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Abstract. We prove the equivalence of certain asymptotic formulas for (a) averages over
intervals for the 2-point form factor F (α, T ) for the zeros of the Riemann zeta-function, ζ(s),

(b) the mean square of the logarithmic derivative of ζ(s), (c) a variance for the number

of primes in short intervals, and (d) the number of pairs of zeros of ζ(s) with small gaps.
The main result is a generalization of the fusion of a theorem of Goldston and a theorem of

Goldston, Gonek, and Montgomery. We apply our result to deduce several consequences of

the Alternative Hypothesis.

1. Introduction and Results

We assume the truth of the Riemann Hypothesis (RH) throughout this paper, and let 1
2 + iγ

denote a nontrivial zero of the Riemann zeta-function, ζ(s). In the early 1970’s Montgomery [15]
introduced a new method of studying the distribution of zeros of ζ(s). Assuming RH, he defined
the function

F (α) = F (α, T ) =
(
T

2π
log T

)−1 ∑
0<γ,γ′≤T

T iα(γ−γ′)w(γ − γ′),

where the sum is over all pairs γ, γ′ of ordinates of zeros counted according to multiplicity1.
Here α is real, T ≥ 2, and w(u) = 4/(4 + u2). He then observed that F is a real valued even
function of α, and proved that

(1.1) F (α, T ) = (1 + o(1))T−2α log T + α+ o(1)

uniformly for 0 ≤ α ≤ 1−ε for any fixed ε > 0. From this he deduced that if RH is true, then at
least two-thirds of the zeros of ζ(s) are simple. He also showed that if 0 < γ1 ≤ γ2 ≤ γ3 · · · is a
list of the ordinates of all the zeros above the real line, counted according to their multiplicities,
then the differences

(1.2)
γn+1 log γn+1

2π
− γn log γn

2π
are less than 0.68 infinitely often. Later, Mueller and Heath-Brown noted that F is nonnegative
(see [4]), and Goldston and Montgomery [12, Lemma 8] showed that (1.1) holds uniformly for
0 ≤ α ≤ 1.

The usefulness of F (α) for deducing information on the distribution of the zeros is limited
by the fact that the asymptotic behavior of F (α) is known only for |α| ≤ 1. To get around
this difficulty, Montgomery [15] used a quantitative form of the Hardy-Littlewood twin prime
hypothesis to conjecture that for any fixed M ≥ 1,

(1.3) F (α, T ) = 1 + o(1)

1991 Mathematics Subject Classification. Primary 11M06, 11M26.

Key words and phrases. Riemann zeta-function, Alternative Hypothesis, Pair Correlation Conjecture.
The author was partially supported by NSF grant DMS-1200582.
1All sums over zeros in this paper will count multiplicity.

1



2 SIEGFRED BALUYOT

as T →∞, uniformly for 1 ≤ α ≤M . This led him to make the following conjecture.

Conjecture (The Pair Correlation Conjecture). For any fixed β > 0, we have

N(T, β)
def
=
(
T

2π
log T

)−1 ∑
0<γ,γ′≤T

0<γ−γ′≤ 2πβ
log T

1 ∼
∫ β

0

1−
(

sinπu
πu

)2

du

as T →∞.

The integrand above is called the pair correlation function of the zeros. It happens that
the eigenvalues of large random Hermitian matrices (the Gaussian Unitary Ensemble or GUE),
which are used in the study of particle physics, have exactly the same pair correlation function.
Thus the pair correlation conjecture provided a surprising connection between number theory
and random matrix theory, two fields that seemed unrelated at the time. Later, Odlyzko [16]
found strong numerical evidence supporting the pair correlation conjecture. Bolanz [3], building
on Montgomery’s ideas, proved that (1.3) holds for 1 ≤M < 3

2 provided that a strong form of the
Hardy-Littlewood twin prime conjecture is true. He later (unpublished) extended the range to
1 ≤M < 2 under an additional assumption. Hejhal [14] proved results similar to Montgomery’s
for the triple correlation function of the zeros of ζ(s), and Rudnick and Sarnak [17] proved
results for the n-correlation function, providing even more theoretical evidence that the zeros
are distributed like the eigenvalues of matrices from the Gaussian Unitary Ensemble. Bogomolny
and Keating [1, 2] used a prime-twin type conjecture to heuristically extend the range of the
n-correlation result of Rudnick and Sarnak.

In spite of the overwhelming numerical and theoretical evidence, the pair correlation conjec-
ture has yet to be proved. Thus, it is of interest to determine consequences of other conjectures
about the spacings of the zeros. One well known alternative to the pair correlation conjecture
is the Alternative Hypothesis. There are various formulations of it, but they all essentially say
that almost all the differences (1.2) are close to half-integers. In a sense, the Alternative Hy-
pothesis is antithetical to the pair correlation conjecture in that the latter says the zeros are
randomly distributed, whereas the former says they are quite regular. Besides supporting the
pair correlation conjecture, a disproof of the Alternative Hypothesis would be useful in showing
that Landau-Siegel zeros do not exist. Indeed, Conrey and Iwaniec [6] have obtained a relation
between the spacings (1.2) and the size of L(1, χ) for real primitive Dirichlet characters χ. A
corollary of their Theorem 1.2 is that if the number of ordinates γn ≤ T for which the spacings
(1.2) are less than 0.49, say, is � T (log T )4/5 (as T →∞), then

L(1, χ) � (log q)−90.

The implied constant in their result is effectively computable.

Conrey [5] formulates the Alternative Hypothesis as the existence of a function h(T ) that goes
to 0 as T → ∞ such that if γn ≥ T0, then the difference (1.2) is within h(T0) of a half-integer.
A more precise formulation is implicit in a lecture of Heath-Brown [13]. He observed that if
L(1, χ) � q−1/4−ε, then there is a sequence of points tn that are close to the zeros of ζ(s)L(s, χ)
such that if tm and tn are about the size of T , with T much larger than q, then there is an
integer k with

(tm − tn) log T = πk +O(|tm − tn|{log q + log2/3 T}).
We will base our formulation of the Alternative Hypothesis on this. We let

γ̃ =
γ

2π
log γ

denote the normalized ordinate of a zero, so that the average spacing between consecutive γ̃n’s
equals 1. Our version of the hypothesis is the following.
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Hypothesis (The Alternative Hypothesis). For each n there is an integer kn with

(1.4) γ̃n+1 − γ̃n =
1
2
kn + O(|γn+1 − γn|ψ(γn)),

where ψ(γ) is a function such that ψ(γ) →∞ and ψ(γ) = o(log γ) as γ →∞.

The aim of our study is to deduce consequences of the Alternative Hypothesis. To do this, we
look at known consequences of the pair correlation conjecture and determine their corresponding
forms under the Alternative Hypothesis.

Goldston [10] showed that the pair correlation conjecture is actually equivalent to a weaker
variant of (1.3), namely

(1.5)
∫ b+δ

b

F (α, T ) ∼ δ

as T → ∞ for all fixed b ≥ 1 and δ > 0. He also showed that the pair correlation conjecture is
equivalent to

J(β, T ) def=
∫ T β

1

(
ψ
(
x+

x

T

)
− ψ(x)− x

T

)2 dx

x2
∼
(
β − 1

2

)
log2 T

T

as T →∞, for all fixed β ≥ 1. Here, ψ(x) =
∑

n≤x Λ(n), where Λ is the von Mangoldt function
defined by Λ(pm) = log p for prime powers pm > 1 and Λ(n) = 0 for all other n. Later, Goldston,
Gonek, and Montgomery [11] showed that (1.5) is equivalent to

I(b, T ) def=
∫ T

1

∣∣∣∣ζ ′ζ
(

1
2

+
b

log T
+ it

)∣∣∣∣2 dt ∼ (1− e−2b

4b2

)
T log2 T

as T → ∞, for all fixed b > 0. Thus, collecting these results together, we have a four-way
equivalence between the asymptotic formulas for F (α, T ), I(b, T ), J(β, T ), and N(T, β).

Theorem 1.1 (Goldston, Gonek, Montgomery). Assume RH. The following statements are
equivalent.

(A1)
∫ b

1

F (α, T ) dα ∼ b− 1 as T →∞, for all fixed b ≥ 1.

(B1) I(b, T ) ∼
(

1− e−2b

4b2

)
T log2 T as T →∞, for all fixed b > 0.

(C1) J(β, T ) ∼
(
β − 1

2

)
log2 T

T
as T →∞, for all fixed β ≥ 1.

(D1) N(T, β) ∼
∫ β

0

1−
(

sinπu
πu

)2

du as T →∞, for all fixed β > 0.

Note that by (1.1) we can evaluate the integral of F (α, T ) on any subinterval of [0, 1] and
write ∫ b

0

F (α, T ) dα ∼ 1
2

+
b2

2
as T →∞, for all fixed 0 < b ≤ 1. This gives a version of the statement (A1) for 0 < b ≤ 1 that
is true in any case (on RH). Also, a result of Gallagher and Mueller [8] states that

J(β, T ) ∼ β2 log2 T

2T
as T →∞, for all fixed 0 < β ≤ 1.

This is a version of (C1) for 0 < β ≤ 1 that holds true in any case (unconditionally).
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In this paper, we prove a generalization of Theorem 1.1 (Theorem 1.2). Afterwards, we apply
our result to obtain an analogue of Theorem 1.1 for the Alternative Hypothesis (Theorem 1.3).
To state our main result, we set

N∗(T ) def=
(
T

2π
log T

)−1 ∑
0<γ≤T

mγ ,

wheremγ denotes the multiplicity of the zero 1
2 +iγ and the sum again counts ordinates according

to multiplicity. Also, for a general measure µ, we shall mean by
∫ b

a
f(α)dµ(α) the integral of f

over the set [a, b).

Theorem 1.2. Assume RH. Let µ be a positive Borel measure on [0,∞) for which the function
α 7→ min{1, α−2} is integrable over [0,∞). The following statements are equivalent

(A) µ[0, b) + o(1) ≤
∫ b

0

F (α, T ) dα ≤ µ[0, b] + o(1)

as T →∞, for all fixed b > 0.

(B) I(b, T ) ∼
(∫ ∞

0

e−2bα dµ(α)− 1
2

)
T log2 T

as T →∞, for all fixed b > 0.

(C) µ[0, β)− 1
2

+ o(1) ≤ J(β, T )
T

log2 T
≤ µ[0, β]− 1

2
+ o(1)

as T →∞, for all fixed β > 0.

(D)
β

2
N∗(T ) +

∫ β

0

N(T, u) du ∼
∫ ∞

0

(
sinπβα
πα

)2

dµ(α)

as T →∞, for all fixed β > 0.

The measure that makes the statement (A) consistent with (1.1) and (1.5) is the measure
with µ(0) = 1/2, dµ(α) = αdα for 0 < α ≤ 1, and dµ(α) = dα for α > 1. Thus we see that
Theorem 1.1 corresponds to taking this measure in Theorem 1.2. Keeping in mind the remarks
below Theorem 1.1, we see from a straightforward calculation that (A), (B), and (C) with this
measure are equivalent to (A1), (B1), and (C1), respectively. However, to prove that (D) with
this choice of µ is equivalent to (D1) is not as straightforward. We shall not carry this out here
because the argument is similar to the one we shall use in Section 4 to prove Theorem 1.3.

Let g(α) = |α| for |α| ≤ 1 and be extended to R by periodicity. In Section 5 we shall prove
that the Alternative Hypothesis and the assumption that N∗(T ) ∼ 1 imply that

1
2

+
∑

n<b/2

1 +
∫ b

0

g + o(1) ≤
∫ b

0

F (α, T ) dα ≤ 1
2

+
∑

n≤b/2

1 +
∫ b

0

g + o(1)

for any fixed b > 0 as T →∞. Thus, the analogue of Theorem 1.1 for the Alternative Hypothesis
is

Theorem 1.3. Assume RH. The following statements are equivalent.

(A2)
1
2

+
∑

n<b/2

1 +
∫ b

0

g + o(1) ≤
∫ b

0

F (α, T ) dα ≤ 1
2

+
∑

n≤b/2

1 +
∫ b

0

g + o(1)
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as T →∞, for all fixed b > 0.

(B2) I(b, T ) ∼
(

e2b − 1
4b2(e2b + 1)

+
1

e4b − 1

)
T log2 T as T →∞, for all fixed b > 0.

(C2)
∑

n<β/2

1 +
∫ β

0

g + o(1) ≤ J(β, T )
T

log2 T
≤

∑
n≤β/2

1 +
∫ β

0

g + o(1)

as T →∞, for all fixed β > 0.

(D2) N(T, β) ∼


m − 1

2π2

m−1∑
n=0

4
(2n+ 1)2

if m < β < m+ 1
2 ,

m +
1
2
− 1

2π2

m∑
n=0

4
(2n+ 1)2

if m+ 1
2 < β < m+ 1,

as T → ∞, for all fixed β > 0 not a half-integer. Here m = [β], the greatest inte-
ger ≤ β.

By Proposition 5.1 in Section 5, if the Alternative Hypothesis is true and N∗(T ) ∼ 1 holds,
then the statement (A2) holds. An immediate consequence of this and Theorem 1.3 is

Corollary 1.1. Assume RH, the Alternative Hypothesis, and that N∗(T ) ∼ 1 as T →∞. Then
each of the statements (A2), (B2), (C2), and (D2) is true.

If we assume the Alternative Hypothesis and that all zeros are simple, then we can use
Corollary 1.1 to estimate the proportion of zeros γn for which γ̃n+1 − γ̃n is near a fixed half-
integer k/2. LetBk/2(T ) be the set of zeros γn ≤ T such that k/2 is closest among all half-integers
to γ̃n+1 − γ̃n. We also define

pk/2 = pk/2(T ) def=
(
T

2π
log T

)−1

|Bk/2(T )|.

Theorem 1.4. Assume RH, the Alternative Hypothesis, and that all zeros of ζ(s) are simple.
Then as T →∞ we have

p0 = o(1),

(1.6) p1/2 =
1
2
− 2
π2

+ o(1),

(1.7)
4
π2

+ o(1) ≤ p1 ≤ 1
2

+ o(1),

(1.8) pk/2 ≤


1
2

+ o(1) for k ≥ 4 even,

1
2
− 2
π2k2

+ o(1) for k ≥ 3 odd.

Our estimates for p0, p1/2, and p1 agree with those in Section 2 of Farmer, Gonek, and Lee [7].
However, one should note that the formulation of the Alternative Hypothesis in [7] is stronger
than ours.
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2. Lemmas

In each of the following lemmas we assume there is a number T0 such that the function f(α, T )
is defined for α ≥ 0 and T ≥ T0, and f(·, T ) is Lebesgue measurable for each such T .

Lemma 2.1. Let f(α) = f(α, T ) be nonnegative and let µ be a positive Borel measure on [0,∞)
such that

∫∞
0
e−bxdµ(x) <∞ for all b ≥ 1. If

(2.1) lim
T→∞

∫ ∞

0

f(α, T )e−bα dα =
∫ ∞

0

e−bα dµ(α)

for all fixed positive integers b, then

(2.2) µ[0, d) + o(1) ≤
∫ d

0

f(α, T ) dα ≤ µ[0, d] + o(1)

as T →∞, for all fixed d > 0.

Proof. The proof uses Karamata’s method (see for example §7.53 of [18]). Let 0 < δ < e−d, and
set η = − log(e−d − δ). Define k(u) by

k(u) =



1/u if e−d ≤ u ≤ 1,

(u− e−η)
ed

δ
if e−η ≤ u ≤ e−d,

0 otherwise.

By the Weierstrass approximation theorem, given any ε > 0, there is a polynomial P (u) =∑N
n=0 anu

n such that

(2.3) k(u) < P (u) < k(u) + ε

for u ∈ [0, 1]. Now uk(u) = 1 for e−d ≤ u ≤ 1. Thus, by (2.3), 1 < uP (u) for e−d ≤ u ≤ 1. Also,
since k(u) ≥ 0 , we have 0 < uP (u) for 0 < u ≤ e−d. Hence 1 < e−αP (e−α) for 0 ≤ α ≤ d and
0 < e−αP (e−α) for α ≥ d. Since f is nonnegative,

(2.4)
∫ d

0

f(α)dα ≤
∫ d

0

f(α)e−αP (e−α)dα ≤
∫ ∞

0

f(α)e−αP (e−α) dα.

By (2.1), we have∫ ∞

0

f(α)e−αP (e−α) dα =
N∑

n=0

an

∫ ∞

0

f(α)e−α(n+1) dα

∼
N∑

n=0

an

(∫ ∞

0

e−(n+1)α dµ(α)
)

=
∫ ∞

0

e−αP (e−α) dµ(α).

(2.5)

It follows from (2.4) and (2.5) that

(2.6)
∫ d

0

f(α)dα ≤
∫ ∞

0

e−αP (e−α) dµ(α) + o(1)

as T → ∞. By (2.3) we have e−αP (e−α) < e−αk(e−α) + εe−α for α ≥ 0. From this and (2.6)
we see that

(2.7)
∫ d

0

f(α)dα ≤
∫ ∞

0

e−αk(e−α) dµ(α) + ε

∫ ∞

0

e−α dµ(α) + o(1).
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If e−η ≤ u ≤ e−d, then by the definitions of k(u) and η, we have

uk(u) = u(u− e−η)
ed

δ
≤ e−d(e−d − e−η)

ed

δ
= e−d(δ)

ed

δ
= 1.

Thus uk(u) ≤ 1 for e−η ≤ u ≤ 1. Hence e−αk(e−α) ≤ 1 for 0 ≤ α ≤ η. Also, since k(u) = 0 for
u ≤ e−η, we have e−αk(e−α) = 0 for α ≥ η. Thus∫ ∞

0

e−αk(e−α) dµ(α) =
∫ η

0

e−αk(e−α) dµ(α) +
∫ ∞

η

e−αk(e−α) dµ(α)

≤
∫ η

0

dµ(α) + 0

= µ[0, η).

We find from this and (2.7) that

(2.8)
∫ d

0

f(α)dα ≤ µ[0, η) + ε

∫ ∞

0

e−α dµ(α) + o(1).

Now µ[0, η) → µ[0, d] as η → d+. Since η = − log(e−d − δ), we have that η → d+ as δ → 0+.
Thus, making δ and ε small enough in (2.8), we obtain the second inequality in (2.2).

To prove the first inequality in (2.2), define τ = − log(e−d + δ) and define `(u) by

`(u) =



1/u if e−τ ≤ u ≤ 1,

(u− e−d)
eτ

δ
if e−d ≤ u ≤ e−τ ,

0 otherwise.

By the Weierstrass approximation theorem, given any ε > 0, there is a polynomial Q(u) =∑M
n=0 bnu

n such that

(2.9) `(u)− ε < Q(u) < `(u)

for u ∈ [0, 1]. Now u`(u) = 1 for e−τ ≤ u ≤ 1. Also, if e−d ≤ u ≤ e−τ , then by the definition of
τ ,

u`(u) = u(u− e−d)
eτ

δ
≤ e−τ (e−τ − e−d)

eτ

δ
= e−τ (δ)

eτ

δ
= 1.

Hence u`(u) ≤ 1 for e−d ≤ u ≤ 1. Therefore, by (2.9), 1 > uQ(u) for e−d ≤ u ≤ 1. Also,
`(u) = 0 for 0 ≤ u ≤ e−d, so by (2.9) we have 0 > uQ(u) for 0 < u ≤ e−d. Hence, by a change of
variable, 1 > e−αQ(e−α) for 0 ≤ α ≤ d, and 0 > e−αQ(e−α) for α ≥ d. Since f is nonnegative,

(2.10)
∫ d

0

f(α)dα ≥
∫ d

0

f(α)e−αQ(e−α)dα ≥
∫ ∞

0

f(α)e−αQ(e−α) dα.

By (2.1), we have∫ ∞

0

f(α)e−αQ(e−α) dα =
M∑

n=0

bn

∫ ∞

0

f(α)e−α(n+1) dα

∼
M∑

n=0

bn

(∫ ∞

0

e−(n+1)α dµ(α)
)

=
∫ ∞

0

e−αQ(e−α) dµ(α).

(2.11)

It follows from (2.10) and (2.11) that

(2.12)
∫ d

0

f(α)dα ≥
∫ ∞

0

e−αQ(e−α) dµ(α) + o(1)
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as T → ∞. By (2.9) we have e−αQ(e−α) > e−α`(e−α) − εe−α for α ≥ 0. It follows from this
and (2.12) that

(2.13)
∫ d

0

f(α)dα ≥
∫ ∞

0

e−α`(e−α) dµ(α)− ε

∫ ∞

0

e−α dµ(α) + o(1).

By the definition of `(u), we have u`(u) = 1 for e−τ ≤ u ≤ 1. Also, `(u) ≥ 0 for 0 ≤ u ≤ e−τ .
Thus e−α`(e−α) = 1 for 0 ≤ α ≤ τ , and e−α`(e−α) ≥ 0 for α ≥ τ . We now see that∫ ∞

0

e−α`(e−α) dµ(α) =
∫ τ

0

e−α`(e−α) dµ(α) +
∫ ∞

τ

e−α`(e−α) dµ(α)

≥
∫ τ

0

dµ(α) + 0

= µ[0, τ).

It follows from this and (2.13) that

(2.14)
∫ d

0

f(α)dα ≥ µ[0, τ)− ε

∫ ∞

0

e−α dµ(α) + o(1).

Now µ[0, τ) → µ[0, d) as τ → d−. Furthermore, τ = − log(e−d +δ), so τ → d− as δ → 0+. Thus,
making δ and ε small enough in (2.14), we obtain the first inequality in (2.2). �

Lemma 2.2. Suppose that

(2.15)
∫ x

0

|f(α, T )| dα� x

uniformly for all large x and T , that µ is a positive Borel measure on [0,∞) such that µ[0, d] <∞
for d > 0, and that r is a real continuous function such that

∫∞
0
|r(α)| dµ(α) <∞. Assume that

there exists a function r1(x) and an x0 > 0 such that

(i) |r(x)| ≤ r1(x) for x ≥ x0;
(ii) r′1(x) exists for x ≥ x0, and r′1 is Riemann integrable over closed subintervals of [x0,∞);
(iii) xr1(x) → 0 as x→∞; and
(iv)

∫∞
x0
x|r′1(x)| dx < ∞.

If for each fixed d > 0, we have

(2.16) µ[0, d) + o(1) ≤
∫ d

0

f(α, T ) dα ≤ µ[0, d] + o(1)

as T →∞, then

(2.17) lim
T→∞

∫ ∞

0

f(α, T )r(α) dα =
∫ ∞

0

r(α) dµ(α).

Proof. Let x0 be as in our hypotheses and let B′ > B > x0. By condition (ii)
(2.18)∫ B′

B

|f(α, T )|r1(α) dα =
(
r1(α)

∫ α

0

|f(u, T )| du
)∣∣∣∣α=B′

α=B

−
∫ B′

B

(∫ α

0

|f(u, T )| du
)
r′1(α) dα.

The assumptions (2.15), (iii), and (iv) allow us to let B′ →∞ in (2.18) and obtain

(2.19)
∫ ∞

B

|f(α, T )|r1(α) dα = −r1(B)
∫ B

0

|f(u, T )| du−
∫ ∞

B

(∫ α

0

|f(u, T )| du
)
r′1(α) dα.
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By the same assumptions, if ε > 0, then the right-hand side of (2.19) is less than ε for B and T
large enough. Thus by (i),

(2.20)
∣∣∣∣∫ ∞

B

f(α, T )r(α) dα
∣∣∣∣ ≤ ∫ ∞

B

|f(α, T )|r1(α) dα < ε

for B and T large enough. Furthermore, since
∫∞
0
|r(α)| dµ(α) <∞, we see that

(2.21)
∣∣∣∣∫ ∞

B

r(α) dµ(α)
∣∣∣∣ < ε

for B large enough. Since µ[a, b] < ∞ for b > a ≥ 0, not all points of [0,∞) can have positive
measure. Thus, we may choose a B such that (2.20) and (2.21) hold and such that µ{B} = 0.
By (2.15) we can also choose an η > 0 so small that

(2.22) ηµ[0, B] < ε and η

∫ B

0

|f(α, T )| dα < ε

for all large T . Let x1, x2, . . . be the distinct points in [0, B] with positive µ-measure. Since
µ[0, B] is finite, there can only be countably many such points. For the same reason, a positive
integer ν can be chosen such that

(2.23) 2
(

max
0≤u≤B

|r(u)|
) ∞∑

k=ν+1

µ{xk} < ε.

Since r is continuous, we can partition [0, B] into small subintervals [c, d] such that |r(x)−r(y)| <
η for all x, y in [c, d]. We may also choose the endpoints of each subinterval [c, d] so that none,
except possibly c = 0, is equal to x1, x2, . . . , xν . Now, for each subinterval [c, d] we have∣∣∣∣∣

∫ d

c

f(α)r(α) dα−
∫ d

c

r(α) dµ(α)

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

c

f(α)(r(α)− r(d)) dα+
∫ d

c

f(α)r(d) dα−
∫ d

c

r(d) dµ(α)−
∫ d

c

(r(α)− r(d)) dµ(α)

∣∣∣∣∣
≤
∫ d

c

|f(α)||r(α)− r(d)| dα+ |r(d)|

∣∣∣∣∣
∫ d

c

f(α) dα−
∫ d

c

dµ(α)

∣∣∣∣∣+
∫ d

c

|r(α)− r(d)| dµ(α).

Thus, since |r(x)− r(y)| < η for x, y in [c, d], we have
(2.24)∣∣∣∣∣
∫ d

c

f(α)r(α) dα−
∫ d

c

r(α) dµ(α)

∣∣∣∣∣ ≤ η

∫ d

c

|f(α)| dα+|r(d)|

∣∣∣∣∣
∫ d

c

f(α) dα−
∫ d

c

dµ(α)

∣∣∣∣∣+η
∫ d

c

dµ(α).

Now replace d by c in (2.16) and subtract the resulting formula from (2.16) to obtain

µ(c, d) + o(1) ≤
∫ d

c

f(α, T ) dα ≤ µ[c, d] + o(1).

Thus

−µ{c}+ o(1) ≤
∫ d

c

f(α, T ) dα− µ[c, d) ≤ µ{d}+ o(1),

and we find that ∣∣∣∣∣
∫ d

c

f(α, T ) dα− µ[c, d)

∣∣∣∣∣ ≤ µ{c}+ µ{d}+ o(1).

Hence ∣∣∣∣∣
∫ d

c

f(α) dα−
∫ d

c

dµ(α)

∣∣∣∣∣ =
∣∣∣∣∣
∫ d

c

f(α) dα− µ[c, d)

∣∣∣∣∣ ≤ µ{c}+ µ{d}+ o(1).
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It follows from this and (2.24) that
(2.25)∣∣∣∣∣
∫ d

c

f(α)r(α) dα−
∫ d

c

r(α) dµ(α)

∣∣∣∣∣ ≤ η

∫ d

c

|f(α)| dα+ |r(d)|(µ{c}+ µ{d}+ o(1)) + η

∫ d

c

dµ(α).

We will use this estimate for subintervals [c, d] with c > 0, but a different estimate when c = 0.
When c = 0 we proceed as follows. By (2.16) we have

o(1) ≤
∫ d

0

f(α, T ) dα− µ[0, d) ≤ µ{d}+ o(1).

Thus ∣∣∣∣∣
∫ d

0

f(α, T ) dα− µ[0, d)

∣∣∣∣∣ ≤ µ{d}+ o(1).

That is, ∣∣∣∣∣
∫ d

0

f(α) dα−
∫ d

0

dµ(α)

∣∣∣∣∣ =
∣∣∣∣∣
∫ d

0

f(α) dα− µ[0, d)

∣∣∣∣∣ ≤ µ{d}+ o(1).

It follows from this and (2.24) that

(2.26)

∣∣∣∣∣
∫ d

0

f(α)r(α) dα−
∫ d

0

r(α) dµ(α)

∣∣∣∣∣ ≤ η

∫ d

0

|f(α)| dα+ |r(d)|(µ{d}+o(1))+η

∫ d

0

dµ(α).

Next we sum our estimates over all the subintervals [c, d]. Let
∑

[c,d] denote a sum over all the
subintervals [c, d] of our partition of [0, B], and let

∑′
[c,d] denote a sum that excludes the term

µ{c} if c = 0. Then by (2.25) and (2.26) we see that∣∣∣∣∣
∫ B

0

f(α)r(α) dα−
∫ B

0

r(α) dµ(α)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
[c,d]

(∫ d

c

f(α)r(α) dα−
∫ d

c

r(α) dµ(α)

)∣∣∣∣∣∣
≤
∑
[c,d]

∣∣∣∣∣
∫ d

c

f(α)r(α) dα−
∫ d

c

r(α) dµ(α)

∣∣∣∣∣
≤ η

∑
[c,d]

∫ d

c

|f(α)| dα+
∑
[c,d]

′|r(d)|(µ{c}+ µ{d}+ o(1)) + η
∑
[c,d]

∫ d

c

dµ(α).

Hence
(2.27)∣∣∣∣∣
∫ B

0

f(α)r(α) dα−
∫ B

0

r(α) dµ(α)

∣∣∣∣∣ ≤ η

∫ B

0

|f(α)| dα+
∑
[c,d]

′|r(d)|(µ{c}+µ{d}+o(1))+η
∫ B

0

dµ(α).

To estimate the sum on the right-hand side, we first note that∑
[c,d]

′|r(d)|(µ{c}+ µ{d}+ o(1)) ≤
(

max
0≤u≤B

|r(u)|
)∑

[c,d]

′(µ{c}+ µ{d}+ o(1))

=
(

max
0≤u≤B

|r(u)|
)∑

[c,d]

′µ{c}+
∑
[c,d]

µ{d}

+ o(1).

(2.28)
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Since none of the nonzero endpoints of our partition are among the points x1, . . . , xν , we see
that ∑

[c,d]

′µ{c} ≤
∞∑

k=ν+1

µ{xk} and
∑
[c,d]

µ{d} ≤
∞∑

k=ν+1

µ{xk}.

Using these estimates in (2.28), we obtain∑
[c,d]

′|r(d)|(µ{c}+ µ{d}+ o(1)) ≤ 2
(

max
0≤u≤B

|r(u)|
) ∞∑

k=ν+1

µ{xk}+ o(1).

From this and (2.23) we now find that∑
[c,d]

′|r(d)|(µ{c}+ µ{d}+ o(1)) < ε+ o(1).

Inserting this in (2.27), we obtain

(2.29)

∣∣∣∣∣
∫ B

0

f(α)r(α) dα−
∫ B

0

r(α) dµ(α)

∣∣∣∣∣ ≤ η

∫ B

0

|f(α)| dα+ η

∫ B

0

dµ(α) + ε+ o(1).

Since
∫ B

0
dµ(α) = µ[0, B), it follows from (2.22) and (2.29) that

(2.30)

∣∣∣∣∣
∫ B

0

f(α)r(α) dα−
∫ B

0

r(α) dµ(α)

∣∣∣∣∣ ≤ 3ε+ o(1).

Finally, by (2.20), (2.21), and (2.30), we see that∣∣∣∣∫ ∞

0

f(α)r(α) dα−
∫ ∞

0

r(α) dµ(α)
∣∣∣∣

≤
∣∣∣∣∫ ∞

B

f(α)r(α) dα
∣∣∣∣+
∣∣∣∣∣
∫ B

0

f(α)r(α) dα−
∫ B

0

r(α) dµ(α)

∣∣∣∣∣+
∣∣∣∣∫ ∞

B

r(α) dµ(α)
∣∣∣∣

< ε+ 3ε+ ε+ o(1) = 5ε+ o(1).

�

Lemma 2.3. Assume that f(α, T ) ≥ 0 and that

(2.31)
∫ x

0

f(α, T ) dα� x

uniformly for x ≥ 1 and large enough T . Let µ be a positive Borel measure on [0,∞) such that∫ ∞

0

min{1, α−2} dµ(α) <∞.

If

(2.32) lim
T→∞

∫ ∞

0

(
sinβα
α

)2

f(α, T ) dα =
∫ ∞

0

(
sinβα
α

)2

dµ(α)

for each fixed β > 0, then

(2.33) µ[0, d) + o(1) ≤
∫ d

0

f(α, T ) dα ≤ µ[0, d] + o(1)

as T →∞ for all fixed d > 0.
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Proof. Our approach is similar to that used to prove Lemma 4 of [12]. Let η > 0, and define

K(x) = Kη(x) =
sin 2πx+ sin 2π(1 + η)x

2πx(1− 4η2x2)
.

Then

(2.34) K̂η(t) def=
∫ ∞

−∞
Kη(x)e−2πixt dx =

 1 if |t| ≤ 1,
cos2

(
π(|t| − 1)/2η

)
if 1 ≤ |t| ≤ 1 + η,

0 if |t| ≥ 1 + η.

Note that K(x) is an even function and

(2.35) K(j)(x) �η min{1, x−3}
for x ≥ 0 and j = 0, 1, 2. Integrating by parts twice, we have

(2.36) K̂(t) =
∫ ∞

0

K ′′(x)
(

sinπtx
πt

)2

dx

for all real t. To prove the lemma, we first show that

(2.37)
∫ ∞

0

f(α, T )K̂
(α
d

)
dα =

∫ ∞

0

K̂
(α
d

)
dµ(α) + o(1)

as T →∞, for all fixed d > 0. We substitute (2.36) for K̂ and interchange the order of integration
to obtain

(2.38)
∫ ∞

0

f(α, T )K̂
(α
d

)
dα −

∫ ∞

0

K̂
(α
d

)
dµ(α) =

( d
π

)2
∫ ∞

0

K ′′(x)R
(πx
d
, T
)
dx,

where

(2.39) R(κ, T ) =
∫ ∞

0

f(α, T )
(

sinκα
α

)2

dα−
∫ ∞

0

(
sinκα
α

)2

dµ(α).

The validity of the interchange in the order of integration will be justified below. From (2.38)
we see that (2.37) will follow from

(2.40) lim
T→∞

∫ ∞

0

K ′′(x)R
(πx
d
, T
)
dx = 0.

We write

(2.41)
∫ ∞

0

K ′′(x)R
(πx
d
, T
)
dx =

∫ D

0

+
∫ ∞

D

and estimate the two integrals on the right-hand side separately.

In order to estimate the integral over [0, D], we first show that

(2.42) R(κ, T ) � 1 + κ2

uniformly for κ ≥ 0 and large enough T . By integration by parts and (2.31),

(2.43)
∫ ∞

1

f(α, T )
α2

dα =
1
α2

∫ α

0

f(ξ, T ) dξ
∣∣∣∣∞
α=1

+ 2
∫ ∞

1

1
α3

∫ α

0

f(ξ, T ) dξ dα � 1

for T sufficiently large. It follows that∫ ∞

1

f(α, T )
(

sinκα
α

)2

dα ≤
∫ ∞

1

f(α, T )
α2

dα � 1

for such T . Also, by (2.31) we have∫ 1

0

f(α, T )
(

sinκα
α

)2

dα = κ2

∫ 1

0

f(α, T )
(

sinκα
κα

)2

dα ≤ κ2

∫ 1

0

f(α, T ) dα � κ2
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for all sufficiently large T . Hence
(2.44)∫ ∞

0

f(α, T )
(

sinκα
α

)2

dα =
∫ 1

0

f(α, T )
(

sinκα
α

)2

+
∫ ∞

1

f(α, T )
(

sinκα
α

)2

� κ2 + 1

for T large enough. A similar computation shows that

(2.45)
∫ ∞

0

(
sinκα
α

)2

dµ(α) � κ2 + 1.

The bound (2.42) now follows from (2.39), (2.44), and (2.45). Now by (2.32), we have

lim
T→∞

R(κ, T ) = 0

for fixed κ ≥ 0. By this, (2.42), and Lebesgue’s dominated convergence theorem, we now see
that

(2.46) lim
T→∞

∫ D

0

K ′′(x)R
(πx
d
, T
)
dx = 0

for fixed D ≥ 0.

Next we show that the integral over [D,∞) in (2.41) is small. That is, we show that if d > 0
is fixed, then

(2.47)
∫ ∞

D

K ′′(x)R
(πx
d
, T
)
dx � 1

D

uniformly for D ≥ 1 and all T sufficiently large. For D ≥ 1 write∫ ∞

D

∫ ∞

0

f(α, T )K ′′(x)
(

sinπα
dx

α

)2

dα dx

=
∫ ∞

D

∫ ∞

1

. . . dα dx +
∫ ∞

D

∫ 1

0

. . . dα dx = J1 + J2,

say. By (2.35),

J1 �
∫ ∞

D

∫ ∞

1

f(α, T )
x3α2

dα dx =
1

2D2

∫ ∞

1

f(α, T )
α2

dα.

It follows from this and (2.43) that

(2.48) J1 �
1
D2

uniformly for large T . To estimate J2, let h(α, x) =
(
sinπα

dx/π
α
d

)2, and observe that

(2.49) h(α, x) � x2 and hx(α, x) def=
∂h

∂x
(α, x) � x

uniformly for α ≥ 0. Using this and (2.31), we see that∫ 1

0

f(α, T )h(α, x) dα � x2

∫ 1

0

f(α, T ) dα � x2 and∫ 1

0

f(α, T )hx(α, x) dα � x

∫ 1

0

f(α, T ) dα � x



14 SIEGFRED BALUYOT

uniformly for x ≥ 0 and all sufficiently large T . It follows from these estimates, (2.35), and
integration by parts that( d

π

)2

J2 =
∫ ∞

D

∫ 1

0

f(α, T )K ′′(x)h(α, x) dα dx

= K ′(x)
∫ 1

0

f(α, T )h(α, x) dα
∣∣∣∣∞
x=D

−
∫ ∞

D

K ′(x)
∫ 1

0

f(α, T )hx(α, x) dα dx

� 1
D
.

Combining this and (2.48), we now find that∫ ∞

D

∫ ∞

0

f(α, T )K ′′(x)
(

sinπα
dx

α

)2

dα dx� 1
D

for all sufficiently large T . A similar computation gives∫ ∞

D

∫ ∞

0

K ′′(x)
(

sinπα
dx

α

)2

dµ(α) dx � 1
D
.

Using these and the definition of R(κ, T ) from (2.39), we obtain (2.47).

By (2.46), (2.47), and (2.41), we obtain (2.40) upon taking D large enough. The formula
(2.37) now follows from (2.38) and (2.40).

Having established (2.37), we now complete the proof of the lemma. If χ[a,b] is the character-
istic function of the interval [a, b], then by (2.34) we have

(2.50) χ[0,1](t) ≤ K̂η(t) ≤ χ[0,1+η](t)

for t ≥ 0. Thus ∫ ∞

0

f(α, T )K̂η

(
(1 + η)α

d

)
dα

≤
∫ d

0

f(α, T ) dα ≤
∫ ∞

0

f(α, T )K̂η

(α
d

)
dα.

(2.51)

Using (2.37) to replace the first and third integrals in (2.51), we obtain

(2.52)
∫ ∞

0

K̂η

(
(1 + η)α

d

)
dµ(α) + o(1) ≤

∫ d

0

f(α, T ) dα ≤
∫ ∞

0

K̂η

(α
d

)
dµ(α) + o(1).

By (2.50), we have∫ ∞

0

K̂η

(
(1 + η)α

d

)
dµ(α) ≥

∫ ∞

0

χ[0,1]

(
(1 + η)α

d

)
dµ(α) = µ[0, d/(1 + η)]

and ∫ ∞

0

K̂η

(α
d

)
dµ(α) ≤

∫ ∞

0

χ[0,1+η]

(α
d

)
dµ(α) = µ[0, d(1 + η)].

It follows from this and (2.52) that

µ[0, d/(1 + η)] + o(1) ≤
∫ d

0

f(α, T ) dα ≤ µ[0, d(1 + η)] + o(1)

as T →∞, for all fixed d > 0 and η > 0. Since µ[0, δ] → µ[0, d) as δ → d− and µ[0, δ] → µ[0, d]
as δ → d+, making η small gives (2.33).
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It remains to show that the interchange in the order of integration in (2.38) is valid. Write∫ ∞

0

K̂
(α
d

)
dµ(α) =

∫ ∞

0

∫ ∞

0

K ′′(x)
(

sinπα
dx

πα
d

)2

dx dµ(α)

=
∫ ∞

1

∫ ∞

0

. . . dx dµ(α) +
∫ 1

0

∫ ∞

0

. . . dx dµ(α)

= I1 + I2, say.

By (2.35) and the fact that | sinx| ≤ 1 for real x, the double integral I1 converges absolutely.
Thus the order of integration can be interchanged in I1 by Fubini’s theorem. For I2 we use
(2.35), (2.49), integration by parts (twice), and Fubini’s theorem (twice) to see that

I2 =
∫ 1

0

∫ ∞

0

K ′′(x)h(α, x) dx dµ(α) = −
∫ 1

0

∫ ∞

0

K ′(x)hx(α, x) dx dµ(α)

= −
∫ ∞

0

∫ 1

0

K ′(x)hx(α, x) dµ(α) dx =
∫ ∞

0

K ′′(x)
∫ x

0

∫ 1

0

hx(α, ξ) dµ(α) dξ dx

=
∫ ∞

0

K ′′(x)
∫ 1

0

∫ x

0

hx(α, ξ) dξ dµ(α) dx =
∫ ∞

0

K ′′(x)
∫ 1

0

h(α, x) dµ(α) dx.

A similar computation using (2.43) justifies the interchange in the order of integration on the
right-hand side of∫ ∞

0

f(α, T )K̂
(α
d

)
dα =

∫ ∞

0

∫ ∞

0

f(α, T )K ′′(x)
(

sinπα
dx

πα
d

)2

dx dα.

This proves (2.38).

�

3. Proof of Theorem 1.2

By a result of Goldston [10, (2.6)], on RH there exists a T0 such that

(3.1)
∫ d

c

F (α, T ) dα� max{1, d− c}

uniformly for real c ≤ d and T ≥ T0. Thus (2.15) holds for f(α, T ) = F (α, T ) (we can dispense
with the absolute value sign because F (α, T ) is nonnegative). We will use this fact repeatedly
below without mention.

To prove Theorem 1.2 we show that (A) ⇒ (B), (B) ⇒ (A), (A) ⇒ (C), (C) ⇒ (A), (A) ⇒
(D), and (D) ⇒ (A).

First we show that (A) ⇒ (B). Suppose that (A) holds. Take r(x) = r1(x) = e−2bx in
Lemma 2.2 to get

(3.2) lim
T→∞

∫ ∞

0

F (α, T )e−2bα dα =
∫ ∞

0

e−2bα dµ(α).

By Theorem 1 of Goldston, Gonek, and Montgomery [11], stated in a slightly different form,

(3.3) I(b, T ) =
(∫ ∞

0

F (α, T )e−2bα dα− 1
2

)
(1 + o(1))T log2 T

as T →∞, uniformly for T−1 log3 T ≤ b� 1. Inserting (3.2) in (3.3), we obtain

I(b, T ) =
(∫ ∞

0

e−2bα dµ(α) + o(1)− 1
2

)
(1 + o(1))T log2 T
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as T →∞ for fixed b > 0, which is (B).

To prove (B) ⇒ (A), suppose that (B) holds. Then combining (B) and (3.3), we see that (3.2)
holds for all b > 0. Now apply Lemma 2.1 to obtain (A).

To show (A) ⇒ (C), we make the change of variable v = log x
log T in the definition of J(β, T ) and

see that

J(β, T )
T

log2 T
=
∫ β

0

(ψ(T v + T v−1)− ψ(T v)− T v−1)2
dv

T v−1 log T

=
∫ β

0

W1(v, T ) dv, say.

(3.4)

A special case of a result of Goldston [10, Theorem 2] is2∫ ∞

1

(
ψ
(
x+

x

T

)
− ψ(x)− x

T

)2

e−b log x
log T

dx

x2

∼
(∫ ∞

0

F (α, T )e−bα dα− 1
2

)
log2 T

T

as T →∞, for fixed b > 0. From this and our previous change of variable we find that

(3.5)
∫ ∞

0

W1(v, T )e−bv dv ∼
∫ ∞

0

F (α, T )e−bα dα− 1
2
.

Let ω(v, T ) be a nonnegative function such that

(3.6)
∫ β

0

ω(v, T )e−bv dv ∼ 1
2

as T →∞

for fixed b ≥ 0, β > 0 (for instance we can take ω(v, T ) = T−2v log T ). Let W (v, T ) =
ω(v, T ) +W1(v, T ). Then combining (3.5) and (3.6), we obtain

(3.7)
∫ ∞

0

W (v, T )e−bv dv ∼
∫ ∞

0

F (α, T )e−bα dα.

Now suppose that (A) holds. Take f(α, T ) = F (α, T ) and r(α) = r1(α) = e−bα in Lemma 2.2
to see that

(3.8) lim
T→∞

∫ ∞

0

F (α, T )e−bα dα =
∫ ∞

0

e−bα dµ(α).

It follows from this and (3.7) that

(3.9) lim
T→∞

∫ ∞

0

W (v, T )e−bv dv =
∫ ∞

0

e−bα dµ(α)

for all b > 0. Thus, by Lemma 2.1 with f(α, T ) = W (α, T ), we have

(3.10) µ[0, β) + o(1) ≤
∫ β

0

W (v, T ) dv ≤ µ[0, β] + o(1)

as T → ∞ for any fixed β > 0. Since W (v, T ) = W1(v, T ) + ω(v, T ), it follows from (3.10) and
(3.6) that

µ[0, β)− 1
2

+ o(1) ≤
∫ β

0

W1(v, T ) dv ≤ µ[0, β]− 1
2

+ o(1)

as T →∞ for any fixed β > 0. From this and (3.4) we obtain (C). This proves (A) ⇒ (C).

2This can also be proved using (3.3) and an explicit formula due to Selberg, as in [11].
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Next we prove that (C) ⇒ (A). Let W (v, T ), W1(v, T ), and ω(v, T ) be as in the previous
paragraph. By Theorem 1 of Goldston and Montgomery [12], if RH is true, then∫ X

1

(
ψ
(
x+

x

T

)
− ψ(x)− x

T

)2 dx

x2
� (logX)(log 2T )

T

for T ≥ 1 and X ≥ 2. Thus, letting β ≥ 1 and X = T β , we see that

J(β, T ) � β(log T )(log 2T )
T

for T ≥ 2. It follows from this and (3.4) that∫ β

0

W1(v, T ) dv � β

uniformly for β ≥ 1 and T ≥ 2. Since W (v, T ) = W1(v, T ) + ω(v, T ), by (3.6) we have

(3.11)
∫ β

0

W (v, T ) dv � β uniformly for β ≥ 1 and T ≥ 2.

Thus (2.15) holds with f(α, T ) = W (α, T ) (note that W (α, T ) is nonnegative). Now assume
that (C) is true. Since W (v, T ) = W1(v, T ) + ω(v, T ), we see from (3.4), (3.6), and (C) that
(3.10) holds as T →∞ for any fixed β > 0. By (3.10) and (3.11) the hypotheses of Lemma 2.2
are satisfied with f(α, T ) = W (α, T ) and r(α) = r1(α) = e−bα. Hence we have (3.9). It now
follows from (3.9) and (3.7) that (3.8) holds for all b > 0. Applying Lemma 2.1, we finally obtain
(A).

To prove (A) ⇒ (D), we use the formula (6.14) of [9] (see also (2.3) and (2.5) of [10]), namely∫ ∞

−∞
F (α, T )

(
sin(πβα)
πβα

)2

dα =
1
β
N∗(T ) +

2
β2

∫ β

0

N(T, u) du+O

(
β(1 + β)
log2 T

)
.

Since F (α, T ) = F (−α, T ), we can also write this as

(3.12)
β

2
N∗(T ) +

∫ β

0

N(T, u) du =
∫ ∞

0

F (α, T )
(

sin(πβα)
πα

)2

dα+O

(
β3(1 + β)

log2 T

)
.

Suppose that (A) holds. By (3.1) and (A) we may use Lemma 2.2 with f(α) = F (α), r(α) =
(sin(πβα)/πα)2 and r1(α) = (πα)−2 to obtain

(3.13) lim
T→∞

∫ ∞

0

F (α, T )
(

sin(πβα)
πα

)2

dα =
∫ ∞

0

(
sin(πβα)

πα

)2

dµ(α).

From this and (3.12) we obtain (D). This proves (A) ⇒ (D).

To prove that (D) ⇒ (A), suppose that (D) holds. Then by (3.12) we have (3.13). We may
therefore apply Lemma 2.3 to obtain (A). This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

Recall that g(α) = |α| for |α| ≤ 1, and is defined for all R by periodicity. Let ν be the
measure on [0,∞) defined by ν(0) = 1

2 , ν(2n) = 1 for all integers n ≥ 1, and dν(α) = g(α) dα
for 2n < α < 2n + 2, n ≥ 0. When µ = ν, we can easily evaluate the expressions in (A), (B),
and (C) involving µ and see that the statements (A), (B), and (C) are the same as (A2), (B2),
and (C2), respectively. Thus (A2), (B2), and (C2) are equivalent statements by Theorem 1.2.
However, showing that they are equivalent to (D2) is not as straightforward. To do this, we will
define a new statement (D′) and show that, when µ = ν, the statement (D) is equivalent to (D′),
which in turn is equivalent to (D2).
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Lemma 4.1. Assume RH. Let µ be a positive Borel measure on [0,∞) for which the function
α 7→ min{1, α−2} is integrable over [0,∞), and define

ϕ(β) = ϕ(β, µ) =
∫ ∞

0

(
sinπβα
πα

)2

dµ(α).

If ϕ(β) is absolutely continuous on each closed (finite) subinterval of [0,∞), then (D) is equivalent
to

(D′)
1
2
N∗(T ) +N(T, β) = ϕ′(β) + o(1)

as T →∞, for all fixed β > 0 for which the derivative exists.

Proof. Suppose that ϕ(β) is absolutely continuous on any closed subinterval of [0,∞). Then
ϕ′(β) exists almost everywhere. Also, ϕ(β) =

∫ β

0
ϕ′(x) dx for all β ≥ 0. To show that (D) ⇒

(D′), assume that (D) holds and suppose that β > 0 is a real number such that ϕ′(β) exists.
Since N(T, u) is an increasing function of u for fixed T , we have

1
h

∫ β

β−h

N(T, u) du ≤ N(T, β) ≤ 1
h

∫ β+h

β

N(T, u) du

for all small enough h > 0. It follows from this and (D) that

ϕ(β)− ϕ(β − h)
h

+ o(1) ≤ 1
2
N∗(T ) +N(T, β) ≤ ϕ(β + h)− ϕ(β)

h
+ o(1).

Making h small enough, we obtain (D′).

Now suppose that (D′) holds. To show that (D′) ⇒ (D), we use the estimate

(4.1) N(T, β) � 1 + β uniformly for β > 0 and large T,

which follows from Lemma 9 of [12]. By (4.1) and (D′), if β > 0 is such that ϕ′(β) exists, then

N∗(T ) � 1 + β + |ϕ′(β)|.

Hence, since the left-hand side does not depend on β, we have

N∗(T ) � 1.

This and (4.1) gives

N∗(T )
2

+N(T, u) � 1 + u uniformly for u > 0 and large T.

Thus, by Lebesgue’s dominated convergence theorem and (D′) we have

lim
T→∞

∫ β

0

(
N∗(T )

2
+N(T, u)

)
du =

∫ β

0

ϕ′(u) du = ϕ(β),

which is (D). This proves that (D′) ⇒ (D), thereby completing the proof of the lemma. �

To show that Lemma 4.1 is applicable when µ = ν, we need to show that ϕ(β, ν) is absolutely
continuous. We do this by explicitly calculating ϕ(β, ν) and computing its derivative. By the
definition of ν (see the beginning of this section), we have

(4.2) ϕ(β, ν) =
∫ ∞

0

(
sinπβα
πα

)2

dν(α) =
β2

2
+

∞∑
n=1

(
sin 2πβn

2πn

)2

+
∫ ∞

0

g(α)
(

sinπβα
πα

)2

dα.
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To evaluate the sum on the right-hand side of (4.2) we integrate the Fourier series expansion of
x− [x]− 1

2 term-by-term to see that

(4.3)
(y − [y])− (y − [y])2

2
=

∞∑
n=1

(
sinπny
πn

)2

for all real y. (This can also be obtained by directly computing the Fourier series expansion of
the left-hand side of (4.3).) It follows from (4.3) that the sum on the right-hand side of (4.2)
equals

(4.4)
∞∑

n=1

(
sin 2πβn

2πn

)2

=
(2β − [2β])− (2β − [2β])2

8
.

To evaluate the integral on the right-hand side of (4.2), we expand g as a Fourier series:

(4.5) g(α) =
∞∑

n=−∞

1
2

(
1− e−πin

πin

)2

eπinα.

Use this and the Fourier transform pair

(4.6) r(α) =
(

sin(πβα)
πβα

)2

and r̂(u) =
1
β

max
{

0, 1− |u|
β

}
to write ∫ ∞

−∞
g(α)

(
sin(πβα)
πβα

)2

dα =
∞∑

n=−∞

1
2

(
1− e−πin

πin

)2 ∫ ∞

−∞

(
sin(πβα)
πβα

)2

eπinα dα

=
1
2β

− 1
π2β

∑
1≤n≤2β

(
1− (−1)n

n

)2(
1− n

2β

)
.

(4.7)

The interchange in order of summation is justified by absolute convergence. Inserting (4.4) and
(4.7) in (4.2), we obtain

ϕ(β, ν) =
β

4
+
β2

2
+

(2β − [2β])− (2β − [2β])2

8

− 1
2π2

∑
0<n<2β

(
1− (−1)n

n

)2 (
β − n

2

)
.

(4.8)

We see from this that ϕ(β, ν) is differentiable at each β > 0 that is not a half-integer. Thus
ϕ(β, ν) is absolutely continuous on every closed subinterval of [0,∞).

It now follows that we may apply Lemma 4.1 with µ = ν. Using (4.8), we obtain

Lemma 4.2. Assume RH. Denote [β] by m. When µ = ν, the statement (D) is equivalent to

1
2
N∗(T ) +N(T, β) ∼


m+

1
2
− 1

2π2

m−1∑
n=0

4
(2n+ 1)2

if m < β < m+ 1
2 ,

m+ 1− 1
2π2

m∑
n=0

4
(2n+ 1)2

if m+ 1
2 < β < m+ 1

as T →∞, for all fixed β > 0 not a half-integer.

(4.9)
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To complete the proof of Theorem 1.3, we need to show that (4.9) is equivalent to (D2).
Observe that if both N∗(T ) ∼ 1 and (4.9) are true, then (D2) holds. Similarly, if both N∗(T ) ∼ 1
and (D2) hold, then (4.9) is true. Thus, to prove that (4.9) is equivalent to (D2), it suffices to
show that each of them implies N∗(T ) ∼ 1.

First we prove that (4.9) implies N∗(T ) ∼ 1. Let N(T ) denote the number of zeros of ζ(s)
with 0 < γ ≤ T , counting multiplicity. If λ > 0, then by the definition of N∗(T ), the definition
of F (α, T ), and the Fourier transform pair (4.6), we have

(
T

2π
log T

)−1

N(T ) ≤ N∗(T ) ≤
(
T

2π
log T

)−1 ∑
0<γ,γ′≤T

(
sin λ

2 (γ − γ′) log T
λ
2 (γ − γ′) log T

)2

w(γ − γ′)

=
∫ ∞

0

F (α, T ) · 2
λ

max
{

0, 1− α

λ

}
dα.

(4.10)

Now suppose that (4.9) is true. Then by Lemma 4.2, the statement (D) holds with µ = ν. Hence,
by Theorem 1.2, the statement (A) is true with µ = ν. It follows from this and Lemma 2.2 with
f(α, T ) = F (α, T ), µ = ν, r(α) = 2

λ max
{
0, 1− α

λ

}
, and r1(α) = 0, that

(4.11) lim
T→∞

∫ ∞

0

F (α, T ) · 2
λ

max
{

0, 1− α

λ

}
dα =

∫ ∞

0

2
λ

max
{

0, 1− α

λ

}
dν(α).

By a straightforward calculation using the definition of ν, we may write the right-hand side of
(4.11) as∫ ∞

0

2
λ

max
{

0, 1− α

λ

}
dν(α) =

=



ϑ

λ2
+

ϑ3

3λ2
+

[λ/2]−1∑
n=0

(
4
λ
− 8n+ 4

λ2

)
if 0 ≤ ϑ ≤ 1,

− ϑ

λ2
+

2ϑ2

λ2
− ϑ3

3λ2
+

2
3λ2

+
[λ/2]−1∑

n=0

(
4
λ
− 8n+ 4

λ2

)
if 1 ≤ ϑ < 2,

(4.12)

where ϑ = 2
(

λ
2 −

[
λ
2

])
. Using the fact that the sum of the first m positive integers is m(m+1)/2

and the fact that ϑ is bounded, we easily see that the limit of (4.12) as λ→∞ is equal to 1. It
follows from this and (4.11) that making λ large enough in (4.10) gives(

T

2π
log T

)−1

N(T ) ≤ N∗(T ) ≤ 1 + o(1)

as T →∞. From this and the fact that

(4.13) N(T ) =
T

2π
log

T

2πe
+ O(log T )

(see [19], Theorem 9.4), we obtain N∗(T ) ∼ 1 as T → ∞. This proves that (4.9) implies
N∗(T ) ∼ 1.

Next we show that (D2) implies N∗(T ) ∼ 1. First split the integral∫ ∞

0

F (α, T )
(

sinπβα
πα

)2

dα
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into two integrals, one over [0, 1], and the other over [1,∞]. For the integral over [1,∞] we use
(3.1) and integration by parts, as in (2.43), to see that∫ ∞

1

F (α, T )
(

sinπβα
πα

)2

dα �
∫ ∞

1

F (α, T )
dα

α2
� 1.

For the integral over [0, 1] we use (1.1) to see that∫ 1

0

F (α, T )
(

sinπβα
πα

)2

dα ∼ β2

2
+
∫ 1

0

α

(
sinπβα
πα

)2

dα.

If β ≥ 1, then we may write the latter integral as∫ 1

0

α

(
sinπβα
πα

)2

dα =
∫ 1/β

0

+
∫ 1

1/β

=
∫ 1

0

u

(
sinπu
πu

)2

du +
∫ 1

1/β

≤ O(1) +
1
π2

∫ 1

1/β

dα

α
=

log β
π2

+ O(1).

Hence for a fixed β ≥ 2, say, we have

(4.14)
∫ ∞

0

F (α, T )
(

sinπβα
πα

)2

dα =
1
2
β2 +O(log β) + o(1).

as T →∞. The implied constant in the O(log β) term is absolute. We insert (4.14) into (3.12)
and multiply through by 2/β to obtain

(4.15) N∗(T ) +
2
β

∫ β

0

N(T, u) du = β +O

(
log β
β

)
+ o(1)

as T → ∞ for all fixed β ≥ 2. Now suppose that (D2) holds. By (4.8), the right-hand side
of (D2) is equal to the derivative of ϕ(β, ν) − β/2. From this fact, (4.1), (D2), and Lebesgue’s
dominated convergence theorem we have∫ β

0

N(T, u) du ∼ − β

4
+
β2

2
+

(2β − [2β])− (2β − [2β])2

8

− 1
2π2

∑
0<n<2β

(
1− (−1)n

n

)2 (
β − n

2

)
.

Inserting this into (4.15), we obtain

N∗(T ) ∼ 1
2
− (2β − [2β])− (2β − [2β])2

4β

+
1
π2

∑
0<n<2β

(
1− (−1)n

n

)2(
1− n

2β

)
+O

(
log β
β

)(4.16)

as T →∞ for all fixed β ≥ 2. By the monotone convergence theorem and the special case α = 0
of (4.5), we have

lim
β→∞

1
π2

∑
0<n<2β

(
1− (−1)n

n

)2(
1− n

2β

)

=
1
π2

∞∑
n=1

(
1− (−1)n

n

)2

=
1
2
− g(0) =

1
2
.

We now see that N∗(T ) ∼ 1 on taking β large enough in (4.16). This proves that (D2) implies
N∗(T ) ∼ 1. The proof of Theorem 1.3 is now complete.
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Remark 1 : As we mentioned in Section 1, Theorem 1.2 may be used to prove Theorem 1.1 by
taking µ to be the measure defined by µ(0) = 1/2, dµ(α) = αdα for 0 < α ≤ 1, and dµ(α) = dα
for α > 1. The process in doing this is similar to the one in this section.

Remark 2 : A stronger conclusion holds in Lemma 2.2 in the special case when r(α) = (sinβα/α)2

and r1(α) = α−2. Namely, the conclusion (2.17) of Lemma 2.2 holds uniformly for all β in any
fixed closed interval. It follows from this and our proof of Theorem 1.2 that if (A) holds, then (D)
holds uniformly for all β in any fixed, closed interval. Therefore, by our proof of Lemma 4.1, if
(A) holds, then (D′) holds uniformly for all β in any fixed, closed subinterval of an open interval
on which ϕ′(β) exists and is continuous. Hence, by our proof of Theorem 1.3, if (D2) holds, then
it holds uniformly for all β in any fixed closed subinterval of [0,∞) not containing half-integers.
Similarly, if (D1) holds, then it holds uniformly on any fixed closed interval. This uniformity in
(D1) was first observed by Gallagher and Mueller [8].

5. The Alternative Hypothesis

In this section we prove Proposition 5.1, which states that the Alternative Hypothesis and
the assumption that N∗(T ) ∼ 1 imply (A2). We also prove Theorem 1.4. First, we need the
following lemma.

Lemma 5.1. Suppose the Alternative Hypothesis is true. There is a function Ψ(T ) such that
Ψ(T ) → ∞ as T → ∞, Ψ(T ) = o(log T ), and such that the zeros of ζ(s) have the following
property: if γ and γ′ are ordinates of zeros for which

(5.1)
T

log2 T
< γ, γ′ ≤ T and

∣∣∣∣γ − γ′

2π
log T

∣∣∣∣ ≤M,

then there is an integer k such that

(γ − γ′) log T = πk +O

(
|γ − γ′|

(
Ψ(T ) +

M log T
T

+ log log T
))

.

Proof. Recall the definition of ψ from the statement of the Alternative Hypothesis. Let Ψ(T ) =
max{ψ(γ) : T (log T )−2 < γ ≤ T}. The facts that Ψ(T ) →∞ as T →∞ and Ψ(T ) = o(log T )
follow from the same properties of ψ. Let γ and γ′ be as in the hypothesis of the Lemma.
Suppose, without loss of generality, that γ′ = γn and γ = γm with m ≥ n. From (1.4) and the
definition of Ψ(T ), it follows that

γ̃ − γ̃′ =
m−1∑
`=n

(γ̃`+1 − γ̃`)

=
m−1∑
`=n

(
k`

2
+O((γ`+1 − γ`)ψ(γ`))

)
=
k

2
+ O(|γ − γ′|Ψ(T )),

(5.2)

where k =
∑m−1

`=n k`. Now by (5.1), we have

γ log
γ

γ′
≤ γ

(
γ − γ′

γ′

)
=
(

1 +
γ − γ′

γ′

)
(γ − γ′) ≤

(
1 +

2πM log T
T

)
(γ − γ′).
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Hence

γ̃ − γ̃′ =
1
2π

(γ − γ′) log γ′ +
γ

2π
log

γ

γ′

=
1
2π

(γ − γ′)(log T +O(log log T )) +O

((
1 +

2πM log T
T

)
(γ − γ′)

)
.

This and (5.2) complete the proof of the Lemma. �

We will prove Proposition 5.1 by first showing that if ν is the measure defined at the beginning
of Section 4, then

(5.3)
∫ d

0

∫ t

0

F (α, T ) dα dt =
∫ d

0

ν[0, t] dt + o(1)

as T →∞ for any fixed d > 0. To prove this, we use the assumption that N∗(T ) ∼ 1 to handle
the “diagonal terms” that have γ = γ′ in the definition of F (α, T ). For the “off-diagonal terms”
with γ 6= γ′, we use the Alternative Hypothesis, as follows.

Lemma 5.2. Assume RH. Define

G(α, T ) =
(
T

2π
log T

)−1 ∑
0<γ′<γ≤T

T iα(γ−γ′)w(γ − γ′).

If the Alternative Hypothesis is true, then∫ d+2

c+2

∫ t

0

G(α, T ) dα dt =
∫ d

c

∫ t

0

G(α, T ) dα dt + o(1)

as T →∞, for all fixed c ≤ d.

Proof. By a change of variable, the conclusion of the Lemma is equivalent to∫ d

c

∫ t+2

t

G(α, T ) dα dt = o(1)

as T → ∞, for all fixed c ≤ d. To prove this formula, we integrate the definition of G(α, T )
term-by-term to see that∫ d

c

∫ t+2

t

G(α, T ) dα dt

=
(
T

2π
log T

)−1 ∑
0<γ′<γ≤T

T i(d+2)(γ−γ′) − T i(c+2)(γ−γ′) − T id(γ−γ′) + T ic(γ−γ′)

(i(γ − γ′) log T )2
w(γ − γ′).

Let M > 1 and write the above equation as

(5.4)
∫ d

c

∫ t+2

t

G(α, T ) dα dt = Z0 + Z1 + Z2,

where Z0 is the sum of the terms with γ′ ≤ T (log T )−2, Z1 is the sum of those that satisfy the
conditions (5.1), and Z2 is the sum of the remaining terms.

To bound Z0, observe that

T i(d+2)(γ−γ′) − T i(c+2)(γ−γ′) − T id(γ−γ′) + T ic(γ−γ′)

(i(γ − γ′) log T )2
=
∫ d

c

∫ t+2

t

T iα(γ−γ′) dα dt,
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which has absolute value at most 2(d− c) since |T iα(γ−γ′)| = 1. Thus

(5.5) Z0 �
(
T

2π
log T

)−1 ∑
γ′≤ T

log2 T

∑
0<γ≤T

w(γ − γ′).

Using

(5.6) N(T + 1)−N(T ) � log T

(see [19], Theorem 9.2), we see that ∑
0<γ≤T

w(γ − t) � log T

uniformly for all real t. From this, (4.13), and (5.5), it follows that

(5.7) Z0 � 1
log T

.

To estimate Z1, let γ and γ′ satisfy the conditions (5.1) and let α be a real number. By
Lemma 5.1, we can write

T i(α+2)(γ−γ′) − T iα(γ−γ′) = T iα(γ−γ′)
(

exp(i2(γ − γ′) log T )− 1
)

= T iα(γ−γ′)
(

exp(i2πk + iE)− 1
)

= T iα(γ−γ′)
(

exp(iE)− 1
)
,

where E = E(γ, γ′, T ) is a real number such that

E = O

(
|γ − γ′|

(
Ψ(T ) +

M log T
T

+ log log T
))

.

From the identity

exp(iE)− 1 = i

∫ E

0

eiθ dθ

and the fact that |eiθ| = 1, we see that

exp(iE)− 1 � |γ − γ′|
(

Ψ(T ) +
M log T

T
+ log log T

)
.

Therefore

T i(α+2)(γ−γ′) − T iα(γ−γ′) � |γ − γ′|
(

Ψ(T ) +
M log T

T
+ log log T

)
.

We now express each term in Z1 as an integral, and then insert the above estimate, as follows.
Write

Z1 =
(
T

2π
log T

)−1 ∑
T

log2 T
<γ′<γ≤T

0<
∣∣∣ γ−γ′

2π log T
∣∣∣≤M

∫ d

c

T i(t+2)(γ−γ′) − T it(γ−γ′)

i(γ − γ′) log T
dt w(γ − γ′)

�
(
T

2π
log T

)−1 ∑
T

log2 T
<γ,γ′≤T

0<
∣∣∣ γ−γ′

2π log T
∣∣∣≤M

(
Ψ(T )
log T

+
M

T
+

log log T
log T

)
w(γ − γ′).
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Thus, since w(γ − γ′) ≤ 1, we see that

Z1 � N(T,M)
(

Ψ(T )
log T

+
M

T
+

log log T
log T

)
.

From this, (4.1), and the fact that M > 1, it follows that

(5.8) Z1 � MΨ(T )
log T

+
M2

T
+
M log log T

log T
.

To bound Z2, we use the trivial estimate

|T i(d+2)(γ−γ′) − T i(c+2)(γ−γ′) − T id(γ−γ′) + T ic(γ−γ′)| ≤ 4

to write

Z2 �
(
T

2π
log T

)−1 ∑
T

log2 T
<γ,γ′≤T

M<
∣∣∣ γ−γ′

2π log T
∣∣∣

1
((γ − γ′) log T )2

=
(
T

2π
log T

)−1 ∞∑
`=0

∑
T

log2 T
<γ,γ′≤T

2`M<
∣∣∣ γ−γ′

2π log T
∣∣∣≤2`+1M

1
((γ − γ′) log T )2

�
(
T

2π
log T

)−1 ∞∑
`=0

∑
0<γ,γ′≤T

0<
∣∣∣ γ−γ′

2π log T
∣∣∣≤2`+1M

1
(2`M)2

=
∞∑

`=0

2N(T, 2`+1M)
(2`M)2

.

Therefore, by (4.1), we obtain

(5.9) Z2 �
∞∑

`=0

2`+1M

(2`M)2
� 1

M
.

It now follows from (5.4), (5.7), (5.8), and (5.9) that∫ d

c

∫ t+2

t

G(α, T ) dα dt � MΨ(T )
log T

+
M2

T
+
M log log T

log T
+

1
M
.

We end the proof of the Lemma upon making M large and taking T →∞. �

Now we can prove the claim we made at the beginning of this section.

Proposition 5.1. Assume RH and suppose that N∗(T ) ∼ 1. If the Alternative Hypothesis is
true, then (A2) holds.

Proof. We first prove (5.3). If 0 ≤ d ≤ 1, then we integrate (1.1) twice to see that

(5.10)
∫ d

0

∫ t

0

F (α, T ) dα dt =
d

2
+

d3

6
+ o(1).

From the definition of F (α, T ) in Section 1 and the definition of G(α, T ) in Lemma 5.2, we have

(5.11) F (α, T ) = N∗(T ) +G(α, T ) +G(α, T ),
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where z denotes the complex conjugate of z. Inserting (5.11) in (5.10) and using our assumption
that N∗(T ) ∼ 1, we obtain

(5.12)
∫ d

0

∫ t

0

(G+G)(α, T ) dα dt =
d

2
+
d3

6
− d2

2
+ o(1)

as T →∞ for 0 ≤ d ≤ 1. Now let d > 1 and set m = [(d− 1)/2]. Write

(5.13)
∫ d

0

(∫ t

0

G+Gdα

)
dt =

∫ 1

0

+
∫ 3

1

+
∫ 5

3

+ · · ·+
∫ d

2m+1

.

We use Lemma 5.2 repeatedly on the right-hand side of (5.13) to obtain∫ d

0

(∫ t

0

G+Gdα

)
dt =

∫ 1

0

+
∫ 1

−1

+
∫ 1

−1

+ · · ·+
∫ d−2m−2

−1

+o(1).

Since G+G is an even function of α, we have
∫ 1

−1
= 0 and∫ 1

0

+
∫ d−2m−2

−1

=
∫ 1

0

+
∫ 0

−1

+
∫ d−2m−2

0

=
∫ |d−2m−2|

0

.

Thus ∫ d

0

(∫ t

0

G+Gdα

)
dt =

∫ |d−2m−2|

0

(∫ t

0

G+Gdα

)
dt+ o(1).

Since 0 ≤ |d− 2m− 2| ≤ 1, it follows from this and (5.12) that∫ d

0

(∫ t

0

G+Gdα

)
dt =

|d− 2m− 2|
2

+
|d− 2m− 2|3

6
− |d− 2m− 2|2

2
+ o(1).

By this, (5.11), and our assumption that N∗(T ) ∼ 1, we have∫ d

0

∫ t

0

F (α, T ) dα dt

=
d2

2
+
|d− 2m− 2|

2
+
|d− 2m− 2|3

6
− |d− 2m− 2|2

2
+ o(1)

(5.14)

as T →∞, for all fixed d > 1. Notice that (5.14) reduces to (5.10) when 0 ≤ d ≤ 1. Thus (5.14)
is true for all fixed d ≥ 0. By a straightforward computation using the definition of ν, we see
that the right-hand side of (5.14) is equal to

∫ d

0
ν[0, t] dt+ o(1). This proves (5.3).

Now we complete the proof of the proposition. Since F (α, T ) is nonnegative, we may write

1
h

∫ d

d−h

(∫ t

0

F dα

)
dt ≤

∫ d

0

F (α, T ) dα ≤ 1
h

∫ d+h

d

(∫ t

0

F dα

)
dt

for d > 0 and small enough h > 0. Thus by (5.3) we have

1
h

∫ d

d−h

ν[0, t] dt+ o(1) ≤
∫ d

0

F (α, T ) dα ≤ 1
h

∫ d+h

d

ν[0, t] dt+ o(1)

as T →∞ for fixed d > 0 and fixed small h > 0. By making h small enough, we obtain (A) with
µ = ν, that is, we obtain (A2). �

Before we prove Theorem 1.4, we need to make a few definitions. Recall from Section 1 that
we used 0 < γ1 ≤ γ2 ≤ · · · to denote the sequence of ordinates of all the zeros above the real
line, counting multiplicity. We also defined Bk/2(T ) as the set of γn ≤ T such that k/2 is closest
among all half-integers to γ̃n+1 − γ̃n, and we wrote

pk/2 = pk/2(T ) def=
(
T

2π
log T

)−1

|Bk/2(T )|.
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It is possible that γn belongs to two of the sets Bk/2(T ); this happens when γ̃n+1 − γ̃n equals
the midpoint between two consecutive half-integers. Thus, for convenience, we will deal instead
with the sets

B′k/2(T ) def= {γn ≤ T : k
2 −

1
4 ≤ γ̃n+1 − γ̃n <

k
2 + 1

4}, k = 0, 1, 2, . . . ,

which are pairwise disjoint. If γn is in B′k/2(T ), then, without loss of generality, we may take
kn = k in (1.4). With this convention, we can write

(5.15) B′k/2(T ) = {γn ≤ T : kn = k}.

Note that B′k/2(T ) is a subset of Bk/2(T ), and an ordinate γn that is in Bk/2(T ) is not in B′k/2(T )
if and only if γ̃n+1 − γ̃n = k

2 + 1
4 . Thus if γn is in Bk/2(T ) and not in B′k/2(T ), then kn = k + 1

and so by (1.4) we have

(5.16)
1
4

= |γ̃n+1 − γ̃n −
kn

2
| � (γn+1 − γn)ψ(γn).

We will use this and the following Lemma to show that B′k/2(T ) has essentially the same size as
Bk/2(T ).

Lemma 5.3. Assume RH and suppose the Alternative Hypothesis is true. If δ > 0 is fixed, then

#{0 < γn ≤ T : (γn+1 − γn)ψ(γn) ≥ δ} = o(T log T ).

Proof. Recall the properties of the function ψ(γ) from the statement of the Alternative Hypoth-
esis. Define

(5.17) Ψ0(T ) = max
γn≤T

ψ(γn).

It is immediate from the properties of ψ(γ) that Ψ0(T ) →∞ and Ψ0(T ) = o(log T ) as T →∞.
It follows from (5.17) that

(5.18) #{0 < γn ≤ T : (γn+1 − γn)ψ(γn) ≥ δ} ≤ #{0 < γn ≤ T : γn+1 − γn ≥ λ/ log T},
where λ = δ log T/Ψ0(T ). By a result of Fujii (see §9.25 of [19]), we have

(5.19) #{0 < γn ≤ T : γn+1 − γn ≥ λ/ log T} � N(T ) exp(−Aλ1/2(log λ)−1/4).

The Lemma now follows from (5.18), (5.19), (4.13), and the fact that λ→∞ as T →∞. �

By (5.16) and Lemma 5.3, we see that there are at most o(T log T ) ordinates γn that are in
Bk/2(T ) and not in B′k/2(T ). Hence

(5.20) pk/2 = p′k/2 + o(1)

as T →∞.

We now prove Theorem 1.4. By (1.4), if kn = 0 then

(γn+1 − γn)
log γn

2π
≤ γ̃n+1 − γ̃n � (γn+1 − γn)ψ(γn).

This implies that log γn � ψ(γn) since γn+1 − γn > 0 by our hypothesis that all the zeros are
simple. Since ψ(γ) = o(log γ), it follows that kn = 0 for at most finitely many n. Thus

(5.21) |B′0(T )| = O(1),

and so p0 = o(1) as T →∞ by (5.20).

We next compute upper bounds for pk/2 when k ≥ 1. By (4.13) there exists a positive constant
Q for which

(5.22) N(T +Q)−N(T ) > 0
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for all T > 0. Let δ > 0 be small enough so that k/2 is the only half-integer in the interval
[k/2−δ, k/2+δ]. Define Ck/2(T ) to be the subset of B′k/2(T ) for which T (log T )−2 < γn ≤ T−Q
and |γ̃n+1 − γ̃n − kn/2| < δ/2. Note that by (4.13), (5.6), and Lemma 5.3 we have

(5.23) |B′k/2(T )| = |Ck/2(T )| + o(T log T ).

Furthermore, define

(5.24) Ek/2(T ) =
{

(γ, γ′) : 0 < γ, γ′ ≤ T,
2π

log T

(
k

2
− δ

)
< γ − γ′ ≤ 2π

log T

(
k

2
+ δ

)}
.

We will show for large T that if γn is in Ck/2(T ) then (γn+1, γn) is in Ek/2(T ). The mean value
theorem of differential calculus gives that there is a real number x between γn and γn+1 such
that

γn+1 log γn+1 − γn log γn = (γn+1 − γn)(log x+ 1).
Therefore

(5.25) (γn+1 − γn)
log T
2π

= (γ̃n+1 − γ̃n)
(

log T
log x+ 1

)
.

If γn is in Ck/2(T ), then |γ̃n+1 − γ̃n − k/2| < δ/2 by the definition of Ck/2(T ) and (5.15); thus(
k

2
− δ

2

)
(1− o(1)) < (γ̃n+1 − γ̃n)

(
log T

log x+ 1

)
<

(
k

2
+
δ

2

)
(1 + o(1))

as T →∞. From this and (5.25), it follows that
k

2
− δ < (γn+1 − γn)

log T
2π

<
k

2
+ δ

for large T . Moreover, from the definition of Ck/2(T ), we have γn ≤ T − Q and therefore
γn+1 ≤ T by (5.22). Hence, if γn is in Ck/2(T ) and T is large enough, then (γn+1, γn) is in
Ek/2(T ). Thus |Ck/2(T )| ≤ |Ek/2(T )| for large enough T . It follows now from (5.24) and (D2),
which holds by Corollary 1.1, that

|Ck/2(T )| ≤ |Ek/2(T )| ∼
(
T

2π
log T

)
·


1
2

if k is even,

1
2
− 2

π2k2
if k is odd.

From this, (5.23), and (5.20), we now deduce (1.8), the upper bound for p1 in (1.7), and that
the right-hand side of (1.6) is an upper bound for p1/2.

Next we prove the lower bound for p1/2. To do this, we first consider the set E1/2(T ) defined
by (5.24) with k = 1. Write the set as a disjoint union

(5.26) E1/2(T ) = D1/2(T ) ∪ V1/2(T ),

where D1/2(T ) contains all the pairs (γ, γ′) in E1/2(T ) that have γ′ ≤ T (log T )−2 and V1/2(T )
contains the rest. We claim that if (γ, γ′) is in V1/2(T ) then γ′ is in B′1/2(T ), provided T is large
enough. To prove this, let (γm, γn) be in V1/2(T ) and note that m > n since γm > γn by the
definition of E1/2(T ). By Lemma 5.1 and the fact that γm − γn � 1/ log T , we have

(γm − γn)
log T
2π

=
j

2
+ o(1)

for some integer j. Since (γm, γn) is in E1/2(T ), we must have j = 1 for T large enough.
From the proof of Lemma 5.1, we see that j =

∑m−1
`=n k`. By (5.21), (5.15), and the fact that

γn > T (log T )−2, we see that if T is large enough then k` > 0 for all ` ≥ n. Hence, since j = 1,
the only possible values for m and the k` are m = n+ 1 and kn = 1. Therefore γn is in B′1/2(T )
by (5.15), and we have proved our claim.
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We have shown that the map (γ, γ′) 7→ γ′ from V1/2(T ) is into B′1/2(T ). This map is injective
because of our assumption that all zeros are simple. Hence

(5.27) |V1/2(T )| ≤ |B′1/2(T )|.

To estimate the size of the set D1/2(T ) in (5.26), write

|D1/2(T )| ≤
∑

0<γ′< T
log2 T

∑
( 1

2−δ) 2π
log T <(γ−γ′)≤( 1

2+δ) 2π
log T

1

≤
∑

0<γ′< T
log2 T

(N(γ′ + 1)−N(γ′))

� T

for large enough T , by (4.13) and (5.6). From this, (5.27), and (5.26), it follows that

|E1/2(T )| ≤ O(T ) + |B′1/2(T )|.

Hence, by (5.24) and (D2), we have(
T

2π
log T

)(
1
2
− 2
π2

)
∼ |E1/2(T )| ≤ O(T ) + |B′1/2(T )|.

From this and (5.20), it follows that
1
2
− 2
π2

+ o(1) ≤ p1/2.

Combining this with the upper bound for p1/2, we obtain (1.6).

To prove the lower bound for p1, we need the formulas

(5.28)
∞∑

k=0

p′k/2 = 1 + o(1)

(5.29)
∞∑

k=0

(
k

2

)
p′k/2 = 1 + o(1).

The first formula follows from (4.13) and the disjoint union
∞⋃

k=0

B′k/2(T ) = {γn : γn ≤ T}.

To prove the second, observe that by (5.15) we have

(5.30)
∞∑

k=0

(
k

2

)
|B′k/2(T )| =

∑
γn≤T

kn

2
.

Let Ψ0(T ) be as defined in (5.17). By (1.4), we have∑
γn≤T

kn

2
=

∑
γn≤T

{
γ̃n+1 − γ̃n − O ((γn+1 − γn)ψ(γn))

}
= γ̃m+1−γ̃1 +O ((γm+1 − γ1)Ψ0(T )) ,

where m is the largest integer for which γm ≤ T . It follows from (5.22) that T < γm+1 ≤ T +Q
and so

γ̃m+1 ∼ T

2π
log T and γm+1 ∼ T

as T →∞. Hence ∑
γn≤T

kn

2
= (1 + o(1))

T

2π
log T + O(TΨ0(T )).



30 SIEGFRED BALUYOT

Since Ψ0(T ) = o(log T ), it follows that∑
γn≤T

kn

2
= (1 + o(1))

T

2π
log T

as T →∞. From this and (5.30), we deduce (5.29).

Now we can prove the lower bound for p1. The following elegant trick is due to Yoonbok Lee.
Multiplying both sides of (5.28) by 3/2 and subtracting the respective sides of (5.29) from the
result, we obtain(

3
2

)
p′0 + p′1/2 +

(
1
2

)
p′1 −

(
1
2

)
p′2 − p′5/2 − · · · =

1
2

+ o(1).

Since p′k/2 ≥ 0 for all k, it follows that(
3
2

)
p′0 + p′1/2 +

(
1
2

)
p′1 ≥ 1

2
+ o(1).

Therefore, by (5.20), we have(
3
2

)
p0 + p1/2 +

(
1
2

)
p1 ≥ 1

2
+ o(1).

The lower bound for p1 in (1.7) now follows by inserting p0 = o(1) and our estimate (1.6) for
p1/2 into the inequality and rearranging. This completes the proof of Theorem 1.4.

Remark 3 : The upper bounds in (1.6), (1.7), and (1.8) can be proved using the assumption that
N∗(T ) ∼ 1 instead of the stronger assumption that all the zeros are simple. To do this, we
only need to define the sets Ek/2(T ) so that they count multiplicity. However, we did use the
hypothesis that all the zeros are simple to prove the lower bound for p1/2. This is because we
required Ek/2(T ) to count multiplicity to be able to use (D2), and at the same time we needed
Ek/2(T ) to not count multiplicity in proving (5.27).
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