
CONTAINERIZATION OF AN AUTOGRADER

by

Jonathan R. Martin

November, 2023

Director of Project: Nic Herndon, PhD

Major Department: Computer Science

Evaluation of programming assignments is a critical component to many computer science
courses. The grading process of these assignments is often an arduous task due to the complexity
of the technologies used in each assignment. Educators have addressed the issue by developing
tools that automate the grading process of programming assignments. These tools are able to
evaluate hundreds of student submissions in a matter of seconds in a consistent manner.
However, a common drawback shared by many of these autograding tools is the steep learning
curve required to install and operate the tools. Furthermore, providing students with a self-
evaluation tool is not possible with many of the autograders that are available. This project
provides a solution to these shortcomings by utilizing containerization. The open-source tool
AutoGrader has been containerized using Docker. The AutoGrader container allows instructors
and students to grade assignments in any environment that has Docker installed. A results
aggregation component was also added to the container to streamline the uploading of grades to
a learning management system. Documentation of the project along with a detailed tutorial has
been composed using GitHub.io. This documentation will help users learn the system quickly
and provides vital information for individuals wishing to customize this project for their own
work.

Containerization of an Autograder

A Project

Presented to the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

By

Jonathan R. Martin

November, 2023

Copyright Jonathan R. Martin, 2023

Containerization of an Autograder

By

Jonathan R. Martin

APPROVED BY:

DIRECTOR OF PROJECT: 	 	 	 Nic Herndon, PhD

COMMITTEE MEMBER: 	 	 	 Venkat Guidivada, PhD

COMMITTEE MEMBER:	 	 	 Rui Wu, PhD

Table of Contents

List of Figures	
..7

List of Tables	..8

List of Figures

Figure 1 - Directory Structure Required to use AutoGrader……………………………………15

Figure 2 - Docker Image Building Steps……………………………………………………….19

Figure 3 - Docker Mapping Option…………………………………………………………….21

Figure 4 - Student Submission File Naming Convention………………………………………25

Figure 5 - Name Parsing Function……………………………………………………….….….25

Figure 6 - Startup Command……………………………………………………….……….….27

Figure 7 - Project Documentation Web Page……………………………………………….….29

Figure 8 - Project Kanban Board………………………………………………….……………32

Figure 9 - Project Schedule.….….….….…………………………………………..…….……..33

List of Tables

Table 1 - Sample CSV Results Output…………………………………………………………26

Chapter 1

Introduction

The need to assess students learning has always been a fundamental component of the education

process. Homework assignments are a common way that this can be accomplished. The field of

computer science adds some unique challenges to this process due to the complex media used in

their assignments. These assignments often involve programming in which students must submit

running code in the form of files. These are complex files that can be assessed in many different

ways. It is the instructor’s responsibility to evaluate these submission files. Often, this involved

an instructor manually downloading each student submission and running these files on their

local machine. An instructor may have developed test cases that could be run to check the

validity of a submission. This speeds up the process, but there are still many manual steps for the

instructor to perform. Over time, educators have developed tools to automate the process of

grading programming assignments.

Tools designed to provide automatic evaluations of student assignment submissions are called

automatic graders or autograder for short. The primary goal of an autograder is to automate the

grading process. There are numerous paid and open-source autograder tools available on the

market. The features provided by each tool vary widely, but there are several commonalities that

can be observed amongst these tools. Autograder tools can automatically assess large quantities

of assignment submissions quickly and consistently using predefined grading criteria. Many auto

graders are also capable of providing feedback for students by highlighting errors or listing the

1

incorrect answers. Autograder tools come in many different formats and the runtime environment

ranges from simple command line programs to cloud-based applications accessed via a web

browser. Many autograder tools are complex to use and require extensive setup and training in

order for an instructor to become efficient with the tool.

The primary benefactor of these tools are the course instructors. Automatic grading tools enable

the instructor to quickly grade assignments. Additionally, assignments are graded consistently

and objectively [7]. These tools are vital for large class sizes. Students also benefit from these

tools. Assignments are graded without bias, and it is possible to provide immediate feedback to

the students upon submission. Students can use this feedback to improve their solution before

resubmitting an assignment. Autograder tools bring many benefits to the classroom which has led

to wide spread adoption of these tools.

A survey of available autograder tools was conducted to establish common functionality among

these tools. There were several drawbacks identified frequently with these tools. All the tools that

were reviewed allow their users to automatically batch grade student submissions. These tools

also automatically generate some form of output that contains grading information. Autograder

functionality varied widely beyond these basic functions. Each tool has its own unique set of

drawbacks such as limited grading capabilities and overly complex solution creation processes.

In addition to unique issues, a common short coming of autograders is the steep learning curve

required when learning how to use the tool. Setting up the correct environment can be

2

cumbersome for many of the autograders. Providing students with a way to assess their work

prior to submission is not even possible with some of the tools.

This report discusses a solution to the issues commonly faced while using other autograders. The

main issue addressed was reducing the initial cost (time and effort) required to use an autograder.

This was accomplished through the containerization of an autograder. Containerization is the

process of packaging a piece of software and all of its dependencies into a lightweight

executable. This executable is referred to as a container. Containerization is popular, because it

makes the process of creating and deploying applications faster and easier [6]. Deploying the

autograder tool inside a container makes it easy for an instructor to download and run. The

arduous setup process has been eliminated by using containerization. This benefit extends to

each use of the autograder. Instructors can use the tool quickly each time it is deployed for an

assignment. This convenience also makes it feasible to distribute limited versions of the

containers to students for self checks. Students can run the containers in their unique

environment without complications.

This project had additional goals beyond the containerization of the autograder tool. These goals

align with the overall goal of improving the ease of use of an autograder. The first of these goals

was to create an output file summarizing the grading results of all submissions graded. The

system was only capable of producing individual results files for each submission at the

beginning of the project. The autograder was modified to automatically produce a single file that

contains all the information vital to an instructor in regards to the assignment. This single output

3

file was designed to output a format that is compatible with popular learning management

systems (LMS) in order to permit an instructor to upload this grade file to the LMS being utilized

for the course. Next, the process of running the container was streamlined. This was

accomplished by designing the container to perform all of its required tasks by running a single

command. Also, a detailed user manual was created to improve onboarding of new users. These

improvements made the containerized autograder easier to use and more efficient for instructors.

4

Chapter 2

Autograding Tools

A survey of available autograding tools was conducted to establish common functionality of this

tool type. There are numerous tools that provide some degree of autograding capabilities. This

survey is not exhaustive as the tools discussed were limited to more popular autograders. The

numerous tools available to instructors can be grouped into a paid category and a free category.

Documentation of which features were shared between these two categories and what features

were exclusive to the paid options was made in this report. Additionally, the drawbacks of each

tool were evaluated. Summaries of each tool analyzed during the survey is provided in this

section.

CodeGrade

CodeGrade is a popular paid solution for automatic grading of coding assignments. The tool

started out as a project to make grading easier for teaching assistants at the University of

Amsterdam. CodeGrade is now a professional quality software product that is used by numerous

universities across the world. The tool works with over 180 different programming languages,

and it is compatible with frameworks like Flask for Python-based web development. CodeGrade

provides users with a clean user interface that is easy to use. There are built-in test types for

common testing situations such as input/output tests. Using these built-in tests reduces the setup

time required by an instructor to create tests for an assignment. CodeGrade has several

5

purchasing options including individual student payments, institutional licenses, and enterprise

options [2].

CodeGrade provides an online integrated development environment (IDE) where students can

write and test their code. Use of this IDE is optional. Instead, students can code in their preferred

environment and upload files to CodeGrade or students can use the CodeGrade GitHub

integration. Using this integration enables feedback for every git push executed by the student.

CodeGrade includes other valuable features such as plagiarism detection and integration with

learning management systems such as Blackboard. Endorsements by users of CodeGrade

highlight the intuitive user interface and the ability to easily integrate CodeGrade with their

current technology. An additional benefit of this paid option is that there is a dedicated team to

solve technical issues that may arise. In contrast, the troubleshooting process for open-source

options can be more arduous.

codePost

Another popular auto grading tool is codePost. This tool is free for educators, but enterprise uses

require a payment. At its core, codePost is an autograder. However, there are several features in

codePost that make it stand out from similar tools. Instructors can review graded submissions,

and add inline comments in the students code. The comments will appear adjacent to the specific

line of code to make it easier to read. CodePost has several other annotation features that make it

easy to leave valuable feedback for students. Another powerful feature is the ability for students

to provide feedback to instructor comments, so the instructor can gauge the effectiveness of their

6

feedback. Other valuable features in codePost include plagiarism detection, analytics, and

integration with other systems via the codePost API [4].

The basic workflow of codePost begins by creating an assignment. This requires only a few

clicks and providing a name for the assignment. Next, an instructor can begin composing tests to

be run automatically. CodePost provides the ability to upload an existing test script or the option

to write new unit tests using the tool. A solution file for the assignment can also be uploaded

which allows the system to check that all tests are passing when given the correct solutions.

Once the tests are ready, the instructor can make the assignment submission available to students.

Restrictions can be placed on the submission upload files such as the file name and type. From

the student perspective, the user interface is very simple. Upon navigating to the console page for

a specific course, students will see all assignments that are available for submission. A button

labeled “Upload Files” is displayed along with additional details about the assignment.

Instructors can also choose to have students submit assignments via a learning management

system or GitHub and import the submissions to codePost. The tool will automatically run the

tests upon submission. Manual grading is also available during which instructors can choose to

leave feedback on an assignment. After all of the assignment submissions have been graded,

instructors can view statistics about the assignment. Once the instructor is satisfied with the

assignment grading process, they can publish the results to make it visible to the students.

7

Codio

Codio provides users with a cloud-based platform for computer science education. This platform

aims to create an environment where instructors can create and teach online computer science

courses. Codio is a complete learning environment and not just an assignment grading tool.

Instructors can create interactive lessons, automated assessments, and more. The Codio platform

is a browser-based system and designed to scale. It also has an online IDE which makes it easy

for students to practice and complete assignments. Other useful features that are part of the

Codio platform include a code plagiarism checker, integration with learning management

platforms, and templates for common course resources. All of these resources make it easier for

instructors to create and manage their courses. There are several pricing models depending on

use-cases. This system is used by academic institutions and industry [3].

Codio provides manual and automatic grading features. The grading system is divided into two

parts. There is a standard grading form that can handle standard input situations and typical unit

tests. The standard grading form is easy to use and handles most situations. There is also an

advanced grading form that allows the instructor to write custom grading scripts in any language.

Codio is capable of grading a variety of assignment types including multiple choice tests, fill in

the blanks, free response and coding assignments. This is useful for courses that have many

assignment types. Codio provides many of the features found in other autograder tools while also

providing a more comprehensive learning environment.

8

Otter Grader

Otter Grader is an autograder tool developed by UC Berkeley. This is an open-source tool that is

capable of grading Python and R assignments in the form of executables, Jupyter Notebooks, and

Markdown files. The workflow allows instructors to customize the tool to meet their needs. Otter

Grader is elegantly designed to abstract from the internal tasks associated with an autograder

which makes the tool more accessible to instructors from various disciplines. A key advantage of

this tool is that it can run in many environments. Otter Grader can be run on a local computer, a

server, and JupyterHub. The tool is also compatible with learning management systems such as

Gradescope and Canvas. It is also possible for instructors to provide a client package to students

that allows them to run checks on their assignments prior to submission [9].

Otter Grader can be divided into six parts: Otter Assign, Otter Generate, Otter Check, Otter

Export, Otter Run, and Otter Grade. Each of these areas represents a different part of the grading

process. The Otter Assign component is where an instructor can create an assignment. Instructors

will compose questions and solutions in the form of a notebook and Otter Grader will convert

this information as needed. Otter Generate creates the necessary configuration files for the

autograder tool to run. The processes contained in the Otter Generate component are done

automatically when using the Otter Assign component. Students are able to run tests that were

made available by the instructor using the Otter Check component. This is a command line tool

that students can run to check their solutions. The Otter Export component allows instructors to

generate PDFs of the notebooks which can be useful for manual grading as well as creating a

solutions PDF. Otter Run allows assignments to be graded locally without containerization.

9

However, non-containerized grading is not as secure. Instead, the Otter Grade component is

recommended. This component handles the grading of assignment on a local computer using

Docker containers running in parallel. The result of this process is a CSV file containing the

grading summary.

OK

OK is an open-source suite of software that provides instructors with tools for automatically

evaluating programming assignments. The software was initially developed at UC Berkeley to

handle the grading of programming assignments for a class with over one thousand students

enrolled. OK has continued to be adopted by other computer science courses at UC Berkeley and

other institutions. The software uses the data generated during the grading process to produce

statistics for the assignments. This information can enable instructors to discover insights such as

the effectiveness of a given assignment. OK is also capable of plagiarism detection and

integration with learning management systems [8].

There are three parts of the OK software suite: a client, a server, and the autograder. Each of

these parts can be used independently or together with the other parts. The OK client enables

students to perform local testing on their assignments prior to submission. Students can connect

to the OK server while using the OK client to allow for the submission of their assignments.

However, it is optional to connect with the server during this process. Next, the OK server is

where students submit their assignments for grading. The OK server also provides a dashboard

for instructors to view and control assignments. Using the OK server is free for instructors of

10

courses that meet specific criteria. The autograder component of the system is designed to run

using the OK server. However, the OK autograder can be setup to run on any server.

Web-CAT

Web-based Center for Automated Testing (Web-CAT) is an open-source automatic grading

system. The tool can grade programming assignments in several languages including Java and

C++. The design of Web-CAT makes it very customizable, so the tool can be applied to other

languages. This flexibility allows Web-CAT to handle many different types of assignments. This

includes full-scale programming assignments and not just small functions. Web-CAT is also

capable of grading student-written tests. It can measure the code coverage achieved by the

student-written tests and grade test thoroughness. The evaluation of student-written tests by the

tool is uncommon among auto graders. The ability to grade student-written tests allows

instructors to encourage students to develop quality tests for their programs [Web-CAT]. The

robust capabilities of Web-CAT have made the tool the most used open-source automatic grading

tool for programming assignments [5].

Web-CAT is a web-based system, so all of its features can be assessed via a web browser. This

includes the student submission process and viewing results of graded assignments which makes

this tool easily accessible to the students. The administrative tasks performed by the instructor

are also accomplished using the web interface. The system architecture has also been designed

to accommodate plug-ins. An instructor can develop their own plug-ins to handle their specific

situation such as a unique grading scheme. These plug-ins can be uploaded for use without

11

impacting the underlying system that is running on the server. Web-CAT has a very active

community of contributors which make it easy for instructors to find solutions to their issues.

The design of Web-CAT make it a portable and secure system while permitting extensive

customization [13].

Another open source autograder identified during the survey is AutoGrader. AutoGrader is a

powerful tool for automatically grading programming assignments. This tool was selected to be

used in this project and will be discussed in more detail throughout the report.

At the conclusion of the survey, a clear divide in features appeared between the paid and free

tools. In general, the paid tools provided a superior user experience. This came in the form of

well-designed user interfaces. Also, the paid options require minimal effort to get started grading.

Paid options provide capabilities to easily import final grades into a learning management

system, and some of the paid options were so feature rich that the tool can serve as a learning

management system. In contrast, the free options require extensive setup and are complicated to

use. In general, all of the tools surveyed provide basic automatic grading of programming

assignments. However, some free options are only capable of grading specific programming

languages. All of this information contributed to the development of the goals for this project.

Providing an open-source autograding tool that is easy to set up, capable of grading multiple

languages, and easy to export grades became key goals for this project.

12

Chapter 3

Design & Implementation

The design of the containerized autograder began during the research phase of the project. While

reviewing existing autograder tools, the common shortcomings of these tools were documented.

There were many reoccurring issues noted that could be classified as user interaction issues. The

setup process was very complex for several tools. Many of the user friendly options are locked

behind a pay wall. These observations played a critical role in shaping this project. The overall

goal for the design phase was to create an easy to use autograder tool. Over the course of the

design phase, this goal evolved into the final product discussed in this paper. This chapter of the

report discusses the design process and key moments during the design phase.

Selection of Autograding Tool

A review of available open-source autograder tools was performed to identify a tool to be

integrated with the project. Several tools were considered and there were several considerations

made during the review of each tool. Here are several of the most critical criteria considered

during the selection process; is the source-code publicly available, can the tool assess multiple

programming languages, is the tool regularly maintained. Many of the tools focus on one

language, so they were eliminated. It was also difficult to find a tool that provided the complete

source code. This was seen as crucial as it is important to understand how the tool works before

making modifications. The open-source tool AutoGrader was selected. The source code for this

13

tool is available at the following URL: https://github.com/zmievsa/autograder. In addition to

having publicly available source code, the tool is capable of grading C, C++, Java, and Python. It

is also possible to grade any programming language in a limited capacity in which the system

only checks standard output. The repository for this code has recent commits during the year

2023 in addition to the previous several years. AutoGrader was deemed as the best fit for this

project. This tool was integrated into the system to create the containerized autograder tool.

AutoGrader provides an extensive list of features to its users. It provides plagiarism detection

methods. Grading rules such as points totals can be customized. Writing test cases for an

assignment is a streamlined process. These are only a few of the many features provided by

AutoGrader. The tool makes an effort to streamline the process of automatic grading of

programming assignments. This project will build off of this process and provide an even easier

to use tool. In addition to improving the tool, it was important to avoid damaging the existing

tool. The functionality of all of these features was preserved during the containerization process.

The tool can be executed with a run command in the directory containing student submissions

for the assignment. The AutoGrader tool requires a specific directory structure for the tool to

work correctly. A main grading directory must be created. All of the student submissions should

be placed in this directory. Another directory named “tests” must also be placed inside of the

main grading directory. The tests directory contains several other directories; extra, input, output,

test cases. There is also a config file that can be used to modify the grading process such as

maximum allowed run time for student submissions and assigning grade weights to test cases. A

14

standard output formatter file is also provided. This file contains functions that can be used to

format output from the student’s submission to allow for accurate comparison to the test case

output. The directory structure discussed is depicted in Figure 1.

Test cases, input, and output check files must be written by the instructor and placed into their

respective folders. AutoGrader will check each directory during execution. Upon execution of

the run command, a results folder will be generated inside the main grading directory. This folder

contains a results file for each student submission that was graded. Each results file contains a

list of test cases that were checked along with their outcomes. An overall grade for the

assignment is also provided. Additional comments may also be provided if errors were

encountered while grading. This grading structure was preserved by this project to ensure that all

features of AutoGrader remained functional with the container. Zip files containing the folder

structure for a Mac/Linux version and Windows version is provided at the following URL:

https://github.com/jmart5/containerized_autograder.

15

Figure 1 - Directory Structure
required to use AutoGrader. Folders
are shown in blue. Files are shown

in black.

Containers

The decision to run the autograder tool inside a container was made to provide easy access to the

grading tool. Containers are the ideal method for accomplishing this goal. In order to understand

why a container is a good solution for this project, it is important to establish how a container

works. The name container is used to describe a unit of software. This unit contains the code for

an application and all of the dependencies that are required to run the application. Everything

needed to run a specific application is inside its container. Since everything required is provided

inside the container, it is easy to run containers in any environment. This is one way that

containers will make the AutoGrader tool easier to use. An alternative method is to run the

autograder inside a virtual machine. This would provide the same benefit of providing all of the

required dependencies inside the pre-made environment. However, virtual machines are much

larger pieces of software. A container is a lightweight executable application that uses resources

more efficiently that a virtual machine. Using a virtual machine to host the autograder tool would

be an inefficient use of resources, thus the container is a better option.

Containers are a generic concept with several implementations to choose from. Docker has been

selected as the specific tool used for creating and running containers for this project. Docker is

more than just containers. It refers to the platform and tools it provides for creating, running, and

managing containers. The tool can be run from the command line or using the Docker Desktop

application. Docker is popular because it enables developers to quickly test and deploy their

software [11]. This included deployment into a production environment. Images are a key part of

this ecosystem. An image contains everything needed to run an application. It can be thought of

16

as a template that is used to create containers. There are many base images available for

customization and it is also possible to create an image from scratch using a Dockerfile. An

image is similar to the concept of a class in object-oriented programming. An instance of an

image is a container. There can be multiple instances of an image similar to classes and objects.

The container is where the software is running. The Docker Engine is what powers the Docker

platform. It creates and runs containers. Docker Engine is a layer located between the host

operating system and the location where the application is being virtualized. This is different

from a virtual machine which utilizes a Hypervisor. The lack of a Hypervisor leads to a

significant improvement in performance of Docker compared to a virtual machine [10].

The process of running a container from an existing image is made easy by Docker. Containers

can be run in any environment where Docker is installed and running. Users only need to verify

that Docker is running on their system and that they have downloaded the desired image. The

creation of an image that contains AutoGrader and the necessary dependencies will make it easy

for users to gain access to the autograding tool. This design overcomes the setup issues

encountered by several other tools. The installation process of the tool Otter-Grader is one

example of setup issues. First, the tool was installed using a command in terminal. There were

several necessary libraries that needed to be installed in order to use the tool. If anything was

missing, the user would receive a lengthy error message. Once all missing libraries were

installed, the Otter Assign command could be executed. This is a command that generates

necessary files for grading. After this step, the run command could be executed to grade the

assignment. However, additional dependency errors were encountered. Overall, the process

17

required to make that tool work was slow and frustrating. This is one example of a setup issue.

Other tools had similar issues when they were investigated. Running the grading tool inside the

container eliminates these issues.

Building the Autograding Image

An image containing the AutoGrader tool and its dependencies was built using an existing base

image. Creating a new image by modifying a base image is a common technique. This is an

efficient approach that allows developers to take advantage of a pre-existing image that already

contains common software packages that are likely required. The alternative to this approach is

to create a Dockerfile. This is a text-based script that provides instructions for building a Docker

image. Composing a Dockerfile is time-consuming and it is a very manual process. It is also

error prone and can be resource intensive. These disadvantages prompted the use of the first

approach. Next, a base image was selected for the starting point. The latest version of the Ubuntu

image was selected. This is the official Ubuntu image provided on Docker Hub. Canonical, the

organization that produces Ubuntu, actively maintains this image. This official support made the

image attractive. Also, Ubuntu is a familiar Linux environment which made development easier.

Once the base image was selected, construction on the new image could begin. The first step was

to use the ‘docker pull’ command to pull the latest version of the Ubuntu image. Next, the run

command can be used to start a container using the Ubuntu image. The ‘-it’ option should be

used to start an interactive session with the container. This allows the user to interact with the

Ubuntu command line inside the container. This image has minimal packages installed, so

18

Python and ‘pip’ needed to be installed via the command line. Next, the AutoGrader tool was

installed using the ‘pip’ command. A new directory titled ‘grading_dir’ was made to provide a

designated location to perform auto grading tasks. Inside this directory, the necessary

configurations and directories were created. This directory also serves as the location to place all

submission files for grading. Now, the image contains the necessary test directories. The

container setup was completed and the container exited.

Once the container was setup with the desired installs, an image was created from this container.

The container needs to be running to begin this process. This can be verified by viewing the list

of active containers. The ‘docker commit’ command can be used to create an image from the

running container. After using this command, a new image is created that contains all of the

necessary resources to run the AutoGrader tool inside the container. Figure 2 lists the commands

used to create the new image.

19

Figure 2 - Docker Image Building Steps. The first two commands can be
used to start a Ubuntu container. The next group of commands setups up

dependencies inside the container. The last command creates a new image
from this container.

The image building process was performed several times during the project. Each time new

components were added to the system, a new image needed to be built. This required additional

steps to those previously discussed. For example, the development of the CSV results output

component required a new image to be built. A Python script file was copied into the running

container. This script had the pandas Python library as a dependency, so that was installed inside

the container. Once all of the necessary components were added, a new image was created. The

final Docker image is available on Docker Hub at the following URL: https://hub.docker.com/

repository/docker/jmart5/containerized_autograding/general.

The AutoGrader tool requires a specific folder structure in order to run. This folder structure

exists inside the container under the directory “grading_dir”. Part of the grading process requires

the instructor to place all of the student submissions inside this directory. It also needs all of the

test case files placed in their respective directories. This raised the question of how to efficiently

provide these files to a running container. The first option explored was copying the files from

the local machine into the running container. The command “docker cp” can be used to

accomplish this task. This command requires the path to the files on the local machine that are to

be copied in addition to the destination path inside the container. Users of the system would be

required to manually execute the copy command on all required files for a grading session in

order to perform the auto grading. This task would quickly ruin the user experience. The copy

approach was used briefly during testing, but was deemed too manual for final users. Ultimately,

this option was abandoned in favor of mapping directories from the local machine to the running

container.

20

Mapping directories is the process of associating directories from the local machine to directories

inside the running Docker container. This is a common approach used for exchanging data

between the local machine and the container. The term volume is often associated with this

process as a mapped directory is called a volume. The “-v’” option must be added to the “docker

run” command upon startup of the container. A sample of the mapping command is shown in

Figure 3.

The directory mapping example shown in Figure 3 only maps a single directory. The AutoGrader

tool has several directories that contain various test case files. All of these directories also need

to be mapped in order for the AutoGrader tool to run in the container. The solution was to create

an identical directory structure on the local machine to match the directory structure created

inside the container. This directory structure is shown in Figure 1. A zip file containing this

directory structure can be downloaded from the following URL: https://github.com/jmart5/

containerized_autograder. Users of this system are able to download the premade directory

structure for use while grading. Also, providing a specific directory structure ensures that the

mapping options will remain unchanged. Mapping options were provided for each directory in

the provided directory structure. Users simply need to add student submission files and test case

files to their respective folder inside the premade directory structure and the system will

automatically map each folder.

21

Figure 3 - Docker Mapping Option. The current directory on the local
machine is mapped to grading_dir upon startup of the container made from

the grader_container image.

Developing a Component to Automatically Generate CSV Results

The overarching goal of this project was to make it easier to use an autograder tool.

Containerization of the AutoGrader tool helps to reduce the setup and execution tasks. Another

area that could be improved was the grade outputs. Currently, the AutoGrader tool produces a

results output file for each student submission. This output file lists the status of each test case

that was performed. A final grade for the entire submission is also provided. In this current

situation, an instructor would need to manually retrieve the grade and comments from each file

to input the information into a learning management system such as Canvas. The development of

a CSV results component was done to automate this process. This component was designed with

the goal of automatically parsing the comments and final grades from each results file generated

by the AutoGrader tool. Then the CSV results component aggregates all of this information into

a single CSV file. The format of this CSV file is compatible with the format specified by popular

learning management tools. The addition of this component allows instructors to simply upload

the final aggregated results CSV file to the learning management system, thus further

streamlining the grading process.

Two approaches were considered for the architecture of the CSV results component. The first

option was to develop a component that is independent from the AutoGrader tool. The

component can be installed inside the image. Then it is executed upon completion of the

AutoGrader run command inside the container. The second approach places the CSV results

generation code directly inside the AutoGrader source code. This is a more integrated approach

that would not require parsing to retrieve information. However, the first approach was selected

22

due to its independence from the AutoGrader tool. In this situation, separation was viewed as an

advantage. If future changes are made to the AutoGrader tool, the CSV results component can be

easily updated independently to remain functional. The component only needs to know the file

structure of the results that are produced by the AutoGrader tool. The independent approach will

allow the tools developed in this project to be easy to adapt as needed in the future.

An isolated environment was created for the development of the CSV results component.

Isolation from the AutoGrader tool and the Docker container simplified the development process

of this component. Development was focused on creating a working component prior to

integration with the overall system. Creation of this isolated environment was accomplished by

creating a new directory that contained only sample output file generated by the AutoGrader tool

and the Python file developed for this component. This environment was used for the entire

development of the CSV results component, and upon completion the component files were

integrated with the system as a whole.

The task of developing a component to automatically generate a CSV output file was

deconstructed into several steps. The first step was researching techniques that can be used to

generate a CSV file in Python. The Python programming language was selected, because this is

the language that the AutoGrader tool was primarily developed in. Using the same language as

the AutoGrader tool reduces the new dependencies that need to be installed in the Docker

container. The first option for CSV generation is to manually create and format the data. This

requires the use of the open function that can then be written to a CSV file. This option was

23

quickly eliminated, because it lacks the features of the other options and is overly complex for

this task. The next option was to use the ‘csv’ Python module. This module is built into Python,

so there is no need to install anything. This module is a step up from the manual option, but it is

too simple for this purpose. This task requires manipulation of data such as filtering and

grouping. There is no easy way to achieve these steps with the ‘csv’ module. Instead, the

‘pandas’ Python module has been selected for the generation of the results CSV file. Pandas

provides several useful data manipulation functions that are easy to use. Many of the tasks that

could be achieved with the ‘csv’ module can be done in a more concise manner in ‘pandas’.

A results file is generated for each submission by default in AutoGrader. The goal of this

component is to extract the desired information from each of these files and aggregate the

information into a singe CSV file. Two Python modules were used to accomplish this task. First,

the ‘os’ module was used to handle file manipulation. The walk function of this module was used

to iterate through all of the results files generated by the AutoGrader tool. The ‘re’ module was

also vital to this task. This module provides tools for handling regular expressions. Multiple

functions were written that utilized the regular expression tools to identify patterns that indicated

the comments section and final grade section in the results file. Student names were also

extracted from the files. The results file names are based on the homework submission names, so

a file name format was created. This ensures a consistent file naming pattern that can be parsed

using regular expressions. The submission file name format is shown in Figure 4. It is critical

that each submission is correctly named, so the parsing functions extract the correct name for

each student.

24

The CSV results component contains several parsing functions. These functions are used to

extract the desired information from each student results file. This includes parsing functions for

the student names, grading comments, and final grades. The name parsing function is shown in

Figure 5. This function parses the file names of each results file in the directory. The os.walk

function is used to traverse the directory. Each file name is spliced using the underscore symbol

as a delimiter. The names of each file are saved into the names list. The grading comments and

final grades parsing functions work in a similar manner. Once all of the necessary information

was parsed from a student results file, the information was added to a data frame. This process is

repeated until all of the results files have been parsed.

After parsing every results file, the complete data contained inside the data frame is exported to a

CSV file. The format of this CSV file is based on common fields required by learning

25

Figure 4 - Student Submission File Naming
Convention.

Figure 5 - Name Parsing Function. The file name of each
submission results file is parsed using this function to

extract student names.

management systems. These fields are student last name, student first name, assignment grade,

and comments. The data frame was created using pandas and manipulated to organize the parsed

information into the desired format. The data frame structure has a function to create a CSV file

that was used to create the CSV results file. A sample of the CSV results component output is

shown it Table 1.

Upon completion of the results CSV generation component, the next task was to integrate this

component into the system. Since the component was designed to run separately from the

AutoGrader tool, the component can simply be setup to run inside the container. A new version

of the grading container was created building off of the previous grading container image. This

meant that previous dependencies and software did not need to be reinstalled. A container was

started up in interactive mode using the previous image version. Once running, the results CSV

generation component file was copied into the running container. The component file was placed

in the root directory of the container and the grading_dir directory previously created was left

undisturbed. The pandas Python library was also installed inside the container because it is a

Last name First name Grades Comments

Washington Elizabeth 80 q1_test1.py 100/100

q2_test1.py 0/100 (Wrong output)

q2_test2.py 100/100

q3_test1.py 100/100

q4_test1.py 100/100

Marks Steve 60 q1_test1.py 100/100

q2_test1.py 0/100 (Wrong output)

q2_test2.py 0/100 (Wrong output)

q3_test1.py 100/100

q4_test1.py 100/100

Table 1 - Sample CSV Results Output

26

dependency of the CSV results component. After completing these tasks, the container was

exited and used to create a new image.

Simplification using Command Line Scripts

Now, the new image of the container contains all of the necessary software to run the

AutoGrader tool and execute the results CSV generation component. However, running all of

these items required additional commands to be executed. When starting the container all of the

directories must be mapped, the AutoGrader tool must be run, and the results CSV generation

component must be run. All of this required information resulted in a lengthy command.

Requiring users to type out such a long command each time they want to use the tool was

unrealistic. In order to simplify the application launching process, a shell script was composed to

handle all of this setup. Utilizing a shell script greatly simplifies the work required by users to

launch the system. A shell script folder was added to the grading folder structure. Inside the main

grading folder, a new folder named “startup” contains the shell script. This information is

included in the zip file download made available to users of the system. Now, users simply

execute the shell script from the command line to launch the container and all of its processes. A

user can execute the command shown in Figure 6 from inside the main grading directory to begin

the grading process.

27

Figure 6 - Startup Command. Type this
command from inside the main grading
directory to initiate the grading process.

It is easy to allow used Docker containers to pile up on the local machine hardrive. Overtime,

this becomes a major storage issue. In order to prevent this, the ‘—rm’ option was added to the

docker run command contained in the startup script. This will automatically remove the

container once it has exited, thus preventing the buildup of unused containers.

Testing of the system was initially performed in a Unix environment. Towards the end of the

project, testing was conducted on a Windows system. The containerized grader is inherently

portable, so this portion of the system had no issues running on Windows. Windows testing did

identify two issues. First, the shell script used to launch the grader only works on Unix systems.

The script was translated into a Windows batch script (.bat extension). This file replaced the shell

script in the startup file. This also facilitated the need to have two separate zip files of the folder

directory template; Windows version and Mac/Linux version. Both versions of the folder

structure template are available from the GitHub repository. The startup command to call the

Windows batch script is also slightly different due to the variations between operating systems.

All of these differences are highlighted in the project documentation.

Project Documentation

Project documentation is a crucial component for effectively communicating information about

the project. A project webpage is an excellent way to create a centralized location for project

related information to live. Since this project has finished components located in multiple

locations (Docker Hub and GitHub), the project webpage is important. A GitHub web page was

created to provide documentation for this project. The web page discusses the contents of this

28

project and provides a user tutorial. The page begins with a description of the project and lists

features of the tool. The installation process is clearly outlined and links to the Docker image and

folder structure zip file are provided. A user tutorial is also provided. It walks through the entire

process of setting up and running the containerized autograder. Snips are provided for multiple

steps to make the tutorial easy to follow. Upon completion of this documentation page, several

test users were tasked with completing the tutorial. This was done to verify that the instructions

are clear and easy to follow. A snippet of the documentation page is shown in Figure 7.

The documentation page also contains a common errors section. This lists several errors that

occurred frequently during development and testing. The error name is provided along with an

explanation of why the error occurred. The solution to rectify the error is also explained. This

section was added to the documentation to further improve the usability of the system. A

reference section is also provided that provides links to tools that were integrated into the final

containerized autograder tool. This section was included to provide recognition to the tools that

helped this project come to fruition. It also provides necessary information to individuals who

29

Figure 7 - Project Documentation Web Page

may wish to build a similar system using the tools from this project. This GitHub project page

will help to share the knowledge gained from this project. It will also serve as a resource for

people using the containerized autograder tool.

Student Use of the Containerized Autograder

The containerized autograder tool provides the resources necessary to permit students to self-

check their assignments. Instructors can distribute a limited set of test cases for the students to

use. The instructor may provide these files directly or add the test files to the grading directory

structure prior to providing students with the complete directory for an assignment. Students can

add their completed assignment to the grading directory and run the container on their

assignment. Students can also use the same Docker image for the containerized autograder.

Allowing students to check their assignment prior to submission can be valuable. It gives

students a chance to catch errors and gain confidence in their assignment. One disadvantage to

permitting students the ability to use an autograder on their assignment is the possibility that

students begin to rely on the autograder [1]. A student may attempt to reach solutions through

brute force. Rather than thinking how to fix their assignment, they may try to make minor

adjustments and resubmit to the autograder until they get a positive grade. The containerized

autograder handles this situation by limiting the tests that the student has access to. Instructors

can provide only a portion of the full test suite to students. This will ensure students continue to

improve their submissions without abusing the system. 

30

Chapter 4

Software Development Process & Project Management

An incremental development process was used for this project. Additionally, Agile

methodologies were integrated into the project to complement the incremental development

process. Under this process the specification, development, and validation activities occur

concurrently. With the knowledge that this project must be completed in a short amount of time,

a development process that allowed for feedback early and often was seen as beneficial. As the

understanding of the project requirements evolved, this development process provided the

necessary flexibility to adapt the project. Drawbacks of an incremental development process

were also considered. The main issue with incremental development is the degradation of the

software with each new increment. However, this issue is more critical for large projects [12].

Lastly, validation and testing procedures were put in place to mitigate this issue.

Agile methodologies were also integrated into the project development process. These

methodologies allowed for more flexibility as project requirements changed. Also, Agile

methodologies allow for early feedback which was vital to ensuring that the project was meeting

its goals. A kanban board is a popular project management tool in Agile development. The board

is a simple way to visually track the progress of tasks during the project. Traditionally, a kanban

board is created on a white board where sticky notes are used to represent each task. There are

three columns on the board; to-do, doing, and done. As tasks are created, the sticky note is placed

in the to-do column. Once the task is assigned and work has begun on it, the sticky note is moved

31

into the doing column. Upon completion, the sticky note is placed in the done column. An

electronic version of the kanban board was used during this project. The software is called

Focalboard. A snapshot of the project kanban board is shown in Figure 7. This snapshot was

taken approximately midway through the project. The tasks listed on this board are specific items

that need to be completed rather than high level topics.

Agile development typically works in sprints. These are short time periods, typically 1 to 2

weeks, during which a handful of tasks are worked on to completion. This routine was employed

during this project. New tasks were established during weekly meetings with the project advisor.

During these meetings, tasks to be completed by the next meeting were determined and added to

the to-do column of the kanban board. As work began on each task, it was moved to the doing

column. As each task was completed during the week, it was moved into the done column. This

schedule helped ensure that high priority tasks were completed quickly. It also helped track

progress. Each task falls under a project phase. This board helped to ensure that all tasks that

32

Figure 8 - Project Kanban Board

belonged to a specific project phase were completed by the end date scheduled for each phase as

shown on the Gantt chart for the project.

A comprehensive schedule was constructed at the onset of the project. A Gantt chart was used to

create the schedule. A Gantt chart is a great way to visualize the project schedule as it shows the

duration of each task over time. Figure 8 shows the Gantt chart for this project. The project was

broken into three phases; Research, Design & Implementation, and Report Composition. Each of

these phases contained several major tasks. These tasks are higher level than the tasks contained

in the Kanban board. The research phase occurred mostly towards the beginning of the project

while the other two phases lasted the remainder of the project. It is important to note that many

of the tasks have overlapping durations. This symbolizes that these tasks were occurring

concurrently. Task durations were estimated at the beginning of the project. However, the Gantt

chart was updated regularly to reflect the actual progress made on each task. In general, the

schedule was adhered to in order to meet the final deadline of the project. 

33

https://goo.gl/PXLbMe

PROJECT TITLE Containerization of an Autograder COMPANY NAME ECU Department of Computer Science

PROJECT MANAGER Jonathan Martin START DATE 8/28/2023

WBS
NUMBER TASK TITLE

START
DATE

DUE
DATE DURATION

WEEK 1 WEEK 2 WEEK 3 WEEK 4 WEEK 5 WEEK 6 WEEK 7 WEEK 8 WEEK 9 WEEK 10 WEEK 11 WEEK 12 WEEK 13

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1 Research Phase

1.1 Project kickoff 8/28/23 9/1/23 5

1.2 Literature Review 8/31/23 9/11/23 9

1.3 State of the Art 9/4/23 9/15/23 10

1.4 Tool Review 9/4/23 9/15/23 10

1.5 Tool Selection 9/25/23 9/29/23 5

2 Design & Implementation Phase

2.1 Containerization of AutoGrader 9/11/23 10/6/23 20

2.2 Directory Mapping 9/27/23 10/6/23 8

2.3 CSV Output Component 10/2/23 10/13/23 10

2.4 Integration of Component 10/12/23 10/20/23 7

2.5 Shell Scripts 10/12/23 10/20/23 7

2.6 User Guide/Tutorial 10/23/23 11/3/23 10

3 Report Composition Phase

3.1 Report Outline Planning 9/4/23 9/15/23 10

3.2 Introduction 9/11/23 9/29/23 15

3.3 Abstract 10/2/23 10/6/23 5

3.4 General Composition 9/11/23 11/3/23 40

3.5 Editing & Formatting 10/9/23 11/10/23 25

3.6 Final Review of Report 11/6/23 11/10/23 5

3.7 Presentation Development 10/30/23 11/7/23 7

3.8 Presentation Review & Practice 11/8/23 11/16/23 7

3.9 Presentation 11/17/23 11/17/23 1

3.1 Final Updates 11/17/23 11/24/23 6

Figure 9 - Project Schedule

Chapter 5

Testing

Software testing is a vital part of the software development process. Testing was ongoing

throughout project development. Testing early and often was the approach used for this project.

Multiple levels of software testing were needed to validate various parts of the project. Unit

testing was utilized to test components. Integration testing was needed for checking that the

components worked together. System level testing was also necessary to ensure that the overall

system met the needs of the project. Each of these testing types were deployed at various points

of the project. User testing of the entire system was also conducted to ensure that the system

meet the usability goals established for the project.

Unit testing was used during the development of the CSV results output component. This

involved the testing of individual functions within the component. For example, the parse_names

function shown in Figure 5 underwent unit testing. This required the creation of sample results

files that were stored in a directory. This directory was then given to the function and the list

returned by the function was checked against the actual names of the files. This process was

repeated for each of the functions in the CSV results output component. Another specific test that

was performed on the functions was verifying that each function could work with different file

extensions. File extensions for all programming languages supported by AutoGrader were tested.

Several additional file extensions were also tested to ensure that the tool can handle any future

languages that may be added to the system. Conducting unit testing on each function as it was

34

created sped up the development of the component. Errors were caught immediately. Also, it was

easier to fix the errors because the code was fresh in the mind of the developer. This isolated

form of testing increased confidence that the component was functioning correctly, and future

levels of testing could focus on the integration of the component.

Integration testing was extensive for this project. Integration testing is focused on checking the

interactions between different components. This tool has several parts including a Docker image,

shell script, AutoGrader application, and the CSV results output component. Integration testing

was performed to ensure that all of these different parts of the system worked together correctly.

Integration testing occurred every time two components were combined. The first wave of

integration testing occurred when the AutoGrader tool was installed inside of the container. This

testing was simply verifying that the AutoGrader tool still ran as expected inside of the Ubuntu

container. Files were copied into the running container. Then AutoGrader was executed. The next

integration test checked that the mapping of directories from local to container were working.

The CSV results component integration aimed to confirm that the component was executed

inside the container. It also verified that the component was able to find the results files inside

the container. The shell script also underwent integration testing. This verified that all of the

correct commands were fired upon execution of the script. This project involved a lot of

components interacting with one another, so integration testing was crucial to ensure that

everything was working together.

35

The iterative development process used for this project created multiple working versions of the

system over the project lifespan. These were an excellent way to receive user feedback. Testing

each version of the system helped identify additional improvements that were integrated into the

project. One example of an improvement made due to system testing of an early version was the

addition of the shell script. Each version of the system had a longer Docker run command than

the previous version. After a few versions, it was apparent that this command was going to be

cumbersome for a user to input. This led to research into methods for condensing Docker

commands which resulted in the addition of the shell script for startup. Similarly, the ‘—rm’, or,

remove container option, was added after several weeks of development. It was noted that a large

number of older containers had built up on the local machine and were taking up space. Instead

of manually removing each old container, this tag was added. System testing was also helpful for

gauging the progress of the project. The project schedule established deadlines for the

completion of major development tasks. System tests were used to verify that these tasks had

been completed.

System testing was conducted on both Mac and Windows systems. The container is able to run

on any system the supports Docker, so compatibility with each operating system was a goal of

the project. The AutoGrader tool provides several example grading directories. These contain

sample assignments and tests for a variety of languages including C, C++, and Python. Each of

these example grading directories was used to test the containerized autograder on each

operating system. Mac testing did not encounter issues. However, Windows testing revealed

several issues. First, the shell script was written in a language that Windows does not read. This

36

led to the translation of the script into Windows Batch script. Also, the startup command had to

be modified to work on Windows. Windows systems use the backslash ‘\’ symbol in the file

paths whereas Unix based systems use the forward slash ‘/‘. The startup command was updated

to reflect this difference. Each operating system was testing from scratch by downloading the

folder structure template for the respective operating system. The Docker image was retrieved

from Docker Hub. Then testing of the tool proceeded. Testing was conducted in this manner to

ensure that the correct resources could be retrieved from the references provided in the project

documentation.

User testing was also conducted on the system. The main goal of this project was to make an

autograder that is easy to use. Allowing actual users to attempt to use this system was an

excellent way to check if this goal was met. The project documentation created for this project

was also part of user testing. This documentation was used by users to install and use the system.

Feedback was gathered for both the system and the project documentation. This information was

used to improve the project documentation page.

Testing throughout the development phase allowed errors to be fixed as they were discovered.

This prevented errors from propagating overtime and leading to technical debt. Testing early and

often was also a form of risk mitigation. Errors are generally easier to fix early on during

development. Due to the tight schedule of the project, it was important to reduce the chances of

delays in development. Overall, testing helped ensure that a quality final product was created.

User testing was also vital to ensuring that the project goals were met.  

37

Chapter 6

Conclusion & Future Work

The result of this project is a containerized autograder. The image is publicly available on

Docker Hub and ready for instructors to use. The goal of the project was to make an easy to use

autograding tool. This goal was accomplished through the process of containerization. The

frustrations associated with installing a tool have been reduced by utilizing Docker. Additional

quality of life improvements were also added to further streamline the grading process.

A user of this system can quickly set up the system. Project documentation is provided on a

GitHub webpage. This documentation includes installation instructions and a tutorial for grading.

Links to the folder directory structure zip file and the Docker image are also provided on this

page. The detailed explanations provided in the project documentation make it easy for users to

follow. All of the required software is bundled inside the container, so users do not need to worry

about installing dependencies. Users can focus on creating test cases and this tool will take care

of the rest. The CSV results output file generated by the tool will also improve the grading

process. This file contains the grades for all of the student submissions in a format that is

compatible with Learning Management Systems. This will facilitate quick uploading of grades.

After downloading the Docker image and the folder structure template, instructors can continue

to use these items to grade multiple assignments. The installation process is only required once.

38

The containerized autograder creates an opportunity for students to self-assess their assignments

prior to submission. An instructor can distribute a version of the grading folders that contain a

limited set of the test cases for the assignment. Students will be able to run the container on their

own assignment to see how well they have done. Based on this feedback, they can make

improvements to their assignment prior to submission. Instructors will then use the full suite of

test cases upon submission. This test suite will contain additional test cases that were not

available to students.

The original AutoGrader tool has limited capacity on Windows operating systems. By running

the tool inside a Docker container, this issue has been overcome. The containerized autograder

can be used anywhere Docker is installed. This will make deployment of the tool easier for

instructors and students.

All of the components developed during this project are open-source. This allows for future

modifications by others. Instructors can adapt this tool and decide to make modifications for

their specific situation. This may involve all or only certain components used to create the

containerized autograder. This project also serves as a demonstration. It shows what the

containerization of an autograding tool can look like.

There are many potential modifications to the underlying AutoGrader tool that can be made.

Additional programming languages can be added to the tool. Developing automation techniques

39

for the generation of test cases from a solution file would also be beneficial. The CSV results

output component can be modified to incorporate more output formats.

Deploying the containerized autograder to the cloud would also be beneficial. This setup could

allow students to submit their assignments directly through an online portal. The assignments can

be graded automatically and grades pushed to the learning management system in real time via

the cloud.

The containerization of an autograder has yielded meaningful results. The tool created from this

project is functional and available for use by instructors. The containerized autograder has

minimal setup and execution requires a short command to be typed. The thorough project

documentation will help onboard users and provide guidance to others hoping to build a similar

tool. Creating a user friendly tool is vital to its success and the containerized autograder focused

on achieving this goal.

40

Bibliography

[1]	 Baniassad, E., Zamprogno, L., Hall, B., & Holmes, R. (2021, March). Stop the (autograder) 	 	
	 insanity: Regression penalties to deter autograder overreliance. In Proceedings of the 52nd ACM 	 	
	 technical symposium on computer science education (pp. 1062-1068).

[2]	 CodeGrade - Deliver Engaging Feedback on Code. (n.d.). www.codegrade.com.

	 https://www.codegrade.com/

[3]	 Codio | The Hands-On Platform for Computing & Tech Skills Education. (n.d.).

	 www.codio.com. https://www.codio.com/

[4]	 codePost: Autograder and code review for computer science courses. (n.d.). Codepost.io.

 	 Retrieved November 2, 2023, from https://codepost.io/

[5]	 Edwards, S. H., & Perez-Quinones, M. A. (2008, June). Web-CAT: automatically grading

 	 programming assignments. In Proceedings of the 13th annual conference on Innovation and

 	 technology in computer science education (pp. 328-328).

[6] IBM. (n.d.). Containerization Explained | IBM. www.ibm.com.

 https://www.ibm.com/topics/containerization

[7]	 Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming

	 assignments. Computer science education, 15(2), 83-102.

[8]	 OK. (n.d.). Okpy.org. Retrieved November 2, 2023, from https://okpy.org/

[9]	 Otter-Grader Documentation — Otter-Grader documentation. (n.d.). Otter-Grader.readthedocs.io.

	 Retrieved November 2, 2023, from https://otter-grader.readthedocs.io/en/latest/

[10]	 Rad, B. B., Bhatti, H. J., & Ahmadi, M. (2017). An introduction to docker and analysis of its

	 performance. International Journal of Computer Science and Network Security (IJCSNS), 17(3),

 	 228.

[11]	 Russell, B. (2015). Passive Benchmarking with docker LXC. KVM & OpenStack.

[12]	 Sommerville, I. (2016). Software Engineering, 10/E. Pearson Education.

[13]	 Web-CAT - Web-CAT. (n.d.). Web-Cat.org. https://web-cat.org/projects/Web-CAT/

41

	List of Figures
	List of Tables

