OMGT 3223 Linear Regression Example

Table 1.1

t
Year
Y=Tech Employment (000)

X1=Number of New Tech Degree Holders

X2=Consumer Confidence Index
X3=Exports ($000,000)
1
1970
76
4104
90
932
2
1971
82
5546
80
965
3
1972
107
6613
103
1341
4
1973
120
7230
98
1717
5
1974
135
7545
71
2198
6
1975
143
8499
75
2229
7
1976
159
9421
94
2588
8
1977
187
10435
98
3264
9
1978
224
12010
106
4194
10
1979
271
15041
92
5500
11
1980
304
19591
74
7606
12
1981
337
25453
77
8493
13
1982
365
30093
59
8957
14
1983
416
38613
86
10300
15
1984
474
46227
102
13511
16
1985
542
50303
100
13964
17
1986
588
48444
95
13266
18
1987
629
44148
103
13929
19
1988
673
40419
115
18137
20
1989
736
37561
117
22345
21
1990
772
35083
92
24111
22
1991
797
34859
69
25872
23
1992
836
35168
62
24879
24
1993
893
35426
66
25276
25
1994
959
35614
91
28956
26
1995
1090
35802
100
34294
27
1996
1208
35990
105
37621
28
1997
1411
36178
125
41380
29
1998
1599
36366
138
44100

Using the data provided in Table 1.1 to create a multiple linear regression model to forecast tech employment. Define your independent variables and your dependent variable. Construct a general model from the dependent and independent variables. Discuss and interpret the relevant statistics associated with your model, show the final linear regression equation, and illustrate its use.

a. What is the linear regression equation for sales?

 

 

 

b. Calculate the MAD for the linear regression forecasting method.

 

 

MAD =