t.025ŝeX̄ , ŝeX̄ =
s√
n

95% CI for θ : θ̂ ± t.025ŝe θ̂

θ is a parameter (e.g., risk, slope, etc) estimated by θ̂

ŝe θ̂ measures the variability of θ̂ across all samples.
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θ is a parameter (e.g., risk, slope, etc) estimated by θ̂
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Procedural Interpretation

The formula for a confidence interval defines a procedure for
transforming the data into an interval.

IF certain assumptions for how the data were generated hold
true, then this procedure can be given the following
interpretation:

“95% of the intervals generated by this procedure
correctly cover the true mean (parameter).”

Assumptions include:

Data obtained from a random sample.
Data are approximately normal / sample size is large enough.
No outliers.
More assumptions for more complicated models.
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Data Interpretation

Confidence intervals can be constructed by inverting statistical
tests – consider many null hypotheses, one for each value of
the parameter.

Formally, the 95% confidence interval consists of all values for
the parameter (mean, relative risk) that would not be rejected
at the α = .05 level.

More simply, either the true value of the parameter is in the
95% confidence interval or the data that were observed were
unlikely, happening by chance with probability at most .05.

The required assumptions are exactly the same as for the
procedural interpretation.
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the parameter.

Formally, the 95% confidence interval consists of all values for
the parameter (mean, relative risk) that would not be rejected
at the α = .05 level.

More simply, either the true value of the parameter is in the
95% confidence interval or the data that were observed were
unlikely, happening by chance with probability at most .05.

The required assumptions are exactly the same as for the
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Revisit Lancet Study on brain tumor and head size

Go back to Lancet study

The Lancet study on head size and risk of brain tumor states the

“relative risk of brain cancer of 1.16 (95% CI 1.09 –
1.23) per 1 cm increase in head circumference . . .

Other notation: 95% CI for relative risk is (1.09, 1.23).

How do we interpret this interval?
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CI from Lancet Study

Proc The procedure that generated the interval
(1.09, 1.23) covers the true relative risk 95% of the
time.

Wrong The probability is 95% that the true RR is in the
interval (1.09, 1.23). – Why is this wrong?

- The procedural interpretation works better before
data have been collected.

Data Either the true RR is between 1.09 and 1.23 or the
observed data were unlikely, happening by chance
with probability at most .05

Data If the true RR is less than 1.09 (greater than 1.23),
then the probability of observing a RR as large
(small) as 1.16 happens by chance with probability
less than .05.
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Confidence Intervals and Practical Significance

Determination of practical significance is discipline specific.

If RR greater than 1.05 are considered clinically important,
then 95% CI (1.09, 1.23) shows that the increased risk is both
statistically and practically significant.

Suppose the 95% CI for the difference in mean salaries is
(800, 1300) dollars per year. If differences greater than 1000
are considered important (actionable), then the difference may
or may not be of practical importance.

Confidence intervals address both statistical and practical
significance.
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NEJM article: Breast Cancer Recurrence

The 2007 NEJM article (link) “MRI Evaluation of the
Contralateral Breast in Women with Recently Diagnosed Breast
Cancer” (29 March,356, pp. 1295-1303) found that 6 out of 101
women with a particular type of cancer in one breast, had cancer
in the other breast.

Suppose there is a claim that the recurrence rate is higher
than 6%. Say 10%, 12%, or 15%.

We calculate the probability of observing as few as 6
recurrences when p = .10, .12, .15.

6-out-of-101-applet

Paul Vos Statistical Inference
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Breast Cancer Recurrence (cont)

We want Prob(Claim|Data); we address this using
Prob(Data|Claim)

Prob(6 or fewer recurrences | true rate is 12.48%) = .0501

Prob(6 or fewer recurrences | true rate is 12.49%) = .0498

So 12.48% is in the 95% CI but 12.49% is not.

Similar steps can be taken for claims that the true rate is
lower than 6%

Prob(6 or more recurrences | true rate is 2.22%) .0509

Prob(6 or more recurrences | true rate is 2.21%) .0499

95% CI for true rate is 2.22% to 12.48%

Paper (using normal approximation) 1% to 11%.
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NEJM article: MRI sensitivity in Breast Cancer

This study also calculated the sensitivity for this cancer.

Sensitivity is the proportion of true positives (cancer) among
all those who test positive.

In this case, six tested positive and each had cancer so the
sensitivity is 6

6 or 100%.

But what about the true sensitivity of MRI for all patients?

6-out-of-6 applet

Paul Vos Statistical Inference

http://personal.ecu.edu/vosp/7021/javatest/tailsmall2.html


Data Production & Randomization
Random Phenomena & Probability

Sampling distribution
Testing & the logic of inference

Confidence Intervals

MRI sensitivity in Breast Cancer (cont)

Prob(6 out of 6 correct | true sensitivity is 54.1%) = .0501

Prob(6 out of 6 correct | true sensitivity is 54.0%) = .0496

So 54.1% is in the 95% CI for the sensitivity but 54.0% is not.

95% CI for sensitivity is 54.1% to 100%

Paper reports 95% CI as 100% to 100% !

Calculations were done using SAS, but the real problem was
not paying attention to the assumptions involved (normal
approximation cannot be used when n = 6) nor to the data
interpretation of the CI.

How were the data collected? Was randomization used?
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Statistical Inference Summary

Statistical inference requires knowing the type of data we
have and the story behind the data.

Statistical inference is motivated by DOB probability (e.g.,
“new treatment is better”), but

Numerical probabilities do not directly address the DOB
probability (the p-value is not the probability that the two
treatments are identical).

Studies that are significant (or, highly significant) need not be
important or of practical significance.

Confidence intervals address both statistical and practical
significance.
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