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Abstract

Using Poonen’s version of “weak vertical method” we produce new examples of “large” and “small” rings
of algebraic numbers (including rings of integers) where Z and/or the ring of integers of a subfield are
existentially definable and/or where the ring version of Mazur’s conjecture on topology of rational points
does not hold.

1 Introduction

The interest in the questions of existential definability and decidability over rings goes back to a question
that was posed by Hilbert: given an arbitrary polynomial equation in several variables over Z, is there a
uniform algorithm to determine whether such an equation has solutions in Z? This question, otherwise
known as Hilbert’s 10th problem, has been answered negatively in the work of M. Davis, H. Putnam, J.
Robinson and Yu. Matijasevich. (See [5] and [6].) Since the time when this result was obtained, similar
questions have been raised for other fields and rings. In other words, let R be a recursive ring. Then, given
an arbitrary polynomial equation in several variables over R, is there a uniform algorithm to determine
whether such an equation has solutions in R? One way to resolve the question of Diophantine decidability
negatively over a ring of characteristic 0 is to construct a Diophantine definition of Z over such a ring. This
notion is defined below.

1.1 Definition.

Let R be a ring and let A ⊂ R. Then we say that A has a Diophantine definition over R if there exists a
polynomial f(t, x1, . . . , xn) ∈ R[t, x1, . . . , xn] such that for any t ∈ R,

∃x1, . . . , xn ∈ R, f(t, x1, ..., xn) = 0⇐⇒ t ∈ A.

If the quotient field of R is not algebraically closed, we can allow a Diophantine definition to consist of
several polynomials without changing the nature of the relation. (See [6] for more details.)

The usefulness of Diophantine definitions stems from the following easy lemma.
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1.2 Lemma.

Let R1 ⊂ R2 be two recursive rings such that the quotient field of R2 is not algebraically closed. Assume
that Hilbert’s Tenth Problem (abbreviated as “HTP”in the future) is undecidable over R1, and R1 has a
Diophantine definition over R2. Then HTP is undecidable over R2.

Using norm equations, Diophantine definitions have been obtained for Z over the rings of algebraic
integers of some number fields. Jan Denef has constructed a Diophantine definition of Z for the finite de-
gree totally real extensions of Q. Jan Denef and Leonard Lipshitz extended Denef’s results to the degree
2 extensions of the finite degree totally real fields. Thanases Pheidas and the author of this paper have
independently constructed Diophantine definitions of Z for number fields with exactly one pair of complex
conjugate embeddings. Finally Harold N. Shapiro and the author of this paper showed that the subfields of
all the fields mentioned above “inherited” the Diophantine definitions of Z. (These subfields include all the
abelian extensions.) The proofs of the results listed above can be found in [7], [9], [8], [15], [23], and [24].

Using elliptic curves Bjorn Poonen has shown the following in [17].

1.3 Theorem.

Let M/K be a number field extension with an elliptic curve E defined over K, of rank one over K, such
that the rank of E over M is also one. Then OK (the ring of integers of K) is Diophantine over OM .

In a recent paper (see [3]), Cornelissen, Pheidas and Zahidi weakened somewhat assumptions of Poonen’s
theorem. Instead of requiring a rank 1 curve retaining its rank in the extension, they require existence of a
rank 1 elliptic curve over the bigger field and an abelian variety over the smaller field retaining its rank in
the extension.

A similar approach can in theory be applied to Q. In other words, one could show that HTP is undecidable
over Q by showing that Z has a Diophantine definition over Q. Unfortunately, Mazur’s conjectures tell us
that this might not be the way to proceed. These conjectures state the following.

1.4 Conjecture.

Let V be any variety over Q. Then the topological closure of V (Q) in V (R) possesses at most a finite number
of connected components. ([13][Conjecture 2, page 256.])

Conjecture 1.4 implies the following conjecture.

1.5 Conjecture.

Z does not have a Diophantine definition over Q.

These conjectures are a part of a series of conjectures that can be found in [10], [11], [12] and [13]. Colliot-
Thélène, Swinnerton-Dyer and Skorobogatov have found a counterexample to the strongest of the conjectures
in the papers cited above. Their modification of Mazur’s conjecture in view of the counterexample can be
found in [2]. At the moment the resolution of either Conjecture 1.4 or Conjecture 1.5 seems to be out of reach.

Given the difficulty of the Diophantine problem for Q (and number fields in general) and the difficulty
of Mazur’s conjectures, one might adopt a gradual approach, i.e consider the following problem.

Let W be a recursive set of rational primes. Let

OQ,W = fx ∈ Q j x =
a

b
, a, b ∈ N,∀p 6∈ W, p - bg.
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Then we can ask whether HTP is decidable for OQ,W or whether Z has a Diophantine definition over OQ,W .
We can answer these questions for finiteW (see Proposition 2.1). More precisely, we know that for finite W,
rational integers do have a Diophantine definition over OQ,W and therefore HTP is undecidable over OQ,W .
(More generally, using some ideas dating back to Julia Robinson, one can show that the set of algebraic
numbers integral at a finite set of primes of a number field is Diophantine over this number field. See
[20], [21] and [25] for more details.) Unfortunately, we have been unsuccessful in obtaining such definability
results for infinite W. On the other hand, we have been more successful in solving the analogous problem
in some extensions of Q. Before we state these results, we need a definition.

1.6 Definition.

Let M be a number field and let W be a set of its primes. Then a ring

OM,W = fx ∈M j ordpx ≥ 0∀p 6∈ Wg

is called a ring of W-integers . (The term W-integers usually presupposes that W is finite, but we will use
this term for infinite W also.)

Below we state our best definability result as far as the Dirichlet density of the prime sets allowed in the
denominator is concerned.

1.7 Theorem.

Let K be a totally real number field or a totally complex extension of degree 2 of a totally real number
field. Then for any ε > 0, there exists a set W of primes of K whose Dirichlet density is bigger than
1− [K : Q]−1 − ε and such that Z has a Diophantine definition over OK,W . (Thus, Hilbert’s Tenth Problem
is undecidable over OK,W .)

The proof of this theorem can be found in [26], [29] and [27].

As an alternative to a Diophantine definition of Z over a ring whose Diophantine status is unknown, one
might consider a more general approach: a construction of a Diophantine models of Z. (See [4] or [30] for a
definition of a Diophantine model). We should note however, that Conjecture 1.4 also implies that Q has no
Diophantine model of Z. (See [4] for the proof of this assertion.) On the other hand, since the consideration
of (generalized) rings of S-integers has produced some definability results, it is reasonable to hope for similar
outcomes for Conjecture 1.4 and Diophantine models over some such rings. (Of course, Conjecture 1.4 has
to be restated for rings. This is done in [30].) Indeed, following through on some ideas from [4] and [30], in
[18], Poonen proved the following.

1.8 Theorem

There exists a set W of primes of Q of natural density 1 such that the following statements are true for the
ring R = OQ,W .

1. R is a recursive ring.

2. R has a Diophantine model of Q.

3. HTP is not decidable over R.

4. The ring version of Conjecture 1.4 does not hold over R.
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Thus for the first time we have gained some insight into what the Diophantine status of Q might be. Using
similar methodology one is able to obtain similar results for all number fields having a rank one elliptic
curve. (This construction was carried out by Poonen and the author in [19].)

In this paper we combine the methods of [17] and [29] to obtain the following results.

1.9 Theorem

Let K/F be a number field extension of degree s > 1. Let E be an elliptic curve defined over F such
that the rank of E(K) is positive and the same as the rank of E(F ). Then the following statements
are true.

1. For any ε > 0 there exists set of K-primes of natural density greater than 1 − ε such that
OK,WK ∩ F has a Diophantine definition over OK,WK . (See Theorem 6.2.)

2. Let SK be a finite set of primes of K. Then OK,SK ∩F has a Diophantine definition over OK,SK .
If F is a totally real field (including Q), an extension of degree 2 of a totally real field or a field
with exactly one pair of complex conjugate embeddings, then HTP is undecidable over OK,SK .
(See Corollary 6.3.)

3. The ring of integers OF of F has a Diophantine definition over OK – the ring of integers of K.
If F is a totally real field (including Q), an extension of degree 2 of a totally real field or a field
with exactly one pair of complex conjugate embeddings, then HTP is undecidable over OK . (See
Corollary 6.4.)

4. For any ε > 0 there exists a set VK of K-primes of natural density greater than 1 − 1
s − ε such

that OF and OK have Diophantine definitions over OK,VK . If F is a totally real field (including
Q), a totally complex extension of degree 2 of a totally real field or a field with exactly one pair
of complex conjugate embeddings, then HTP is undecidable over OK,VK .(See Theorem 6.5.)

5. Assume that F is either a totally real field (including Q) or a totally complex extension of degree
2 of a totally real field. Then for any ε > 0 there exists a set WK of K-primes of natural density
greater than 1 − ε such that for some variety V defined over K, we have that V (OK,WK ) (the
closure of V (OK,WK ) in the usual archimedean topology in R if K is real, and C, if K is not real)
has infinitely many components.(See Theorem 6.6.)

We should note here that Part 3 of the theorem was proved independently by Bjorn Poonen and he has
generously provided his unpublished notes to the author (see [16]). Also a special case of Part 3, namely the
case when E(F ) and E(K) are both of rank one over EndF (E), was solved by a group of students at the
2003 Arizona Winter School. (See [1] for more details.)

2 Preliminary Results and Notation.

In this section we state two technical propositions which will be used in the proofs and describe notation
and assumptions to be used in Sections 3 – 5. We start with the proposition which has been mentioned
already in the discussion of definability of integrality at finitely many primes.

2.1 Proposition.

LetK be a number field. LetWK be any set of primes of K. Let SK ⊆ WK be a finite set. Let VK =WK\SK .
Then OK,VK has a Diophantine definition over OK,WK . (See, for example, [25].)

Next we state another proposition which is also quite important for the proofs in this paper.
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2.2 Proposition.

Let K be a number field. Let WK be any set of primes of K. Then the set of non-zero elements of OK,WK

has a Diophantine definition over OK,WK . (See, for example, [25].)

This proposition allows us to use variables which take values in K while we are “officially” working with
variables taking values in OK,WK . We write these K-variables as ratios of variables in OK,WK with the
proviso that the denominator is not zero.

2.3 Notation.

• Let K/F be a finite extension of number fields of degree s > 1.

• Let n = [K : Q].

• Let h be the least common multiple of the class numbers of K and F .

• Let f1, φ, . . . , φs−1g ∈ OK be a basis of K over F .

• Let D ∈ F be the discriminant of the basis.

• Let E denote an elliptic curve over F – i.e. a non-singular curve whose affine part is given by a fixed
equation of the form y2 + cx + d = x3 + ax + b, where a, b, c, d ∈ OF . We will also assume that rank
of E is positive, and over F it is the same as over K.

• Let i = [E(K) : E(F )].

• For an infinite order point Q ∈ E(K) let (x(Q), y(Q)) be the affine coordinates of Q given by the
Weierstrass equation above.

• LetM1, . . . ,Mn+1 be pairwise linearly disjoint overK extensions ofK of distinct degreesm1, . . . ,mn+1.
Let H1(T ), . . . , Hn+1(T ) ∈ OK [T ] be the monic irreducible polynomials of some integral generators
γ1, . . . , γn+1 of M1, . . . ,Mn+1 over K respectively.

• Let m =
∏n+1
i=1 mi!.

• Let WK be a set of primes of K. Let W̄K be the closure of WK under conjugation over F , augmented
by all the primes ramifying in the extension K/F and their conjugates.

• Let H̄i(x) = Hi(xb + 1
a ), where a, b are positive integers defined in Lemma 4.3.

• Let t ∈ K. Then let d(t) =
∏

p pa(p), where the product is taken over all the primes p of K not in WK

such that −a(p) = ordpt < 0. Let d̄(t) =
∏

p pa(p), where the product is taken over all the primes p of

K not in W̄K such that −a(p) = ordpt < 0. Further, let n(t) = d(t−1), n̄(t) = d̄(t−1).

• Let r be a positive integer defined in Lemma 3.3.

• Let c > 0 be the constant defined in Lemma 4.4. Let nc > c be a natural number.

• Let c′ > 0 be the constant defined in Lemma 3.3. Let nc′ >
1
c′ be a natural number not divisible by

any prime of W̄K .

The set WK will satisfy the following assumption.
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2.4 Assumption.

All but finitely many primes of W̄K have no factor of relative degree 1 in any of the the extensions
M1/K, . . . ,Mn+1/K.

3 Properties of Elliptic Curves

In this section we go over some properties of elliptic curves necessary for our construction.

3.1 Lemma.

Let P ∈ E(K) (or P ∈ E(F )) and let p be a K-prime (resp. F -prime) such that ordpx(P ) < 0. Then

2
∣

∣

∣ordpx(P ).

Proof.

This follows from considering the Weierstrass equation.

3.2 Lemma.

If I ⊂ OK is a nonzero ideal not divisible by any primes of WK , then there exists a non-zero multiple [l]P

of P such that I
∣

∣

∣d(x([l]P )).

Proof.

This lemma follows immediately from Lemma 10 of [17] even though we no longer assume that the curve is
of rank 1. The proof is unaffected by this change.

3.3 Lemma.

There exists a positive integer r such that for any positive integers l, k,

d(x([lr]P )
∣

∣

∣n(
x[lr](P )

x([klr]P )
− k2)2.

Proof.

Let r be a positive integer defined in Lemma 8 of [17]. Then the statement above follows immediately from
Lemma 11 of [17]. The proof is again unaffected by the fact that we no longer assume E to be of rank 1.

3.4 Lemma.

Let r be as in Lemma 3.3. Let Q′, Q ∈ [r]E(K) \ fOg, Q′ = [k]Q. Then d(x(Q))
∣

∣d(x(Q′)).

Proof.

See Lemma 9 of [17].
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3.5 Lemma.

Let Q,Q′ be as in Lemma 3.4. Then

x(Q)h =
a

b
, a, b ∈ OK , (a, b) = 1 (3.1)

(

x(Q)

x(Q′)

)h

=
c

d
, c, d ∈ OK , (c, d) = 1 (3.2)

and n(b) and n(d) do not have any common factors.

Proof.

Existence of a, b, c, d satisfying Equations (3.1) and (3.2) follows from the definition of the class number.

Similarly, we can let x(Q′)h = a′

b′ , a
′, b′ ∈ OK , (a′, b′) = 1. Next we observe

n(b) = d(x(Q))h, n(b′) = d(x(Q′))h,

and by Lemma 3.4 we have that n(b)jn(b′). Therefore, d( b
′

b ) is a trivial divisor. Next we note that

n(d) = d(
x(Q)

x(Q′)
)h = d(

ab′

a′b
) = d(

a

a′
)d(

b′

b
) = d(

a

a′
)

so that n(d)jn(a′). Now n(a′) has no common factors with n(b′). Since by Lemma 3.4, all the factors of n(b)
are factors of n(b′), we must conclude that n(b) and n(d) have no common factors.

4 Bounds and Divisors

This section is devoted to equations which impose bounds on the height of elements of the ring and the
related issues of divisibility in OK,WK . We start with a lemma which follows immediately from the Strong
Approximation Theorem.

4.1 Lemma.

Let t, w ∈ OK,WK . Then there exist X,Y ∈ OK,WK with Xt+ Y w = 1 if and only if for every p 6∈ WK ,

(ordpw > 0⇒ ordpt = 0).

The next lemma describes circumstances when a divisor from K is a divisor from F .

4.2 Lemma.

Let t, w ∈ OK,WK . Assume further that the following statements are true.

1. There exists X,Y ∈ OK,WK , such that Xt+ Y w = 1.

2. t
w = zh, where z ∈ F .

Then n̄(w) is a divisor of F in the following sense. Let P be a prime of F and let
∏

i p
ei
i be its factorization

in K. Suppose further that for some i we have that ordpi n̄(w) > 0. Then for some positive integer l, for all
i it is the case that ordpi n̄(w) = lei, and eiordpiw = −eiordpi

t
w = −ordP

t
w .

Further, w = yW , where y ∈ OF and y is not divisible by any K-prime outside W̄K , while all the
K-primes occurring in the divisor of W are in W̄K .
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Proof.

First of all, we observe that by Lemma 4.1, the first condition assures us that if q 6∈ W̄K and ordqw > 0,
then ordqt = 0. Thus, if ordqw > 0, then ordqw = −ordq

t
w . Conversely, suppose q 6∈ W̄K and ordq

t
w < 0.

Then, since ordqt ≥ 0 and ordqw ≥ 0 we have that

ordq
t

w
< 0⇒ (ordqt = 0 ∧ ordqw = −ordq

t

w
).

Now the first assertion of the lemma follows from the fact that t/w ∈ F and W̄K is closed under conjugation
over F .

Next let n̄F (w) = n̄(w) considered as a divisor of F . Then n̄F (w) is an h power of an integral divisor of
F , and by assumption on h there exists y ∈ F such that n̄F (w) = n̄(y). Let W = w

y . Then W ∈ OK,WK and

all the K-primes occurring in the divisor of W are in W̄K .

4.3 Lemma.

There exist H̄1(X), . . . , H̄n+1(X) ∈ K[X] such that for all i = 1, . . . , n+1, all x ∈ K, for all primes q ∈ W̄K ,
ordqH̄i(x) ≤ 0 and no two H̄i, H̄j have a common root for i 6= j.

Proof.

First suppose p ∈ W̄K is such that p does not divide the discriminant of any Hi and does not have a relative
degree 1 factor in any extension Mi/K. In this case we can use the proof of Lemma A.8 of [29], to assert
that for any i = 1, . . . , n + 1, for any x ∈ K we have that ordpHi(x) ≤ 0. (Since we assumed Hi’s to be
monic with integral coefficients, we do not need to assume that p does not divide the coefficients of Hi(X).)
Next let Q be the finite (possibly empty) subset of W̄K consisting of primes not satisfying the conditions
above. If Q 6= ∅ let a be a rational integer divisible by every prime of Q and let H̄i(x) = Hi(xb + 1

a ), where
a positive integer b is such that

b > mordqa and (b,mordqa) = 1 (4.3)

for all q ∈ Q. (Here we remind the reader that m is a constant defined in Notation 2.3.) If Q = ∅ then
let b = 1, a = 1. Now let x ∈ K, p ∈ W̄K and consider ordpH̄i(x). If p 6∈ Q, then as indicated above,
ordpH̄i(x) = ordpHi(xb+ 1

a ) ≤ 0. If p ∈ Q, then ordp(xb+ 1
a ) < 0, and since Hi(x) is monic and has integral

coefficients, ordpHi(xb + 1
a ) < 0.

To show that the last assertion of the lemma holds, it is enough to show that any root of Hi(Xb + 1
a )

is of degree b[Mi : K] over K. Indeed, let βi be a root of Hi(Xb + 1
a ). Then for some root γi of Hi(X),

γi ∈ K(βi). Further, βbi + 1
a = γi ∈ OK(γi). From Equation (4.3) and the fact that γi is an algebraic integer

it follows that all elements of Q will be ramified in extension K(βi)/K(γi) with ramification degree b. Thus,
[K(βi) : K(γi)] = b and for all i = 1, . . . , n+ 1 the polynomial H̄i(X) is irreducible of degree b[Mi : K] over
K. Hence, H̄i(X) and H̄j(X) have no roots in common for i 6= j.

4.4 Lemma.

Let α
β ∈ K with α, β ∈ OK and relatively prime to each other. Let y ∈ OK be such that y 6= 0 is not an

integral unit,
y

H̄u(α/β − lj)
∈ OK , j = 0, . . . , z, u = 1, . . . , n+ 1 (4.4)

where l0 = 0, . . . , lz, z = maxu(b[Mu : Q]) are distinct natural numbers. Let

NK/Q(β)α/β = e0 + e1φ+ . . .+ es−1φ
s−1, e0, e1, . . . , es−1 ∈ F. (4.5)

Then there exists a constant c > 0 depending on l0, . . . , lz,K, H̄u(T ),Mu, D, φ only such that

jNK/Q(Dej)j < jNK/Q(y)jc, j = 0, . . . , s− 1. (4.6)
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Proof.

The proof is essentially the same as for Lemma 1.3.3 of [28].

4.5 Lemma.

There exists a constant c′ > 0 depending only on F and K such that the following holds: Let I be a
non-zero ideal of OF . Suppose µ ∈ OK and ω ∈ OF . Write µ =

∑s−1
i=0 ejφ

j , with ej ∈ F . Suppose
NK/Q(Dej) < c′NK/Q(I) for all j, and µ ∼= ω( mod IOK). Then µ ∈ OF .

Proof.

This is Lemma 5 of [17].

5 Diophantine Definitions.

This section is devoted to the proof of the vertical definability result in Proposition 5.3. This proposition
will serve as foundation for the results of Section 6.

5.1 Proposition.

Consider the following equations.
λ = ν2h, (5.7)

P1, P2, P3 ∈ [ir]E(K) \ fOg, (5.8)

(x(Pj))
hk =

uj
vj
, uj , vj ∈ OK,WK \ f0g, j = 1, 2, (5.9)

Xjuj + Yjvj = 1, j = 1, 2, (5.10)

u

v
=

(

x(P2)

x(P3)

)h

, u, v ∈ OK,WK \ f0g, (5.11)

Vu,j =
v1

H̄u(λ− lj)
, u = 1, . . . , n+ 1, j = 1, . . . , z = max

u
(b[Mu : Q]), (5.12)

V =
v2

(nc′v1)2hnc
, (5.13)

Av +Bv2 = 1, (5.14)

(vλ− u)2h = v2hwv2. (5.15)

We claim that if these equations hold with all the variables except for Pj , x(Pj), j = 1, 2, 3, ranging over
elements of OK,WK , then λ ∈ F .

Proof.

First we observe that λ = α
β , α, β ∈ OK and are relatively prime integers. Further, by definition of i (see

Notation 2.3), we conclude that u/v ∈ F . Next note that by Lemma 3.1, Lemma 4.2 and our assumptions,
n̄(v2) is a 2h-th power of an integral divisor of F . So let v2h

2 = n̄(v2), where v2 is an integral divisor of F .
By Equation (5.14) and Lemma 4.1 we know that u

v is integral at all the primes occurring in v2. Thus, by
the Strong Approximation Theorem, there exists t ∈ OF such that the numerator of the divisor of t− u

v is
divisible by v2. Then for any K-prime q occurring in v2, the following statements are true.

1. ordq(λ− u
v ) ≥ ordqv2.
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2. ordq(λ− t) ≥ min(ordq(λ− u
v ), ordq(uv − t)) ≥ ordqv2.

3. ordq(NK/Q(β)λ−NK/Q(β)t) ≥ ordqv2.

Let t′ = NK/Q(β)t ∈ OF and note NK/Q(β)λ− t′ ∈ Iv2OK , where Iv2 ⊂ OF is the OF ideal with the divisor
v2.

On the other hand, by Lemma 4.2 we can write v1 = yW , where the divisor of y ∈ OK consists of
K-primes outside W̄K and the divisor of W consists of primes in W̄K only. As in the case of v2 we can also
conclude that the divisor y of y is equal to n̄(v1) and is a divisor of F . Note further that H̄u(λ − li) does
not have a positive order at primes of W̄K , and therefore

Vu,i =
v1

H̄u(λ− li)
∈ OK,WK ⇒

y

H̄u(λ− li)
∈ OK,W̄K

⇔ y

H̄u(λ− li)
∈ OK .

Thus we can apply Lemma 4.4 and conclude that Equation (4.6) holds. Further, from Equation (5.13)

we must conclude that n(nc′v
nc
1 )
∣

∣

∣v2, or (nc′)ync
∣

∣

∣v2. Thus,

∣

∣NK/Q(yc)
∣

∣ <
∣

∣NK/Q(ync)
∣

∣ <

∣

∣

∣

∣

1

nc′
NK/Q(Iv2)

∣

∣

∣

∣

<
∣

∣c′NK/Q(Iv2)
∣

∣

Therefore by Lemma 4.5 we have that NK/Q(β)λ ∈ F ⇔ λ ∈ F .

5.2 Proposition.

Suppose ν = k, with k ∈ Z, k 6= 0. Then Equations (5.7)–(5.15) can be satisfied over OK,WK .

Proof.

If ν = k2, then λ = k2h. By Lemma 3.2, there exists a positive integer l such that for some P ∈ E(K),
xh([lir]P ) = u1

v1
, u1, v1 ∈ OK \ f0g are relatively prime integers and (5.12) holds for all u, i for some Vu,i ∈

OK,WK . Next by Lemma 3.2 again, there exists a positive integer l′ such that x([l′ir])h = u2

v2
, u2, v2 ∈ OK

are relatively prime integers and (5.13) holds for some V ∈ OK,WK . Finally, let P3 = [k]P2. By definition
of the class number, there exist u, v ∈ OK so that Equation (5.11) holds and u, v ∈ OK and are relatively
prime. Then by Lemma 3.5 we have that n(v2) and n(v) have no common factors and therefore d2 and n(v)
have no common factors. Hence by Lemma 4.1, Equation (5.14) can be satisfied. Further, by Lemma 3.3 we
have that

d(x(P2))
∣

∣

∣n(x(P2)/x(P3)− k2)2

as integral divisors, and therefore

d(x(P2))
∣

∣

∣n(
u

v
− k2h)2,

since
(

x(P2)

x(P1)

)h

− k2h =

(

x(P2)

x(P1)
− k2

)

U,

where for any K-prime q 6∈ WK we have that ordqU < 0⇒ ordqv > 0⇒ ordqv2 = 0⇒ ordqd(x(P2)) = 0 by
the discussion above. Therefore, (5.15) can also be satisfied.

5.3 Proposition.

OK,WK ∩ F has a Diophantine definition over OK,WK .
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Proof.

Let µ ∈ OK,WK and suppose Equations (5.7)–(5.15) can be satisfied in OK,WK with ν = µ, µ+ 1, . . . , µ+ 2h.
Then by Proposition 5.1 we have that µ2h, (µ + 1)2h, . . . , (µ + 2h)2h ∈ F . Consequently, by Lemma 5.2 of
[26] we have that µ ∈ F . On the other hand if µ ∈ Z, µ 6= 0, then by Proposition 5.2, Equations (5.7)–(5.15)
can be satisfied in OK,WK . Next let

A = fµ ∈ OK,WK jEquations (5.7)–(5.15) can be satisfied in OK,WK with ν = µ, µ+ 1, . . . , µ+ 2hg ∪ f0g

Then by the argument above, Z ⊂ A ⊂ F , and A has a Diophantine definition over OK,WK . Next let δ be
an integral generator of F over Q. Then u ∈ OK,WK ∩ F if and only if u ∈ OK,WK and u =

∑

j
ai
bi
δi, where

ai, bi ∈ A, bi 6= 0. Thus, OK,WK ∩ F has a Diophantine definition over OK,WK .

5.4 Corollary.

Let ŴK be a set of primes of K such that WK ⊆ ŴK and ŴK \ WK is finite. Then OK,ŴK
∩ F has a

Diophantine definition over OK,ŴK
.

Proof.

This corollary follows from Proposition 5.3, since Ŵ still satisfies Assumption 2.4.

6 Main Results.

In this section we prove the main results of this paper. In all the propositions below we will use the following
assumptions.

6.1 Assumptions.

• K/F is a finite extension of number fields of degree s > 1.

• There exists an elliptic curve defined over F such that its rank over K is the same as over F and is
positive.

6.2 Theorem.

For any ε > 0 there exists set of K-primes of natural density greater than 1− ε such that OK,WK ∩ F has a
Diophantine definition over OK,WK .

Proof.

Let ε be given. Let KG be the Galois closure of K over F and let N1, . . . , Nn+1 be cyclic extensions of Q
of degrees q1, . . . , qn+1, where q1 < . . . < qn+1 are distinct prime numbers such that for all j we have that
(qj , [KG : Q]) = 1 and

1− (q1 − 1) . . . (qn+1 − 1)

q1 . . . qn+1
< ε.

Next let Mj = NjK. Let γj ∈ ONj be a generator of Nj over Q. Let WK be the set of all primes of K not
splitting in any of the extensions Mj/K. Given our assumptions on the degrees of field extensions, every
prime of WK has all of its F -conjugates in WK , and therefore Proposition 5.3 applies to WK . It remains
to establish the density of WK . Consider the extension M1 . . .Mn+1/K. Since qi’s are pairwise relatively

prime and also prime to [KG : Q], this is a Galois extension whose group is isomorphic to
∏n+1
j=1 Gal(Nj/Q).

11



Let qK be a prime of K splitting in one of the extensions Mj/K. Then it must have a factor in M1 . . .Mn+1

with Frobenius automorphism of the form

(τ1, . . . , idj , . . . , τn+1), (6.16)

where τj ∈ Gal(Nj/Q) is not necessarily an identity and idj is the identity element of Gal(Nj/Q). Further,
if pK has a factor with Frobenius of the form (6.16), it splits in Mj/K. Therefore, by the natural density
version of Chebotarev Density Theorem ((see Theorem 1 of [22]), WK has natural density and this density
is equal to

(q1 − 1) . . . (qn+1 − 1)

q1 . . . qn+1
.

Next we specialize Theorem 6.2 to the cases whether WK is either finite or empty to obtain the following
corollaries.

6.3 Corollary.

Let SK be a finite set of primes of K. Then OK,SK ∩ F has a Diophantine definition over OK,SK . If F is a
totally real field (including Q), an extension of degree 2 of a totally real field or a field with exactly one pair
of non-real conjugate embeddings, then HTP is undecidable over OK,SK .

6.4 Corollary.

OF has a Diophantine definition over OK . If F is a totally real field (including Q), an extension of degree
2 of a totally real field or a field with exactly one pair of complex conjugate embeddings, then HTP is
undecidable over OK .

Once we established these vertical definability results, we can proceed as in [29] and [30] to obtain results
pertaining to definability of integers over large subrings of fields and Mazur’s Conjectures over such rings.

6.5 Theorem.

For any ε > 0 there exists a set VK of K-primes of natural density greater than 1− 1
s − ε such that OF and

OK have Diophantine definitions over OK,VK . If F is a totally real field (including Q), a totally complex
extension of degree 2 of a totally real field or a field with exactly one pair of non-real conjugate embeddings,
then HTP is undecidable over OK,VK .

Proof.

LetWK be defined as in Theorem 6.2. We will form VK out ofWK in the following manner. For each complete
set of F -conjugates inWK remove a prime of the highest norm. From Chebotarev Density Theorem it follows
that only primes of relative degree 1 will contribute to the density (if it exists) of the removed set of primes.
Furthermore, the density of the set of removed primes of relative degree 1 is equal to the density of the set
of F -primes below them. Thus, it is enough to compute the density of the set of primes qF of F satisfying
the following conditions:

1. qF splits completely in the extension K/F .

2. For all j = 1, . . . , n+ 1 it is the case that qF does not split in the extension NjF/F .

Note that qF splits completely in the extension K/F if and only if it splits completely in the extension
KG/F . Further, given the assumptions on the degree of the extensions, for any j, we have that qF splits
completely in the extension NjF/F if and only if every factor qKG of qF in KG splits completely in the

12



extension KGNj/KG and every factor qK of qF in K splits completely in the extension Mj/K. Thus, qF
satisfies Conditions 1 and 2 above if and only if in the extension KGM1 . . .Mn+1/F , qF has a factor whose
Frobenius is of the form (idKG , σ1, . . . , σn+1), where idKG is the identity element of Gal(KG/F ) and σi is
not the identity element of Gal(Nj/Q). Therefore, by Chebotarev Density Theorem (the natural version),
this set of primes has natural density and it is equal to

(q1 − 1) . . . (qn+1 − 1)

[KG : F ]q1 . . . qn+1
.

Thus the natural density of VK is equal to

(q1 − 1) . . . (qn+1 − 1)

q1 . . . qn+1
− (q1 − 1) . . . (qn+1 − 1)

[KG : F ]q1 . . . qn+1
≥ s− 1

s

(q1 − 1) . . . (qn+1 − 1)

q1 . . . qn+1
−→ 1− 1

s
.

as q1, . . . , qn+1 −→∞. Observe now that OK,VK ∩ F = OF and the assertion of the theorem follows.

Finally we state a result concerning Mazur’s Conjecture.

6.6 Theorem.

Suppose F is either a totally real field or a totally complex extension of degree 2 of a totally real field. Then
for any ε > 0 there exists a set WK of K-primes of natural density greater than 1 − ε such that for some
variety V defined over K we have that V (OK,WK ) has infinitely many components.

Proof.

The proof of this theorem is completely analogous to the proof of Theorem 3.6 of [30].

7 Examples.

In this section we will present some examples drawn from [14] and [3] where we can make use of results from
Section 6 to obtain new definability and undecidability results and new counterexamples to the ring version
of Mazur’s Conjecture. We will start with an example from [14].

7.1 Example.

Let K = Q(
√
−7). Let K∞ be a Z2

5-extension of K. Let Kanti
∞ ⊂ K∞ be the anticyclotomic extension of K

contained in K∞, i.e. the unique subfield of K∞ containing K such that it is a Z5-extension of K which is a
non-abelian (dihedral) Galois extension of Q. Let Kcycle

∞ be the compositum of K with a unique cyclotomic
Z5 extension of Q. Let E be the elliptic curve corresponding to the equation y2 + y = x3−x. Then, for any
number field F with K ⊆ F ⊂ K∞ we have that rank (E(F )) = [F ∩Kanti

∞ : K]. Note that from definition of

Kanti
∞ and Kcycle

∞ , the intersection of these fields is K. Now let F anti be a number field, Galois over Q, such

that K ⊂ F anti ⊂ Kanti
∞ and let F cycle1 ⊆ F

cycle
2 be number fields such that K ⊆ F

cycle
1 ⊂ F

cycle
2 ⊂ K

cycle
∞ .

Next consider fields G1 = F
cycle
1 F anti ⊂ F cycle2 F anti = G2 and observe that G1∩Kanti

∞ = G2∩Kanti
∞ = F anti.

Therefore, E would have the same rank over G1 and G2. Observer further that G1/Q is not abelian and
is totally complex since it contains

√
−7. Further, it is of degree at least 10 over Q, so it has more than

one pair of non-real embeddings. Finally, G1 is not an extension of degree 2 of a totally real field. Indeed,
suppose that it is not the case and consider the following diagram, where L is this totally real subfield of
G1 of degree 2.
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Q K

L G1

5n 5n

2

2

First of all, L/Q is not Galois, otherwise K and L are two linearly disjoint abelian extensions of Q and
G1 is also abelian. Let α generate L over Q. Then at least one conjugate of α over Q is not in L. On
the other hand, all the conjugates of α over Q must be in G1. Let β be this conjugate. Then β ∈ R and
G1 = Q(α, β) ⊂ R in contradiction of the fact that G1 is a non-real field. Thus, when we apply Diophantine
definability results from Section 6, to the pair G2/G1, we will indeed obtain new diophantine definitions.

Finally, the reader might wonder why we do not consider simply the subfields of Kcycle
∞ . For these

subfields our method will indeed produce undecidability results and counterexamples to the ring version of
Mazur’s Conjecture. However, the subfields of Kcycle

∞ are cyclic extensions of Q and Theorems 6.2, 6.5 and
6.6 are known for these fields (see [26], [29], [27] and [30]).

We will next consider examples computed in [3].

7.2 Example.

In [3], Cornelissen, Pheidas, and Zahidi computed the rank of y2 = x3 + 8x over Q, Q( 3
√

2) and Q( 4
√

2), and
determined that it is 1 over all three fields. First of all, we note that Q( 3

√
2) is a field with one pair of non-real

embeddings and therefore the case of integers and S-integers (with S of finite size) of this field is covered
by the results obtained independently by the author and Pheidas in [24] and [15] respectively. The case of
integers and S-integers (with S of finite size) for Q( 4

√
2) is covered by results in Poonen’s paper (see [17]).

On the other hand, the statements from Theorems 6.2, 6.5, 6.6 are new results for these fields. We should
note here that, as mentioned above, since Q( 3

√
2), Q( 4

√
2) both have a rank one elliptic curves, the method

Poonen used in [18] will apply to these fields so that for each of these fields one can construct a sets of primes
WQ( 3√2) and WQ( 4√2) of natural density equal to one and the rings OQ( 3√2),WQ( 3√2)

and OQ( 4√2),WQ( 4√2)
will

posses a Diophantine model of Z and will falsify the ring version of Mazur’s Conjecture. (Also as we have
mentioned above, this kinds of results are discussed in [19].) However, the rings obtained by this method
are different from the rings constructed for the proofs of Theorems 6.5 and 6.6.
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