

The Games AIs Play - A Comprehensive Review

Thomas R. Robbins

 East Carolina University, Greenville, NC

(robbinst@ecu.edu)

ABSTRACT

Competitive games have long served as structured and measurable testing grounds for AI

research. Many foundational AI innovations emerged from efforts to achieve superhuman

performance in domains including board games (Chess, Go), knowledge-based competitions

(Jeopardy), and real-time strategy games (StarCraft, Diplomacy). The evolution of AI in games

offers valuable lessons for business applications, particularly in decision-making, strategic

planning, and automation. However, much of the research in this area is found in technical

publications and pre-print repositories, with limited engagement from business scholars. This

paper synthesizes key developments in AI applied to games, highlighting their technological

evolution and drawing insights relevant to business applications.

 Games AIs Play Working Paper

1 INTRODUCTION

Games have played an important role in the development of Artificial Intelligence since the field

was first conceptualized. Games provide a controlled and well-defined environment in which to

operate and test AI methodologies. Games such as chess and Go have long been considered among

the most intellectually challenging tasks in which humans can compete. Achieving human-level or

super-human level performance in these games has been a longstanding goal for AI developers,

one that for many years was considered beyond the abilities of computers.

The popularity and visibility of games has also been critical in bringing attention to AI

development. Deep Blue’s triumph over undefeated world champion Gary Kasparov in chess,

Watson’s defeat of champions Ken Jennings and Brad Rutter in Jeopardy, and AlphaGo’s defeat

of Lee Sedol in Go, have not only showcased the remarkable advancements in AI but also

captivated public interest and demonstrated the potential of AI to excel in complex, strategic tasks.

Game playing AI developers have been frequently featured on Lex Fridman’s Artificial Intelligence

podcast.

 Work related to intelligence in computers dates back to Turing’s work in the 1940s and the

publication of the famous Turing Test concept in his 1950 paper Computing Machinery and

Intelligence (Turing 1950). The term Artificial Intelligence was coined by Jon McCarthy at his

famous two-month seminar at Dartmouth in the summer of 1956 (Russell and Norvig 2020). Of

the 10 attendees at that conference four of them, Claude Shannon, Allen Newell, Herbert A. Simon,

and Arthur Samuel, published work related to computer game playing. Shannon’s work on a

computerized approach to chess pre-dated the Dartmouth conference by some 6 years.

 Games played an important role in the development, popularization, and evolution of AI

since its inception. Figure 1 provides a timeline of some of the selected game related AI milestones.

Figure 1- Timeline of Major AI Game Accomplishments

During the early stages of AI, classical techniques of directed search, often referred to as Good

Old-Fashioned AI (GOFAI), AIs were able to develop human level and sometimes super-human

level performance in games such as checkers, chess, backgammon, Scrabble, and Jeopardy. But it

was not until the reemergence of neural networks and the development of deep learning in the late

2010s that game playing AIs matured and begin to dominate a range of games previously thought

beyond the scope of AI. A series of increasingly capable AIs from Google’s Deep Mind conquered

the game of Go. As was the case for AI in general, these programs transitioned from expert-based

systems where human experts documented their expertise in the form of hand-crafted heuristics, to

self-learning systems provided with little more than a basic set of game rules.

 Games AIs Play Working Paper

 AI programs, increasingly built using a deep reinforcement learning approach, have

conquered board games such as chess, Shogi, Go, and Stratego. They have also achieved high-level

performance in classic Atari video games without any human guidance. Moreover, AIs have

reached expert-level proficiency in more advanced video games like Dota 2 and StarCraft II. In the

realm of card games, the AI Libratus excelled in the two-player version of No-Limit Texas Hold'em

by incorporating economic game theory concepts, including Nash equilibria. Subsequently, another

AI called Pluribus advanced to dominate six-player competitions in the same game.

Recently, a Meta-based AI named Cicero has demonstrated high-level capability in the

game of Diplomacy, which requires not only strategic decision-making but also natural language

communication skills. Cicero utilizes standard AI game tools, such as deep learning and

reinforcement learning, while integrating a large language model for communication. More

recently, a group of researchers from Deep Mind and academia have developed the Student of

Games, a unified learning algorithm that can play a wide variety of games, including games of both

perfect and imperfect information. Student of Games incorporates a wide range of AI techniques

including guided search, self-play and game theoretic reasoning. Student of Games is a general-

purpose algorithm that can achieve high level play in games that include chess, poker and Scotland

Yard, a further step toward a generalized AI capability, at least withing the domain of games.

Most of the AI game literature has been published outside of standard business-oriented

journals. Some are published in computer science journals or proceedings, or general interest

journals such as Science and Nature. Many of the seminal papers in AI are published as industry

working papers posted to the website ArXiv. Much of this research has been conducted in industry

labs at IBM, Google DeepMind, Facebook Artificial Intelligence Research (FAIR) and OpenAI. In

this paper we review the development of AI as it relates to games and in the process highlight the

major conceptual and architectural advancements of AI in general. We identify the major

milestones and the key papers that document the development of this subset of Artificial

Intelligence. Our goal is to present this stream of research to the business oriented academic

community.

2 GAMES AND GAME CHARACTERISTICS

In this section we review the basic dimensions that characterize and differentiate games. The

characteristics of the game influence the type of technology that can be applied to play the game.

We then briefly introduce the games that are included in our review and document each game’s

characteristics. Details of each game will be discussed later in the paper.

Game Dimensions

Games can be characterized along several different dimensions. Here we outline the dimensions

most relevant for our review.

• Certainty: games can be deterministic, with no randomness affecting the outcomes, or

stochastic, incorporating elements of chance or randomness.

• Players: games can involve a single player, two players, or multiple players.

• Information Set: games can feature perfect information, where all players have access to

all game-related information, or imperfect information, where some players possess private

or hidden information.

• Symmetry: games can be symmetric, where all players have identical resources and

options, or asymmetric, where players have different resources or options.

• State Space: games can have a discrete state space, with a finite number of possible states,

or a continuous state space, with an infinite number of possible states.

• Timing: Games can be real-time, where actions take place continuously and

simultaneously, or turn-based, where players take turns to make their moves.

 Games AIs Play Working Paper

• Environment: can be physical, involving tangible components like in board games, or

digital, existing in electronic formats like video games.

The difficulty of solving a game algorithmically is related to the complexity of the game.

Complexity is a combinatorial concept that bounds the search space of a game. Multiple methods

exist to measure game complexity. The state-space complexity is the number of legal positions

reachable from the game’s initial configuration. Game tree size is the total number of unique games

that can be played ('Game complexity' 2025). In some cases an exact measure of game complexity

cannot be made, but an upper bound can be specified.

Over the course of this review, we will discuss AIs that have been applied to a wide range of games.

We will discuss the specific details of those games as we work thorough the review, but the basic

characteristics of those games are documented in Table 1.
Table 1- Categorization of Games Analyzed

In most cases these classifications are clear, but in some cases, there is some ambiguity we will

address. For example, Jeopardy is for the most part a game of perfect information, but in the final

Jeopardy round a player’s wager is private information. In terms of environment, we classify video

games as digital and all other games as physical. Games such as poker can be played on-line but

are not video games in the sense that the on-line version is not fundamentally different than the

game played with physical cards.

3 TECHNICAL FOUNDATIONS

This paper is about the history of Artificial Intelligence (AI) applied to games. It is appropriate to

begin with a definition of AI. This is surprisingly difficult as AI means different things to different

people. In the seminal text Artificial Intelligence: A Modern Approach (Russell and Norvig 2020),

now in its 4th edition, the authors present four alternatives based on thinking/acting and

humanly/rationally before settling on the rational agent approach. In this view an AI is represented

as a rational agent that acts so as to achieve the best expected outcome in some situation. While

this definition is relatively broad, for the purpose of this analysis an AI is an agent that seeks to win

a game while operating within the rules of that game. Whether the agent acts or thinks how a human

would is of no concern.

Game Certainty Players
Information

Set
Symmetry

State

Space
Environment Timing

Checkers Deterministic Two Perfect Symmetric Discrete Physical Turn-based

Chess Deterministic Two Perfect Symmetric Discrete Physical Turn-based

Go Deterministic Two Perfect Symmetric Discrete Physical Turn-based

Othello Deterministic Two Perfect Symmetric Discrete Physical Turn-based

Backgammon Stochastic Two Perfect Symmetric Discrete Physical Turn-based

Scrabble Stochastic Multi Imperfect Symmetric Discrete Physical Turn-based

Jeopardy Deterministic Multi Perfect Symmetric Discrete Physical Real-time

Poker Stochastic Two/Multi Imperfect Asymmetric Discrete Physical Turn-based

Stratego Deterministic Two Imperfect Asymmetric Discrete Physical Turn-based

Shogi Deterministic Two Perfect Symmetric Discrete Physical Turn-based

Atari Games Varies Single Varies Varies Varies Digital Real-time

Dota 2 Stochastic Multi Imperfect Asymmetric Discrete Digital Real-time

Starcraft 2 Stochastic Multi Imperfect Asymmetric Discrete Digital Real-time

Diplomacy Deterministic Multi Imperfect Symmetric Discrete Physical Turn-based

Scotland Yard Deterministic Multi Imperfect Asymmetric Discrete Physical Turn-based

 Games AIs Play Working Paper

Learning is often considered a sign of intelligence, but by our definition of AI, learning is not

required. Some of the AIs we will examine learn on the job by playing games, others only do what

their creators explicitly tell them. As we will see, several of the most prominent and successful

game playing AIs had limited learning capability. Others start off with only the capacity to learn

and develop all their abilities through experience.

There are many different techniques that can be applied to develop game playing agents,

individually and in combination. We will discuss the details of each approach as we review the

specific models, but in this section, we review at a basic level some of the common approaches we

will encounter.

Adversarial Search

Adversarial search is an approach well suited to competitive games that have two or more agents

competing to win. This topic is covered extensively in Russell and Norvig (2020). Adversarial

search is often applied in two person games where players make discrete moves in an alternating

fashion. Under this approach the game can be modeled as a tree, with each branch representing a

ply, or a move by a single player. A simple example is shown in Figure 2.
Figure 2- Tree Diagram

This graph shows two plys of a two-player game where each player has five possible moves,

generally referred to as the branching factor (b). This simple tree has 25 terminal nodes, but an

actual tree will be much larger, based on the average depth (d) of the game. The number of terminal

nodes is approximately

 dT b (1)
Conclusively determining the winner of the game generally requires searching to the end of the

game. But for most games of any complexity the number of nodes is far too large for an exhaustive

search. Various techniques can be employed to limit this search by reducing the breadth of the

search, the depth of the search, or both. In some situations, Monte-Carlo techniques are used to

randomly search a portion of the tree.

Artificial Neural Networks and Deep Learning

Artificial Neural Networks (ANNs), a computer model architecture based loosely on the structure

of the human nervous system, were first proposed in the 1940s (McCulloch and Pitts 1943). An

early implementation of an ANN was Rosenblatt’s Perceptron, which was implemented on an IBM

704 at Cornell in 1957 (Rosenblatt 1958). Despite significant early enthusiasm for ANNs, interest

in the approach has ebbed and flowed over the years. While some researchers successfully used

shallow networks, it wasn’t until major technical issues were overcome in the 2010s that deep

learning emerged as a dominant force in AI. A 2006 paper introduced a method for successfully

training deep networks (Hinton, Osindero, and Teh 2006) and the 2012 AlexNet paper (Krizhevsky,

Sutskever, and Hinton 2012) introduced innovations that showed ANNs could significantly

outperform other approached for image recognition. A rapid succession of other key papers

demonstrated excellent performance on a number of machine learning tasks (Hinton and

Salakhutdinov 2006; Graves, Mohamed, and Hinton 2013; Sutskever, Vinyals, and Le 2014;

 Games AIs Play Working Paper

Vinyals et al. 2014; He et al. 2015) and since then, ANN based architectures have been the dominant

approach in AI.

 ANNs are built by combining individual neurons. A neuron accepts multiple inputs,

performs a linear combination, and then applies a non-linear transformation called an activation

function. Common activation functions include the Rectified Linear Unit (ReLU), a piecewise

linear function defined as max(x,0); the Sigmoid function, an S-shaped curve that maps inputs to

the range [0,1], often used to model probabilities; and the Softmax function, which converts a

vector of raw scores into a discrete probability distribution.

 Deep Learning generally refers to architectures with multiple layers, where the output of

each node in one layer is an input to every node in the next layer. Such networks are said to be fully

connected. Figure 3 illustrates a very simple deep network with three inputs, three fully connected

hidden layers, and a single output node. The single output is applicable to regression or binary

classification models. In a multi-nominal classification model, the output layer would have one

Softmax node for each potential class.
Figure 3- Deep Artificial Neural Network

Modern deep networks are generally much larger than the simple example previously discussed,

with more layers and many more nodes. Since each node has a parameter (or weight) associated

with every input, as well as a bias term, deep networks can easily have hundreds of thousands, or

even millions of parameters that must be set during the training process. The benefit of a deep

network is its ability to learn very complex transformations of the input data to the output data.

Hornik, Stinchcombe, and White (1989) proved that deep networks with enough layers can

approximate any continuous function on a compact subset of
n

. Deep networks are thus very

effective in identifying patterns in input data.

 Fully connected networks remain extremely popular, but they have also been extended with

other architectures. Convolutional Neural Networks (CNNs) implement a form of spatial

invariance, making them popular in image processing applications. A CNN forms a filter that

effectively scans an image, looking for patterns that may appear anywhere. Recurrent Neural

Networks (RNNs) implement a form of short-term memory and are therefore popular for data with

sequential dependencies, such as text or time series data. A Long Short-Term Memory (LSTM)

network is a special type of RNN that can learn long-term dependencies within data. These

architectures are often implemented along with a fully connected network. In image processing, for

example, a series of CNNs may be used to identify features in the data that are then fed into a fully

connected network for classification.

 The newer ANN architecture is the Transformer. First introduced by Vaswani et al. (2017)

as a sequence-to-sequence model for machine translation. The Transformer utilizes a mechanism

known as self-attention that allows it to handle sequential data more effectively and efficiently. The

Transformer has become the core of popular generative models such as ChatGPT and has led to

significant improvement in many aspects of natural language process. For more details on the

technical and mathematical foundations of Deep Learning see Goodfellow, Bengio, and Courville

(2016). Chollet (2021) provides a practical introduction to implementing deep learning using

 Games AIs Play Working Paper

Python and the popular Keras library. Stevens, Antiga, and Viehmann (2020)is a similar guide

based on the increasingly popular PyTorch library.

Reinforcement Learning

Reinforcement Learning (RL) is a set of machine learning techniques used to create intelligent

agents that learn by interacting with their environment. RL stands as a third form of machine

learning, distinct from supervised and unsupervised learning. It has played an important role in the

development of AI in general and a particularly significant role in game-playing AIs. Sutton and

Barto (2018) is a popular and comprehensive text that covers all aspects of RL.

Reinforcement learning can be described as a system where an agent interacts with its

environment by taking actions and receiving rewards. The agent learns to make decisions to

maximize its long-term reward. A state vector St, represents the environment at each time t. The

primary elements of the RL system are

• Policy: the agent’s action for a given state of the game, denote as .

• Action: the move made by the agent, denoted as at.

• Reward Signal: the value achieved from taking an action, denoted rt.

In a board game system, the agent interacts with the environment in discrete moves, based on the

action at selected at time t, the state of the system, which represents the position of pieces on the

board and potentially other critical information, transitions from st to st+1. Based on the change in

state the agent receives a reward rt. The reward indicates the immediate reward, a value function

specifies the long-term reward. Roughly speaking the value of a state is the expected reward the

agent will accumulate from that state in the future. Rewards are revealed directly by the

environment, whereas values are estimated from the sequence of observations made by the agent

overtime. The actions made by the agent seek to maximize the value function. The action-value

function, Q(s,a), represents the expected return of taking action a from state s and following a

certain policy  thereafter. The function can be defined as

 ()  , | ,t t tQ s a E R S s A a = = = (2)

Where Rt is the cumulative sum of rewards from t onward. The optimal action-value function

Q*(s,a) gives the maximum expected return achievable from a state s by talking action a, and

following policy .

 RL systems can also be classified as value-based or policy-based. In a value-based system

the agent attempts to learn the action-value function and derives its policy indirectly. For example,

if an agent has learned the action value function, it may implement a greedy policy, choosing the

action that leads to the highest Q-value. Conversely, in a policy-based system the agent learns the

policy that maps states to actions directly without first learning a value function.

RL can also be categorized as on-policy or off-policy. On-policy methods refine the policy

while following it, learning and improving the policy as the agent interacts with the environment.

Off-policy methods use a different policy during the learning process. Off policy methods are often

used in conjunction with value-based methods. The agent may use an exploratory process to visit

a variety of states as it attempts to learn an accurate value function.

Finally, an RL system can either be model-based or model-free. In model-based RL, the

agent has a model of the environment, allowing it to make inferences and predictions about future

states and rewards based on its actions. In contrast, model-free RL does not have an internal model

of the environment; instead, the agent learns about the environment through trial and error, directly

associating actions with rewards without predicting future states.

Deep reinforcement learning is an approach that combines RL and deep learning. Deep RL

is particularly useful in systems with complex, high-dimensional input data. The deep neural

network may be used to implement the value function, the action-value function, or the policy

function. Deep RL has become increasingly popular with the recent resurgence in deep learning.

 Games AIs Play Working Paper

Game Theory

Game theory is the study of strategic interactions among rational decision-makers, where the

outcomes for each participant depend on the choice of all involved. Game theory has a long history

in the study of economics dating back to the book Theory of Games and Economic Behavior (Von

Neumann and Morgenstern 1947). John Nash would win a Nobel Prize for developing the concept

of the Nash equilibrium in non-cooperative games (Nash 1950). Many texts have been written on

game theory, notably Fudenberg and Tirole (1991). While games theory is often applied in

economic and political decision making, it can also be applied to games such as chess, go, or poker.

 In game theory players make decisions that result in outcomes with different payoffs.

Players seek to maximize their payoffs. Players implement strategies, that is a complete plan of

action for every possible situation in the game. In a pure a player always makes the same decision

for a given situation. A mixed strategy is a probability distribution over a set of possible actions. A

key concept in game theory is the Nash equilibrium, a set of strategies where no player benefits by

unilaterally changing their strategy if other players do not change their strategy. At an equilibrium

condition each player’s strategy is optimal given the other player’s strategies.

 The quintessential example of game theory is the prisoner’s dilemma. Here we outline the

version presented in Fudenberg and Tirole (1991) and present the game in normal form in Figure

4.
Figure 4- Prisoner's Dilemma

 Player 2

C D

P
la

y
er

 1
 C 1,1 -1,2

D 2,-1 0,0

 In this game two players have been arrested for jointly committing a crime. Two different strategies

are available to each player, cooperate and keep quiet, or defect and implicate the other player. The

matrix shows the 4 possible results based on each player’s strategy, and the resulting payoffs for

player 1 and 2. The police offer each criminal a deal, if they defect and implicate the other, they go

free and get a reward provided the other player does not. If they both cooperate (refuse to testify)

they both go free. If they both defect, both go to jail. The maximum collective reward occurs if the

players cooperate and refuse to testify. However, each player can improve their individual outcome

by defecting regardless of what the other player does, so the Nash equilibrium of the game is for

both players to defect. In the prisoner’s dilemma a Nash equilibrium is achieved with a pure

(deterministic) strategy. In other games a Nash Equilibrium is only achieved with a mixed

(probabilistic) strategy. The Nash equilibrium for the game rock – paper – scissors has each player

select one of the three moves with equal probability.

Figure 4 shows a game represented in normal form. Games that involve sequential decisions

are more commonly represented in extensive form, which is similar to the game tree format shown

in Figure 2. The extensive form illustrates the moves by each player and includes chance nodes for

games with stochastic components, such as the result of a die roll or a card draw.

An important concept in games of imperfect information is the information set. An information

set is a collection of nodes that represent the player’s knowledge at a certain point in the game. If

a player is at an information set, they know they are at one of the nodes in that set, but they do not

know which specific one. For example, in a card game, a player’s information set includes their

own cards but represents several possible nodes based on the opponents' cards. Extensive form

game trees may connect the nodes in an information set with dashed lines. However, in practice,

these trees are often too large to view in anything but a simplified form. Figure 5 shows the

extensive form for a greatly simplified card game reproduced from Bowling et al. (2015).

 Games AIs Play Working Paper

Figure 5 - Simplified Extensive Form Game

In this game there are only three cards, a Jack, a Queen, and a King. The first node is a chance

node, indicated by a C. The tree illustrates branches where player 1 is dealt a queen, and player 2

is dealt either the Jack or King. Player 1 has the first decision, indicated by the 1 in the node, and

must either bet or pass. The game exists at one of the two nodes at the first level but player 1 does

not know which, so these two nodes are in the same information set. If player 1 bets, player 2 can

either call or fold. If player 1 passes, player 2 can either bet or pass. Only if player 2 bets does

player 1 face a second decision, and again both those nodes are in the same information set. The

terminal nodes, squares, represent the final outcomes from player 1’s perspective. Player 1 will lose

if he folds, or if player 1 has the king and calls. Player 1’s outcome can range from a gain of 2

units, to a loss of 1 unit and depends both on the outcome of the chance node and the decision of

player 2.

 AIs that play games of incomplete information typically seek to determine an approximate

Nash equilibrium of the extensive form game. This is defined as a strategy where neither player

can improve their expected outcome by unilaterally changing their strategy. The most common

approach for achieving this goal is based on a variation of the counterfactual regret minimization

algorithm (Zinkevich et al. 2007). This iterative algorithm seeks to minimize the regret each player

faces for masking a specific move compared to the counterfactual outcome of making a different

move at each information set.

 These simple examples show how a player must consider what decision his opponent must

make when crafting his own strategy. Game theoretic concepts can be applied to a wide range of

game scenarios, but they are particularly useful in games with incomplete information such as

Poker, Stratego, and Diplomacy.

4 CORE CONCEPTS – CHECKERS, CHESS, AND OTHELLO

Chess is a deterministic, two player game of perfect information. It is played on an 8x8 grid of

alternating colors. Each player has 16 pieces of 6 different types; king, queen, rook, bishop, knight

and pawn, initially positioned as in Figure 6 ('Rules of Chess' 2025). Each piece type has a unique

set of allowable moves. Players take turns moving and may capture opponent pieces by occupying

the same square as the opponent piece. The objective of the game is to attack the opponent’s king,

placing them in a condition from which there is no escape, known as a checkmate.

 Games AIs Play Working Paper

Figure 6- Initial Chess Layout

Chess is one of the most widely studied problems in early AI. John McCarthy contributed a chapter

titled Chess as the Drosophila of AI, in the book Computers, Chess, and Cognition (Marsland and

Schaeffer 1990). This analogy likens chess to the fruit fly (Drosophila) in genetic research,

highlighting its role as an ideal experimental platform.

The foundational concepts for chess playing programs was laid out in Shannon (1950). Written

in the late 1940s, shortly after the development of the first electronic programmable computers,

Shannon did not develop an actual program for playing chess, but his paper did define the key

components that would be included in future programs, not just for chess, but for games in general.

Shannon defined the position, or state of a chess game as:

1. The position of all pieces

2. The side with the next move

3. An indicator if castling is still available

4. The previous move

5. The number of moves made since the last pawn move or capture.

Most of these items are obvious, but some of them relate to the more esoteric rules of chess, such

as the en passant capture or the 50-move draw rule.

Given that chess is a deterministic game of perfect information, under the assumption of

perfect play any given game state must be either a win for white, a draw, or a win for black. In

theory an evaluation function f(P) maps the current position to the final outcome. It is possible in

principle to construct a program that would execute perfect play, selecting a move that leads to the

best possible outcome for the player from any given state. A tree can be constructed that includes

every possible move to the conclusion of the game. The outcome can be folded back, assuming

optimal decision making by each player to determine the best move. However, given that there are

on average about 30 legal moves and a game lasts about 40 moves, the tree has approximately 10120

branches making this mapping unworkable. Shannon points out that a machine executing one move

per microsecond would require 1090 years per move. Modern computers are several orders of

magnitude faster, but the calculation is still impractical.

Shannon then outlines an alternative programming approach, keeping a dictionary of all

possible game states. The dictionary would define the perfect play move from that position. In

addition to the impracticality of defining the perfect play move as defined above, the number of

possible board states, approximately 1043, makes even a dictionary of near optimal moves

impractical. Shannon concludes that developing a program to play perfect chess is not practical,

and developing a program to play legal chess is trivial and pointless, as random moves lead to

extremely poor outcomes. He then frames the problem as defining a playing strategy, choosing a

move from a given position, that can play comparable to a good human. It would take nearly 50

years, but programs would eventually be developed that would exceed the capabilities of any

 Games AIs Play Working Paper

human player. Shannon outlined the basic components of this strategy, a minimax search through

a partial game tree using an approximate evaluation function that would eventually lead to

superhuman performance.

Partial Evaluation Function

Expanding the tree to termination results in a tree that is too large to evaluate, but determining the

final outcome of the game requires full enumeration. The alternative outlined is to develop an

evaluation function f*(P) that estimates the value of any arbitrary position on the board. The

program can then generate a partial tree by searching forward a few moves and evaluate the

resulting position at that point. Those values can then be folded back to determine the best move at

the current position. This provides a heuristic assessment of the best move to make at any given

point. The quality of the heuristic depends on two features, the depth of the search and the accuracy

of the evaluation functions.

Shannon asserts that “Most of the maxims and principles of correct play are really

assertions about evaluating positions.” He articulates several evaluation heuristics including the

relative value of pieces, the notion that rooks are most valuable on open files and that an exposed

king is a weakness. Each of these factors can be given a numeric score that is combined in a

weighted fashion to give an overall positional evaluation. The exact composition of these rules, and

the method for combining them, based on human expertise would be a foundational concept in

chess programs for the next 60 years. Deep Blue, the IBM program that eventually defeated Gary

Kasparov, would invest heavily in developing an accurate and efficient evaluation function.

Minimax Search with Pruning

For any given state of the game, the program’s task is to select the next move. This can be

accomplished by searching through the game tree and assuming optimal play by each player. Each

position on the tree is given an evaluation score based on the evaluation function. Assume each

score is relative to White, with a higher value associated with a superior position for White. (Black’s

relative score is the negative of white’s).

 White will should pick the move that maximizes the evaluation score and assume that

Black will respond by making a selection that minimizes white’s score. The process can be

illustrated through the simplified tree shown previously shown in Figure 2 In this tree we project

forward 2 plys (one for white, and one for black) under the assumption that only 4 moves are

available at each ply. Evaluation scores, relative to white, are calculated for the 16 leaf nodes.

Black’s move for each set of leaf nodes is selected to minimize white’s score. White picks from the

four possible moves to maximize its score. White picks the third move and assumes black will pick

the third response.

Shannon defines a Type A strategy as one which considers all possible moves from each

position for a fixed number of moves. Recognizing the weakness of this approach, he proposes an

alternative Strategy B that conducts a variable search. The search is variable in depth as it will

continue to progress deeper if the position is unstable, for example if it ends with a piece about to

be captured. The search is also variable in terms of breadth, implementing some process to ignore

inferior branches, a form of what would come to be known as pruning, though the details of how

to achieve that pruning are limited.

Games Stages

Chess theory has generally divided the game into three distinct stages, the opening, the middle

game, and the end game. According to Shannon, the opening stage generally lasts about 10 moves.

Skilled chess players generally implement a pre-defined opening book picking from a large set of

widely analyzed openings. The end game refers to the portion of the game where only a few pieces

are left on the board. Like openings, end games have been widely studied and documented with

 Games AIs Play Working Paper

explicit strategies defined based on the set of pieces remaining. Shannon advocates using different

tactics, and indeed different programs, during each stage of the game. Shannon’s work is focused

squarely on the middle game, the most complex portion of the game, where positional

understanding is most critical. The segregation of the game into three distinct phases is a concept

that would be firmly embedded into virtually all chess programs up to and including Deep Blue,

the program that defeated Kasparov.

Shannon’s paper merely outlined the concepts behind a theoretical chess program. Given

the limitations of computation of the time he did not actually develop a program. The first known

chess programs are described in Kister et al. (1957) and Bernstein et al. (1958). Those 2 programs

are compared and contrasted in another paper co-authored by two the original Dartmouth

conference attendees, Allen Newell and Herbert Simon (Newell, Shaw, and Simon 1958).

Checkers

Given the computational challenges associated with chess, progress on a more human-level

competitive solution began with checkers. Like chess, checkers is played on an 8x8 grid. Each

player has 12 pieces initially arranged as shown in Figure 7. All 12 pieces are identical and can

only move forward diagonally until they are kinged; i.e., they reach the last row. Once kinged a

piece can move forward or backward. Players capture opposing pieces by jumping them. A player

wins all his opponent’s pieces have been captured or have no legal moves ('Checkers' 2025). With

a branching factor of approximately 8 to 10, and average game length of about 50 moves, checkers

has a game tree complexity of approximately 1040, still very large, but much smaller than chess.
Figure 7 - Checkers Board

IBM researcher Arthur Samuel developed the first AI capable of playing a complex game with

human level performance (Samuel 1959, 1967). His program was limited by the relative capabilities

of computers in the 1960s, but he developed an innovative program that introduced several key

techniques, including alpha-beta pruning, self-play and learning. The program executed a variable

depth search, searching deeper where moves left the board in an unstable position, perhaps where

a jump is possible. This technique would later come to be referred to as a quiescence search. An

evaluation function would score the value of each board position based on hand-crafted features

such as piece count, piece position, etc. More than 20 factors were combined using a weighted

average. The program used two methods of learning. In rote learning it stored board positions and

their outcome in a lookup table, in generalization it modified the evaluation function weights based

on the eventual results of the game. While Samuel’s checkers program never achieved world-class

performance, it operated as a strong amateur, it did establish a foundation for AI applications in

games, and demonstrated the potential of AI in general.

Othello

Another board game used for AI research during this period was Othello, also known as Reversi.

Othello is played on the same 8x8 grid as checkers, and players have 64 identical pieces, white on

one side black on the other. The game begins with 4 pieces on the board with the pattern shown in

Figure 8. Players alternate turns, adding pieces to the board with their color facing up. When a

 Games AIs Play Working Paper

newly placed piece outflanks an opponent’s piece by forming a straight line with another piece of

the same color, all opponent’s pieces in between are flipped to the player’s color. When all squares

are filled, or no legal move remains, the player with the most pieces wins ('Reversi' 2025). Like

chess or checkers, Othello is a deterministic game of perfect information. The branching factor

varies significantly over the course of the game, but the game length is fixed at 60 moves or less.

Given that, the complexity of the game is approximately 1058.
Figure 8- Othello Board

Paul Rosenbloom of Carnegie Mellon developed an Othello program named IAGO that defeated

19 other Othello programs in a 1981 tournament (Rosenbloom 1982). IAGO implemented a

knowledge heavy AI approach, with human expertise explicitly encoded into the program. Because

of the explicit time constraints of the game, and the computational limits of the time, IAGO

develops a time budget for each move. It used an - search algorithm and a hand-crafted

evaluation function. By carefully selecting the order of branches to explore, IAGO achieved an

average search depth of 6.3 moves. IAGO also explicitly modeled the opening, middle and end

games and modified its strategies based on the phase of the game. IAGO defeated other Othello

programs with a record of 10-0. Unable to find a willing champion level human opponent, the

program was evaluated against championship level human games move by move, making the same

move as the human 59% of the time.

5 BASIC REINFORCEMENT LEARNING – BACKGAMMON

Backgammon is another popular two player board game. Backgammon is played on a board with

four quadrants, each of which has six points. Each player has 15 pieces arranged as shown in Figure

9. Players move in opposite direction, in this example black moves clockwise and white moves

counterclockwise. Players move their pieces based on the roll of two dice, where each die

authorizes a specific move. So, for example, if a player rolls a five and a two, they may move one

move of five spots and another move of two spots using the same piece or a different piece. Any

point occupied by two pieces is blocked from the other player. A point with only one piece is

vulnerable. If an opposing piece lands on a vulnerable piece that piece is hit and removed from the

board. It must re-enter the board from the beginning. Players win by clearing all their pieces from

the board first. Backgammon has a unique feature known as a doubling cube. At any time, a player

may double the stake of the game by invoking the cube. The other player must either accept the

new stakes or concede the game at the original stakes. The doubling player cannot double again,

but the other player may choose to double again later in the game. There is no limit on the number

of doubles that can be made ('Backgammon' 2025). Backgammon is a game of perfect information,

but due to the dice it is stochastic. The stochastic nature of the game greatly expands the complexity

tree. Since the order of the dice does not matter, there are 21 unique rolls to consider in

backgammon. The dice adds 21 branches at each ply creating a very large complexity tree of about

10263.

 Games AIs Play Working Paper

Figure 9- Backgammon Board

In the late 1980s Gerald Tesauro, a researcher at IBM, created a series of backgammon programs

that would eventually achieve world-class level play. His first program Neurogammon introduced

a neural network architecture. The program won a computer backgammon tournament in 1989. He

would later develop a program called TD-Gammon that would achieve world-class level play

(Tesauro 1992, 1994, 1995, 2002). TD Gammon is explicitly based on a form of reinforcement

learning known as temporal difference learning, specifically the TD() version of that algorithm.

Temporal difference learning was first introduced in Sutton (1988). TD Gammon used self-play

and RL to learn a value function that maps game state to expected outcome based on the difference

in value achieved with each move. The program then selects the best move based on what move

leads to the highest value state based on a 2 ply search. TD Gammon achieved master level human

capability, losing to top level human players in very competitive matches.

6 DEEP BLUE - WORLD CHAMPION CHESS

While chess was a topic of great interest in the early days of AI, it was not until the 1990s that AI

conquered chess. In 1997 an AI known as Deep Blue defeated world champion Gary Kasparov in

a widely covered match that captured public attention and was a major turning point in the public

perception of AI.

 Deep Blue was the latest in a series of chess programs; Chip Test, Deep Thought and finally

Deep Blue, developed by a team that started work at Carnegie Mellon and later moved to the

research lab at IBM. The development effort is chronicled in the academic press in Campbell,

Hoane, and Hsu (2002) and the popular press in Hsu (2002). Deep Blue implemented a game tree

search algorithm not dissimilar to that described by Shannon in 1950. But Deep Blue was backed

by massive computational resources, well beyond anything conceivable in 1950.

 Deep Blue consisted of a 30-processor cluster supported by 480 custom designed chess

chips. The custom chess chips could perform search and evaluation operations in hardware. They

are described in detail in Hsu (1999). Using a combination of software and hardware-based

searching, the program could evaluate about 100 million nodes on the search tree. The search was

highly non-uniform, using advanced pruning techniques to limit the portions of the tree explored,

as well as quiescence and other search extension techniques to explore key portions of the tree more

deeply. With these modifications Deep Blue could reach search depths of 30-40 plys.

 In addition to the ability to search massive portions of the game tree, Deep Blue strength

came from its ability to encode substantial human expertise. The hardware-based evaluation

function recognized over 8,000 patterns and assigned each position a score on each one. Overall

position strength is a weighted combination of these features. Deep Blue also divided its game into

opening, middle and closing stages. The opening book was manually crafted by human

grandmasters and covered 4,000 positions. Deep Blue also created an extended book for the

opening phase that utilized a database of 700,000 games played by grandmasters. The use of this

database is further discussed in Campbell (1999). The extended book would bias moves toward

those used by grandmasters. Deep Blue also included a database of all endgame positions with five

or fewer pieces, and selected positions with six pieces.

 Games AIs Play Working Paper

 Overall Deep Blue’s triumph over Kasparov was a watershed moment in the history of

game playing AI, and AI in general. It was the first demonstration that an AI could play an

intellectually challenging game at a level higher than any human. Kasparov discusses his

experience playing Deep Blue on (Fridman and Kasparov 2019). From a technical perspective,

Deep Blue was a stellar example of good old-fashioned AI. The program used massive

computational resources to implement human specified skills. Despite the qualifier Deep in its

name, Deep Blue did not include a deep learning architecture and in fact the program did learn at

all. It only got better in between games as its creators fine-tuned the algorithm.

7 NLP – CROSSWORDS, SCRABBLE AND JEOPARDY

Up through the 1990s AI made significant progress in developing skills in increasingly complex

board games, culminating in the defeat of the world champion chess master. The early 2000s saw

less activity in game playing AI overall, and a switch from classic board games to word games. In

this time period AI demonstrated human and super-human level skills in crossword puzzles,

scrabble, and most notably the popular question and answer game show Jeopardy. Together these

applications integrated information retrieval and Natural Language Processing (NLP) concepts into

game playing AIs.

 Some of the earliest successes in word-based games came in the form of crossword puzzles.

A crossword puzzle is a word game where players fill in a grid of interlocking blank squares with

words based on clues provided. A team of researchers from Duke, that later moved to industry,

developed Proverb, an AI that could solve crossword puzzles (Keim et al. 1999; Littman, Keim,

and Shazeer 2002). Proverb effectively uses a two-step process to solve a crossword puzzle. A

series of Expert Modules develop and rank candidate solutions to the clue, then a solver takes these

weighted lists and iteratively searches for the best solution to satisfy the grid constraints of the

puzzle. Candidate generation is an information retrieval process; some 30 independent modules

generate candidate solutions and assign each a probability score. Experts implement a wide range

of techniques, including generating lists of words with the correct length from a dictionary,

searching a database of 350,000 solved crossword clues, searching online data sets like the Internet

Movie Database (IMDB), and using linguistic approaches such as latent semantic indexing. Proverb

was able to achieve high level human, but not superhuman, performance. Over a test set of 350

puzzles, it achieved word accuracy of 95%, letter accuracy of 98%, and solved 46% of the puzzles

perfectly. But in a competitive tournament, Proverb placed 190 out of 251.

A further refinement of word-based game AI involved the board game Scrabble. Scrabble

is a word game in which two to four players compete to create words in a crossword puzzle like

fashion on a 15x15 board as shown in Figure 10. Players maintain a rack of seven tiles each, drawn

from a bag of 100 tiles. Each tile has a single letter and an associated point value. Players score by

placing tiles on the board to spell acceptable words, from an agreed upon list or a dictionary. The

initial word must cover the star at the center of the board, and each subsequent word must connect

to at least one word already on the board. The points earned are the sum of the scores for each tile

used, factored by any of the multipliers shown on the board. Multipliers include double or triple

letter score, and double or triple word score ('Scrabble' 2025). Because players are unaware of the

tiles in each opponent’s rack, Scrabble is a game of imperfect information.

 Games AIs Play Working Paper

Figure 10- Scrabble Board

An AI named Maven was able to achieve superhuman performance in Scrabble (Sheppard 2002).

Maven includes a move generation component that begins with a dictionary to determine all legal

moves for a given board and rack. Each move is processed by an evaluation function that considers

not only points scored, but the quality of the remaining rack. The evaluation function was learned

through simulated play. As in other games such as chess, Maven divides the game into three phases,

the normal game, pre-endgame, and endgame, and uses a different search approach in each phase.

The pre-endgame begins when the game can end within the two-ply search horizon. The endgame

begins when all tiles have been removed from the bag, at which point Scrabble becomes a game of

perfect information; the opponent’s rack can be inferred from the tiles on the board and in Maven’s

rack. End game play is important as going out first, emptying your rack, has significant scoring

advantages including an extra turn and a tile penalty for the tiles left in the opponent’s rack. In the

endgame Maven switches to the B* algorithm, an enhanced form of alpha-beta pruning.

 Maven was able to perform at a level equal to or better than top-level humans. Maven

averages about 35.0 points per move, vs, about 33.0 points for top humans. Maven maintained a

35-15 record in tournament play against top humans, including victories over the reigning US and

world champions in 1998.

 While Proverb and Maven demonstrated the ability of AI to excel in NLP, the most notable

achievement of AI in word-based games involved the game of Jeopardy. Jeopardy is a popular

television game show that originally aired in 1964. It changed formats several times, and was off-

air for some time, but the current version has aired continuously since 1984. Three contestants

participate in a question-and-answer game, picking topics from the game board, an example of

which is shown in Figure 11. There are five questions in six categories with each question having

a different dollar value. The example shown is for the first round. The second Double Jeopardy

round has double the value for each question. The categories change from round to round and game

to game. A player selects a square and is given an answer, to which they must respond in the form

of a question that elicits the answer shown. Players may buzz in only after the question has been

fully read, an early buzz locks them out for a short period of time. The player who buzzes in first

can answer. A correct answer earns the dollar value of the square, an incorrect answer results in a

deduction of the same amount. One square in the first round and two squares in the second round

are daily doubles. The person selecting the daily double is given the exclusive opportunity to

answer the question. Unlike regular questions the dollar value of a daily double is a wager from the

player before the answer is revealed. Players may bet up to the full amount of their bankroll, or a

minimum by round if their bankroll is small. Because of the high dollar value potential of the Daily

Double these questions often play an outsized role in the competition. The game concludes with a

Final Jeopardy round in which all players wager on the same question. At the time of the wager

players know the category, but not the specific question. ('Jeopardy!' 2025).

 Games AIs Play Working Paper

Figure 11- Jeopardy Board

The player with the highest score at the end of the game is the winner. Winners return for the next

episode. Skilled players can go on long winning streaks and earn substantial prizes. Current host

Ken Jennings began as a player and set the record with 74 consecutive victories and over $2.5

million in winnings. Jennings would later be part of the live competition against the AI system

Watson developed by IBM.

 Jennings winning streak is said to be the inspiration for IBM to take on the challenge of

developing an AI program to play Jeopardy. Looking to build on the publicity IBM had earned

from Deep Blue, they began development of Watson in 2007 and the competition against Jennings

and another champion took place in 2011. The full history of the effort is provided in a non-

technical fashion in the book Final Jeopardy (Baker 2011) and the IBM project leader discusses

the project in detail on Fridman and Ferrucci (2019).

Watson is a highly sophisticated and modular set of computer programs, capable of playing

Jeopardy in real time at a world class level. The components of Watson fall into two broad

categories, question answering and game strategy. Question answering involves NLP based tasks

to parse the question, determine what it is asking, find a set of candidate answers, and assign

probabilities to the candidate answers. Game strategy involves a range of decisions such as when

to buzz in, what square to pick when controlling the board, and how to wager on Daily Double and

Final Jeopardy questions. The question answering components of Watson are described in Ferrucci

et al. (2010). Gene Tesauro, the developer of the TD Gammon application, was a team member on

the Watson team and he co-authored two papers describing the game strategy of Watson (Tesauro

et al. 2013; Tesauro et al. 2012).

The question answering component of Watson is referred to as DeepQA (question-answer).

DeepQA was a sophisticated information retrieval and natural language processing application.

Like its predecessor Deep Blue, Deep QA was not a deep learning-based system. It was developed

to operate on a massive corpus of data download and pre-processed for easy access. Watson did

not have access to the internet in competition. DeepQA began by parsing the question, which was

provided as a direct text stream. The first challenge was to identify the lexical answer type (LAT),

i.e. the specific type of answer expected for a given question, which given the unusual and complex

phrasing of clues is especially difficult in Jeopardy. The system used many expert modules to

generate a series of candidate answers, a process referred to as hypotheses generation. Candidate

answers pass through a soft filtering process that reduces the list to about the top 100 answers.

Those answers then are processed through an evidence scoring process to assess the validity of the

potential answer. Answers are merged and processed through a model trained on a data set of

known questions and answers to assign a confidence level to each potential answer. In the final

competition Watson would display the top answers along with the confidence levels. Early versions

of Watson would take up to two hours to answer a single question, but with tuning and massive

parallelization Watson could develop its ranked answer list in 3-5 seconds.

 Games AIs Play Working Paper

Given the answer list the first strategic decision is when to buzz in, a decision Watson made

based on confidence level thresholds. Other strategic decisions Watson needs to make include what

square to select next when controlling the board, how to wager on Daily Doubles, and how to wager

in Final Jeopardy. Strategy development was facilitated by extensive statistical analysis of previous

Jeopardy games and detailed game simulations. Game analysis revealed both the criticality of the

Daily Double in the final outcome of the game, and the fact that Daily Double squares are not

distributed randomly, they are most common in the bottom half of the board, are more common in

some columns than others, and the two second round doubles are never in the same column. Like

many top human competitors, Watson prioritizes double hunting in its cell selection strategy, but

unlike humans it can use more than simple heuristics and estimate detailed probabilities. Much of

Watson’s strategy was refined through detailed simulation. Interestingly, Watson kept question

answering out of the strategic simulations, it simply assigned probabilities to correct answers.

Watson based its wagering strategy in part on its confidence in the category, based on previous

questions answered in that category, as well an assessment of the category title, and the relative

ratios of player scores at the time of the wager. The IBM team implemented a deep reinforcement

learning model to determine daily double bets. The model, based on Tesauro’s backgammon work,

estimated the win probability from the game state. Watson could determine an optimal bet based

on its confidence in the category and the probability of correctly or incorrectly answering the Daily

Double question. Interestingly, the team found the risk level associated with optimal bets to be

quite high and implemented a modification to make a sub-optimal but lower risk level bet. For Final

Jeopardy wagering Watson would estimate its confidence in the category based on the category

title and use that to develop a game theoretic best response strategy based on its database of

(suboptimal) human betting.

Watson was ultimately tested in competition against humans. While only its final two game

match against world champions was televised, Watson sparred experienced humans in 130 games.

In the first round Watson played in 73 games against average players, winning 64.4% of the games.

In the second round it played 55 games against former Tournament of Champions players, much

stronger competition than the first round. Having improved its capabilities from the first round,

Watson won 70.9% of the games. In the final competition against two of the most successful players

ever, in a two-game match, Watson won by a large margin; $77,147 to Jennings second place score

of $24,000. As was the case with the Deep Blue chess victory, Watson generated major publicity

for AI. Like Deep Blue, Watson was enabled by massive compute and systems highly engineered

with human expertise. With minor exceptions, for example the Daily Doubling system in Watson,

these systems were non-learning systems in the good old-fashioned AI (GOFAI) framework. In the

immediate aftermath of Watson, AI progress in games would dramatically accelerate. In a little

more than 10 years AI would achieve superhuman performance in a wide range of more complex

games primarily relying on newer technical approaches including deep reinforcement learning.

8 ADVANCED LEARNING – GO AND OTHER GAMES

After Deep Blue proved that computers could play chess at world champion levels, attention turned

to the game of Go. Go is an extremely popular game with an estimated 20 million players, mostly

in Asia. Go is similar to Othello, players alternate turns placing pieces, called stones, on a board

attempting to out-position their opponent’s pieces and capture territory. Go is played on a 19x19

grid, but unlike Othello the pieces are placed not in the squares but at one of the 361 intersections.

Figure 12 shows a simplified Go board with a 9x9 grid, a version of the game played by beginners.

Players take turns placing stones on the board and capture opponent’s stones by surrounding them

on all sides ('Rules of Go' 2025).

 Games AIs Play Working Paper

Figure 12- Simplified Go Board

Go is a deterministic game of perfect information, but because of the size of the board and duration

of the game it has an enormous search tree. The branching factor for Go begins at 361, the size of

the board, and decreases from there. With an average game length of about 250 moves the

complexity tree for Go is estimated at more than 10720. In addition, it is significantly more difficult

to assess the strength of a position in Go compared to chess. Combined, these factors make Go a

significantly more difficult challenge than chess for a computer program.

A large team at Google’s DeepMind would take on the Go challenge. In the process their

program AlphaGo would defeat Lee Sedol, one of the top Go players in the world, in a televised

match with an estimated audience of over 100 million viewers as documented in the film AlphaGo

(Kohs 2017). Shortly after defeating Sedol, the DeepMind team released new versions of the

program, AlphaGoZero and AlphaZero, that were far better players than the original, achieving

superhuman level performance. These programs represent a major milestone in the history of AI

games, and AI in general. David Silver, a key figure on the DeepMind Go team discusses the effort

in detail on (Fridman and Silver 2020).

Given the massive size of the search tree, alpha-beta search is of limited effectiveness in

Go. Much attention has been paid to a stochastic search approach known as Monte Carlo Tree

Search (MCTS). David Silver, one of the lead Go researchers at Deep Mind, co-authored a paper

that demonstrated some extensions to MTCS in the context of Go in 2011 (Gelly and Silver 2011).

Their program MoGo was able to achieve master level performance in the simplified 9x9 version

of Go using these techniques. But the major breakthrough was AlphaGo presented in Silver et al.

(2016). AlphaGo continued the use of MCTS, but added in several deep neural networks, and unlike

the approach in previous AIs such as Deep Blue, it included very limited explicit human defined

expertise in the form of rules or heuristics. AlphaGo learned how to play Go primarily by observing

human play and then engaging in extensive self-play.

 The first step in the training process for AlphaGo was a supervised learning (SL) task. The

SL policy network p(a|s) that predicts the next action given the current state of the game. The

network was a 13-layer deep convolutional neural network trained on 30 million positions from

games recorded on the KGS Go Server. The convolutional architecture allowed the network to

recognize patterns that might occur at different portions of the board. Based on this supervised

training the network could correctly predict the next move 57% of the time. A second policy

network pp was then trained using policy gradient reinforcement learning. The network was

initialized as the SL network, then refined through millions of games of self-play. The final training

step focused on training a value network. This network was similar to the policy network except

that instead of a softmax output of next move probabilities, it output a single predicted win

probability. Once trained the networks were integrated with MCTS. The policy network provided

a sub-set of high probability moves to be evaluated through a randomized search using yet another

policy network called the rollout network. The rollout network implements a fast rollout policy to

guide the random search process. The rollout network is a relatively simple network, but it is the

 Games AIs Play Working Paper

one case where human expertise and heuristics are explicitly incorporated. AlphaGo assessed

moves by taking a linear combination of the value network prediction and the result of the fast

rollout, selecting the move with the highest value.

 The end result was a system capable of playing the full version of Go at a world class level.

The 2017 paper documents competition against other go programs where AlphaGo won 494 out of

495 games. It also documents a match against Fan Hui, a multi-time European champion in which

AlphaGo won 5-0. After the paper was published a slightly modified version of the program

defeated former world champion Lee Sedol four games to one in the highly publicized competition.

Another modified version, referred to as AlphaGo Master played against top level players in 2017

winning all 60 games. AlphaGo played Go at a world-class level but would quickly be surpassed

by significantly enhanced versions of the program. The next major enhancement, referred to as

AlphaGo Zero, is documented in a 2017 paper (Silver, Schrittwieser, et al. 2017).

 Several changes to the AlphaGo system were made for AlphaGo Zero. The policy and

value networks were combined into a single integrated network with dual outputs, a next move

probability and an overall win probability. The supervised learning stage was eliminated. AlphaGo

Zero was trained exclusively through self-play, beginning with randomized play. It continued to

use MCTS as a component of the evaluation process but no longer used a separate rollout network.

AlphaGo Zero had no access to human expertise, either through heuristics or even observation, as

the authors state it learned tabula rasa through reinforcement learning. It was only provided with

the rule set for Go. Even with these limitations, AlphaGo Zero achieved an Elo rating superior to

AlphaGo Master, and defeated that version 89 to 11 in head-to-head play.

 The next major iteration of the program goes by the name of AlphaZero and is also

documented in a 2017 paper (Silver, Hubert, et al. 2017). AlphaZero represented a major

generalization of the AlphaGo Zero model. Like its predecessor it was provided with no human

expertise and learned tabula rasa through self-play. It achieved superhuman performance in Go, but

also in chess and shogi. Shogi, sometimes referred to as Japanese chess, is a modified and more

complex version of chess played on a larger board where captured pieces change sides and maybe

placed anywhere on the board ('Shogi' 2024.)

The core of AlphaZero is similar to its predecessor. It utilizes a deep neural network that

takes board position as an input, and outputs move and win probabilities. Trained through

reinforcement learning, AlphaZero also implemented an MCTS. AlphaZero differed from AlphaGo

Zero in several respects; it implements an outcome that includes draws, and no longer exploits the

symmetrical properties of the Go board, because unlike Go, Chess, and Shogi boards are not

invariant to rotation and reflection. AlphaZero also streamlined and simplified the training process.

While a separate instance was used for each game, each instance utilized a common architecture

and hyper parameter set. Utilizing only self-play AlphaZero achieved performance superior to

AlphaGo Zero in Go and other leading AI in chess and Shogi after training for less than 24 hours.

The rapid learning is impressive, but AlphaZero did have access to very large-scale computational

resources; 500 1st generation TPU’s and 64 2nd generation TPU’s, roughly equivalent to over

500,000 high end desktop CPUs.

AlphaZero represents a major milestone in not only AI applied to games but for AI in

general. Not only could it develop superhuman performance across multiple games, but it also

demonstrated the remarkable ability to mimic human knowledge discovery. On its own AlphaZero

independently learned the 12 most common openings played by human chess players.

9 CARD GAMES – TEXAS HOLD ‘EM

The games reviewed thus far have been games of perfect information, where all players know the

full history and current state-examples include Checkers, Chess, and Go. In contrast, imperfect

information games hide key elements of the state; for instance, a poker player cannot see opponents'

 Games AIs Play Working Paper

cards. These games are significantly harder to solve: the state space is larger, backward induction

becomes impractical, and players must reason not only about the game state but also about their

opponents' beliefs. As a result, imperfect information games require game-theoretic approaches to

model and solve strategic uncertainty. Major developments in game theoretic AI occurred in the

context of the game Texas Hold’em.

Texas Hold’em is one of the most popular versions of the card game poker. In this game

players aim to make the best five-card hand from a total of seven cards: two private cards and five

community cards. Players are first dealt two cards face down unseen by other players. Then three

cards are dealt face up, known and available to each player, in what is known as the flop. In the

next round, known as the turn, a fourth community card is dealt face up, and in the final round, the

river, a fifth face up community card is dealt. After each set of cards are dealt a round of beating

occurs. Players may fold (exit the game and forfeit any bets already made), bet (initiate a new bet),

call (match an existing bet), or raise (increase the current bet). Heads Up games are limited to two

players, while multi-player games can have up to 10 players. In the no-limit version there is no

limit on the number of raises that can be made so each round of betting has no fixed upper limit on

the number of bets ('Texas hold 'em' 2025). The complex interplay of strategy, probability and

psychology makes Texas Hold’em a very difficult game for humans, and an intriguing subject for

AI research.

 Over a relatively short time period research teams at the University of Alberta and Carnegie

Mellon developed a series of increasingly sophisticated poker programs playing increasingly

complex versions of the game. The Alberta team developed a program named Cephus that solved

the Heads-Up Limit version of the game. With only two-players and bets limited to fixed

increments, the game has a smaller size than other versions though it still has over 1014 decision

points (Bowling et al. 2015, 2017).

Cephus is said to have essentially weakly solved the game. Weakly implies solution from

the initial position, while essentially implies that a human lifetime of play is not sufficient to

establish a statistically significant difference from an exact solution. In this context a solution is

defined as a Nash equilibrium strategy for each player, meaning no player can increase their

expected utility by unilaterally choosing a different strategy. A strategy for a player specifies for

each information set a probability distribution over the available actions. In the case of Texas

Hold’em those actions are call, fold, bet, pass, or raise. In general, the Nash equilibrium strategy is

a mixed strategy, i.e. a probability distribution across these available actions.

Cephus, and several of the programs before and after, use a variation of Counterfactual

Regret Minimization (CFR). Counterfactual Regret is the regret, the difference between the payoff

actually received and what could have been achieved with a different action, for not having taken

a particular action when it was available. It is a measure of how much better a player could have

done by using a different strategy. The game is represented as a tree and the program iterates

through a large number of simulated games iteratively updating the regret calculations and

modifying the strategy. With enough computation the strategy evolves toward a Nash equilibrium.

The team solved the game using a very substantial level of computational resources, 200 nodes

deployed for 68.5 days, utilizing 900 core years of computation and 10.9TB of storage.

Following the Cephus project, the Alberta group, along with new collaborators from the

Czech Republic developed DeepStack (Moravčík et al. 2017). DeepStack played the Head’s-Up

No-Limit version of the game. While still a two-player game, this version allows players to bet any

amount which makes the game tree significantly more complex, expanding from roughly 1014

decision points, to about 10160. Deep Stack uses deep neural networks, with 7 layers and 500 nodes

each to estimate the value function for a depth-limited look ahead search. One network is trained

on data available after the flop, a second on data available after the turn. The networks were trained

on 1 million simulated hands for the flop network, and 10 million for the turn network with a data

set that includes the pot size, the public cards and the two player ranges. The network outputs the

counterfactual values, the expected value for each of the possible 1,326 hidden card hands based

 Games AIs Play Working Paper

on the pot size, public state, and the opponent’s range. Deep Stack was tested in competition with

33 professional poker players playing up to 3,000 hands per player for a total of 44,852 hands.

Deep Stack did very well, defeating 10 of the 11 players who played the full 3,000 hands by a

statistically significant margin. While Deep Stack demonstrated that AI could compete at an expert

level in heads-up no limit, a team from Carnegie Mellon would soon develop an AI that could

compete at a world-class level not only in heads-up, but also in the far more complex domain of

multiplayer poker.

A team at Carnegie Mellon developed two AI programs to compete in Texas Hold’em. The

program Libratus achieved world class performance in Head’s-Up No-Limit (Brown and Sandholm

2018), and Pluribus achieved superhuman performance in multi-player (Brown and Sandholm

2019). These AIs are discussed in detail by the two authors separately on the Lex Fridman AI

podcast (Fridman and Brown 2022; Fridman and Sandholm 2018).

Libratus was built on three main modules. The first module develops a so-called blueprint

strategy based on an abstracted (simplified) version of the game, computing game theoretic

solutions using the Monte Carlo counterfactual regret minimization approach. The abstraction

simplified the game by discretizing bet sizes and grouping similar hand combinations. During

game play the second module creates a finer grained abstraction and solves it in real time in a

manner that is consistent with the blueprint strategy. The third module is a self-improver, which

modifies the blueprint strategy as game play occurs utilizing the opponents play to determine what

missing branches of the tree to fill out.

10 VIDEO GAMES – ATARI AND BEYOND

With major accomplishments made in both board and card games, game playing AI development

began on new types of games. From 2015 through 2022 game playing AI achieved high level

performance on a series of increasingly complex video games. From basic Atari games to complex

e-sports games like Dota 2, Starcraft 2, and Gran Turismo, AI has achieved high levels of

performance. In addressing these games, the focus shifted from discrete move games to real time

video.

 In 1972 Atari, Inc. released the video game Pong, one of the first ever video games. Pong,

a simple two-dimensional computer version of ping-pong, became extremely popular. Atari would

issue many other games including notable titles such as Space Invaders, Ms. Pac-Man and

Asteroids ('Atari, Inc.' 2025). In 2015 researchers at Google Deep Mind released a study

documenting an AI they developed that could play 49 different Atari 2600 games using a common

architecture and hyperparameter set across all games (Mnih et al. 2015).

 The program, generally referred to as the DQN Agent (Deep Q Network), used

reinforcement learning and a deep neural network to learn the value function for each game. The

Atari 2600 games are controlled by a joystick and a single button, used either individually or

together. Depending on the game, the action space varied from 4 to 18 discrete actions. Unlike

previous board game programs, where a numeric vector represented the state of the game, the DQN

agent used only the pixels presented on the screen. Specifically, the program scaled the video from

a 210 x 160 image with a 128-color palette to a monochrome image with varying luminance on a

scale of 84 x 84 pixels. The program used a deep convolutional neural network to process these

images and estimate the optimal action-value function. The 84 84 4  image is processed through

3 convolutional layers and two fully connected layers. The output is the selected action, a

combination joystick and button selections. The number of valid actions varied between 4 and 18

depending on the game. Using the same architecture and hyperparameter settings, the program was

able to play at the level of a professional human tester across 49 games. In 2020 another team a

Deep Mind developed an AI called MuZero, a reinforcement learning algorithm that combines

model-based planning with learned environment models (Schrittwieser et al. 2020). MuZero

 Games AIs Play Working Paper

achieved superhuman performance at Atari video games, but also in the traditional games of Go,

chess, and shogi.

 The Atari games are relatively simple by modern video game standards, but within a few

years AI had been developed to play much more sophisticated games. StarCraft II is a real time

strategy (RTS) game released in 2010. Players control one of three different factions with the

objective of defeating the other factions by gathering resources, building bases and commanding

armies. It is known as one of the most complex and skill intensive RTS games ever developed

('StarCraft II' 2025). While many AI programs were developed to compete in Starcraft II, the

program AlphaStar, developed by a team at Deep Mind, was the first to achieve a Grandmaster

rating. The program was ranked at the 99.8th percentile of officially ranked human players (Vinyals

et al. 2019). Vinyals discussed the effort on (Fridman and Vinyals 2019). Using an overall process

similar to AlphaGo, AlphaStar was trained using a combination of supervised learning, training to

mimic human play, and reinforcement learning through self-play. Unlike the Atari program,

AlphaStar did not use an image as input, instead it accessed unit level information via an API and

implemented its actions through the same API. This API provided limited visibility information to

the AI, the same information a human player could observe. While the difference in perception was

criticized by some, the challenge for AlphaStar was not just to compete against humans, but to

demonstrate an AI could perform the decision making required to succeed in a complex real-time

game. To make those decisions, AlphaStar used a recurrent neural network as the core of its policy

network, along with a separate value network—an overall configuration not dissimilar to the high-

level architecture of AlphaGo.

 Dota 2 is a team-based multi-player online battle game released in 2013. The game pits

two 5-player teams against each other as they attempt to destroy the opponent’s base. It is

considered a game with a steep learning curve and high skill ceiling ('Dota 2' 2025). Dota 2 is

popular as an esport with a large prize pool tournament, in excess of $35 million. In 2019 an AI

named OpenAI Five, developed at OpenAI, defeated the world champion team in a direct

competition (Berner, Brockman, and et.al. 2019). Open Five attacked this problem by applying

reinforcement learning at a massive scale. Open AI deployed thousands of GPUs in training cycle

that lasted 10 months. To support this massive training process, they developed a process they

dubbed surgery, that allowed them to modify their model without having to restart training.

 Like AlphaStar, OpenAI Five perceived the environment not by examining the screen

image, but rather through an API that exposed about 16 thousand inputs which were designed to

mimic information a human could see. The agent receives an update 7.5 times per second, returning

a discrete action to the game engine. While faster than a typical human reaction rate, steps were

taken to level make the agent operate at a human level, for example a 200ms observation delay.

 OpenAI Five used Proximal Policy Optimization, an on policy, actor-critic based RL

algorithm that had been previously developed by Open AI. The agent used a deep neural network

as the actor, learning a policy that outputs a probability distribution over allowable actions for a

given state, and a separate deep neural net as a critic, learning a value function from the current

state. In OpenAI Five both these neural netes were recurrent neural nets, specifically long short-

term memory (LSTM).

 Gran Turismo is a highly realistic race car simulation and is the highest selling video game

on the Sony PlayStation platform ('Gran Turismo (series)' 2025). In 2022 a team at Sony AI

developed Quantile Regression Soft Actor-Critic, a custom deep RL algorithm that powered their

AI GT Sophy, a model that competed against and ultimately defeated four of the world’s best Gran

Turismo divers in the world (Wurman et al. 2022) .

 Games AIs Play Working Paper

11 STRATEGO, DIPLOMACY, AND STUDENT OF GAMES

Board games like chess, Go, and shogi are difficult because of the large state spaces that need to

be evaluated. But they are all games of perfect information. When imperfect information is

introduced, even simple games generate much larger state spaces that must be evaluated in a game

theoretic context. Stratego is a strategy game played on a 10x10 square board. Each player has 40

pieces representing different military ranks. The pieces come in 12 different designations including

ranks, bombs, and a flag. Players take turns moving and higher ranked pieces can capture lower

ranked pieces. The objective of the game is to capture the opponent’s flag ('Stratego' 2025).

 The game is relatively simple to play and is designated for ages 8 and up. Each player

deploys their pieces as shown in Figure 13 but with the ranks hidden from the opponent. This

hidden information creates an enormous state space of 10565.
Figure 13-Stratego Board

A team at Deep Mind developed an AI named Deep Nash that was able to learn to play Stratego

via self-play without any human demonstration (Perolat et al. 2022). Deep Nash uses a game

theoretical approach implemented with deep learning to learn the game end to end, from the initial

deployment phase through the game playing phase using an algorithm they called Regularized Nash

Dynamics (R-NaD). The algorithm uses a deep convolutional network, then processes the

recommended moves through a fine-tuning module and a post processing module that filters out

bad moves based on game specific knowledge. Deep Nash competed against eight other state of

the art Stratego AIs in large scale repeated play winning over 97% of the games. It’s also competed

against expert human level players achieving a number three ranking for 2022.

 Diplomacy is another strategy game where two to seven players compete to control the

most territory on a map of Europe. A unique and challenging aspect of Diplomacy is that players

use bi-lateral communication to develop alliances. Effective communication and negotiation skills

are required to successfully compete. The objective of the game is to control of majority of the

territory on the map ('Diplomacy (game)' 2025).

 A team at Meta developed the AI Cicero to compete in seven player Diplomacy (Meta et

al. 2022). Cicero utilizes a pre-trained large language model (LLM) fine-tuned on a corpus of 12.9

million messages from archived games of Diplomacy. The output of the LLM is processed through

a filtering system to eliminate non-sensical or inconsistent messages. The AI also uses deep

reinforcement learning to implement a strategic reasoning module to select intents and actions. The

module uses a policy and value network trained using self-play RL to maintain a human-compatible

policy. Cicero was tested in 40 anonymous online Diplomacy games in 2022 against 82 distinct

human players, none of whom knew they were playing an AI. Cicero achieved a score double the

average human performing at a strong human level in a game that requires direct player to player

communication, demonstrating for the first time that Large Language Models can be integrated as

a component of a game playing AI.

 The quest to build increasingly generalized game playing AIs, continued with the

development of Student of Games by a cross institutional team of industry and academic

researchers (Schmid et al. 2023). Student of Games can play both perfect information games (chess

and Go) and imperfect information games (heads-up no-limit Texas hold’em and Scotland Yard).

Scotland Yard is a board game where players control detectives trying to catch a criminal on the

 Games AIs Play Working Paper

streets of London ('Scotland Yard (board game)' 2025). The AI combines concepts from

AlphaZero, such as deep neural networks, self-play, and MCTS, and Deep Stack, game theoretic

reasoning for imperfect information games. It implements rowing-Tree Counterfactual Regret

Minimization (GT-CFR) for search and learns Counterfactual Value-and-Policy Networks

(CVPNs) from self-play data. Student of Games achieves strong, expert-level performance in all

tested games — chess, Go, poker, and Scotland Yard — but generally falls short of the very best

domain-specialized agents when given the same compute budget. Student of Games sacrifices some

efficiency to achieve greater generality.

12 SUMMARY AND CONCLUSIONS

Games have played a major role in the development of AI since the field was first conceived. Many

of the most consequential innovations in AI were first developed in the game playing arena, and

prior to the widespread adoption of generative AI models, game playing AIs where the face of AI.

 Over the nearly sixty-year history of game playing AI, several key themes are apparent.

The complexity of solvable games has expanded steadily and dramatically as AIs took on games

with larger and larger search spaces, progressed from complete to incomplete information games,

and advanced from one-on-one to multi-player games. The ability of AIs has increased from human

to superhuman. A fundamental innovation is the progression from AIs where human knowledge is

hard coded, as in Deep Blue, to imitated, as in Alpha Go, to learned tabula rasa via reinforcement

learning, as in Alpha Zero. While early game AIs such as Deep Blue were narrowly focused on a

single game, AIs have become vastly mode general with the same model able to excel at multiple

games establishing the type of general reasoning capability that will enable narrow AI to generalize

toward AGI. Modern game AIs are dominated by reinforcement learning, and the field of games

was one of the primary domains for the development of RL. The technology behind game playing

AIs has evolved to include deep learning, natural language processing, and large language models.

One factor that has remained consistent is that most state-of-the-art game AIs required a massive

level of compute, relative to the time.

 The capabilities developed in game playing AIs have and will continue to be generalizable

to non-game domains that are applicable to a range of business applications. The strategic decision

making under uncertainty developed in AIs like AlphaZero has broad applicability in fields such

as supply chain management. The game theoretic decision-making innovations in AIs that

conquered poker can be applied to algorithmic trading. The capabilities demonstrated negotiating

alliances in Diplomacy can be applied to large scale vendor negotiations in e-commerce. The

innovations made in tree search for large solution space games can be applied to large scale

optimization problems such as route optimization and scheduling. The ability to master video

games via self-play can be applied to operational control of any system that can be modeled via

stochastic simulation.

 The business literature is being populated with applications of AI to supply chain (Brintrup

et al. 2024; Burtea and Tsay 2024; Kassa et al. 2023; Rolf et al. 2023; Toorajipour et al. 2021; Yan

et al. 2022; Zamani et al. 2023), operations (Gijsbrechts et al. 2022; Harsha et al. 2025; Kaynov et

al. 2024; Küfner, Uhlemann, and Ziegler 2018), vehicle routing (Jiao et al. 2021), pricing (Deng et

al. 2022; Mandania and Oliveira 2023; Zhu et al. 2024), healthcare operations (Wu et al. 2025) and

general optimization (Balaji et al. 2019; Mazyavkina et al. 2021).

 Academics researching quantitative applications in business must develop a foundational

level of knowledge in artificial intelligence to remain relevant. Understanding the historical

evolution of AI in domain of competitive games can play an important role in that process. This

paper seeks to provide a road map to business researchers on an important stream of research that

has largely been published outside of traditional business journals.

 Games AIs Play Working Paper

13 REFERENCES

'Atari, Inc.'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Atari,_Inc.

'Backgammon'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Backgammon.

Baker, Stephen. 2011. Final Jeopardy: The Story of Watson, the Computer That Will Transform

Our World (Mariner Books).

Balaji, Bharathan, Jordan Bell-Masterson, Enes Bilgin, et al. 2019. 'ORL: Reinforcement

Learning Benchmarks for Online Stochastic Optimization Problems'.

https://arxiv.org/abs/1911.10641.

Berner, Christopher , Greg Brockman, and et.al. 2019. 'Dota 2 with Large Scale Deep

Reinforcement Learning'. https://arxiv.org/abs/1912.06680.

Bernstein, A., T. Arbuckle, M. De V. Roberts, et al. 1958. "A chess playing program for the IBM

704." In Proceedings of the May 6-8, 1958, western joint computer conference: contrasts

in computers, 157–59. Los Angeles, California: Association for Computing Machinery.

Bowling, Michael, Neil Burch, Michael Johanson, et al. 2015. 'Heads-up limit hold’em poker is

solved', Science, 347: 145-49.

———. 2017. 'Heads-up limit hold'em poker is solved', Commun. ACM, 60: 81–88.

Brintrup, Alexandra, Edward Kosasih, Philipp Schaffer, et al. 2024. 'Digital supply chain

surveillance using artificial intelligence: definitions, opportunities and risks',

International Journal of Production Research, 62: 4674-95.

Brown, Noam, and Tuomas Sandholm. 2018. 'Superhuman AI for heads-up no-limit poker:

Libratus beats top professionals', Science, 359: 418 - 24.

———. 2019. 'Superhuman AI for multiplayer poker', Science, 365: 885 - 90.

Burtea, Radu, and Calvin Tsay. 2024. 'Constrained continuous-action reinforcement learning for

supply chain inventory management', Computers & Chemical Engineering, 181: 108518.

Campbell, Murray. 1999. 'Knowledge discovery in deep blue', Commun. ACM, 42: 65–67.

Campbell, Murray, A. Joseph Hoane, and Feng-hsiung Hsu. 2002. 'Deep Blue', Artificial

Intelligence, 134: 57-83.

'Checkers'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Checkers.

Chollet, Francois. 2021. Deep Learning with Python (Manning Publications Co.).

Deng, Yipu, Jinyang Zheng, Liqiang Huang, et al. 2022. 'Let Artificial Intelligence Be Your Shelf

Watchdog: The Impact of Intelligent Image Processing-Powered Shelf Monitoring on

Product Sales', MIS Q., 47: 1045-72.

'Diplomacy (game)'. 2025. Accessed August 15, 2025.

https://en.wikipedia.org/wiki/Diplomacy_(game).

'Dota 2'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Dota_2.

Ferrucci, David A., Eric W. Brown, Jennifer Chu-Carroll, et al. 2010. 'Building Watson: An

Overview of the DeepQA Project', AI Mag., 31: 59-79.

Fridman, Lex, and Noam Brown. 2022. 'Noam Brown: AI for Poker, Diplomacy, and Multi-

Agent Reasoning'. https://lexfridman.com/noam-brown/.

Fridman, Lex, and David Ferrucci. 2019. 'David Ferrucci: IBM Watson, Jeopardy & Deep

Conversations with AI'. https://lexfridman.com/david-ferrucci/.

Fridman, Lex, and Garry Kasparov. 2019. 'Garry Kasparov: Chess, Deep Blue, AI, and Putin'.

https://www.youtube.com/watch?v=8RVa0THWUWw.

Fridman, Lex, and Tuomas Sandholm. 2018. 'Tuomas Sandholm: Poker and Game Theory'.

https://lexfridman.com/tuomas-sandholm/.

Fridman, Lex, and David Silver. 2020. 'David Silver: AlphaGo, AlphaZero, AlphaStar, and Deep

Reinforcement Learning'. https://lexfridman.com/david-silver/.

Fridman, Lex, and Oriol Vinyals. 2019. 'Oriol Vinyals: AlphaStar and StarCraft II AI'.

https://lexfridman.com/oriol-vinyals/.

Fudenberg, Drew, and Jean Tirole. 1991. Game Theory (MIT Press).

https://en.wikipedia.org/wiki/Atari,_Inc
https://en.wikipedia.org/wiki/Backgammon
https://arxiv.org/abs/1911.10641
https://arxiv.org/abs/1912.06680
https://en.wikipedia.org/wiki/Checkers
https://en.wikipedia.org/wiki/Diplomacy_(game
https://en.wikipedia.org/wiki/Dota_2
https://lexfridman.com/noam-brown/
https://lexfridman.com/david-ferrucci/
https://www.youtube.com/watch?v=8RVa0THWUWw
https://lexfridman.com/tuomas-sandholm/
https://lexfridman.com/david-silver/
https://lexfridman.com/oriol-vinyals/

 Games AIs Play Working Paper

'Game complexity'. 2025. Accessed August 15, 2025.

https://en.wikipedia.org/wiki/Game_complexity.

Gelly, Sylvain, and David Silver. 2011. 'Monte-Carlo tree search and rapid action value

estimation in computer Go', Artificial Intelligence, 175: 1856-75.

Gijsbrechts, Joren, Robert N. Boute, Jan A. Van Mieghem, et al. 2022. 'Can Deep Reinforcement

Learning Improve Inventory Management? Performance on Lost Sales, Dual-Sourcing,

and Multi-Echelon Problems', Manufacturing & Service Operations Management, 24:

1349-68.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning (MIT Press).

'Gran Turismo (series)'. 2025. Accessed August 15, 2025.

https://en.wikipedia.org/wiki/Gran_Turismo_(series).

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey E. Hinton. 2013. 'Speech recognition with

deep recurrent neural networks', 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing: 6645-49.

Harsha, Pavithra, Ashish Jagmohan, Jayant Kalagnanam, et al. 2025. 'Deep Policy Iteration with

Integer Programming for Inventory Management', Manufacturing & Service Operations

Management, 27: 369-88.

He, Kaiming, X. Zhang, Shaoqing Ren, et al. 2015. 'Deep Residual Learning for Image

Recognition', 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR): 770-78.

Hinton, G. E., and R. R. Salakhutdinov. 2006. 'Reducing the Dimensionality of Data with Neural

Networks', Science, 313: 504-07.

Hinton, Geoffrey E., Simon Osindero, and Yee Whye Teh. 2006. 'A Fast Learning Algorithm for

Deep Belief Nets', Neural Computation, 18: 1527-54.

Hornik, Kurt, Maxwell B. Stinchcombe, and Halbert L. White. 1989. 'Multilayer feedforward

networks are universal approximators', Neural Networks, 2: 359-66.

Hsu, Feng-Hsiung. 1999. 'IBM's Deep Blue Chess grandmaster chips', IEEE Micro, 19: 70-81.

———. 2002. Behind Deep Blue: Building the Computer that Defeated the World Chess

Champion (Princeton University Press).

'Jeopardy!'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Jeopardy!

Jiao, Yan, Xiaocheng Tang, Zhiwei Qin, et al. 2021. 'Real-world ride-hailing vehicle

repositioning using deep reinforcement learning', Transportation Research Part C:

Emerging Technologies, 130: 103289.

Kassa, Adane, Daniel Kitaw, Ulrich Stache, et al. 2023. 'Artificial intelligence techniques for

enhancing supply chain resilience: A systematic literature review, holistic framework,

and future research', Computers & Industrial Engineering, 186: 109714.

Kaynov, Illya, Marijn van Knippenberg, Vlado Menkovski, et al. 2024. 'Deep Reinforcement

Learning for One-Warehouse Multi-Retailer inventory management', International

Journal of Production Economics, 267: 109088.

Keim, Greg A., Noam M. Shazeer, Michael L. Littman, et al. 1999. "PROVERB: The

Probabilistic Cruciverbalist." In AAAI/IAAI.

Kister, J., P. Stein, S. Ulam, et al. 1957. 'Experiments in Chess', J. ACM, 4: 174–77.

Kohs, Greg. 2017. 'AlphaGo - The Movie '. https://www.youtube.com/watch?v=WXuK6gekU1Y.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. 'ImageNet classification with

deep convolutional neural networks', Communications of the ACM, 60: 84 - 90.

Küfner, Thomas, Thomas H. J. Uhlemann, and Bastian Ziegler. 2018. 'Lean Data in

Manufacturing Systems: Using Artificial Intelligence for Decentralized Data Reduction

and Information Extraction', Procedia CIRP, 72: 219-24.

Littman, Michael L., Greg A. Keim, and Noam Shazeer. 2002. 'A probabilistic approach to

solving crossword puzzles', Artificial Intelligence, 134: 23-55.

https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/Gran_Turismo_(series
https://en.wikipedia.org/wiki/Jeopardy
https://www.youtube.com/watch?v=WXuK6gekU1Y

 Games AIs Play Working Paper

Mandania, Rupal, and Fernando S. Oliveira. 2023. 'Dynamic pricing of regulated field services

using reinforcement learning', IISE Transactions, 55: 1022-34.

Marsland, T. Anthony, and J. Schaeffer. 1990. Computers, Chess, and Cognition (Springer-

Verlag).

Mazyavkina, Nina, Sergey Sviridov, Sergei Ivanov, et al. 2021. 'Reinforcement learning for

combinatorial optimization: A survey', Computers & Operations Research, 134: 105400.

McCulloch, Warren S., and Walter Pitts. 1943. 'A logical calculus of the ideas immanent in

nervous activity', The bulletin of mathematical biophysics, 5: 115-33.

Meta, Anton Bakhtin, Noam Brown, et al. 2022. 'Human-level play in the game of Diplomacy by

combining language models with strategic reasoning', Science, 378: 1067-74.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, et al. 2015. 'Human-level control through

deep reinforcement learning', Nature, 518: 529-33.

Moravčík, Matej, Martin Schmid, Neil Burch, et al. 2017. 'DeepStack: Expert-level artificial

intelligence in heads-up no-limit poker', Science, 356: 508-13.

Nash, John F. 1950. 'Equilibrium Points in N-Person Games', Proceedings of the National

Academy of Sciences of the United States of America, 36 1: 48-9.

Newell, Allen, J. C. Shaw, and H. A. Simon. 1958. 'Chess-playing programs and the problem of

complexity', IBM J. Res. Dev., 2: 320–35.

Perolat, Julien, Bart De Vylder, Daniel Hennes, et al. 2022. 'Mastering the game of Stratego with

model-free multiagent reinforcement learning', Science, 378: 990-96.

'Reversi'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Reversi.

Rolf, Benjamin, Ilya Jackson, Marcel Müller, et al. 2023. 'A review on reinforcement learning

algorithms and applications in supply chain management', International Journal of

Production Research, 61: 7151-79.

Rosenblatt, Frank. 1958. 'The perceptron: a probabilistic model for information storage and

organization in the brain', Psychological review, 65 6: 386-408.

Rosenbloom, Paul S. 1982. 'A world-championship-level Othello program', Artificial Intelligence,

19: 279-320.

'Rules of Chess'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Rules_of_chess.

'Rules of Go'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Rules_of_Go.

Russell, Stuart J., and Peter Norvig. 2020. Artificial intelligence : a modern approach (Pearson:

Boston).

Samuel, A. L. 1959. 'Some Studies in Machine Learning Using the Game of Checkers', IBM

Journal of Research and Development, 3: 210-29.

———. 1967. 'Some Studies in Machine Learning Using the Game of Checkers. II—Recent

Progress', IBM Journal of Research and Development, 11: 601-17.

Schmid, Martin, Matej Moravčík, Neil Burch, et al. 2023. 'Student of Games: A unified learning

algorithm for both perfect and imperfect information games', Science Advances, 9.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, et al. 2020. 'Mastering Atari, Go,

chess and shogi by planning with a learned model', Nature, 588: 604-09.

'Scotland Yard (board game)'. 2025. Accessed August 15, 2025.

https://en.wikipedia.org/wiki/Scotland_Yard_(board_game).

'Scrabble'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Scrabble.

Shannon, Claude E. 1950. 'Programming a computer for playing chess', The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, 41: 256-75.

Sheppard, Brian. 2002. 'World-championship-caliber Scrabble', Artificial Intelligence, 134: 241-

75.

Silver, David, Aja Huang, Chris J. Maddison, et al. 2016. 'Mastering the game of Go with deep

neural networks and tree search', Nature, 529: 484-89.

https://en.wikipedia.org/wiki/Reversi
https://en.wikipedia.org/wiki/Rules_of_chess
https://en.wikipedia.org/wiki/Rules_of_Go
https://en.wikipedia.org/wiki/Scotland_Yard_(board_game
https://en.wikipedia.org/wiki/Scrabble

 Games AIs Play Working Paper

Silver, David, Thomas Hubert, Julian Schrittwieser, et al. 2017. 'Mastering Chess and Shogi by

Self-Play with a General Reinforcement Learning Algorithm'.

https://arxiv.org/abs/1712.01815.

Silver, David, Julian Schrittwieser, Karen Simonyan, et al. 2017. 'Mastering the game of Go

without human knowledge', Nature, 550: 354-59.

'StarCraft II'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/StarCraft_II.

Stevens, E., L. Antiga, and T. Viehmann. 2020. Deep Learning with PyTorch: Build, train, and

tune neural networks using Python tools (Manning).

'Stratego'. 2025. Accessed August 15, 2025. https://en.wikipedia.org/wiki/Stratego.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014. 'Sequence to Sequence Learning with

Neural Networks'. https://arxiv.org/abs/1409.3215.

Sutton, Richard S. 1988. 'Learning to predict by the methods of temporal differences', Machine

Learning, 3: 9-44.

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction (A

Bradford Book).

Tesauro, G., D. C. Gondek, J. Lenchner, et al. 2012. 'Simulation, learning, and optimization

techniques in Watson's game strategies', IBM Journal of Research and Development, 56:

16:1-16:11.

Tesauro, Gerald. 1992. 'Practical issues in temporal difference learning', Machine Learning, 8:

257-77.

———. 1994. 'TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level

Play', Neural Computation, 6: 215-19.

———. 1995. 'Temporal difference learning and TD-Gammon', Commun. ACM, 38: 58-68.

———. 2002. 'Programming backgammon using self-teaching neural nets', Artificial Intelligence,

134: 181-99.

Tesauro, Gerald, David Gondek, Jonathan Lenchner, et al. 2013. 'Analysis of Watson's Strategies

for Playing Jeopardy!', J. Artif. Intell. Res., 47: 205-51.

'Texas hold 'em'. 2025. Accessed August 15, 2025.

https://en.wikipedia.org/wiki/Texas_hold_%27em.

Toorajipour, Reza, Vahid Sohrabpour, Ali Nazarpour, et al. 2021. 'Artificial intelligence in

supply chain management: A systematic literature review', Journal of Business Research,

122: 502-17.

Turing, A. M. 1950. 'Computing machinery and intelligence', Mind, 59: 433-60.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, et al. 2017. "Attention is all you need." In

Proceedings of the 31st International Conference on Neural Information Processing

Systems, 6000–10. Long Beach, California, USA: Curran Associates Inc.

Vinyals, Oriol, Igor Babuschkin, Wojciech M. Czarnecki, et al. 2019. 'Grandmaster level in

StarCraft II using multi-agent reinforcement learning', Nature, 575: 350 - 54.

Vinyals, Oriol, Alexander Toshev, Samy Bengio, et al. 2014. 'Show and tell: A neural image

caption generator', 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR): 3156-64.

Von Neumann, John, and Oskar Morgenstern. 1947. Theory of games and economic behavior,

2nd rev. ed (Princeton University Press: Princeton, NJ, US).

Wu, Qihao, Jiangxue Han, Yimo Yan, et al. 2025. 'Reinforcement learning for healthcare

operations management: methodological framework, recent developments, and future

research directions', Health Care Management Science, 28: 298-333.

Wurman, Peter R., Samuel Barrett, Kenta Kawamoto, et al. 2022. 'Outracing champion Gran

Turismo drivers with deep reinforcement learning', Nature, 602: 223-28.

Yan, Yimo, Andy H. F. Chow, Chin Pang Ho, et al. 2022. 'Reinforcement learning for logistics

and supply chain management: Methodologies, state of the art, and future opportunities',

Transportation Research Part E: Logistics and Transportation Review, 162: 102712.

https://arxiv.org/abs/1712.01815
https://en.wikipedia.org/wiki/StarCraft_II
https://en.wikipedia.org/wiki/Stratego
https://arxiv.org/abs/1409.3215
https://en.wikipedia.org/wiki/Texas_hold_%27em

 Games AIs Play Working Paper

Zamani, Efpraxia D., Conn Smyth, Samrat Gupta, et al. 2023. 'Artificial intelligence and big data

analytics for supply chain resilience: a systematic literature review', Annals of Operations

Research, 327: 605-32.

Zhu, Xinghui, Lulu Jian, Xin Chen, et al. 2024. 'Reinforcement learning for Multi-Flight

Dynamic Pricing', Computers & Industrial Engineering, 193: 110302.

Zinkevich, Martin A., Michael Bradley Johanson, Michael Bowling, et al. 2007. "Regret

Minimization in Games with Incomplete Information." In Neural Information Processing

Systems.

