MIXED METHODS RESEARCH

Hui Bian
Office for Faculty Excellence
MIXED METHODS RESEARCH

• My contact information
 • Office: 1001 Joyner library (room 1006)
 • bianh@ecu.edu
 • Phone: 252-328-5428
 • Website: https://myweb.ecu.edu/bianh/
MIXED METHODS RESEARCH

Reference
MIXED METHODS RESEARCH

• Definition
• “as a method, it focuses on collecting, analyzing, and mixing both quantitative and qualitative data in a single study or series of studies. Its central premise is that the use of quantitative and qualitative approaches, in combination, provides a better understanding of research problems than either approach alone.”
MIXED METHODS RESEARCH

• Characteristics of mixed methods research
 • Collect and analyze both quantitative and qualitative data.
 • Mix two forms of data in different ways.
 • Give priority to one or both forms of data.
 • Can be in a single study or in multiple phases of a study.
MIXED METHODS RESEARCH

- Strength and weakness of quantitative and qualitative methods.

<table>
<thead>
<tr>
<th>Strength and weakness</th>
<th>Quantitative</th>
<th>Qualitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large sample</td>
<td>Small sample</td>
<td></td>
</tr>
<tr>
<td>details, in depth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MIXED METHODS RESEARCH

• Why use mixed methods
 • One data resource may not be enough;
 • Initial results need to be further explained;
 • A second method is needed to enhance a primary method;
 • The project has multi-phases.
MIXED METHODS RESEARCH

• How to choose an appropriate mixed methods design?
 • Level of interaction between two strands: independent or interactive.
 • Relative priority: equal/unequal priority
 • Timing: concurrent, sequential, or combination of those two
 • Where or how to mix the strands: point of interface and mixing strategies
MIXED METHODS RESEARCH

• **Point of interface**: is a point where the two strands are **mixed**: possible point of interfaces
 - **Data collection**: quan or qual results build to the subsequent collection of qual or quan data.
 - **Data analysis**: transform one type of data into other type of data and analyze combined data.
 - **Interpretation**: comparing or combining results from both methods.
MIXED METHODS RESEARCH

- Six major designs
 - Convergent parallel design
 - Explanatory sequential design
 - Exploratory sequential design
 - Embedded design
 - Transformative design
 - Multiphase design

Basic designs
MIXED METHODS RESEARCH

• Qualitative approaches
 • Narrative research
 • Phenomenological research
 • Grounded theory research
 • Ethnographic research
 • Case study research
MIXED METHODS RESEARCH

• Major designs
 • (1). Convergent parallel design: purpose of this design
 • to best understand or develop more complete understanding of the research problem by obtaining different but complementary data.
 • Validation purpose
MIXED METHODS RESEARCH

• Convergent parallel design (diagram)

- Quantitative data collection and analysis
- Qualitative data collection and analysis

 Compare or relate

 Interpretation

 Point of interface
CONVERGENT PARALLEL DESIGN

• Three published papers
CONVERGENT PARALLEL DESIGN

• Three published papers
 http://www.springerlink.com/content/g66m160n75444mx7/fulltext.pdf
CONVERGENT PARALLEL DESIGN

• Three published papers

CONVERGENT PARALLEL DESIGN

• Key points
 • Collect and analyze two independent strands of quantitative and qualitative data at roughly the same time/ in a single phase.
 • Prioritize the methods equally.
 • Keep the data analysis independent.
 • Mix the results during the overall interpretation.
 • Try to look for convergence, divergence, contradictions, or relationships of two sources of data.
CONVERGENT PARALLEL DESIGN

- Procedure (Flowchart)
 - Collect both types of data **concurrently**
 - Analyze two data sets **separately**
 - Merge the results
 - Interpret combined results
MIXED METHODS RESEARCH

• Convergent parallel design: flowchart
CONVERGENT PARALLEL DESIGN

• Design
 • Research questions: create parallel questions for the qual and quan studies.
 • Parallel questions mean the same concepts need to be addressed in both data collections.
CONVERGENT PARALLEL DESIGN

• Samples: different or same group of people in quantitative and qualitative studies?
 • Can be same group of people
 • Or different group of people
CONVERGENT PARALLEL DESIGN

• Design
 • Samples:
 • If the purpose is to combine information on a topic from different views, use different group of participants.
 • If the purpose is to compare, corroborate, or relate two sets of findings, use same group of participants.
CONVERGENT PARALLEL DESIGN

• Design
 • Sample sizes: equal or unequal
 • Equal sample size
 • Large equal sample size may sacrifice some of richness of the qualitative data.
 • Small equal sample size may sacrifice the use of rigorous statistical tests.
CONVERGENT PARALLEL DESIGN

• Design
 • Data will be collected from one source or different sources: survey/interview or only use survey.
 • Order of two types of data collections: survey first then focus group or one-on-one interview.
CONVERGENT PARALLEL DESIGN

• Merged data analysis strategies
 • Side-by-side comparison (in a results or discussion section or a summary table).
 • Present quantitative or qualitative results
 • Followed by qualitative or quantitative results
 • Followed by comments describe how qual/quan confirm or disconfirm quan/qual results.
CONVERGENT PARALLEL DESIGN

• Side by side comparison
CONVERGENT PARALLEL DESIGN

• Another side by side comparison strategy: use a summary table that merges the findings from both components.
CONVERGENT PARALLEL DESIGN

Side-by-side comparison

Comparison of Information from Interview and Survey Data: Examples of Four of the Eight Themes

<table>
<thead>
<tr>
<th>Theme</th>
<th>Face-to-face Interviews</th>
<th>Telephone Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How and why child was placed in program</td>
<td>Two aspects of decision: (1) Community-based “inclusive” option (2) Specific child care center</td>
<td>Parents’ most important reasons for using program: • Offers special education services or therapies • Provides opportunities for child to learn • Provides opportunities to play with other children</td>
</tr>
<tr>
<td>Factors affecting choice: • Visited and liked classroom & teacher • Convenience of location • Flexibility in hours • Good reputation of center • Concern if center would accept child because of behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Program’s appropriateness for child</td>
<td>In successful placement, there is a “match or fit” between child’s and family’s needs & program. Factors affecting match or fit: • Acceptance by staff & children • Likes activities and routines for child • Child likes program • Saves benefits or specific improvements</td>
<td>99% said very important for child to be in inclusive program 89% indicated child usually or always receives special services needed 88% were satisfied with way in which child’s educational goals were made</td>
</tr>
<tr>
<td>Major Topic</td>
<td>Characteristics of helpful players: • Consistent presence over time & settings • Personal investment in child • Provides different types of support • Dependable source of information about child</td>
<td>The most helpful supports were: • Other family members at home • Child’s teachers • Other professionals in community and at child’s program</td>
</tr>
<tr>
<td></td>
<td>Characteristics of unhelpful players: • Minimize or disregard family concerns • Inadequate communication</td>
<td></td>
</tr>
<tr>
<td>3. Helpful and unhelpful players</td>
<td>Factors that affect participation: • Parent’s safety concerns about child • Parent’s perception of what is expected of child’s behavior • Lack of other young children in immediate neighborhood • Family’s own style, schedule, and how it participates in the community</td>
<td>Limitations on participation: • Child’s language skills • Family’s schedule and time constraints • Attitudes of others toward child’s disability • Child’s behavior • Lack of other children to play with in neighborhood</td>
</tr>
<tr>
<td>An extended family system was so strong a part of family’s culture that family did not need or choose to participate much in the community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young age of children</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONVERGENT PARALLEL DESIGN

• Merged data analysis strategies
 • Joint display: using a table or figure to show both quan and qual results.
CONVERGENT PARALLEL DESIGN

Joint display

<table>
<thead>
<tr>
<th>Input (n = 8)</th>
<th>Relator (n = 6)</th>
<th>Achiever (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Three Strengths from the Gallup StrengthsFinder</td>
<td>Relationship-Building Strategies</td>
<td>Qualitative Themes</td>
</tr>
<tr>
<td>Chilling out. Talked a little bit.</td>
<td>"How is your week going?" conversations. Hot-button conversations.</td>
<td>55 We saw an increase in comfort. Conversations got noticeably easier.</td>
</tr>
<tr>
<td>Relationship Awareness</td>
<td>Strengths Terminology</td>
<td>Outcomes</td>
</tr>
<tr>
<td>24</td>
<td>15 Talked about results, talked about the awkwardness of strengths terminology.</td>
<td>13 A special relationship developed between us. We went through an early period of discomfort. Early conversations were superficial.</td>
</tr>
<tr>
<td>32</td>
<td>14 Talked about strengths in a casual manner. Discussed being positive, in a good mood.</td>
<td></td>
</tr>
<tr>
<td>22 Talked about our lives. Trusted me with personal information.</td>
<td>9 It was cool to hear about other people’s strengths. I notice my strengths in everyday life. Watching a movie helped us to reflect on strengths.</td>
<td>3 The early project jitters are going away. We're not hanging out because we have to. We learned new things about ourselves.</td>
</tr>
</tbody>
</table>

Dimension: QUAL themes

Dimension: QUAN categories
CONVERGENT PARALLEL DESIGN

- Merged data analysis strategies
 - Data transformation merged analysis: transform one type of data (qual) into the other type of data (quan).
 - Create a new variable based on presence of a theme
 - Create a new variable based on number of times a theme appears.
CONVERGENT PARALLEL DESIGN

• Interpreting merged results
 • Look for similarity and convergence
 • How to handle discrepancy?
 • State the limitations of the study
 • Revisit two types of data
 • Could collect additional data
CONVERGENT PARALLEL DESIGN

• Challenges
 • Needs both quantitative and qualitative expertise
 • Consequences of having different samples and different sample size when merging two data sets.
 • How to merge two types of data.
 • How to deal with the situation in which quantitative and qualitative results contradict each other.
MIXED METHODS RESEARCH

• Convergent parallel design variants
 • Parallel-databases variants: two sets of results merge during interpretation, how results from both components show a complete picture of study interest.
• Data-transformation variant
• Data-validation variant: such as open-ended questions on a questionnaire is used to validate or confirm the results from close-ended questions.
MIXED METHODS RESEARCH

- Major designs
 - (2). Explanatory sequential design: purpose of this design is to use qualitative approach to explain quantitative results (significant, non-significant, outliers or surprising results) or to guide to form groups based on quantitative results
MIXED METHODS RESEARCH

• Explanatory sequential design (diagram)

Quantitative data collection and analysis → Follow up with → Qualitative data collection and analysis → Interpretation

Point of interface
EXPLANATORY SEQUENTIAL DESIGN

- Published paper

http://www.jstor.org/stable/25704494
EXPLANATORY SEQUENTIAL DESIGN

- Published paper

http://www.springerlink.com/content/l367l0l77r213712/fulltext.pdf
EXPLANATORY SEQUENTIAL DESIGN

• Mixed methods question
 “In what ways do the qualitative data help explain the quantitative results?”
EXPLANATORY SEQUENTIAL DESIGN

• Key points
 • Typically, it is a two-phase design.
 • Collect quantitative and qualitative data at different time.
 • Qualitative study depends on quantitative results.
 • Usually quantitative data collection is the priority.
EXPLANATORY SEQUENTIAL DESIGN

• Procedure
 • First, collect and analyze quantitative data.
 • Identify specific quantitative results that need additional explanation.
 • Design qualitative study based on what learn from quantitative results.
EXPLANATORY SEQUENTIAL DESIGN

• Procedure
 • Collect and analyze qualitative data.
 • Interpret combined results.
MIXED METHODS RESEARCH

• Explanatory sequential design: procedure

Figure 3.4 Flowchart of the Basic Procedures in Implementing an Explanatory Design

Design and Implement the Quantitative Strand:
- State qualitative research questions and determine the quantitative approach.
- Obtain permissions.
- Purposely select a qualitative sample.
- Collect open-ended data with instruments.
- Analyze the quantitative data using descriptive statistics, inferential statistics, and effect sizes to answer the quantitative research questions and facilitate the selection of participants for the second phase.

Use Strategies to Follow From the Quantitative Results:
- Determine which results will be explained, such as significant results, outliers, or group differences.
- Use these quantitative results to refine the qualitative and mixed methods questions.
- Determine which participants will be selected for the qualitative sample, and design qualitative data collection protocols.

Design and Implement the Qualitative Strand:
- State qualitative research questions that follow from the quantitative results and determine the qualitative approach.
- Obtain permissions.
- Purposely select a qualitative sample that can help explain the quantitative results.
- Collect open-ended data with protocols informed by the quantitative results.
- Analyze and interpret qualitative data using procedures of theme development and those specific to the qualitative approach to answer the qualitative and mixed methods research questions.

Interpret the Connected Results:
- Summarize and interpret the quantitative results.
- Summarize and interpret the qualitative results.
- Discuss to what extent and in what ways the qualitative results help to explain the quantitative results.
EXPLANATORY SEQUENTIAL DESIGN

• Design
 • Samples: different or same group of people in both studies?
 • The participants in the qualitative study should be those who participated in the quantitative study.
 • Sample sizes: equal or unequal
 • Qualitative study uses smaller sample.
EXPLANATORY SEQUENTIAL DESIGN

• Design
 • Decide what quantitative results to follow up.
 • Unclear
 • Unexpected
 • Significant/non-significant results
 • Outliers or extreme cases
EXPLANATORY SEQUENTIAL DESIGN

• Design
 • How to select participants for qualitative study
 • Individuals who volunteer to participate in interviews (weaker connection between two phases).
 • Systematic approach: based on quantitative results and select participants best able to fit in qualitative study (IRB issue).
EXPLANATORY SEQUENTIAL DESIGN

• Design
 • IRB issues: suggestions
 • Separate IRB for each phase.
 • One IRB, state the follow up phase as tentative.
 • From the start, inform participants the possibility of second data collection.
EXPLANATORY SEQUENTIAL DESIGN

• Select qualitative sample
 • Participants who are representative of different groups.
 • Participants with extreme scores.
 • Participants differed in their scores on significant predictors.
EXPLANATORY SEQUENTIAL DESIGN

• Interpreting connected results
 • Conclusion is about whether the follow up qualitative data provide a better understanding of the research problem than simply the quantitative results.
EXPLANATORY SEQUENTIAL DESIGN

• Explanatory sequential design variants
 • Follow-up explanation variant
 • Participation-selection variant: it needs quantitative results to help select best participants. It places priority on the second, qualitative phase.
EXPLANATORY SEQUENTIAL DESIGN

• Challenges
 • Time consuming
 • IRB issue
 • Decisions about which quantitative results need further explanation.
 • Decisions about who to sample and what criteria used for sample selection for qualitative study.
MIXED METHODS RESEARCH

• Major designs
 • (3). Exploratory sequential design: also referred to as instrument development design. The purpose of this design is to generalize qualitative findings to a larger sample.
EXPLORATORY SEQUENTIAL DESIGN

Reference for instrument design

EXPLORATORY SEQUENTIAL DESIGN

• Published paper
 http://ehis.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=3&hid=2&sid=2339ee9b-08f8-45b1-babf-b7e2c0d193ef%40sessionmgr12
EXPLORATORY SEQUENTIAL DESIGN

- Design diagram

Qualitative data collection and analysis → Builds to → Qualitative data collection and analysis

Point of interface

→ Interpretation
EXPLORATORY SEQUENTIAL DESIGN

• Purpose of this design:
 • The qualitative phase is used to help develop or inform the quantitative study.
 • Instrument design (explore)
 • Grounded theory (generalize qualitative results)
EXPLORATORY SEQUENTIAL DESIGN

• Reasons for using this design
 • Instruments are not available
 • The variables are not known
 • There is no theory or model as a guide
EXPLORATORY SEQUENTIAL DESIGN

• Key points
 • Typically, it is a two-phase design.
 • Three phases for instrument development (instrument development phase, a phase testing, and apply the instrument).
 • Collect quantitative and qualitative data at different time.
 • Qualitative results can help and inform the second quantitative method.
EXPLORATORY SEQUENTIAL DESIGN

• Mixed design research question
 • In what ways do the quantitative results generalize the qualitative findings?
EXPLORATORY SEQUENTIAL DESIGN

• Procedure
 • First, collect and analyze qualitative data.
 • Develop quantitative study based on what you learn from qualitative results.
 • Collect and analyze quantitative data.
MIXED METHODS RESEARCH

• Exploratory sequential design: flowchart
EXPLORATORY SEQUENTIAL DESIGN

• Design
 • Samples: different or same group of people in both studies?
 • The participants in the quantitative study are NOT same individuals who provided qualitative data.
 • Sample sizes: equal or unequal
 • Quantitative study uses larger sample.
EXPLORATORY SEQUENTIAL DESIGN

• Design
 • IRB issues for emerging follow-up phase:
 • Separate IRB for each phase.
 • One IRB, state the follow up phase as tentative.
EXPLORATORY SEQUENTIAL DESIGN

• Design
 • Decide what qualitative results to use.
 • Useful quotes
 • Codes > variables
 • Themes > constructs
EXPLORATORY SEQUENTIAL DESIGN

• Design
 • How to develop a good instrument: scale development.
 • Steps for instrument development
EXPLORATORIALY SEQUENTIAL DESIGN

<table>
<thead>
<tr>
<th>Step</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Determine what you want to measure</td>
</tr>
<tr>
<td>Step 2</td>
<td>Generating an item pool</td>
</tr>
<tr>
<td>Step 3</td>
<td>Determine the format for items</td>
</tr>
<tr>
<td>Step 4</td>
<td>Expert review of initial item pool</td>
</tr>
<tr>
<td>Step 5</td>
<td>Add social desirability items</td>
</tr>
<tr>
<td>Step 6</td>
<td>Pilot testing and item analysis</td>
</tr>
<tr>
<td>Step 7</td>
<td>Administer instrument to a larger sample</td>
</tr>
<tr>
<td>Step 8</td>
<td>Evaluate the items</td>
</tr>
<tr>
<td>Step 9</td>
<td>Revise instrument</td>
</tr>
</tbody>
</table>

DeVellis (2003); Fishman & Galguera (2003); Pett, Lackey, & Sullivan (2003)
EXPLORATORY SEQUENTIAL DESIGN

• Exploratory sequential design variants
 • Theory-development variant: test emergent theory
 • Instrument development variant: initial qualitative phase plays a secondary role.
MIXED METHODS RESEARCH

• Major designs
 • (4). Embedded design: purpose of this design is to answer different questions that requires different types of data.
MIXED METHODS RESEARCH

• Embedded designs

Quantitative or qualitative design

Qualitative or quantitative data collection and analysis

Interpretation
MIXED METHODS RESEARCH

• Embedded design
 • A quantitative or qualitative data collection is within a quantitative or qualitative procedure.
 • A single data set is not enough.
 • Two types of data answer different research questions.
 • The collection and analysis of the second data set may occur before, during, and/or after the first data collection.
MIXED METHODS RESEARCH

• Examples of embedded design: Qualitative data in quantitative study:
 • Develop an instrument in an intervention trial.
 • Try to understand the impact of the intervention on participants.
 • Test long term effects of an intervention after a trial.
MIXED METHODS RESEARCH

• Embedded design: procedure
MIXED METHODS RESEARCH

• “Treatment fidelity refers to the methodological strategies used to monitor and enhance the reliability and validity of behavioral interventions.”
MIXED METHODS RESEARCH

• Embedded design variants
 • Embedded-experiment variant: qualitative data within an experiment trial.
 • Embedded instrument development and validation variant.
• Mixed methods case studies
• Mixed methods narrative research
• Mixed methods ethnography

Embed both quantitative and qualitative data within traditional qualitative designs.
MIXED METHODS RESEARCH

- Published paper
MIXED METHODS RESEARCH

• Major designs
 • (5). Transformative design: the purpose of this design is to address issues of social justice and call for change for underrepresented or marginalized populations.
 • This design more relates to the content than to the methodology.
 • Is beyond first four basic mixed methods designs mentioned before.
MIXED METHODS RESEARCH

• Transformative designs

Transformative Framework

Quantitative data collection and analysis → Follow up with Qualitative data collection and analysis → Interpretation
MIXED METHODS RESEARCH

• Transformative Framework
 • Is a framework for advancing the needs of underrepresented or marginalized populations.
 • Such as: Feminist theory, racial or ethnic theory, sexual orientation theory, and disability theory.
MIXED METHODS RESEARCH

• Transformative design
 • All decisions about interaction, priority, timing, and mixing are made within the context of the transformative framework.
 • Researchers can implement any of four basic mixed methods designs within the transformative framework.
MIXED METHODS RESEARCH

- Transformative design

<table>
<thead>
<tr>
<th>Defining the Problem and Searching the Literature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deliberately search the literature for concerns of diverse groups and issues of discrimination and oppression.</td>
</tr>
<tr>
<td>• Allow the definition of the problem to arise from the community of concern.</td>
</tr>
<tr>
<td>• Build trust with community members.</td>
</tr>
<tr>
<td>• Restat deficit-based theoretical frameworks.</td>
</tr>
<tr>
<td>• Ask balanced—positive and negative—research questions.</td>
</tr>
<tr>
<td>• Develop questions that lead to transformative answers, such as questions focused on authority and relations of power in institutions and communities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifying the Research Design:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use mixed methodologies to capture the complexity of the problem and respond to different stakeholder needs.</td>
</tr>
<tr>
<td>• Ensure that your research design respects ethical considerations of participants.</td>
</tr>
<tr>
<td>• Do not deny treatment to any groups if incorporating experimental procedures.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifying Data Sources and Selecting Participants:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Focus on participants of groups associated with discrimination and oppression.</td>
</tr>
<tr>
<td>• Avoid stereotypical labels for participants.</td>
</tr>
<tr>
<td>• Recognize the diversity within the target population.</td>
</tr>
<tr>
<td>• Use sampling strategies that improve the inclusiveness of the sample to increase the probability that traditionally marginalized groups are adequately and accurately represented.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifying or Constructing Data Collection Instruments and Methods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Consider how the data collection process and outcomes will benefit the community being studied.</td>
</tr>
<tr>
<td>• Use methods to ensure that the research findings will be credible to that community.</td>
</tr>
<tr>
<td>• Design data collection to permit effective communication with community members.</td>
</tr>
<tr>
<td>• Use collection methods that are sensitive to the community’s cultural contexts.</td>
</tr>
<tr>
<td>• Design the data collection to open up avenues for participation in the social change process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyzing, Interpreting, Reporting, and Using Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Be open to the results raising new hypotheses.</td>
</tr>
<tr>
<td>• Analyze subgroups (i.e., multilevel analyses) to examine the differential impact on diverse groups.</td>
</tr>
<tr>
<td>• Frame the results to help understand and elucidate power relationships.</td>
</tr>
<tr>
<td>• Report the results in ways to facilitate social change and action.</td>
</tr>
</tbody>
</table>
MIXED METHODS RESEARCH

• Challenges
 • Little guidance in the literature to assist researchers with implementing mixed methods in a transformative way.
 • Researchers need to have expertise in theoretical foundations of the study.
MIXED METHODS RESEARCH

• Transformative design variants
 • Feminist lens transformative variant
 • Disability lens transformative variant
 • Socioeconomic class lens
MIXED METHODS RESEARCH

• Major designs
 • (6). Multiphase: is another example of a mixed methods design that goes beyond four basic designs.
 • It is a combination of sequential and concurrent aspects.
 • Most common in large funded or multiyear projects.
MIXED METHODS RESEARCH

• Multiphase design

Overall program objective

Study 1: Qualitative

Study 2: Quantitative

Study 3: Mixed Methods

Informs

Informs

Informs
MIXED METHODS RESEARCH

• Multiphase design
MIXED METHODS RESEARCH

• Challenges
 • Challenges associated with individual concurrent and sequential designs.
 • Needs sufficient resources, time, and effort.
 • May need a research team to implement research.
MIXED METHODS RESEARCH

• Multiphase design variants
 • Large scale program development and evaluation
• Multilevel statewide study
• Single mixed methods study that combines both concurrent and sequential phases
MIXED METHODS RESEARCH

• Resources
 • International Congress for Qualitative Inquiry Conference
 • Mixed methods international conference
 • Journal of Mixed Methods Research
 • OBSSR (Office of Behavioral and Social Sciences Research) from NIH: Scientific areas > Methodology > Mixed Methods Research
Thank You