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Nonequilibrium systems commonly exhibit Lévy noise. This means that the distribution for the size of the
Brownian fluctuations has a “fat” power-law tail. Large Brownian kicks are then more common as compared
to the ordinary Gaussian distribution. We consider a two-state system, i.e., two wells and a barrier in between.
The barrier is sufficiently high for a barrier crossing to be a rare event. When the noise is Lévy, we do not get a
Boltzmann distribution between the two wells. Instead we get a situation where the distribution between the two

wells also depends on the height of the barrier that is in between. Ordinarily, a catalyst, by lowering the barrier

between two states, speeds up the relaxation to an equilibrium, but does not change the equilibrium distribution.

In an environment with Lévy noise, on the other hand, we have the possibility of epicatalysis, i.e., a catalyst
effectively altering the distribution between two states through the changing of the barrier height. After deriving
formulas to quantitatively describe this effect, we discuss how this idea may apply in nuclear reactors and in the

biochemistry of a living cell.
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I. INTRODUCTION

A good understanding exists of how the characteristics of
Brownian motion and thermal noise at the microscopic level
translate into a Boltzmann distribution at the macroscopic level
[1,2]. However, all these results apply solely for a system that
is at equilibrium. Most of the systems of interest for physicists,
however, are far from equilibrium. Solar physics, biophysics,
geophysics, etc., are all about systems that convert, transport,
and dissipate energy. Being far from equilibrium is the very
essence of these systems.

Already in the early 1900s it was discovered that the noise
that is exhibited by systems that are far from equilibrium is
fundamentally different from the noise that is exhibited by
equilibrium systems [3]. To date many features of nonequilib-
rium noise are still not fully understood and nonequilibrium
thermodynamics is still very much a work in progress.

Also in the early part of the 20th century, mathematicians
developed theory for probability distributions with infinite
variance. The Cauchy distribution, p(x) = 7 /(1 +x2),is a
good example. The infinite variance of this distribution is
associated with the asymptotic behavior: in the x — o0 limit
we have p(x) o 1/x2. Such a power-law tail is much more
“fat” than the tail of the Gaussian distribution [which follows
px) « exp[—x2 /202, where o is the standard deviation]. The
fat tail means that large x’s, i.e., extreme events, are more
common when a sequence of numbers is generated.

This mathematical work acquired real-life significance
when Mandelbrot discovered in the 1960s that the price
increments of cotton futures exhibit a fat tail [4].

It takes lots of data and data processing to definitively
identify a tail as deriving from a power law. But in the 1990s
desktop computers became sufficiently fast and easy to use that
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identifying power-law tails could become a cottage industry
[5-7]. “Noise with pulsatory outbursts” appears to be inherent
to phenomena far from equilibrium.

There is currently much research interest in the nonequi-
librium nature of the living cell. The focus is on identifying
nonequilibrium noise [8], as well as on exploring consequences
of nonequilibrium activity [9]. Below we will derive and
explore a remarkable effect of nonequilibrium activity.

II. WHITE GAUSSIAN NOISE IN AN
EQUILIBRIUM SYSTEM

The one-dimensional Langevin equation describes an over-
damped particle in a potential V (x) that is subject to Brownian
kicks:

%= —ym + V2DE). (1)

dx

Here y represents the mobility of the particle in the medium.
The mobility is the emergent ratio y = v/F when a force F
is applied and an average speed v through the medium results.
The noise term ~/2D&(r) describes the Brownian kicks. D is
here the diffusion coefficient of the particle. For equilibrium
systems the noise £(¢) is generally taken to be white and
Gaussian [2]. The noise term &(¢) is normalized through
(E@)E(t)) = 8(t — t’), where §(t — t') represents a Dirac delta
function. At equilibrium there exists a relation to connect
the noise strength and the mobility: D = kgTy. Here kg is
Boltzmann’s constant and 7 is the absolute temperature. This is
Einstein’s well-known fluctuation dissipation theorem (FDT).
At the end of Sec. IV we will let the variable x in Eq. (1) rep-
resent the reaction coordinate of a chemical reaction. Equation
(1) itself then describes the advance of the chemical reaction.

The “white” part of the equilibrium noise means that there
is no correlation between subsequent values £(¢) and £ (¢ + Ar)
on even the smallest resolvable time scale At. For the noise
to be genuinely “white,” £(¢) thus needs to be fractal [10].
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FIG. 1. A double-well potential. Equation (1) describes the dy-
namics of an overdamped Brownian particle in the potential.

The scaling law &(Af) = A~12&(t) describes the self-similar
structure.

It is through ~/2D&(r) = £(t/2D) and ¢’ = /2D that the
factor +/2D can be absorbed in the time scale. Let £(¢') have
a standard deviation o = 1 when time steps of unit length
are taken. In that case a discretization of Eq. (1) with time
intervals of At’ requires at each time step a contribution
E(t)) =0 /«/A_t’, where m enumerates the time steps and
0,, represents a number drawn from a zero-average Gaussian
distribution with a standard deviation of 1. This also leads
to (£2(¢/)) = 1/At’. Through Ax/At' =6,/ At’ we next
retrieve the well-known diffusion result (Ax2) = 2D At that
holds for constant V(x) in Eq. (1) and that is valid for all Ar.

The “Gaussian” part of the equilibrium noise refers to the
distribution p(£) of the kick sizes. In liquid water at room
temperature a water molecule undergoes about 10'? collisions
per second with other water molecules. The central limit
theorem tells us that the camulative effect of multiple stochastic
inputs converges to a Gaussian distribution [2]. An important
condition here is that all these “stochastic inputs” have a
finite variance. If that condition is satisfied, the Gaussian is
the “attractor.” When combining probability distributions to
obtain a cumulative effect, the convergence to a Gaussian is
generally rapid. In the aforementioned liquid-water environ-
ment this means that at any time scale that is about an order of
magnitude larger than 107'2 s (the time between subsequent
collisions) a Gaussian distribution is a good approximation for
the total distance covered by a particle due to collisions with
surrounding water molecules. A Gaussian distribution, p(§) «
exp[—&‘2 / 20?], where o represents the standard deviation, has
a tail that converges rapidly and makes all moments converge.

The stochastic ordinary differential equation, Eq. (1), can
be written as an equivalent nonstochastic partial differential
equation for the time evolution of the probability distribution,
P(x,t), of the Brownian particle in the potential

0, P(x,t) = yo,{[0, V(x)]P(x,t)} + DEfP(x,t). 2)

Here the subscripts denote the taking of a partial derivative
with respect to that variable. From Eq. (2) and the FDT
(D = kpTy) it is straightforward to derive that the stationary
distribution (9; P = 0) is a Boltzmann distribution, i.e., P(x)
exp[—V (x)/kpT] [1].

Consider particles near a minimum in the potential drawn in
Fig. 1. The low noise limit means that the difference between
the barrier height E,x and the minimum E,;, is sufficiently
large for noise-activated escape from a well to be rare. For that
case it is straightforward to derive that the particles’ escape

rate over the barrier follows k o< exp[—(Emax — Emin)], Where
Enox and Epy, are expressed in units of kg7 [1,11].

III. NONEQUILIBRIUM NOISE AND ITS
NUMERICAL ISSUES

As was mentioned in the Introduction, a system that is
far from equilibrium commonly exhibits noise with more
“extreme events.” In the same way that the Gaussian distri-
bution is the attractor for distributions with a finite variance,
the so-called alpha-stable or Lévy distribution is the attractor
for distributions with a diverging variance, i.e., (£2(t)) — oo
[12,13]. For that reason, Lévy noises arise naturally in the
description of random processes with large outliers

There is an analytic expression for the “kicksize” distribu-
tion py (§) of symmetric Lévy noise [14]. However, this expres-
sion is complicated and involves generalized hypergeometric
functions. Working with the more concise expression for the as-
sociated characteristic function [ p, (k) = f po(&) explik&]dE]
is generally more effective. For the characteristic function of
the symmetric, zero-average Lévy distribution we have

Pa(k) = exp[—o*|k|*]. 3)

Here o is a scale parameter that gives the intensity of the
noise. The parameter o (0 < o < 2) is the stability index.
For o = 2 the case of finite variance and ensuing Gaussian
distribution is retrieved. The parameter o represents in that
case the standard deviation divided by +/2. For o =1 the
aforementioned Cauchy noise is obtained.

With Gaussian noise, tails are rapidly decaying and follow
pa2(£) o exp[—£2/402]. But for @ < 2 we have a probability
density distribution with a “fat” power-law tail, p,(£§)
|€|~0+%) Note that such a fat tail leads to a diverging variance
for the distribution.

The divergence of (£2(t)) complicates the mathematical
analysis. There is, for instance, no longer an FDT. However,
as we will see, there are features that are more easily evaluated
with distributions that have power-law tails.

Consider activated escape over the barrier depicted in Fig. 1.
We take a barrier that is, compared to the noise amplitude,
sufficiently high for barrier crossings to be rare events. Both
for Gaussian and for Lévy noise, the low-noise limit means
that barrier crossings involve “unlikely” kicks from the tail of
the distribution. The most probable escape path (MPEP) is the
most likely sequence among the unlikely sequences that lead
to barrier crossing.

For a system at equilibrium, microscopic reversibility must
hold. Microscopic reversibility [ 15] means that every trajectory
on the potential is traversed just as often as its time reverse. So
if a movie were made of a Brownian particle on the potential,
there would be no way to determine whether such a movie is
played forward or backward. This implies that, at equilibrium,
the MPEP for a particle in the potential in Fig. 1 must be the
reverse of the most probable way to slide down from the top
of the barrier. Both the Gaussian white noise and the Lévy
white noise that we consider in this article have a distribution
with a central maximum at £ =0, i.e., £ =0 is the most
likely kick size. This means that the most likely downslide
from the barrier, even in the noisy environment, is actually the
deterministic one described by x = —dV (x)/dx. For a system
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at equilibrium this implies that the most likely trajectory up
the barrier is the time reverse of the noiseless “slide” down
the barrier. In an elegant paper, Onsager and Machlup proved
rigorously that this feature of microscopic reversibility also
follows from the statistical properties of Gaussian noise [16].

That the most likely stochastically driven upslide is the
reverse of the deterministic downslide adds the downslide
time 7 as a characteristic time to a barrier [17,18]. The other
characteristic time is, of course, the average time spent in a well
before an escape over the barrier occurs. In a Euler-scheme
simulation of a particle in an equilibrium environment on the
potential in Fig. 1, we discretize the trajectory, i.e., x(f,+1) =
x(tw) + Ax,,, and, after scaling away parameters, we compute
increments Ax using

Axy = {=V'[x(tw)] + E(ta)} At “4)

For a simulation to be accurate, we need to take At < 7, i.e.,
take time steps that are much smaller than this characteristic
time 7. This means that the MPEP will involve a sequence of
steps; subsequent kicks will “conspire” to bring the particle
over the barrier. The idea of the Euler scheme is that these
subsequent kicks are small straight segments (Az,Ax). For
the Euler scheme to be accurate, the covered Ax;’s should be
sufficiently small that no appreciable change of V'(x) occurs
along one segment.

All in all, when the noise is Gaussian, the movement of
a noisy particle on a potential can be adequately described
with a traditional Euler scheme. Any desired accuracy can be
obtained by taking sufficiently small time intervals and taking
sufficiently many digits in the involved numbers.

When the noise is Lévy, the situation is fundamentally
different. With Lévy noise we are no longer in equilibrium
and there is no microscopic reversibility [19]. It has been
rigorously shown that, in the case of Lévy noise, the MPEP
over a barrier derives from just one kick [19,20]. No longer is
there a characteristic time associated with the MPEP.

In terms of Fig. 1 and a simulation this means that the
indicated particle at the bottom of the well will do the entire
escape trajectory over the well in one time step At. Of course,
the idea that the force due to the potential is constant during
this time step is then no longer valid; the force at the indicated
initial position is in the positive direction and the entire concept
of mounting a barrier no longer applies. The curvature of the
potential in the course of a time step is no longer negligible.

This problem cannot be overcome by taking smaller
time steps. With a smaller value of At, the probability of
escape at a particular time step will be smaller. However, there
are correspondingly more time steps in a unit of time and the
transition rate across the barrier (the probability of escape per
unit of time) will stay the same.

In our approach we overcome the curvature problem by
taking a piecewise linear potential as in Fig. 2. When the corner
at the top of the barrier is crossed in the course of a time step,
then the deterministic force changes abruptly in the middle of
a step. Potentials with corners can often give rise to behavior
that is qualitatively different from that on smooth potentials.
However, noise tends to “smooth out” corners and when noise
is present, piecewise linear potentials no longer exhibit unique
features.

With the piecewise linear potential we are no longer
approximating a curved potential with linear segments. This

FIG. 2. The piecewise-linear, double-well potential that we use as
the basis for our analysis. The energy levels of the left well, the barrier,
and the right well are E, E;,, and E,, respectively. The widths of well
1 and well 2 are §; and 8,, respectively. F and F; are the deterministic
forces driving a particle toward the bottom. The transition rates are
k 12 and k21 .

eliminates a source of inaccuracy. However, it should be
realized that with the way we handle the corner, there still
is inaccuracy. We take £(t)At as the displacement due to a
kick, but in actuality &(¢) is a fractal and has structure on all
scales. Therefore £(z)At is the result of a “hairy trajectory.”
Neglecting this “hairiness” and treating the corner the way we
do, we are effectively taking a mean-field approach for the
barrier crossing.

Consistent with the overdamped assumption, we let the
particle come to an immediate standstill when it hits one of
the vertical barriers on the left or right edge of the potential.
There is no “bouncing.” Once the particle is at the position of
the vertical barrier, only a kick in the opposite direction, away
from the barrier, can possibly move it.

IV. RATES AND DISTRIBUTIONS FOR THE DOUBLE
WELL WITH LEVY NOISE

With the barrier sufficiently high, a particle in the potential
depicted in Fig. 2 will spend most of its time near or at the
bottom of a well. Suppose the minimal required kick size to get
from the bottom of a well to across the barrier is &, where &, >
0. With pg(€) oc £+ for the right tail of the probability
distribution, we have for the probability of a kick larger than

&o,

o]

P > &) = / Pa(E)dE o £, 5)

o

The starting point for the analysis in this section is the
potential sketched in Fig. 2. The level of the barrier in Fig. 2 is
E},. The minimum on the left corresponds to an energy E; and
the minimum on the right corresponds to an energy E,. The
transition rate from the E; well to the E, well is kj, and the
transition rate from the E, well to the E| well is k;;. At steady
state we have for the ratio of the times P, and P, spent in the
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first and second well
Pk
P ky

With a large population of particles in the double well, the ratio
P>/ P, tells us how, in steady state, the particles are distributed
over the two wells.
For the potential in Fig. 2 we have
dv E, — E;
Wl _p=-2"% ™
dx 8,‘
where i = 1,2. We take 8 = 1/y as the coefficient of friction
that is associated with the overdamped motion in the potential.
We then derive from Eq. (1) that for a kick &; to lead to a
barrier crossing i — j it is required that
; B  Ep—E;
-1 i+1 ; > | £ L 8
B( )éo,N[AtJr 5, 3
The probability of occurrence of such a kick [cf. Eq. (5)] is
proportional to the transition rate out of well i. We thus have

(6)

o o [B5 -
ij X |:A_t+(Eb_Ei):| . &)
Here the first term on the right-hand side of Eq. (9) represents
the amount of energy that is necessary to overcome friction.
The second term on the right-hand side is the energy that is
necessary to bring the particle from the bottom to the top of
the barrier in Fig. 2.

A chemical reaction is commonly depicted with the aid of
a potential as in Fig. 1 [21]. The minima then correspond to
identifiable chemical states like the “chair” and “boat” states of
cyclohexane or the “open and “closed” states of an ion channel.
The maxima then correspond to the activation barriers that
separate these states and the variable x is called a “reaction
coordinate.” For an individual molecule in a thermal bath, the
reaction kinetics is next viewed as the overdamped Brownian
motion of a particle along the x axis.

However, the reaction coordinate, as in Figs. 1 and 2,
is an abstraction. The position of a point along a reac-
tion coordinate is a measure for how far a chemical tran-
sition has advanced. Only in a very few cases can this
position be related to something concrete. In a later section
we will use recently obtained data on DNA folding and see
a case where we can quantitatively assess both terms on the
right-hand side of Eq. (9). The folding of DNA, RNA, and
proteins offers one of the few instances where the progress of
a transition can be expressed in terms of nanometers.

Another issue concerns the At in Eq. (9). Also for Lévy
noise the function £(¢) is a fractal, i.e., a mathematical object
with structure on all scales. When modeling systems with
noise, we generally take At smaller than any characteristic
time of the system. For an overdamped particle subjected to
Gaussian white noise in a potential as in Fig. 1, this means that
we have to take a At that is significantly smaller than the time to
complete the MPEP. If the noise is Lévy, however, the time Az
is also the characteristic time for the MPEP. In that case the
physics that underlies the noise needs to be invoked to set the
limiton At. As was mentioned before, in an aqueous medium at
room temperature a water molecule’s time between successive
collisions is of picosecond order of magnitude. A simulation

with a At that is smaller than a picosecond is therefore no
longer realistic.

V. EPICATALYSIS

A catalyst is a substance that lowers the activation barrier
(Ep in Fig. 2) while leaving unchanged the energy levels of the
states on either side of the barrier (E; and E; in Fig. 2) [21]. It
thereby speeds up the relaxation to a Boltzmann equilibrium
between the two states in a double-well potential. The catalyst
has no interaction with the states to the left and right of the
maximum that it lowers. Without the presence of catalyzing
enzymes most biochemical processes have activation barriers
that are too high for the process to occur within the necessary
time span. A catalyst is only involved in the conversion from
reactant into product. It operates as a “transfer station” that
itself remains unaltered by the process. Generally, very little
catalyst is required to significantly speed up a reaction.

Epicatalysis is a form of catalysis in which the catalyst
changes the steady-state distribution between the reactant state
and the product state [22,23]. For a Boltzmann equilibrium
the steady-state distribution can only be modified by changing
the energy difference between reactant state and product state.
By merely changing the height of an activation barrier, a
catalyst cannot affect the Boltzmann equilibrium. Figure 3 is
in the spirit of Maxwell’s Demon [24] and shows once more
how epicatalysis is impossible in a closed system that is only
allowed to equilibrate: if epicatalysis were real, it would imply
the possibility of violating the first law of thermodynamics.
Such violation would permit the construction of a perpetuum
mobile. In an equilibrium environment the presence of a
catalyst cannot change the steady-state distribution.

KlZ

—

Al (—kTAZ

T~

Catalyst
Surface

[Al]eq,open

[Al]eq,close

FIG. 3. A setup to illustrate that epicatalysis in a closed environ-
ment is absurd as it leads to the possibility of a perpetuum mobile. A
simple monomolecular reaction, A; = Aj, is taking place in a sealed
container. A weightless and frictionless trapdoor is repeatedly opened
and closed by a demon. When the trapdoor is open, the reactants and
products in the container are exposed to a catalyst. If the catalyst
changes the Boltzmann distribution, then the system moves to a
new equilibrium after every opening or closing of the trapdoor. As
energy can be extracted from such equilibration, the setup is obviously
nonsensical.
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Below we will show how epicatalysis is possible if the
Brownian kicks that are driving the barrier crossings are drawn
from a Lévy distribution. Lévy noise occurs when a system
is open and kept out of equilibrium. A system can be in an
out-of-equilibrium steady state when energy comes into the
container in one form and is converted and/or transferred before
it leaves the container at the same rate [25]. Inside the container,
energy is then dissipated and entropy is produced. If such
nonequilibrium is maintained in the container of Fig. 3, the
activity of the demon simply redirects some of the energy flow;
no violation of the first law occurs in that case.

From Egs. (6) and (9) we have

552 o

P,k B (B, - E

P2=k120(|:;;2 (Ep 2):| ‘ (10)
! 21 A T (Ep — Ey)

If we neglect the friction terms, the E;, dependence becomes

more salient:
P, E, — Ex\*
2o/ 2) (11)
P, E, — E|

In Egs. (10) and (11) a “proportional to” symbol is used. The
prefactor that would be there in the case of an “=" sign is a
function of the ratio of the widths of the wells. It is remarkable
that the E; features in these equations. With Gaussian white
noise we have for the transition rates ki, o exp[—(Ep — E1)]
and kp; o< exp[—(Ep, — E»)]. For the steady-state distribution,
P>/ Py = k12/ky;, we then find that the E, cancels out:
P,/ P; « exp[—(E, — E})]. The E;, does not cancel out when
the transition rates follow power laws as in Eq. (9). The E,
dependence of the steady-state distribution P,/P; is what
makes it possible for the demon in Fig. 3 to extract energy
if the fluid in the beaker is kept out of equilibrium.

For large Ej, the ratio on the right-hand side in Eqgs. (10)
and (11) approaches unity. The presence of a catalyst lowers
the activation energy E;, and thus drives the system away from
the unity ratio. A lower E,, leads to a larger fraction of the
total population going into the lower well. The effect is most
prominent in Eq. (11). The friction terms in Eq. (10) mitigate
the effect, but do not eliminate it.

As was mentioned before, the Lévy noise that is required
for epicatalysis is generally found in systems that are far
from equilibrium. Lévy noise is, for instance, used in models
for the time evolution of the Earth’s climate [26]. Such
an approach is sensible as the Earth’s surface facilitates a
continuous conversion of energy: it receives sunlight that is
mostly in the visible part of the spectrum and emits energy
at the same rate in the form of mostly infrared light. As
already mentioned, the first time that Lévy noise was shown
in empirical data occurred in the 1960s in the context of the
study of cotton-future prices [4]. Of course, any economic
activity is far from equilibrium as goods and services flow
in one direction and money flows in the opposite direction.
Life itself is a far-from-equilibrium phenomenon and it is
therefore not surprising that Lévy statistics has been found
in the time intervals between subsequent heartbeats [5] and in
other physiological processes [27].

Only recently has it become possible to experimentally
follow mechanical noise in a living cell on the molecular scale
[28,29]. It has been found that cytoplasmic mechanical activity

is far from equilibrium and that the total noise intensity far
exceeds the basic thermal kg7 level. With small probes it
has furthermore been found that the large fluctuations that are
typical for Lévy statistics occur in both cytoskeletal networks
and in surrounding cytoplasmic fluid [30,31]. The picture that
emerges from these latter results is one where the living cell is a
setting with Boltzmann stationarity and added pulses that bring
about the fat power-law tails and the Lévy behavior. The living
cell constitutes a setting in which the epicatalysis described in
this section may be ubiquitous.

Consider again a double-well potential as in Figs. 1 and 2.
In an equilibrium environment, with or without a catalyst, rates
follow an Arrhenius relation, i.e., k x exp[-AE/kpgT] [21].
Furthermore, the ratio of the forward and backward transition
rates has a simple exponential, Boltzmann dependence on the
inverse temperature and on the energy difference between the
minima. If the aforementioned added Lévy pulses are present
and responsible for a significant fraction of the transitions,
then the Arrhenius plot, logk vs 1/T, is no longer a simple
straight line. The transition-rate ratio, moreover, will then be
more complicated than the Boltzmann exponential and carry a
dependence on Ej.

The rates of nuclear fusion reactions in a plasma environ-
ment have commonly been estimated assuming a Maxwell-
Boltzmann velocity distribution in the plasma. In such a setting
a reaction will occur if reactants collide with sufficient energy
to overcome a Coulomb barrier, i.e., in the case of an extreme
event from the tail of the distribution. These plasmas, however,
are out of equilibrium because of the very processes that
bring about the high temperature in the first place. It is by
now well established that fluctuations in plasmas follow Lévy
statistics [32,33]. With this idea Ebeling and Romanovsky
could quantitatively account [34] for the free neutron output
in a fusion experiment with a deuteron plasma [35]. In that
experiment the neutron output turned out about ten times as
high as predicted by the assumption of a plasma at a Boltzmann
equilibrium.

Catalysis is common in nuclear reactions. The CNO
(carbon-nitrogen-oxygen) cycle is a catalyzed form of hydro-
gen fusion that is prominent in heavy stars [36]. In muon-
catalyzed fusion the hydrogen molecules are made smaller
through the replacement of an electron by a muon. The ensuing
closer proximity of the nuclei allows for thermonuclear fusion
with significantly lower activation barriers [37,38].

Fat tails and catalysis are prevalent in nuclear reactions. The
discussed epicatalysis could thus be significant for understand-
ing and controlling the steady-state operation of contained,
self-sustaining, nuclear chain reactions.

VI. APPLICATION TO DNA FOLDING

For DNA strands the energy difference between the folded
state and the unfolded state is such that the strand is effectively
stuck in the folded state. In 2012 researchers connected the
two ends of a DNA strand to silica beads [39]. Next they
used optical traps to apply a force toward extension of the
strand. With the added bias due to that force, the folded state
and the unfolded state were of comparable energy. Tracking
the distance between the beads, the researchers could next
follow the fluctuations between the folded and unfolded state.
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Free energy

—
10 nm

Extension

FIG. 4. From Ref. [39]. The reaction coordinate for one of the
studied DNA strands. The wells correspond to the folded and unfolded
states.

The distance between the beads sets up a reaction coordinate.
Assuming that the observed distribution of distances is a
Boltzmann distribution on a potential, a profile along the
reaction coordinate can be constructed (Fig. 4).

The gathered data in Ref. [39] allow for the determination
of the diffusion coefficient D and of the time 7 that it takes
to transition from one state to the other. For D a value of
around 102 m?/s is found. With the FDT (8 = k3T /D),
we can use D to estimate the coefficient of friction 8. For
the transition time v (which is the time to complete a MPEP)
values of around 10 us are found. If we view an in vivo
system as one where there is external “Lévy forcing” in an
environment with a thermal bath and an FDT, then we can take
At =~ t as an upper limit for the increments associated with
the Lévy noise. These estimates, together with estimates for
the energies and distances derived from Fig. 4, can next be
substituted in Eq. (9). It is then found that the friction term and
the potential energy term are of similar magnitude. This means
that in the presence of Lévy noise, the steady-state distribution
should discernibly depend on the barrier height [cf. Eq. (10)].
Epicatalysis could thus be a noticeable effect in folding. In vivo
the folding of DNA, RNA, and protein is commonly catalyzed.
A catalyst bringing down the energy barrier would further bias
the steady-state distribution to the one with the lower energy. In

the context of Fig. 4 this means that bringing down the barrier
shifts the population balance toward the lower well on the right.

VII. DISCUSSION

Lévy noise has been identified in many out-of-equilibrium
systems. There is no simple general theory to explain why
Lévy noise emerges in an out-of-equilibrium system. But a
good understanding can be developed of how the presence of
Lévy noise leads to many standard equilibrium characteristics
no longer being valid [19]. In this article it has been shown
how stationary distributions over states are different from the
traditional Boltzmann distribution if the noise in a system is
Lévy distributed. One of most salient consequences is that, in
a nonequilibrium environment, a catalyst can change a steady-
state distribution by changing the height of an activation barrier
of a reaction.

The mechanism described above could be relevant for our
understanding of a living cell. A network of chemical reactions
may proceed differently in an in vitro equilibrium environment
as compared to how it proceeds in the far-from-equilibrium
living cell. In Ref. [40] a numerical study was performed
that showed how the mechanics of a processive motor protein
gets more complicated if the noise from the bath is Lévy
distributed. Above, a more basic and general mechanism has
been described analytically.

Many ailments are associated with the misfolding of pro-
teins. Chaperones assist in the correct folding of proteins and
part of their operation is the catalysis of steps leading to the
correct folding. Alzheimer’s, Parkinson’s, and cystic fibrosis
are examples of diseases that can occur when protein folding or
unfolding is not properly chaperoned. The epicatalysis mech-
anism could be important for a better understanding of such
disorders. Prions are misfolded proteins that catalyze identical
misfolding of proteins with the same primary structure [41].
Prions are the infectious agents of well-known ailments such
as mad cow disease, Creutzfeld-Jacob disease, and kuru. In a
nonequilibrium environment a stronger autocatalytic, positive-
feedback cycle for the production of prions could actually
occur through the effect described in this article.

The catalytic networks involving DNA, RNA, and proteins
are often quite complicated. The insights we have developed
above add a hitherto unrecognized effect and an extra compli-
cation. However, this new understanding may also help in the
design of new ways of therapeutic intervention.
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