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ABSTRACT. In this paper, we investigate the distribution of the imaginary parts
of zeros near the real axis of Dirichlet L-functions associated to the quadratic
characters χp(·) = (·|p) with p a prime number. Assuming the Generalized
Riemann Hypothesis (GRH), we compute the one-level density for the zeros
of this family of L-functions under the condition that the Fourier transform of
the test function is supported on a closed subinterval of (−1, 1). We also write
down the ratios conjecture for this family of L-functions a la Conrey, Farmer and
Zirnbauer and derive a conjecture for the one-level density which is consistent
with the main theorem of this paper and with the Katz-Sarnak prediction and
includes lower order terms. Following the methods of Özlük and Snyder, we
prove that GRH implies L( 1

2
, χp) 6= 0 for at least 75% of the primes.

1. INTRODUCTION

The distribution of the imaginary parts of zeros near the real axis of L-functions
is an important theme in analytic number theory. The zeros of Dirichlet L-functions
close to the real axis encapsulate important information about several number the-
oretical quantities. For example, the zeros of L(s, χ) near to s = 1/2, with χ
a quadratic character such that χ(−1) = −1, are related to the class numbers
of complex quadratic fields. In another direction, if L(s, χ) is the Dirichlet L-
function associated to the non-principal character χ modulo 4 then the first low
zeros of L(s, χ) dictate how the primes are distributed in residue classes 1 and 3
(mod 4). For further details on how low zeros of Dirichlet L-functions are related
to problems in number theory we refer the reader to [3, 4, 17, 22].

Özlük and Snyder [18, 19] have studied the distribution of low-lying zeros of
quadratic Dirichlet L-functions L(s, (d|·)) for all fundamental discriminants d that
have absolute value less than or equal to a given constant D. Their approach is to
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investigate the asymptotic properties of the form factor

F (α, D) =
(

1
2ζ(2)

K

(
1
2

)
D

)−1 ∑
d∈F(D)

∑
ρ(d)

K(ρ)Diαγ

as D → ∞. Here, K is a suitable kernel, the outer sum is over all fundamen-
tal discriminants d with |d| ≤ D, and the inner sum is over the non-trivial zeros
of L(s, χd), where χd(n) is defined by the Kronecker symbol (d|n). Assuming
the Generalized Riemann Hypothesis (GRH), Özlük and Snyder [18, Theorem 3]
established a formula for the one-level density for the zeros of L(s, χd), and im-
proved their formula in a subsequent paper [19, Corollary 2]. Their results agree
with those of Katz and Sarnak [14, page 16].

The formulas for the one-level density can be interpreted in the following form,
as discussed in Entin, Roditty-Gershon, and Rudnick [9]. To simplify the discus-
sion, we restrict to discriminants of the form 8d, with d > 0 an odd square-free
integer. Thus the corresponding quadratic character χ8d is primitive and even with
conductor 8d. We can define the linear statistic of zeros of L(s, χ8d), or one-level
density, by taking f to be an even Schwartz function and setting

Wf (d) =
∑

γ

f

(
γ log X

2π

)
,

where the sum is over all the zeros 1
2 + iγ of L(s, χ8d). Let D(X) denote the

set of odd square-free d in the interval [X, 2X]. Katz and Sarnak [14] proved
under the assumption of GRH that, in the limit as X → ∞, the expected value
of Wf (d) over the ensemble D(X) coincides with the analogous quantity for the
eigenphases of random matrices from unitary symplectic groups USp(2N) in the
limit as N →∞. In other words,

lim
X→∞

1
#D(X)

∑
d∈D(X)

Wf (d)Φ
(

d

X

)
=
∫ ∞

−∞
f(x)

(
1− sin 2πx

2πx

)
dx, (1)

under the restriction that the Fourier transform f̂(u) =
∫

R f(x)e−2πixudx is sup-
ported in the interval |u| < 2, where Φ is a smooth weight function supported in
the interval (1, 2) such that

∫
Φ(u)du = 1. An earlier version of this formula, in a

different form, was proved by Özlük and Snyder [18, 19]. The Density Conjecture
of Katz and Sarnak [14] is the conjecture that (1) holds for any test function f ,
without restrictions on its Fourier transform. This is still intractable with the cur-
rent technology, but in the last few years a lot of progress has been made towards
understanding the distribution of zeros of Dirichlet L-functions. These advances
include the works of Fiorilli and Miller [10], Gao [11], Hughes and Rudnick [12],
Levinson and Miller [15], Miller [16], and Rubinstein [20], among others.

In this paper we study the one-level density for the family of quadratic Dirichlet
L-functions associated to the characters χp defined by the Legendre symbol (·|p),
where p is a prime. One of the first authors to investigate this family of L-functions
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is Jutila [13]. Jutila proved an asymptotic formula for the first moment at the cen-
tral point for this family of L-functions. Studying this family of L-functions seems
to be more difficult than studying the family of quadratic Dirichlet L-functions
L(s, χ8d). One reason for this is that averages over prime numbers bring extra dif-
ficulties which we do not face when dealing with averages over square-free num-
bers. For example, asymptotic formulas for the first three moments of L(1

2 , χ8d)
overD(X) are known, with the first two essentially due to Jutila [13], and the third
due to Soundararajan [21]. However, an asymptotic formula is known only for the
first moment of L(1

2 , χp) over the primes p ≤ X [13]. In the function field set-
ting, Andrade and Keating [1] have established formulas for the first and second
moments of the analogue of this family.

The main aim of this paper is to initiate an investigation of the statistical distri-
bution of the zeros for the family of quadratic Dirichlet L-functions L(s, χp) and to
understand the main differences when dealing with L(s, χp) instead of L(s, χd).
We assume the Generalized Riemann Hypothesis (GRH) throughout. Our main
result is analogous to the formula (1), and holds for test functions f with Fourier
transform f̂(u) supported in the interval |u| < 1. We follow the approach of
Özlük and Snyder [18, 19] and develop a formula for the form factor for this fam-
ily. Whereas Özlük and Snyder average over all fundamental discriminants d, we
average over the more restricted set of primes p. Averaging over all fundamen-
tal discriminants allows one to use the Poisson summation formula, as Özlük and
Snyder [19] do. However, there does not seem to be a simple analogue for Poisson
summation when averaging over the primes. Thus we resort to directly estimat-
ing the contribution of the off-diagonal terms by bounding the character sums, as
in Lemma 2 in Section 5 below. This bound, on GRH, allows us to prove an as-
ymptotic formula for the one-level density of zeros when f̂(u) is supported in the
interval |u| < 1. It would be interesting to see how the support of f̂(u) can be
increased to deduce results of the same quality as Özlük and Snyder.

Aside from determining the one-level density of zeros for the family of L(s, χp),
we also use our formula for the form factor to prove that, under GRH, L(1

2 , χp) is
nonzero for at least 75% of the primes. The analogous conditional result for the
family of L(s, χd), due to Özlük and Snyder [19], is that L(1

2 , χd) is nonzero
for at least 93.75% of the fundamental discriminants d. Soundararajan [21] has
proved unconditionally that L(1

2 , χd) 6= 0 for at least 87.5% of the fundamental
discriminants. The current best unconditional nonvanishing result for the family of
L(s, χp) that has appeared in the literature is due to Jutila [13], who proved that
L(1

2 , χp) 6= 0 for infinitely many primes p ≡ v (mod 4) for each of v = 1 and
v = 3. Implicit in Jutila’s proof is the result that L(1

2 , χp) 6= 0 for � X/(log X)3

of the primes p ≤ X . Very recently, the second author and Kyle Pratt [2] have
shown unconditionally that L(1

2 , χp) 6= 0 for at least 9.64% of the primes p ≡ 1
(mod 8).
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Besides studying the distribution of zeros of the family of L-functions L(s, χp),
we also write down the ratios conjecture for this family, following the ideas of
Conrey, Farmer, and Zirnbauer [6] and Conrey and Snaith [7]. Using the ratios
conjecture, we infer a precise formula for the average one-level density, complete
with lower order terms. The consequence of the ratios conjecture is consistent with
the Katz-Sarnak prediction that the analogue of (1) holds for any test function f .
In future work, we plan to develop the ideas of this paper further and study the
n-level density of the same family of L-functions.

2. STATEMENT OF RESULTS

We use the standard notation s = σ + it for the real and imaginary parts of the
complex variable s. As is standard in analytic number theory, we use the variable
ε to represent an arbitrarily small positive real number that may not be the same in
each instance. We define χp = (·|p). Notice that this is a slight abuse of notation,
as we have been using χd(n) = (d|n) when referring to the family of Dirichlet
L-functions of real primitive characters. In the rest of the paper, we will only use
χp = (·|p), so that χp is the real primitive Dirichlet character of conductor p.
Throughout the paper, v denotes a fixed integer that is either 1 or 3. This allows us
to prove results for the cases p ≡ 1 and p ≡ 3 (mod 4) simultaneously. Also, let
Li(X) denote the logarithmic integral

Li(X) =
∫ X

2

du

log u
=

X

log X
+ O

(
X

log2 X

)
. (2)

To state our main result, we suppose that K(s) is a function with the following
properties: (i) it is analytic for −1 < σ < 2; (ii) K(1

2 + it) = K(1
2 − it) for

all real t; (iii) K(1
2 + it) has rapid decay as |t| → ∞; (iv) K(1/2) 6= 0; and (v)

K(s) = o(log−2 |t|) uniformly for −1 < σ < 2 as |t| → ∞. We further assume
that ∫ ∞

−∞
|K(c + it)| log(|t|+ 2) dt < ∞ (3)

for −1 < c < 2. This implies that the integral a(y) defined by

a(y) =
1

2πi

∫
(c)

K(s)y−s ds (4)

is absolutely convergent for y > 0 and −1 < c < 2. These assumptions about
K(s) seem to be reasonable, and are satisfied by many functions, including K(s) =
exp((s− 1

2)2).

The low-lying zeros of the family of L-functions L(s, χp) are expected to dis-
play the same statistics as the eigenvalues of the matrices from USp(2N), chosen
with respect to the Haar measure. Our main result gives a formula for the average
one-level density for the zeros of this family.
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Theorem 1. Assume GRH and the assumptions for K(s) given above. Let r(α)
be a continuous even function in L2(−∞,∞) such that

∫∞
−∞ |αr(α)| dα converges

and r̂(α) is supported on the interval [−1 + ε, 1− ε]. Then, for v = 1 or v = 3,(
1
2
K

(
1
2

)
Li(X)

)−1 ∑
p≤X

p≡v(mod 4)

∑
ρ(p)

K(ρ) r

(
γ log X

2π

)

=
∫ ∞

−∞

(
1− sin(2πα)

2πα

)
r(α) dα + o(1)

as X → ∞. Here, the sum
∑

ρ(p) is over the nontrivial zeros ρ = 1
2 + iγ of

L(s, χp).

Our proof of Theorem 1 is based on an asymptotic formula for the form factor
F (α, X) defined by

F (α, X) =
(

1
4
K

(
1
2

)
Li(X)

)−1 ∑
p≤X

p≡v(mod 4)

∑
ρ(p)

K(ρ)Xiαγ , (5)

where α is real, X > 1, and the inner sum is over the nontrivial zeros ρ = 1
2 + iγ

of L(s, χp). Our asymptotic formula is as follows.

Theorem 2. Assume GRH. Suppose that K(s) and a(y) are as given above Theo-
rem 1. If M > 0, X ≥ 2, and α ∈ R, then

F (α, X) = − 1 +
(

1
2
K

(
1
2

))−1

X−α/2a
(
X−α

)
log X

+ O

(
X

|α|
2
− 1

2 log2 X + X(− 1
4
+ε)|α| +

X |α| log2 X

XM

)
,

with implied constant depending at most on K(s), M , and ε.

Corollary 1. Assume GRH and suppose that K(s) is as given above Theorem 1.
If 0 < |α| < 1 is fixed, then

F (α, X) = −1 + o(1)

as X →∞.

We use Theorem 2 to prove the following nonvanishing result for L(1
2 , χp).

Theorem 3. Assume GRH and let v = 1 or 3. Then L(1
2 , χp) = 0 for at most 25%

of the primes p ≡ v (mod 4).

In Section 9 we apply the heuristic techniques of Conrey and Snaith [7] to the
family of quadratic Dirichlet L-functions L(s, χp). This leads us to suggest the
following conjecture.
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Conjecture 1. Let v = 1 or 3. If −1
4 < Rα < 1

4 , 1
log X � Rβ < 1

4 , and
Iα, Iβ �ε X1−ε for every ε > 0, then∑

p≤X
p≡v( mod 4)

L(1
2 + α, χp)

L(1
2 + β, χp)

=
∑
p≤X

p≡v( mod 4)

(
ζ(1 + 2α)

ζ(1 + α + β)
+
( p

π

)−α Γ(1/4− α/2)
Γ(1/4 + α/2)

ζ(1− 2α)
ζ(1− α + β)

)

+ O(X1/2+ε).

Conjecture 1 implies the following formula for the average one-level density of
L(s, χp), complete with lower order terms.

Theorem 4. Assume GRH and Conjecture 1. Let f(z) be an even function that is
holomorphic throughout the strip |Iz| < 2, is real on the real line, and satisfies the
bound f(x) � 1/(1 + x2) for all real x. Then∑

p≤X
p≡v( mod 4)

∑
ρ(p)

f(γ) =
1
2π

∫ ∞

−∞
f(t)

∑
p≤X

p≡v( mod 4)

(
log

p

π
+

1
2

Γ
′

Γ
(1/4 + it/2)

+
1
2

Γ
′

Γ
(1/4− it/2) + 2

(
ζ
′
(1 + 2it)

ζ(1 + 2it)
−
( p

π

)−it Γ(1/4− it/2)
Γ(1/4 + it/2)

ζ(1− 2it)

))
dt

+ O(X1/2+ε).

Here, the sum
∑

ρ(p) is over the nontrivial zeros 1
2 + iγ of L(s, χp).

The following corollary of the above theorem states that if the ratios conjecture
holds, then the Density Conjecture is true for this family of L-functions. That
is, the analogue of (1) holds for any test function f , without restrictions on the
support of f̂ . In other words, the ratios conjecture implies the Katz-Sarnak density
conjecture.

Corollary 2. Assume Conjecture 1. Let f(z) be an even function that is holomor-
phic throughout the strip |Iz| < 2, is real on the real line, and satisfies the bound
f(x) � 1/(1 + x2) for all real x. Then

lim
X→∞

(
Li(X)

2

)−1 ∑
p≤X

p≡v( mod 4)

∑
ρ(p)

f

(
γ log X

2π

)
=
∫ ∞

−∞
f(x)

(
1− sin(2πx)

2πx

)
dx.

Corollary 2 is formally consistent with Theorem 1 if we take the function f(z)
to be f(z) = K(1

2)−1K(1
2+2πiz/ log X)r(z). The resulting factor K(1

2)−1K(1
2+

2πix/ log X) in the integral on the right-hand side may be approximated by 1 with
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negligible error for large X . However, Theorem 1 assumes that the support of
r̂(α) is contained in (−1, 1), while no such restriction is needed for the function f
in Corollary 2.

3. THE EXPLICIT FORMULA

As in Özlük and Snyder [18], the starting point of our proof of Theorem 2 is an
explicit formula involving the sum

−
∞∑

n=1

a
(n

x

)
Λ(n)χp(n),

where x ≥ 1, χp(n) is the Legendre symbol (n|p), Λ(n) is the von Mangoldt
function, and a(y) is defined by (4). To deduce an explicit formula, we insert the
definition (4) with c > 1 for a(n/x) into the above sum. We interchange the order
of summation and arrive at

−
∞∑

n=1

a
(n

x

)
Λ(n)χp(n) =

1
2πi

∫
(c)

K(s)xs L′

L
(s, χp) ds,

where c > 1. It is a well-known fact that if χ is a primitive character mod q,
then (L′/L)(s, χ) � log2(q|t|) uniformly for −1 ≤ σ ≤ 2 along a sequence
of values of t going to infinity (see for example §19 of Davenport [8]). By this
fact and property (v) of K(s) stated above Theorem 1, we may use the residue
theorem to move the line of integration to σ = −1

2 , say. This leaves the residues∑
ρ(p) K(ρ)xρ, where ρ runs through all the nontrivial zeros of L(s, χp), and the

possible residue K(0) if p ≡ 1 (mod 4). We bound the resulting integral along
σ = −1

2 by applying the functional equation for L(s, χp), Stirling’s formula, and
(3). The result, after rearranging, is the explicit formula∑

ρ(p)

K(ρ)xiγ = −x−1/2
∞∑

n=1

a
(n

x

)
Λ(n)χp(n)

+ x−1/2a

(
1
x

)
log

p

2π
+ O

(
x−1/2

) (6)

for x ≥ 1. Here, the implied constant depends only on K(s).

To estimate F (α, X), we define F1(x,X) by

F1(x,X) =
∑
p≤X

p≡v(mod 4)

∑
ρ(p)

K(ρ)xiγ , (7)

for x ≥ 1 and X ≥ 2. We insert the explicit formula (6) into this definition to
deduce that

F1(x,X) = A + B + C, (8)
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where, since χp(n) = (n|p),

A = −x−1/2
∑
p≤X

p≡v(mod 4)

∞∑
n=1

a
(n

x

)
Λ(n)

(
n

p

)
, (9)

B = x−1/2a

(
1
x

) ∑
p≤X

p≡v(mod 4)

log
p

2π
,

(10)

and

C � x−1/2
∑
p≤X

p≡v(mod 4)

1
(11)

for x ≥ 1 and X ≥ 2, say.

To estimate A, we split the n-sum in (9) into squares and non-squares and write

A = A1 + A2, (12)

where

A1 = −x−1/2
∑
p≤X

p≡v(mod 4)

∞∑
n=1
n=2

a
(n

x

)
Λ(n)

(
n

p

)
(13)

and

A2 = −x−1/2
∑
p≤X

p≡v(mod 4)

∞∑
n=1
n6=2

a
(n

x

)
Λ(n)

(
n

p

)
. (14)

Here, we use the notation n = 2 to indicate that the sum is over perfect squares n,
and we use n 6= 2 to denote a sum over integers that are not perfect squares.

4. THE DIAGONAL TERMS

We first consider the A1, i.e., equation (13). If n is a square, then (n|p) = 1 if
p - n and (n|p) = 0 if p|n. Therefore we may write

A1 = −x−1/2
∑
p≤X

p≡v(mod 4)

∞∑
n=1
n=2
p-n

a
(n

x

)
Λ(n)

= −x−1/2
∑
p≤X

p≡v(mod 4)

∞∑
m=1
p-m

a

(
m2

x

)
Λ(m)
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because Λ(m2) = Λ(m) for all positive integers m. We insert into this the defini-
tion (4) with c > 1 and interchange the order of summation to deduce that

A1 = −x−1/2
∑
p≤X

p≡v(mod 4)

1
2πi

∫
(c)

K(s)xs

(
−ζ ′

ζ
(2s) − log p

p2s − 1

)
ds.

It is a well-known fact that (ζ ′/ζ)(s) � log2 |t| uniformly for−1 ≤ σ ≤ 2 along a
sequence of values of t going to infinity (see for example §17 of Davenport [8]). It
follows from this and property (v) of K(s), stated above Theorem 1, that we may
apply the residue theorem and move the line of integration to σ = 1

4 + ε, leaving a
residue from the pole of ζ′

ζ (2s). To bound the resulting integral along σ = 1
4 + ε,

we use the assumption (3), the bound (ζ ′/ζ)(2s) � log |t| for σ = 1
4 + ε, which

follows from assuming RH (see for example (4) in §15 of Davenport [8]), and the
fact that log p

p2s−1
� 1 for σ ≥ 1

4 + ε and arrive at

A1 = −x−1/2
∑
p≤X

p≡v(mod 4)

(
1
2
K

(
1
2

)
x1/2 + O

(
x

1
4
+ε
))

for x ≥ 1, with implied constant depending only on K(s). This simplifies to

A1 = −π(X; 4, v)
(

1
2
K

(
1
2

)
+ O

(
x−

1
4
+ε
))

(15)

for x ≥ 1, where π(X; 4, 1) denotes the number of primes p ≤ X that satisfy
p ≡ v (mod 4). On GRH, the prime number theorem for arithmetic progressions
implies (see, for example, §20 of Davenport [8])

π(X; 4, v) =
1
2

Li(X) + O
(
X1/2 log X

)
.

It follows from this and (15) that

A1 = −1
4
K

(
1
2

)
Li(X) + O

(
X1/2 log X

)
+ O

(
x−

1
4
+ε Li(X)

)
(16)

for x ≥ 1 and X ≥ 2, with implied constants depending only on K(s).

5. THE OFF-DIAGONAL TERMS

To estimate A2 defined by (14), we first prove

Lemma 1. Let K(s) be a function having the properties stated above as in Theo-
rem 1, and let a(y) be defined by (4). If −1 < c < 2, then

a(y) � y−c

for all y > 0, where the implied constant depends only on K(s) and c. Moreover,
if X > 0 then the function α 7→ X−α/2a(X−α) is an even function of the real
variable α.
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Proof. The first assertion follows immediately from putting absolute values inside
the integral in the definition (4) of a(y), since it converges absolutely by our as-
sumption (3). To prove the second assertion, observe that the definition (4) of a(y)
with c = 1

2 and property (ii) of K(s) imply

a

(
1
y

)
=

1
2π

∫ ∞

−∞
K(1

2 + it)y
1
2
+it dt

=
1
2π

∫ ∞

−∞
K(1

2 − iu)y
1
2
−iu du = ya(y).

by a change of variable u = −t. �

The main tool we will use to estimate the contribution A2 of the off-diagonal
terms is the following consequence of GRH.

Lemma 2. Assume GRH, and let v = 1 or 3. If M > 0 is fixed and n ≤ XM is a
positive integer that is not a perfect square, then∑

p≤X
p≡v(mod 4)

(
n

p

)
� X1/2 log X

for X ≥ 2, with implied constant depending only on M .

Proof. Using characters to detect the congruence modulo 4, we may write the sum
in question as

1
2

∑
3≤p≤X

((
1
p

)
±
(
−1
p

))(
n

p

)
=

1
2

∑
3≤p≤X

(
n

p

)
± 1

2

∑
3≤p≤X

(
−n

p

)
,

where the symbol ± is plus if v = 1 and minus if v = 3. Thus it suffices to prove
that ∑

3≤p≤X

(
k

p

)
�M X1/2 log X (17)

for integers k with |k| ≤ XM that are not perfect squares. We may write 4k
uniquely as 4k = k1k

2
2 , where k1 is a fundamental discriminant and k2 is a positive

integer. Hence ∑
3≤p≤X

(
k

p

)
=

∑
3≤p≤X

(
4k

p

)
=

∑
3≤p≤X

p-k2

(
k1

p

)
.

The number of distinct prime divisors of k2 is � log k2 � log 4|k| �M log X .
Thus ∑

3≤p≤X

(
k

p

)
=

∑
3≤p≤X

(
k1

p

)
+ O(log X). (18)

The fundamental discriminant k1 is not equal to 1 because k is not a square, and
so the Kronecker symbol

(
k1
·

)
is a primitive Dirichlet character modulo |k1| (see,
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for example, Theorem 2.2.15 of Cohen [5]). Thus it is a non-principal character.
It follows from this and the explicit formula for Dirichlet characters (see §20 of
Davenport [8]; the estimates there hold uniformly for q ≤ xM for any fixed M )
that, on GRH, ∑

ν≤X

(
k1

ν

)
Λ(ν) �M X1/2 log2 X

uniformly for |k1| ≤ 4XM and X ≥ 2. The prime powers with exponents greater
than 2 contribute at most O(X1/2), and we thus arrive at∑

3≤p≤X

(
k1

p

)
log p �M X1/2 log2 X.

It now follows from this and partial summation that

∑
3≤p≤X

(
k1

p

)
=

1
log X

∑
3≤p≤X

(
k1

p

)
log p +

∫ X

4

 ∑
3≤p≤u

(
k1

p

)
log p

 du

u log2 u

� X1/2 log X +
∫ X

4
u−1/2 du � X1/2 log X.

This and (18) lead to (17) and thus prove Lemma 2. �

We now bound A2. Let M > 0 be a fixed real number, and suppose first
that x ≤ XM . We split the sum over n in the definition (14) of A2 into three
sums, the first containing the terms with n ≤ x, the second containing those with
x < n ≤ XM , and the third containing the rest. In other words, we write

A2 = A21 + A22 + A23, (19)

where

A21 = −x−1/2
∑
n≤x
n6=2

a
(n

x

)
Λ(n)

∑
p≤X

p≡v(mod 4)

(
n

p

)
,

A22 = −x−1/2
∑

x<n≤XM

n6=2

a
(n

x

)
Λ(n)

∑
p≤X

p≡v(mod 4)

(
n

p

)
,

and

A23 = −x−1/2
∑

n>XM

n6=2

a
(n

x

)
Λ(n)

∑
p≤X

p≡v(mod 4)

(
n

p

)
.

We bound A21 using Lemma 1 with c = 0 and Lemma 2, and arrive at

A21 � x−1/2
∑
n≤x

Λ(n)X1/2 log X � x1/2X1/2 log X. (20)
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To estimate A22, we apply Lemma 1 with c = 3
2 , say, and Lemma 2 to deduce that

A21 � x
∑

x<n≤XM

Λ(n)
n3/2

X1/2 log X � x1/2X1/2 log X (21)

because, by partial summation and the well-known bound
∑

n≤u Λ(n) � u,∑
n>x

Λ(n)
n3/2

= −x−3/2
∑
n≤x

Λ(n) +
3
2

∫ ∞

x

∑
n≤u

Λ(n)
du

u5/2
� x−1/2.

Finally, to bound A23, we apply the trivial bound for the p-sum and Lemma 1 with
c = 3

2 , say, to write

A23 � x
∑

n>XM

log n

n3/2
X � xX log X

XM/2
.

From this, (19), (20), and (21), we arrive at

A2 � x
1
2 X

1
2 log X +

xX log X

XM/2
(22)

for x ≥ 1 and X ≥ 2 such that x ≤ XM , with implied constant depending only on
K(s) and M . If x > XM , then (22) holds as well because it is true for x = XM

and its right-hand side is an increasing function of x. Hence (22) holds for x ≥ 1
and X ≥ 2.

It now follows from (12), (16), and (22) that

A = − 1
4
K

(
1
2

)
Li(X) + O

(
x

1
2 X

1
2 log X

)
+ O

(
x−

1
4
+ε Li(X)

)
+ O

(
xX log X

XM/2

) (23)

for x ≥ 1 and X ≥ 2, with implied constants depending at most on K(s) and M .

6. THE ASYMPTOTIC FORMULA

Having estimated the term A in (8), we now bound the terms B and C, and
finish the proof of Theorem 2. To estimate B defined by (10), we apply the prime
number theorem for arithmetic progressions to deduce that, on GRH,

B =
x−1/2

2
a

(
1
x

)
(X − Li(X) log 2π) + O

(
x−1/2

∣∣∣∣a(1
x

)∣∣∣∣X1/2 log2 X

)
.

From this, (2), and Lemma 1 with c = −1 + ε, it follows that

B =
x−1/2

2
a

(
1
x

)
X + O

(
x−

3
2
+εLi(X)

)
(24)
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uniformly for x ≥ 1 and X ≥ 2. Next, to bound C defined by (11), observe that
the prime number theorem again implies

C � x−1/2Li(X).

From this, (8), (23), and (24), we conclude that

F1(x,X) = − 1
4
K

(
1
2

)
Li(X) +

x−1/2

2
a

(
1
x

)
X

+ O
(
x

1
2 X

1
2 log X

)
+ O

(
x−

1
4
+ε Li(X)

)
+ O

(
xX log X

XM/2

)
uniformly for x ≥ 1 and X ≥ 2, where M > 0 is a fixed real number. We then
divide both sides of this equation by −1 times the first term on the right-hand side.
To simplify the resulting second term on the right-hand side, we apply (2) and
Lemma 1 with c = 0, say, to deduce that

x−1/2a

(
1
x

)
X

Li(X)
= x−1/2a

(
1
x

)
log X + O

(
x−

1
2

)
.

Hence the result is(
1
4
K

(
1
2

)
Li(X)

)−1

F1(x,X) = −1 +
(

1
2
K

(
1
2

))−1

x−1/2a

(
1
x

)
log X

+ O
(
x

1
2 X− 1

2 log2 X
)

+ O
(
x−

1
4
+ε
)

+ O

(
x log2 X

XM/2

)
uniformly for x ≥ 1 and X ≥ 2, with M > 0 an arbitrary fixed real number. We
take x = Xα and use the definitions (7) of F1(x, X) and (5) of F (α, X) to arrive
at Theorem 2 for α ≥ 0. Theorem 2 for α ≤ 0 follows from the second assertion
of Lemma 1 and the fact that F (α, X) = F (−α, X). This latter equation is true
because of (5), our assumption that K(1

2 + it) = K(1
2 − it) for real t, and the fact

that the zeros of L(s, χp) are symmetric about the real axis.

7. ONE-LEVEL DENSITY

In this section, we use Theorem 2 to prove Theorem 1. We take M = 2, say, in
Theorem 2 and arrive at

F (α, X) = − 1 +
(

1
2
K

(
1
2

))−1

X−α/2a
(
X−α

)
log X

+ O
(
X(− 1

4
+ε)|α|

)
+ o(1)
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as X → ∞, uniformly for α ∈ [−1 + ε, 1 − ε]. We multiply both sides by r̂(α)
and integrate over all α ∈ (−∞,∞) to deduce that∫ ∞

−∞
F (α, X) r̂(α) dα = −

∫ ∞

−∞
r̂(α) dα + O

(∫ ∞

−∞
X(− 1

4
+ε)|α| dα

)
+
(

1
2
K

(
1
2

))−1

log X

∫ ∞

−∞
X−α/2a

(
X−α

)
r̂(α) dα + o(1)

(25)

as X →∞, where we used the fact that |r̂(α)| ≤
∫
|r| < ∞. Note that∫ ∞

−∞
X(− 1

4
+ε)|α| dα =

2(
1
4 − ε

)
log X

= o(1) (26)

as X → ∞. Also, the definition of r̂(α) and the fact that its support is on (−1, 1)
imply ∫ ∞

−∞
r̂(α) dα =

∫ 1

−1
r̂(α) dα =

∫ 1

−1

∫ ∞

−∞
r(β)e−2πiαβ dβ dα

= 2
∫ ∞

−∞
r(α)

(
sin 2πα

2πα

)
dα

(27)

upon interchanging the order of integration and relabeling β as α. To estimate the
third term on the right-hand side of (25), we use the Plancherel theorem to write,
as in the proof of Theorem 3 of Özlük and Snyder [18],∫ ∞

−∞
X−α/2a

(
X−α

)
r̂(α) dα =

K(1
2)

log X

∫ ∞

−∞
r(α) dα + O

(
1

log2 X

)
uniformly for X ≥ 2. The application of the Plancherel theorem is valid because
we are assuming that r ∈ L2(−∞,∞). It follows from this, (25), (26), and (27)
that ∫ ∞

−∞
F (α, X) r̂(α) dα = 2

∫ ∞

−∞

(
1− sin 2πα

2πα

)
r(α) dα + o(1) (28)

as X → ∞. Next, we insert the definition (5) of F (α, X) into the integral on the
left-hand side and interchange the order of summation to deduce that∫ ∞

−∞
F (α, X) r̂(α) dα

=
(

1
4
K

(
1
2

)
Li(X)

)−1 ∑
p≤X

p≡v(mod 4)

∑
ρ(p)

K(ρ)
∫ ∞

−∞
Xiαγ r̂(α) dα.

This implies∫ ∞

−∞
F (α, X) r̂(α) dα =

(
1
4
K

(
1
2

)
Li(X)

)−1 ∑
p≤X

p≡v(mod 4)

∑
ρ(p)

K(ρ) r

(
γ log X

2π

)
(29)
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because ∫ ∞

−∞
Xiαγ r̂(α) dα = ˆ̂r

(
−γ log X

2π

)
= r

(
γ log X

2π

)
.

Theorem 1 now follows from (28) and (29).

8. NONVANISHING AT THE CENTRAL POINT

To prove Theorem 3, we follow the argument in the proof of Corollary 3 of
Özlük and Snyder [19]. Take K(s) = exp((s − 1

2)2), and let mp denote the
multiplicity of the point 1/2 as a zero of L(s, χp), with mp = 0 if L(1

2 , χp) 6= 0.
Moreover, let λ < 1 be close to 1, and let r(u) = (sin(πλu)/(πλu))2, so that
r̂(α) = λ−2 max{λ − |α|, 0}. These choices for K and r satisfy K(1

2 + it) > 0,
r(u) ≥ 0, and r(0) = 1. Hence(

1
4

Li(X)
)−1 ∑

p≤X
p≡v(mod 4)

mp =
(

1
4

Li(X)
)−1 ∑

p≤X
p≡v(mod 4)

1
K(1

2)

∑
ρ(p)

ρ= 1
2

K(ρ)

≤
(

1
4
K(

1
2
)Li(X)

)−1 ∑
p≤X

p≡v(mod 4)

∑
ρ(p)

K(ρ)r
(

γ log X

2π

)
.

From this and (29), we deduce that(
1
4

Li(X)
)−1 ∑

p≤X
p≡v(mod 4)

mp ≤
∫ ∞

−∞
F (α, X)r̂(α) dα. (30)

We next estimate the integral by evaluating each term on the right-hand side of (25)
with our choices for K and r. Since r̂(α) = λ−2 max{λ − |α|, 0}, a change of
variables X−α 7→ t gives∫ ∞

−∞
X−α/2a

(
X−α

)
r̂(α) dα =

1
λ2 log X

∫ Xλ

X−λ

t1/2a(t)
(

λ−
∣∣∣∣ log t

log X

∣∣∣∣) dt

t
.

The contribution of the term
∣∣∣ log t
log X

∣∣∣ is O((λ log X)−2), and we may use Lemma 1

to extend the interval of integration to (0,∞) with error O(X−λ). It follows that∫ ∞

−∞
X−α/2a

(
X−α

)
r̂(α) dα =

1
λ log X

∫ ∞

0
t1/2a(t)

dt

t
+ Oλ

(
1

log2 X

)
.

By Mellin inversion and the definition (4) of a(t), the first term on the right-hand
side equals (λ log X)−1K(1

2). It follows from this, (25), (26), and the equation
−
∫∞
−∞ r̂(α) dα = −r(0) = −1 that∫ ∞

−∞
F (α, X)r̂(α) dα = −1 +

2
λ

+ o(1).
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From this and (30), we arrive at(
1
4

Li(X)
)−1 ∑

p≤X
p≡v(mod 4)

mp ≤ −1 +
2
λ

+ o(1).

Now the functional equation for L(s, χp) implies that mp is always even. Therefore(
1
2

Li(X)
)−1 ∑

p≤X
p≡v(mod 4)

L( 1
2
,χp)=0

1 ≤ −1
4

+
1
2λ

+ o(1).

Since π(X; 4, v) ∼ 1
2Li(X), we arrive at Theorem 3 by letting λ < 1 tend to 1.

9. THE RATIOS CONJECTURE FOR L(s, χp)

In this section we use the ratios conjecture as originally developed by Conrey,
Farmer and Zirnbauer in [6] to compute the one-level density function for zeros
of the family of quadratic Dirichlet L-functions associated with the character χp,
complete with lower order terms. The ratios conjecture will provide a result consis-
tent with Theorem 1, but with no constraints on the support of the Fourier transform
of the test function.

We follow closely the calculations of Conrey and Snaith [7]. For further details
we recommend the reader to check the many applications of the ratios conjecture
given in their paper. Consider the sum of ratios

RP (α, β) :=
∑
p≤X

p≡v( mod 4)

L(1
2 + α, χp)

L(1
2 + β, χp)

. (31)

As part of the ratios conjecture as presented in [6, 7], we replace the L(s, χp) in
the numerator by the approximate functional equation

L(1
2 +α, χp) =

∑
m<x

χp(m)
m1/2+α

+
( p

π

)−α Γ(1/4− α/2)
Γ(1/4 + α/2)

∑
n<y

χp(n)
n1/2−α

+ Remainder,

where xy = p/(2π), and we replace the L(s, χp) in the denominator by their
infinite series

1
L(s, χp)

=
∞∑

h=1

µ(h)χp(h)
hs

.

We consider each of the 2 pieces separately and average term-by-term within those
pieces. We only retain the terms where we are averaging over squares; in other
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words we use the main part of the following orthogonality relation for quadratic
characters over primes:∑

p≤X
p≡v( mod 4)

χp(n) =
{

X∗ + small if n is a square
small if n is not a square,

where, for brevity, we denote

X∗ =
∑
p≤X

p≡v( mod 4)

1 ∼ 1
2

Li(X),

where Li(X) is defined by (2). We compute these diagonal terms and complete
the sums by extending the ranges of the summation variables to infinity. We then
calculate the Euler products and express these sums as ratios of zeta functions.
The sum of these expressions, one for each piece of the approximate functional
equation, will provide us with the required conjecture.

We first restrict our attention to the first piece of the approximate functional
equation. In other words, we consider∑

p≤X
p≡v( mod 4)

∑
h,m

µ(h)χp(hm)
h1/2+βm1/2+α

.

We retain only the terms for which hm is square to write this as

X∗
∑

hm=2

µ(h)
h1/2+βm1/2+α

.

We express this sum as an Euler product

∏
p

∑
h+m
even

µ(ph)
ph(1/2+β)+m(1/2+α)

.

The effect of µ(ph) is to limit the choices for h to 0 or 1. When h = 0 we have

∑
m

even

1
pm(1/2+α)

= 1 +
∞∑

m=1

1
pm(1+2α)

= 1 +
1

p1+2α

1(
1− 1

p1+2α

) ,

and when h = 1 we obtain a contribution of∑
m

odd

µ(p)
p1/2+β+m(1/2+α)

= − 1
p1+α+β

1(
1− 1

p1+2α

) .
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Thus, the Euler product simplifies to

∏
p

1 +
1

p1+2α

1(
1− 1

p1+2α

) − 1
p1+α+β

1(
1− 1

p1+2α

)


=
ζ(1 + 2α)

ζ(1 + α + β)

∏
p

1 +
1

p1+2α

1(
1− 1

p1+2α

) − 1
p1+α+β

1(
1− 1

p1+2α

)


×
(

1− 1
p1+2α

)(
1− 1

p1+α+β

)−1

.

=
ζ(1 + 2α)

ζ(1 + α + β)
.

The other piece can be determined by recalling the functional equation

L(1
2 + α, χp) =

( p

π

)−α Γ(1/4− α/2)
Γ(1/4 + α/2)

L(1
2 − α, χp).

We thus infer that Conjecture 1 is true.

For applications to the one-level density we note that for any complex r with
positive real part

∑
p≤X

p≡v( mod 4)

L
′
(1
2 + r, χp)

L(1
2 + r, χp)

=
d

dα
RP (α;β)

∣∣∣∣
α=β=r

,

where RP (α;β) is given by equation (31). Now

d

dα

ζ(1 + 2α)
ζ(1 + α + β)

∣∣∣∣
α=β=r

=
ζ
′
(1 + 2r)

ζ(1 + 2r)

and

d

dα

( p

π

)−α Γ(1/4− α/2)
Γ(1/4 + α/2)

ζ(1− 2α)
ζ(1− α + β)

∣∣∣∣
α=β=r

= −
( p

π

)−r Γ(1/4− r/2)
Γ(1/4 + r/2)

ζ(1− 2r).

Because of the uniformity in the parameters α and β, we may differentiate the
conjectural formula with respect to these parameters and the results are valid in the
same ranges and with the same error terms. Thus the ratios conjecture implies that
the following holds.



SMALL ZEROS OF DIRICHLET L-FUNCTIONS OF PRIME MODULUS 19

Theorem 5. Assuming Conjecture 1, 1/ log X � Rr < 1
4 −

1
log X and Ir �ε

X1−ε we have∑
p≤X

p≡v( mod 4)

L
′
(1
2 + r, χp)

L(1
2 + r, χp)

=
∑
p≤X

p≡v( mod 4)

(
ζ
′
(1 + 2r)

ζ(1 + 2r)
−
( p

π

)−r Γ(1/4− r/2)
Γ(1/4 + r/2)

ζ(1− 2r)

)
+ O(X1/2+ε).

We now use Theorem 5 to compute the one-level density function for zeros of
quadratic Dirichlet L-functions associated to χp. For simplicity, we assume that
f(z) is holomorphic throughout the strip |Iz| < 2, real on the real line, and even,
and we suppose that f(x) � 1/(1 + x2) as x →∞.

We consider
S1(f) :=

∑
p≤X

p≡v( mod 4)

∑
ρ(p)

f(γ),

where the inner sum is over the zeros ρ = 1
2 + iγ of L(s, χp). Recall that we are

assuming the Generalized Riemann Hypothesis (GRH). We have, by the argument
principle, that

S1(f) =
∑
p≤X

p≡v( mod 4)

1
2πi

(∫
(c)
−
∫

(1−c)

)
L

′
(s, χp)

L(s, χp)
f(−i(s− 1/2))ds,

where (c) denotes a vertical line from c − i∞ to c + i∞ and 3/4 > c > 1/2 +
1/ log X . The integral on the c-line is

1
2π

∫ ∞

−∞
f(t− i(c− 1/2))

∑
p≤X

p≡v( mod 4)

L
′
(1/2 + (c− 1/2 + it), χp)

L(1/2 + (c− 1/2 + it), χp)
dt. (32)

It follows from the GRH that on the path of integration (c),

L
′
(s, χp)

L(s, χp)
� log2(|s|p). (33)

For |t| > X1−ε, we estimate the integral using (33) and the bound on f(x), and
the result is Xε. By the ratios conjecture, i.e., by Theorem 5, if |t| < X1−ε then
the sum over p in (32) is∑

p≤X
p≡v( mod 4)

(
ζ
′
(1 + 2r)

ζ(1 + 2r)
−
( p

π

)−r Γ(1/4− r/2)
Γ(1/4 + r/2)

ζ(1− 2r)

)∣∣∣∣∣
r=c−1/2+it

+ O(X1/2+ε).
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Since this quantity is � X1+ε for |t| < X1−ε and f(t) � 1/t2, we may extend
the integration in t to infinity. Finally, since the integrand is regular at r = 0, we
may move the path of integration to c = 1/2 and so obtain

1
2π

∫ ∞

−∞
f(t)

∑
p≤X

p≡v( mod 4)

(
ζ
′
(1 + 2it)

ζ(1 + 2it)
−
( p

π

)−it Γ(1/4− it/2)
Γ(1/4 + it/2)

ζ(1− 2it)

)
dt

+ O(X1/2+ε)

For the integral on the (1− c)-line, we change variables, letting s → 1− s, and we
use the functional equation

L
′
(1− s, χp)

L(1− s, χp)
=

X
′
(s, χp)

X(s, χp)
− L

′
(s, χp)

L(s, χp)
where

X
′
(s, χp)

X(s, χp)
= − log

p

π
− 1

2
Γ

′

Γ

(
1− s

2

)
− 1

2
Γ

′

Γ

(s

2

)
.

The contribution from the L
′
/L term is now exactly as before, since f is even.

Thus, we have proved Theorem 4.

To prove Corollary 2, we define

f(t) = g

(
t log X

2π

)
.

Scaling the variable t from Theorem 4 as τ = (t log X)/(2π), we write∑
p≤X

p≡v( mod 4)

∑
ρ(p)

g

(
γ log X

2π

)
=

1
log X

∫ ∞

−∞
g(τ)

∑
p≤X

p≡v( mod 4)

(
log

p

π

+
1
2

Γ
′

Γ

(
1/4 +

iπτ

log X

)
+

1
2

Γ
′

Γ

(
1/4− iπτ

log X

)
+ 2

(
ζ
′
(1 + 4iπτ

log X )

ζ(1 + 4iπτ
log X )

− e−(2πiτ/ log X) log(p/π)
Γ(1/4− iπτ

log X )

Γ(1/4 + iπτ
log X )

ζ

(
1− 4iπτ

log X

)))
dτ + O(X1/2+ε).

For large X , only the log(p/π) term, the ζ
′
/ζ term, and the final term in the integral

contribute. The gamma factors appearing above are the same as those appearing
in Conrey and Snaith [7, Theorem 3.1] and similarly to their calculations (using
Stirling’s formula) they do not contribute for large X and so we have the following
asymptotic formula∑

p≤X
p≡v( mod 4)

∑
ρ(p)

g

(
γ log X

2π

)

=
1

log X

∫ ∞

−∞
g(τ)

(
X∗ log X −X∗ log X

2πiτ
+ X∗ e−2πiτ

2πiτ
log X

)
dτ + o(X∗),
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where X∗ = 1
2Li(X). However, since g is an even function, the middle term above

drops out and the last term can be duplicated with a change of sign of τ , leaving

lim
X→∞

1
X∗

∑
p≤X

p≡v( mod 4)

∑
ρ(p)

g

(
γ log X

2π

)
=
∫ ∞

−∞
g(τ)

(
1 +

e−2πiτ

4πiτ
+

e2πiτ

−4πiτ

)
dτ.

This is exactly the expected asymptotic formula, and proves Corollary 2.
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