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Abstract

We investigate the following question. Let K be a global field, i.e. a number field or an algebraic

function field of one variable over a finite field of constants. Let WK be a set of primes of K, possibly

infinite, such that in some fixed finite separable extension L of K, all the primes of WK do not have

factors of relative degree 1. Let M be a finite extension of K and let WM be the set of all the M-primes

above the primes of WK . Then does WM have the same property? The answer is “always” for one

variable algebraic function fields over finite fields of constants and “not always” for number fields. In

this paper we give a complete descriptions of the conditions under which WM inherits and does not

inherit the above described property.

1. Introduction.

The question raised in this paper came out of an investigation of some logical properties

of subrings of global fields (number fields and function fields over finite fields of constants).

More specifically the prime sets which are investigated in this paper play a role in a study of

weak presentations of these rings, as well as in the investigation of the first-order definability

over global fields. We start with defining the sets of primes in question.

Definition 1.1. Let K be a global field. Let WK be a set of primes of K such that there

exists a finite extension M of K where each prime of WK has no factors of relative degree 1

over K. Then WK will be called a K-separable set of primes.

It is not hard to show that for a global field K being K-separable is equivalent to existence

of a polynomial P (X) ∈ K[x ] such that for all a ∈ K, all p ∈ WK we have that ordpP (a) ≤ 0.

The Logic applications are based on this fact. For example, if we have a weak presentation

of K (a map from K into N translating all the field operations by recursive functions), then

for any K-separable prime set WK, the ring where the complement of WK (denoted by W K)

is inverted,

O
K,W K

= {x ∈ K : ordpx ≥ 0∀p ∈ WK},
will have a Turing degree which is equal to the Turing degree of the field. This is so, because

for any a ∈ K we have that 1

P (a)
∈ O

K,W K
. (See [5], [9], [10], [11] for more details concerning

weak presentations). We say that the ring O
K,W K

is “inseparable” from K by analogy with a

similar relation between a pair of fields, and thus we call the set of primes WK and the ring

OK,WK
“separable” (from the field K).
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The applications to the existential definability have to do with the fact that using a poly-

nomial like P (x) we can say something about integrality at infinitely many primes. Further,

rings OK,WK
are precisely the subrings of global fields where we have successfully defined ex-

istentially all the elements of a subfield contained in the ring. (See [12], [14], [13], [15],

[16].)

In view of the above it is natural to ask whether these logical/algebraic properties carry

over under extensions if we consider prime sets containing all the factors of the primes in the

original set. To make this question more precise we need another definition.

Definition 1.2. Let K and WK be as in Definition 1.1. Suppose further that the following

conditions are also satisfied.

(1) For any finite extension M of K, the set WM of M-primes above the primes of WK is

M-separable.

(2) For any finite subextension E of K, the set of all E-primes such that all of their

factors in K are in WK, is E-separable.

Then WK will be called separable.

In this paper we would like to answer the following question.

Question 1.3. Given a global field K and a K-prime set WK, is being K-separable the

same as being separable?

In [11] we made the following easy observations which provide a partial answer to the

question.

Proposition 1.4. Let M/K be a finite extension of global fields. Let WK be a set of primes

of K and let WM be the set of primes of M above the primes of WK. Then the following

statements are true.

• If WM is M-separable, then WK is K-separable.

• If all primes of WM are of relative degree one over the corresponding primes of WK

and WK is K-separable, then WM is M-separable.

In this paper we complete the answer. Before we state the main results of the paper we

need to introduce more definitions.

Definition 1.5. Let M/K be a Galois extension of number fields. Let WK be the set of

all primes of K without relative degree one factors in M. Then WK will be called maximal

K-separable. (Theorem 7.4 will establish the relationship between the separable sets and

maximal K-separable sets.)

The following remark accounts for the usefulness of our definition.

Remark 1.6. Let K be a number field. Then there is a one-to-one correspondence between

the maximal K-separable sets of K and finite Galois extensions of K in the following sense. If

WK is a maximal K-separable set, M is the corresponding Galois extension, and L is another

Galois extension of K such that WK primes do not have relative degree one factors in L, then

M ⊆ L. (The reverse inclusion is obvious.)
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Proof. Let P(K) be the set of all the non-archimedean primes of K. Let W̄K = P(K) \WK

be the set of K-primes splitting completely in the extension M/K. Let V̄K be the set of K

primes splitting completely in the extension L/K. Then V̄K ⊆ W̄K, and by Corollary 5.5, page

136 of [4], we have that M ⊆ L. �

Definition 1.7. Let F/E be an extension of number fields with the following property. If

Ē ⊂ F , [F : Ē] = 2, and E ⊂ Ē, then for any embedding σ : F −→ ˜Q, the algebraic closure

of Q, we have that σ(Ē) ⊂ R ⇒ σ(F ) ⊂ R. Then we will say that the extension F/E

satisfies the weak real embeddings condition. If for any embedding σ : F −→ ˜Q, we have

that σ(E) ⊂ R ⇒ σ(F ) ⊂ R, we will say that the extension F/E satisfies the strong real

embeddings condition. (For extensions of degree 2, both conditions are clearly equivalent.)

We now state the main results of the paper.

Main Theorem 1. [Theorem 7.4] Let K be a number field. Let WK be a maximal K-separable

set. Then WK is separable if and only if the corresponding Galois extension M/K satisfies

the weak real embeddings condition.

Main Theorem 2. [Theorem 7.5] Let M/K be a finite extension (not necessarily Galois) of

number fields such that in the extension MG/K, where MG is the Galois closure of M over K,

subextensions of degree 2, MG/Mi , i = 1, . . . , k are all the subextensions of degree 2 which

do not satisfy the real embeddings condition. Let WK be the set of all K-primes without

relative degree 1 one factors in M. Then WK is separable if and only if

∀i = 1, . . . , k, we have that σi ∈
⋃

τ∈G

τGal(MG/M)τ−1,

where σi is the generator of Gal(MG/Mi), i = 1, . . . , k and G = Gal(MG/K).

Main Theorem 3. [Theorem 7.6] Let K be a one-variable algebraic function field over a finite

field of constants. Let WK be a set of K-separable primes. Then WK is a separable set of

primes.

Finally, these results can be restated in terms of Galois groups of the corresponding exten-

sions.

Main Theorem 4. [Theorem 7.7] Let M/K be a Galois extension of number fields satisfying

the weak real embeddings condition or a Galois extension of function fields over a finite

fields of constants. Then there exists an extension L of M with the following property. If

σ ∈ Gal(M/K) is of order n =
∏

pai
i

, where all pi ’s are distinct, then any σ̄ ∈ Gal(L/K)

extending σ will have order n̄ =
∏

pbi
i
q
cj

j
, where bi > ai , pi 6= qj .

Before proceeding with the proofs we remark on the following. One way to look at the

question we have raised is to note that it belongs to a very well known variety of number

theoretic questions which ask whether a certain property of a subring of a global field survives

under the integral closure in an extension. The answer is often “yes” and easily obtainable,

but there are certainly exceptions to this rule. The question of Diophantine decidability of

the rings of algebraic integers of number fields is one example where the problem seems quite
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hard. The difficulties are often caused by archimedean valuations, which is the case for our

question. Over function fields where all the valuations are non-archimedean things progress

much more smoothly, though, as usual, one has to take special care of inseparable extensions

and extensions where the degree is not prime to the characteristic.

We also would like to make a remark concerning finite prime sets. Let M be a global field

and let P1, . . . ,Pr be a finite set of its non-archimedean primes. Then it is not difficult to

construct an extension L of M where none of Pi , i = 1, . . . , r would have a factor of relative

degree 1. Indeed, let l be a rational prime number greater than then the size of the residue

field of any of the primes in the set, different from the characteristic of the field and not equal

to the characteristic of the residue field of any of the primes. Then ξl – an l-th primitive root

of unity is not an element of any of the residue fields. Consider the extension M(ξl)/M. The

power basis of ξl is an integral basis for the extension with respect to any non-archimedean

prime of M. Since the minimal polynomial of ξl over M does not have linear factors modulo

Pi and the power basis of ξl is an integral basis with respect to Pi , by Proposition 25, page 27

of [6], we know that Pi does not have any relative degree 1 factors in the extension M(ξl)/M.

Therefore, if WM is an infinite set of primes of M and F is a finite extension of M such that

all but finitely many primes P1, . . . ,Pr of WM have no relative degree one factors in F , then

in the extension F (ξl)/M, no prime of WM will have a relative degree 1 factor.

We finish this section with a description of some notational conventions.

Notation 1.8. We will use the following notation and terminology throughout the paper.

• Let K be a global field. Then P(K) will denote the set of all non-archimedean primes

of K.

• If AK ⊂ P(K) and M is a finite extension of K, then AM will denote the set of all

primes of M above primes of AK.

• For a natural number n 6= 0, we let ξn denote a primitive n-th root of unity.

• Let M/K be a finite extension of global fields. Let PM be a prime of M and let PK

be a prime of K below PM. Then e(PM/PK), f (PM/PK) will denote the ramification

and relative degree respectively of PM over PK.

• OK will denote the ring of integers of K if K is a number field.

• If M/K is Galois, then Gal(M/K) will denote the Galois group of M over K.

• If M/K is Galois and PM is a prime of M, then we will denote by GM/K(PM) the

decomposition group of PM.

• If PK is a non-archimedean prime of K, then let RPK
be the valuation ring of PK.

• We will fix and algebraic closure ˜Q of Q, and for each p > 0 we will fix an algebraic

closure F̃p(t) of a rational function field with coefficients in a finite field of p elements.

• Given two number fields (function fields) M and E, we will often form a field com-

positum ME denoting the smallest field inside the fixed above algebraic closure which

contains both M and E.
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2. Overview of the Proof.

In order to prove the main theorems (Theorem 7.4 and Theorem 7.6) we first go through

a series of reductions.

• If WK is a K-separable set, then it is not hard to see that separability of WK is

equivalent to the following condition. For all n ∈ Z>0 there exists a finite extension

Kn of K such that every prime p ∈ WK has all of its Kn-factors of relative degree

greater or equal to n. (See the proof of Theorem 7.4 for the argument for the

non-trivial direction of the statement.)

• It is enough to consider the maximal K-separable sets corresponding to the cyclic

extensions of prime degree. (See the Proposition 7.1.)

• If aK-maximal separable set WK corresponds to an extension of degree 2 not satisfying

the weak real embedding condition, then WK is not separable. (See Lemma 7.2.)

Next we solve the problem for the cyclic extensions. The process goes through the steps

listed below.

(1) Given a K-maximal K-separable set WK corresponding to a cyclic extension M/K

of degree p, it is enough to be able to produce for any n ∈ Z>0, a tower of fields

K0 = K ⊂ K1 = M ⊂ . . . ⊂ Kn such that for n − 2 ≥ i ≥ 0, Ki+2/Ki is a Galois

extension of degree p2. In particular, it is enough to be able to produce for any n the

cyclic extension Kn/K of degree pn with K ⊂ M ⊂ Kn. (See Section 3 in general

and more specifically Lemma 3.4.) Unfortunately, given an arbitrary cyclic extension

M/K of prime degree p and satisfying the weak real embedding condition, a tower of

extensions as described above does not always exist even for n = 2. The necessary

and sufficient condition for the existence of the tower K −M −K2 is solvability of a

certain norm equation over M. (See Lemma 5.1.)

(2) In the case of p > 2 for number fields and in the case of algebraic function fields when

the characteristic is different from p, there is a relatively easy construction, adding

the p2-th roots of unity to K if necessary, which makes the norm equation solvable

and produces the required tower of extensions of degree p. (See Section 4 in general

and specifically Proposition 4.5 and Proposition 4.6 for the number field case, and

see Section 6 in general and Proposition 6.1 in particular for the function field case.)

In the case of a function field case when the characteristic is equal to p, the required

tower always exists (see Lemma 6.2).

(3) The only difficult case is the case of number fields when p = 2. This case requires

several constructions carried out in Section 5. Here we are forced to analyze the

obstruction to the solvability of the norm equation for producing a tower of cyclic

extensions of height 2. We do this using Hasse Norm Principle to reduce the prob-

lem to the behavior of a finite set of primes, both finite and infinite. The problem

with finite primes is solved by constructing an extension where the residue fields are

extended to solve the norm equation locally. The problem with archimedean primes

is resolved using the weak real embedding assumption. More details are provided at

the beginning of Section 5.
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3. Towers of Cyclic Extensions and Primes that Do not Split.

In this section we work out the details of Step 1. Essentially, in this section we want to

answer the following question. Given two Galois extensions of global fields: K ⊂ M ⊂ L, what

are the necessary and sufficient conditions insuring that every prime not splitting completely

in the first extension, also does not split in the second extension? The conditions we seek

turn out to be related to the orders of the Frobenius automorphisms. The first lemma states

a necessary and sufficient condition for the prime of the field in the middle to split completely

in the second extension, in terms of the Frobenius of its factors.

Lemma 3.1. Let K ⊂ M ⊂ L be a tower of extensions of global fields with all of the three

extensions being Galois. Let σ ∈ Gal(L/K) and let PL be a prime of L, unramified over K,

such that σ is the Frobenius automorphism of PL. Then PL lies above an M-prime which

splits completely in the extension L/M if and only if the L/K-decomposition group GL/K(PL)

of PL, i.e. the cyclic group generated by σ in Gal(L/K), has no elements in Gal(L/M) except

for identity. In other words, < σ > ∩Gal(L/M) = {id}.

Proof. Note that the decomposition group of PL over M (denoted by GL/M(PL)) is equal

to Gal(L/M) ∩ GL/K(PL). Therefore, if this intersection is trivial, PM, the M-prime below

PL, splits completely in the extension L/M. Conversely, if the intersection is not trivial, then

the Frobenius automorphism of PL over M is not the identity and therefore PM will not split

completely in the extension L/M. �

The lemma below reinterprets the lemma above in terms of orders of Frobenius automor-

phisms involved.

Lemma 3.2. Let K ⊂ M ⊂ L be a tower of extensions of global fields with all of the three

extensions being Galois. Let σ ∈ Gal(M/K) and assume that σ 6= id has an extension σ̂ in

Gal(L/K) such that the order of σ̂ is the same as the order of σ. Then the infinitely many

primes of K whose M-factors have σ as their Frobenius automorphism over K will not split

completely in M, but their M-factors will split completely in L.

Proof. Let σ ∈ Gal(M/K) be as described in the statement of the lemma. Let σ̂ be an

extension of σ in Gal(L/K). If l ∈ Z>0 is such that σ̂l ∈ Gal(L/M), then σl = id. Thus if σ has

the orderm > 0, then σ̂m is the smallest positive power of σ̂ that belongs to Gal(L/M). At the

same time by assumption σ̂m = id also and we can conclude that < σ̂ > ∩Gal(L/M) = {id}.
Therefore if PL is a prime of L whose Frobenius in Gal(L/K) is σ̂, then Frobenius of PL in

Gal(L/M) is id, and thus PM = PL ∩M splits completely in the extension L/M by Lemma

3.1. At the same time the Frobenius of PM is σ. Indeed, ∀x ∈ RPL
, we have that

σ̂(x) ≡ xNPL mod PL,

where NPL is the norm of PL. Therefore, ∀x ∈ RPM
we have that

σ̂(x) ≡ xNPL mod PM,

because x ∈ M implies σ̂(x) ∈ M, and thus (σ̂(x) − xNPL) ∈ M. But since PM splits

completely in the extension L/M, we have that NPL = NPM. Hence, σ = σ̂|M is the Frobenius
6



automorphism of PM. Finally, since by assumption σ 6= id, we have that PK = PM ∩K does

not split completely in M. �

We now specialize our discussion of a Galois tower of two extensions to cyclic extensions,

where the necessary and sufficient condition for the primes not to split completely in both

extensions has a particularly simple form.

Lemma 3.3. Let K ⊂ M ⊂ L be a cyclic extension of global fields. Let WK be the set of all

primes of K not ramified in the extension L/K and not splitting completely in the extension

M/K. Let WM be the set of all the primes of M lying above the primes of WK. Then none

of the primes of WM split completely in the extension L/M if and only if for every rational

prime q, we have that

ordq|Gal(M/K)| > 0⇒ ordq|Gal(L/M)| > 0.

Proof. Suppose

|Gal(M/K)| =
∏

qai
i
,

|Gal(L/M)| =
∏

qbi
i

∏

t
cj

j
,

where for all i , j , we have that qi , tj are distinct rational prime numbers and ai , bi , cj are

positive integers. This of course implies that

|Gal(L/K)| =
∏

qai+bi
i

∏

t
cj

j
.

Let σ ∈ Gal(L/K) be a generator. Then σ
∏

q
ai
i generates Gal(L/M). Let τ = σ

∏

q
mi
i

∏

t
nj

j ,

where mi , nj ∈ Z≥0, and

0 ≤ mi < ai + bi ,

0 ≤ nj < cj .

Let li = max(0, ai − mi). Then τ
∏

q
li
i ∈ Gal(L/M). Suppose now that τ

∏

q
li
i = id. This

implies nj = 0 for all j and li + mi = bi + ai for all i , since li and mi cannot be zero at

the same time. Thus, max(0, ai − mi) + mi = bi + ai for all i . We have to consider two

cases: mi ≥ ai and mi < ai . In the first case, li = 0 and mi = ai + bi . In the second case,

li = ai −mi and li + mi = ai < ai + bi . Since by assumption 0 ≤ mi < ai + bi , neither case

can occur and therefore for any element τ 6= id of Gal(L/K), the intersection of < τ > and

Gal(L/M) is non-trivial. Hence, every prime of K not splitting completely in M will have all

of its M-factors not splitting completely in L.

Suppose now that for some rational prime q, we have that

q
∣

∣

∣|Gal(M/K)| and q 6
∣

∣

∣|Gal(L/M)|.

Then by Sylow Theorems, Gal(L/K) has an element τ of order q such that

< τ > ∩Gal(L/M) = {id},

while τ|M 6= id. Thus, there are infinitely many primes of K not splitting completely in the

extension M/K with some factors splitting completely in the extension L/M. �
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We now extend the results of Lemma 3.3 to cyclic towers of arbitrary height and determine

that to obtain prime factors of arbitrary high relative degree it is enough to construct cyclic

towers, where each pair of adjacent fields produces an extension of the same (prime) degree

and every subtower of length two is itself cyclic.

Lemma 3.4. Let p be a rational prime. Consider the following tower of number fields:

K1 ⊂ K2 ⊂ . . . ⊂ Kn,

where for 2 ≤ i + 1 ≤ n, we have that

[Ki+1 : Ki ] = p,

and for 1 ≤ i < n − 1, it is the case that Ki+2/Ki is a cyclic extension. Let WK1
be a set

of K1 primes not splitting in the extension K2/K1 and not ramified in the extension Kn/K1.

Then no prime of WK1
splits in the extension Kn/K1 and consequently all the Kn-factors of

WK1
-primes have relative degree pn−1 over K1.

Proof. We use induction on n to prove the lemma. The base case, i.e. the case for n = 3

holds by Lemma 3.3. So assume the statement of the lemma holds for n = m−1. For n ≥ 0

let WKn be the set of all the factors of primes of WK1
in Kn. Then by induction hypothesis, all

the primes of WK1
do not split in the extension Km−1/K1 and consequently all the primes of

WKm−2
do not split in the extension Km−1/Km−2. However, by Lemma 3.3, all the primes of

Km−2 which do not split in the extension Km−1/Km−2 have Km−1 factors not splitting in the

extension Km/Km−1. Therefore, primes of WK1
will not split in the extension Km/K1. �

4. Cyclic extensions of odd prime degree over number fields.

In the last section we established that we would like to construct cyclic towers, where each

pair of adjacent fields produces an extension of the same (prime) degree and every subtower

of length two is itself cyclic. In this section we execute such a construction starting with a

cyclic extension of degree p > 2 of number fields. The prime 2 will be dealt with separately

and will cause many more difficulties. This section is Step 2 of the overview for number fields.

We start with a series of technical propositions describing prime splitting under linearly

disjoint Galois extensions. (For a definition and a discussion of properties of linearly disjoint

fields see [3].) We consider the situation first assuming the degrees of the extensions in

question are relatively prime.

Lemma 4.1. Consider the following diagram, where E/F is a cyclic extension of global fields,

M/F is a Galois extension of global fields, [M : F ] is prime to [E : F ].
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F
•

E• M•

ME•

PM ∈

PF ∈

Let PM be any prime of M. Then PM does not split in the extension ME/M if and only if

the prime PF below it in F does not split in the extension E/F .

Proof. Let GM, GE, GME/M , GME/E, GME/F be the Galois groups of extensions M/F , E/F ,

ME/M, ME/E, and ME/F respectively. Then the assumptions of the lemma imply the

following.

GME/M ∼= GE, GME/E ∼= GM,

GME/F = GME/E × GME/M ∼= GM × GE,

and every element of GME/F is of the form τσ = στ , where τ ∈ GME/M , σ ∈ GME/E. Let

PM be a prime of M. Then PM does not split in the extension EM/M if and only if some

factor PME of PM in ME, has a Frobenius automorphism σ that is a generator of GME/M .

This implies that σ|E, a generator of GE, will not move PME ∩ E = PE and therefore the

decomposition group of PE is GE. The last assertion however is equivalent to the statement

that PF = PE ∩ F does not split in the extension E/F .

Suppose now that an F -prime PF does not split in the extension E/F . Since

([E : F ], [M : F ]) = 1 = ([E : F ], [ME : E]),

the number of factors of PF in ME is prime to [E : F ]. Since [E : F ] = [ME : M], this

implies that the primes above PF in M do not split in the extension ME/M. �

The next lemma considers the linearly disjoint extensions of the same prime degree.

Lemma 4.2. Let M/K,E/K be two cyclic extensions of prime degree p of global fields such

that M ∩ E = K. Then all the primes of K not ramifying in the extension ME/K can be

divided into four disjoint classes described in the following table and field diagram.
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K
•

M• E•

ME
•

Prime class M/K E/K ME/E ME/M

1 split completely split completely E-factors split completely M-factors split completely

2 split completely do not split E-factors split completely M-factors do not split

3 do not split split completely E-factors do not split M-factors split completely

4 do not split do not split E-factors split completely M-factors split completely

Proof. Since E/K and M/K are linearly disjoint over K, we have that

Gal(ME/K) ∼= Gal(E/K)× Gal(M/K) ∼= Z/p × Z/p.

Further, since the Galois group of ME/K is abelian, all factors of a prime of K without

ramified factors in ME have the same Frobenius automorphism over K. Let σE, σM be

generators of Gal(ME/M) and Gal(ME/E) respectively. Then the primes in the first class

are all the primes which split completely in the extension ME/K or the ones whose factors

have identity as their ME-Frobenius automorphism. The primes in the second class have

factors with σl
E
, (l , p) = 1 as their ME-Frobenius automorphism. The primes in the third

class have factors with σl
M
, (l , p) = 1 as their ME-Frobenius. Finally, the primes in the fourth

class have factors with σl1
M
σl2
E
, (li , p) = 1, i = 1, 2 as their ME-Frobenius automorphism. �

The next two lemmas are obvious and we state them without proof.

Lemma 4.3. Let E/F be any cyclic extension of number fields of prime degree p. Then one

of the following options holds.

• F contains ξp.

• F does not contain ξp and E and F (ξp) are linearly disjoint over F .

Lemma 4.4. Let A,B ∈ Z, k ∈ Z>0, p 6= 2 – a rational prime. Assume A
·≡ B mod pk or in

other words A ≡ B mod pk but A 6≡ B mod pk+1. Then Ap
·≡ Bp mod pk+1. (See Lemma

6.3.1, page 206 of [8].)

We now get to the business of constructing our tower, first under the assumption that the

ground field has a primitive p-th root of unity.

Proposition 4.5. Let M/K be a cyclic extension of number fields of prime degree p > 2.

Assume further that ξp ∈ K. Let n ∈ Z>0 be given. Then there exists a number field

L ⊃ M ⊃ K satisfying the following condition. Let pK be a K-prime not splitting in the
10



extension M/K and not ramifying in the extension L/K. Let pM be its M-factor. Let

pL,1, . . . , pL,k be all the L primes above pM. Then for all j , we have that f (pL,j/pM) > n.

Proof. First of all, if M contains ξp2, then there exists the following tower of number fields:

K1 = K ⊂ K2 = M ⊂ . . . ⊂ Kn,
where for 1 ≤ i < n we have that [Ki+1 : Ki ] = p and for 1 ≤ i < n − 2, it is the case that

Ki+2/Ki is a cyclic extension. Indeed, first assume that ξp2 ∈ K. Then M = K(α), where

αp = a ∈ K by Theorem 10, page 214 of [7]. Consider now the following set of numbers

in our fixed algebraic closure of Q: {α1 = a, αp
i

= αi−1, i > 1}. Let Ki = Ki−1(αi), i > 1.

Then the presence of ξp2 in Ki insures that Ki+2/Ki is a cyclic extension of degree p2.

Suppose now that ξp2 ∈ M \ K. Then M = K(ξp2). Thus we can set Ki = K(ξpi ), i ≥ 2

and the assertion concerning the tower follows.

Next assume that ξp2 6∈ M. Then M and K(ξp2) are linearly disjoint over K. Consider now

the following picture, where M = K(β1), with βp1 ∈ K by Theorem 10, page 214 of [7] again,

and βp2 = β1, β
p

i
= βi−1 for i > 1.

K
•

M(ξp2)
•

K(ξp2)
•

M(ξp3)
•

M(ξp2, β2)
•

Li = M(ξpi+2, βi+2)
•

M = K(β1)
•

Let PK be a K prime not splitting in the extension M/K and not ramifying in the extension

Li/K. Next we consider two cases. In the first case we assume that PK splits completely in

the extension K(ξp2)/K. Since K(ξp2) and M are disjoint over K, and

Gal(M(ξp2)/K) = Gal(M/K)× Gal(K(ξp2)/K) ∼= Z/p × Z/p,
we must conclude that in this case PK(ξ

p2 ) – any K(ξp2)-prime lying above PK, does not

split in the extension M(ξp2)/K(ξp2), by Lemma 4.2. Note further that the extension

M(ξp2, β2)/K(ξp2) is cyclic of degree p2 and provides the foundation of the tower as in

Lemma 3.4, where

K1 = K(ξp2), K2 = M(ξp2), K3 = M(ξp2, β2), Ki+1 = M(ξp2, βi),

and βp
i

= βi−1. By Lemma 3.4, we know that PK(ξ
p2 ) will not split in the extension Ki/K1. If

PKi is a factor of PK in Ki , then for i ≥ 3, we have that f (PKi/PK1
) = pi−1 and f (PKi/PM) =

pi−2.
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Suppose now that PK does not split in the extension K(ξp2)/K. Note that the power

basis of ξp2 is an integral basis for the extension. Thus if PK does not split in the extension,

this implies that the monic irreducible polynomial of ξp2 over K has no roots modulo PK.

Therefore, the residue field of PK is of size q, where q − 1 is divisible by p but not by p2.

Further, again since K(ξp2) and M are linearly disjoint over K, it is the case that PK(ξ
p2 ),

the K(ξp2)-factor of PK, splits completely in the extension M(ξp2)/K(ξp2). (See Lemma 4.2

again.) Let PM(ξ
p2 ) be an M(ξp2)-factor of PK. Then

f (PM(ξ
p2 )/PK) = f (PM(ξ

p2 )/PK(ξ
p2 ))f (PK(ξ

p2 )/PK) = p.

Thus, the residue field of PM(ξ
p2 ) is of size qp. By Lemma 4.4 we now have

p2|qp − 1 but p3 - qp − 1.

Hence, the monic irreducible polynomial of ξp3 over M(ξp2) will have no solutions modulo

PM(ξ
p2 ). Therefore, PM(ξ

p2 ) will not split in the extension M(ξp3)/M(ξp2). We can now set

K1 = M(ξp2),

Ki = M(ξpi+1)

and use Lemma 3.4 to claim that PM(ξ
p2 ) will not split in the extension Ki/K1. Let PKi be a

factor of PM in Ki . Then, f (PKi+2
/PM) = pi .

Now let PLi be any Li -factor of PM. Then, from the discussion above it follows that

f (PLi/PM) ≥ pi . �

We now remove the assumption that the ground field K has a p-th root of unity and prove

the main result of this section.

Proposition 4.6. Let M/K be a cyclic extension of number fields of degree p > 2. Let

n ∈ Z>0 be given. Then there exists a number field L ⊃ M ⊃ K satisfying the following

condition. Let pK be a K-prime not splitting in the extension M/K and not ramifying in the

extension L/K. Let pM be its M-factor. Let pL,1, . . . , pL,k be all the L-primes above pM. Then

for all j , we have that f (pL,j/pM) > n.

Proof. If K contains ξp, then we are done by Proposition 4.5. Then assume ξp 6∈ K and

consider the following diagram, where L is the extension of M(ξp) with the property that

every prime of M(ξp) of relative degree p over K(ξp) and lying over a K(ξp)-prime not

ramifying in the extension L/K(ξp), will have all of its factors in L of relative degree higher

than n. (Such an L exists by Proposition 4.5.)
12



K
•

M•

K(ξp)
•

M(ξp)
•

L•

Note that by Lemma 4.1 and due to the fact that (p, [K(ξp) : K]) = 1, a K-prime PK, not

ramified in the extension M(ξp)/K, does not split in the extension M/K if and only if every

prime above it in the extension K(ξp) does not split in the extension M(ξp)/K(ξp). Let PL be

a prime of L lying above a prime PM in M of relative degree p over K. Let PM(ξp),PK(ξp),PK
be the primes below PL in M(ξp), K(ξp) and K respectively with PK not ramified in the

extension L/K. Then

f (PL/PM) =
1

p
f (PL/PK) =

1

p
f (PL/PM(ξp))pf (PK(ξp)/PK) ≥ f (PL/PM(ξp)) ≥ n.

�

5. Extensions of degree two of number fields.

In the preceding section it was fairly easy, starting with a cyclic extension M/K of degree

p > 2, to construct a cyclic extension L/M of degree p so that L/K is cyclic of degree

p2. This two-tower then served as a foundation for a tower of arbitrary length where the

factors of the primes not splitting in the extension M/K would have arbitrarily high relative

degrees over K. Unfortunately, it is much harder to execute the same plan for p = 2. We are

forced to look at a problem in much greater detail and first in much greater generality. The

crucial issue turns out to be the presence or absence of i =
√
−1 in the dyadic completions

of the field in question. Initially we will assume that the dyadic completions of the fields we

consider do have i and later remove this assumption. We start however, with a rather general

proposition about making towers of height two of cyclic extensions. In the first lemma we

show that the existences of a cyclic extension K ⊂ M ⊂ L of degree p2 for any prime p is

equivalent to solvability of a norm equation over M.

Lemma 5.1. Let K ⊂ M be a cyclic field extension of prime degree p distinct from the

characteristic of the field. Assume that ξp ∈ K. Then there exists a field L such that

K ⊂ M ⊂ L is a cyclic extension of degree p2 if and only if M = K(µ), where NM/K(µ) = ξp.

Further, if M = K(µ) with NM/K(µ) = ξp, then L = M(γ), where γp = β ∈ M and

µp = β/β̄, with β̄ – a conjugate of β over K.

Proof. First suppose that M contains an element µ as described in the statement of the

lemma. Note that µ 6= ξip, i = 0, . . . , p − 1, since M/K is a non-trivial extension and K has
13



p-th roots of unity. Further NM/K(µp) = 1 and by Hilbert’s Theorem 90 (see [7], page 213),

(5.1) µp = β/σ(β),

where σ ∈ Gal(M/K) \ {id} and β ∈ M \K. Let γ ∈ K̃, the algebraic closure of K, be such

that γp = β. Then let L = M(γ). We claim that L/K is a cyclic extension of degree p2.

First we show that the extension L/K is Galois. Indeed, any K conjugate γi of γ satisfies the

equation γp
i

= βi where for i = 1, . . . , p, we have that βi = σi−1(β). However, from (5.1) it

follows that βi = νp
i
β, where νi ∈ M. Indeed,

βi

β
=

βi

βi−1

. . .
β2

β
= µ−p

i
. . . µ−p1 = νp

i
,

where for i = 1, . . . , p, we have that µi = σi−1(µ). Thus, in L, it is the case that βi is a p-th

power and since ξp ∈ K, we can deduce that βi has all of its p-th roots in L. Hence, γi ∈ L.

Next we show that L/K is cyclic. To accomplish this, it is enough to produce an automor-

phism τ of L over K such that τp 6= id. Let τ ∈ Gal(L/K) be such that

τ|M = σ ∈ Gal(M/K).

Then τ(γ) = ξjpµ
−1γ, for some j = 0, . . . , p−1. Indeed, we have that γp = β, and therefore,

τ(γp)/γp = σ(β)/β = µp. Thus, τ(γ)/γ = ξjpµ, for some j = 0, . . . , p − 1. Further,

τ2(γ) = ξ2j

p µ
−1σ(µ−1)γ,

. . . ,

τp(γ) = ξjpp µ
−1σ(µ−1) . . . σp−1(µ−1)γ = NM/K(µ−1)γ = ξp−1

p γ 6= γ.

Suppose now that K ⊂ M ⊂ L is a cyclic extension. Then by Theorem 10, page 214 of

[7], we have that

M = K(α) with αp = a ∈ K,

L = M(γ) with γp = β ∈ M.
Let τ ∈ Gal(L/K) \ Gal(L/M) and consider γ/τ(γ). We claim that γ/τ(γ) ∈ M. Indeed,

let φ ∈ Gal(L/M). Then φ(γ) = ξipγ. At the same time, since the extension is abelian and

ξp is not moved by elements of Gal(L/K), we have that

φ(τ(γ)) = τ(φ(γ)) = τ(ξipγ) = ξipτ(γ).

Thus, φ(γ/τ(γ)) = γ/τ(γ). Let µ = γ/τ(γ). Then µp = β/σ(β), where τ|M = σ.

Hence, NM/K(µp) = 1. At the same time, since τ 6∈ Gal(L/M), we have that ordτ = p2

and τp(γ) 6= γ. So τp(γ) = NM/K(µ−1)γ 6= γ. Therefore, NM/K(µ) = ξip, for some

i = 1, . . . , p − 1. Let j ∼= i−1 mod p. Then NM/K(µj) = ξp. �

We now specialize the situation above to the case of p = 2 with an added twist. We

will show that if −1 is a norm the cyclic tower we construct will also satisfy the strong real

embeddings condition.
14



Corollary 5.2. Let M/K be an extension of degree 2 of number fields such that −1 is a

K-norm of some element of M. Then there exists an extension U of degree 2 over M such

that U/K is cyclic and satisfies the strong real embeddings condition.

Proof. Using Lemma 5.1, we can generate U by adjoining any α ∈ ˜Q to M, with

α2 = β ∈ M,

where β = x2β̄, for some x ∈ M \ {0} with K-norm equal to −1, and β̄ is a conjugate of

β over K. An arbitrary β however does not insure that the strong embeddings condition is

satisfied. To make sure that it is, given a β as above, we construct β′. Let y ∈ K be such

that all the real conjugates of y(β + β̄) are positive. (Such a y exists by the Approximation

Theorem). Now let β′ = yβ. Let α′ ∈ ˜Q be such that α′2 = β′ and U = M(α′).

Now let σ(M) ⊂ R for some σ : U −→ ˜Q. Then

(5.2) σ(β′) + σ(β̄′) > 0,

(5.3) σ(x)2 > 0,

(5.4) σ(β′) = σ(x2)σ(β).

From (5.3) and (5.4) we conclude that σ(β) and σ(β′) have the same sign, and (5.2) forces

this sign to be positive. Thus σ(β′) > 0 and consequently σ(U) ⊂ R. Consequently, the

extension U/K satisfies the weak real embeddings condition.

Note also that if −1 is the K-norm of an element of M, then M/K must satisfy the real

embeddings condition. Indeed, suppose for some σ : M −→ ˜Q, we have that σ(K) ⊂ R,

while σ(M) 6⊂ R. Since M =
√
d , with d ∈ K, we must conclude that σ(d) < 0. Thus, we

have real solutions to the equation:

σ(x2)− σ(d)σ(y 2) = −1,

where σ(d) is negative. This is of course impossible. Finally, suppose that for some σ : U −→
˜Q, we have that σ(K) ⊂ R. Then σ(M) ⊂ R and consequently σ(U) ⊂ R. �

We have now established that to build our tower extending a given extension of degree

2 we must have −1 as a norm. Unfortunately, this is not always the case in an arbitrary

extension of number fields of degree 2. In the next lemma we identify all the possible causes

preventing −1 from being a norm.

Lemma 5.3. Suppose M/K is an extension of degree 2 of number fields and −1 is not the

K-norm of any element from M. Then at least one of the following is true.

(1) Extension M/K does not satisfy the real embeddings condition.

(2) For some prime PK - 2 with a ramified factor in the extension M/K, we have that

−1 is not a square modulo PK.

(3) For some prime PK|2 with a ramified factor in the extension M/K, we have that −1

is not a square in KPK
– completion of K at PK.
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Proof. We will assume that all the statements above are false and show that −1 is an M-

norm in K. By the Strong Hasse Norm Principle (see Theorem 4.5, page 156 of [4]), −1 is

a norm globally if and only if it is a norm at all the primes. Observe that a unit is a norm

locally at all the finite unramified primes. (See Proposition 3.11, page 153 of [4].) Thus

we have to worry only about infinite and finite ramified primes. First suppose that for every

embedding σ : M −→ ˜Q, either both σ(K), σ(M) are real or both non-real. Let d be such

that M = K(
√
d). It is enough to consider the case of σ = id. (Other cases of σ are

analogous.) If M,K are both real, then their completion at the usual absolute value is R, the

local degree is 1 and −1 is automatically an M-norm. Similarly, if M,K are both non-real,

then the completion at the usual absolute value is C in both cases and −1 is a norm again.

We now turn our attention to the finite ramified primes. Assume PK - 2 and has a ramified

factor in the extension M/K. If −1 is a square mod PK, then the equation x2 + 1 = 0 has a

root modulo PK. Since PK - 2, we conclude that x2 + 1 = 0 has a root in KPK
by Hensel’s

Lemma. Further, since the local degree is 2, any square of KPK
is a norm in the extension

MPM
/KPK

.

Finally, if a factor of 2 is ramified, then we assume that −1 is a square in the corresponding

completion and thus −1 is a norm at this prime also. �

Now that we know all the causes of our problems, we will attempt to fix what can be fixed.

If the extension does not satisfy the real embeddings condition, then there is nothing to be

done. In fact, the tower we seek does not exist, and as we will see in the last section of the

paper, there is no way of keeping factors of all the primes not splitting in this extension from

splitting in any other extension. At the same time the other two conditions can be “cured”

by extending the fields. The lemmas below will lay out a “cure”. We will handle one problem

at a time, initially assuming that -1 is a square in every dyadic completion of the ground field.

Before we proceed with the technical details however, we state without a proof a few obvious

properties of extensions satisfying the strong real embeddings conditions that we will need

later.

Lemma 5.4. Let K be a number field. Then the following statements are true.

(1) Let K ⊂ M ⊂ L be a finite extension such that extensions M/K and L/M satisfy the

strong real embeddings condition. Then the extension L/K satisfies the strong real

embeddings condition.

(2) Let M/K and L/K be finite extensions satisfying the strong real embeddings condi-

tion. Then ML/K satisfies the strong real embeddings condition.

(3) Let α be an algebraic number all of whose conjugates over Q are real. Then the

extension K(α)/K satisfies the strong real embeddings condition.

We now start our treatment under the assumption that −1 is a square in all the dyadic

completions of the ground field. This assumption will finally be removed in Lemmas 5.9-5.11.

In the lemma below we construct the base of our tower which previously consisted of just

two extensions for p > 2 but becomes more complicated now. Given primes not splitting in

an extension M/K of degree 2, rather than constructing a single extension of M of degree 2

where factors of non-splitting primes do not split, we will construct, after extending M and
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K to make −1 a norm, if necessary, two extensions of degree 2 each taking care of a part of

the relevant prime set.

Lemma 5.5. Let K be a number field such that every dyadic completion of K contains roots

of polynomial x2 + 1. Let M/K be an extension of degree 2 satisfying the real embeddings

condition. Then there exists L, a finite extension of M of degree less or equal to 8, with the

following properties.

• There exist number fields L1, L2 such that M ⊂ L1 ⊆ L2 ⊆ L, with all the extensions

being of degree 2 or less.

• Every prime of M, lying above a prime of K not splitting in the extension M/K and

not ramified in the extension L/K, will not have factors of relative degree one in the

extension L/M.

• The extension L/K satisfies the strong real embeddings condition.

Proof. We have to consider two cases. First assume that M contains an element with K-

norm equal to −1. In this case, by Lemma 5.1 and Corollary 5.2, we can let L be an extension

of degree 2 of M such that L/K is cyclic and satisfies the strong real embeddings condition.

So assume now that −1 is not a K-norm of any element of M. Given our assumptions on

archimedean and dyadic completions, we must conclude that for some non-dyadic primes

Q1, . . . ,Qr of K, ramifying in the extension M/K, we have that x2 + 1 does not factor in the

corresponding completions of K. For each i , let qi be the rational prime below Qi . Let p be

a rational prime not ramified in the extension M/Q and such that

p ∼= −1 mod
∏

qi ,

p ∼= 1 mod 4.

Next consider below the diagram of field extensions, where U and S are constructed in the

following fashion. First examine the extension K(
√
p)/K. Since p is a positive integer, the

extension K(
√
p)/K satisfies the real embeddings condition by Lemma 5.4. Further, the

only primes possibly ramified in this extension are factors of p and factors of 2. Now, by

assumption, the dyadic completions of K posses the roots of x2 + 1 and therefore −1 is

a norm at all the dyadics. Further, −1 is a square modulo p and since p is an odd prime,

x2 + 1 splits in Qp. Thus, completions of K at factors of p will have square roots of −1.

Therefore, by Lemma 5.3 we have that −1 is a K-norm of an element of K(
√
p). Hence,

by Lemma 5.1 and Corollary 5.2, there exists U, an extension of degree 2 of K(
√
p) such

that U/K is cyclic and satisfies the strong real embeddings condition. Next consider the

extension M(
√
p)/K(

√
p). Note that by Lemma 5.4, the extension M(

√
p)/K satisfies the

strong real embeddings conditions and therefore the extension M(
√
p)/K(

√
p) satisfies the

real embeddings condition. As in the case of the extension M/K, the only primes possibly

ramified in this extension are dyadic primes and primes above Q1, . . . ,Qr . Note that by

construction of p, it is the case that Qi does not split in the extension K(
√
p)/K and −1 is

a square modulo the factor of Qi in K(
√
p) for all i = 1, . . . .r . Thus, as above, there exists

an extension S of degree 2 over M(
√
p) such that S/K(

√
p) is cyclic and satisfies the strong

real embeddings condition. Let L = SU. Then by Lemma 5.4, the extensions S/K and L/K

satisfy the strong real embeddings condition.
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K
•

M•

K(
√
p)
•

M(
√
p)•

U
•

MU•

S• L = SU•

Next consider all the primes of K not splitting in the extension M/K and not ramified in

the extension L/K, and divide them into two groups. If PK is such a prime of K not splitting

in the extension M/K but splitting in the extension K(
√
p)/K then its factors in K(

√
p) will

not split in the extension M(
√
p)/K(

√
p), by Lemma 4.2. Therefore, the factors of such a

PK will not split in the extension S/K(
√
p). Thus, every factor of PK in L will have relative

degree at least 4. Hence, if PM lies above PK in M, all the factors of PM in L must have

relative degree at least 2.

Now consider PK, as described above, not splitting in both extensions M/K and K(
√
p)/K,

and not ramifying in the extension L/K. Since this PK is not splitting in the extension

K(
√
p)/K, it will not split in the extension U/K. Thus in L, all the factors of this PK will

have relative degree at least 4. Hence the M-prime PM lying above this PK in M will have

all of its L-factors of relative degree at least two each. �

Next we generalize somewhat the lemma above by replacing the assumption that M/K is

of degree 2 by the assumption that M/K is a tower of degree 2 extensions. We will need this

generalization to get the desired conclusion on relative degrees.

Corollary 5.6. Consider the following field diagram, where K is a number field such that

every dyadic completion of K contains roots of the polynomial x2 + 1, M/K is a number field

extension satisfying the strong real embeddings condition and such that there exist finitely

many fields M2, . . . ,Mn−1 satisfying

K = M1 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M

with Mi/Mi−1 being an extension of degree 2.
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K•

•
Mn−1

M = Mn

•

Ln•

MnLn−1

Ln−1

•

•

•L

Then there exist an extension L of M satisfying the following conditions.

• There exist number fields

L(1) ⊂ . . . ⊂ L(s) = L

such that

M ⊂ L(1) ⊂ . . . ⊂ L(s) = L,

with all the extensions being of degree 2.

• Every prime of M, of relative degree higher than 1 over K and lying above a K-prime

not ramifying in the extension L/K, will have all of its L-factors with relative degrees

higher than 1 over M.

• The extension L/K satisfies the strong real embeddings condition.

Proof. We will proceed by induction on n. The case of n = 2 follows from Lemma 5.5.

Suppose now that the proposition holds with for k = n − 1. Let WM be the set of all primes

of M of relative degree higher than 1 over K. Then WM = Wn ∪ Wn−1, where Wn consists

of WM-primes of degree higher than 1 over Mn−1 and Wn−1 consists of WM-primes of relative

degree 1 over Mn−1. By the case of n = 2, there exists a field Ln such that

• There exist number fields

L(1)

n ⊂ . . . ⊂ L(sn)

n = Ln

such that

M ⊂ L(1)

n ⊂ . . . ⊂ L(sn)

n = Ln,

with all the extensions being of degree 2.

• Every prime of M, of relative degree higher than 1 over Mn−1 and lying above a K-

prime not ramified in the extension Ln/K, will have all of its Ln-factors with relative

degrees higher than 1 over M.

• The extension Ln/M satisfies the strong real embeddings condition.

Next we consider the set Wn−1. If Wn−1 is empty, then we set L = Ln and we are done.

Otherwise, let Vn−1 be the set of Mn−1-primes below primes of Wn−1. Given our assumptions

on primes of Wn−1 we must conclude that primes of Vn−1 are of degree higher than 1 over K.

Then, by induction hypothesis, there exists a field Ln−1 satisfying the following conditions.
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• There exist number fields

L
(1)

n−1 ⊂ . . . ⊂ L
(sn−1)

n−1 = Ln−1

such that

Mn−1 ⊂ L(1)

n−1 ⊂ . . . ⊂ L
(sn−1)

n−1 = Ln−1,

with all the extensions being of degree 2.

• Every prime of Mn−1, of relative degree higher than 1 over K and lying above a

K-prime not ramified in the extension Ln−1/K, will have Ln−1-factors with relative

degrees higher than 1 over Mn−1.

• The extension Ln−1/K satisfies the real embeddings condition.

Let L = LnLn−1 and consider the extension MLn−1/M. Let PM ∈ Wn−1. Let PK,PMn−1
be

the primes below PM in K and Mn−1 respectively with PK not ramified in the extension L/K.

Let PMLn−1
= PMnLn−1

be a prime above PM in MLn−1, and let PLn−1
be the prime below

PMLn−1
in Ln−1. Then, on the one hand, we have

f (PMLn−1
/PK) = f (PMLn−1

/PM)f (PM/PK) = f (PMLn−1
/PM)f (PMn−1

/PK).

On the other hand,

f (PMLn−1
/PK) = f (PMLn−1

/PLn−1
)f (PLn−1

/PMn−1
)f (PMn−1

/PK).

Thus,

f (PMLn−1
/PM) = f (PMLn−1

/PLn−1
)f (PLn−1

/PMn−1
) ≥ f (PLn−1

/PMn−1
) > 1.

Let PL lie in L above a prime PM ∈ Wn and let PK be as above. Then

f (PL/PM) ≥ f (PLn/PM) > 1.

Further, if PM ∈ Wn−1 then

f (PL/PM) ≥ f (PMLn−1
/PM) > 1.

Finally, the extension L/M was obtained by merging two towers of degree two extensions over

M. Such a merge results in a tower of degree two extensions. Finally, it is clear that by Lemma

5.4, the extensions MLn−1/K and L/K satisfy the strong real embeddings condition. �

We now return to the assumption that M/K is of degree two to establish that Lemma 5.5

and Corollary 5.6 allow us to produce arbitrarily high relative degrees for the factors of primes

not splitting in the extension M/K.

Corollary 5.7. Let M/K be an extension of degree 2 of number fields and let n ∈ Z>0.

Assume also that the extension M/K satisfies the strong real embeddings condition and

all dyadic completions of K contain roots of the polynomial x2 + 1. Then there exists an

extension Ln of M such that every prime of M of relative degree higher than one over K and

lying above a K-prime not ramified in the extension Ln/K, has all of its Ln-factors of relative

degree higher than 2n over M, and the extension Ln/K satisfies the strong real embeddings

condition.
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Proof. We will prove this proposition by induction. The case of n = 1 follows from Lemma

5.5. Note also that we can assume that the resulting extension L1/M is a tower of extensions

of degree 2 and the extension L1/K satisfies the strong real embeddings condition. Further

L1/K is also a tower of extensions of degree 2. Assume now that we have constructed Ln−1

satisfying the following conditions.

• Let Pn−1 be a prime of Ln−1. Let PM,PK be the primes below Pn−1 in M and K

respectively, with PK not ramified in the extension Ln−1/K. Then

f (PM/PK) > 1⇒ f (Pn−1/PM) > 2n−1.

• Extensions Ln−1/M and Ln−1/K are towers of extensions of degree 2.

• The extension Ln−1/K satisfies the strong real embeddings condition.

Now by Corollary 5.6 there exists an extension Ln of Ln−1 satisfying the following conditions.

• Let Pn be a prime of Ln. Let Pn−1,PK be the primes below Pn in Ln−1 and K

respectively with PK not ramified in the extension Ln/K. Then f (Pn−1/PK) > 1

implies f (Pn/Pn−1) > 1.

• Ln/Ln−1 is a tower of extensions of degree 2.

• The extension Ln/Ln−1 satisfies the strong real embeddings condition.

Let PM be a prime of M, PK a K-prime below it and suppose now that f (PM/PK) > 1

while PK is not ramified in the extension Ln/K. Then, if Pn−1 is an Ln−1 prime above PM,

by induction hypothesis, f (Pn−1/PM) > 2n−1 > 1 and therefore, if Pn is an Ln-prime above

Pn−1, by construction of Ln, we have that f (Pn/Pn−1) ≥ 2. Thus, f (Pn/PM) > 2n. Further,

since extensions Ln−1/M and Ln/Ln−1 are towers of extensions of degree 2, we conclude

that Ln/M is a tower of extensions of degree 2. Finally, by Lemma 5.4, the extension Ln/K

satisfies the strong real embeddings condition. �

We now generalize Corollary 5.7 to the case of M/K being a tower of extensions of degree

2. We will need this case when we remove the assumptions on the dyadic completions of K.

Corollary 5.8. Let K be a number field such that every dyadic completion of K contains

roots of the polynomial x2 + 1. Let M/K be a number field extension such that there exist

finitely many fields satisfying

K = M1 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M

with Mi/Mi−1 being an extension of degree 2. Further, assume that the extension M/K

satisfies the strong real embeddings condition. Then for any m ∈ Z>0 there exist an extension

Lm of M such that every prime of M of relative degree higher than 1 over K and lying above

a K-prime not ramifying in the extension Lm/K, has all of its Lm factors of relative degree

greater than m over M.

Proof. The proof of this corollary is similar to the proof of Corollary 5.6. We again proceed

by induction on n and consider the following diagram:
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K•

•
Mn−1

M = Mn

•

Ln,m•

MnLn−1,m

Ln−1,m

•

•

•Lm

The case of n = 2 follows from Corollary 5.7. Suppose now that the proposition holds with

for k = n− 1. Let WM be the set of all primes of M of relative degree higher than 1 over K.

Then WM = Wn ∪Wn−1, where Wn consists of M-primes of degree higher than 1 over Mn−1

and Wn−1 consists of M-primes of relative degree 1 over Mn−1. By the case of n = 2, there

exists a field Ln,m such that all primes of M, of relative degree higher than 1 over Mn−1 and

lying above K-primes unramified in the extension Ln,m/K, will have all of their Ln,m-factors

with relative degrees higher than m over M. Further, the extension Ln,m/M will satisfy the

strong real embeddings condition.

Next we consider the set Wn−1. If Wn−1 is empty, then we set Lm = Lm,n and we are done.

Otherwise, let Vn−1 be the set of Mn−1 primes below primes of Wn−1. Given our assumptions

on the primes of Wn−1 we must conclude that primes of Vn−1 are of degree higher than 1

over K. Then, by induction hypothesis, there exists a field Lm,n−1 satisfying the following

condition. Every prime of Mn−1, of relative degree higher than 1 over K and lying above a

K-prime unramified in the extension Lm,n−1/K, will have all of its Lm,n−1-factors with relative

degrees higher than m over Mn−1, and the extension Lm,n−1/K will satisfy the strong real

embeddings condition.

Let Lm = Lm,nLm,n−1 and consider the extension MLn−1,m/M. Let PM ∈ Wn−1. Let

PK,PMn−1
be the primes below PM in K and Mn−1 respectively with PK unramified in the

extension Lm/K. Let PMLm,n−1
be a prime above PM in MLm,n−1, and let PLm,n−1

be the prime

below PMLm,n−1
in Lm,n−1. Then we have the following. On the one hand,

f (PMLm,n−1
/PK) = f (PMLm,n−1

/PM)f (PM/PK) = f (PMLm,n−1
/PM)f (PMn−1

/PK).

On the other hand,

f (PMLm,n−1
/PK) = f (PMLm,n−1

/PLm,n−1
)f (PLm,n−1

/PMn−1
)f (PMn−1

/PK).

Thus,

f (PMLm,n−1
/PM) = f (PMLm,n−1

/PLm,n−1
)f (PLm,n−1

/PMn−1
) ≥ f (PLm,n−1

/PMn−1
) > m.

Let PLm lie above a prime PM ∈ Wn in Lm with PK as above. Then

f (PLm/PM) ≥ f (PLm,n/PM) > m.

And if PM ∈ Wn−1. Then
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f (PLm/PM) ≥ f (PMLm,n−1
/PM) > m.

Finally, by Lemma 5.4, the extension Lm/K satisfies the strong real embeddings condition.

�

We are now ready to consider the cases of the fields which have dyadic completions not

containing i . We start with an obvious assertion we will need later. Its proof is a direct

consequence of Hensel’s lemma.

Lemma 5.9. Let K be a number field such that K contains
√

15. Then every dyadic com-

pletion of K contains roots of the polynomial x2 + 1.

The following lemma is similar to Lemma 5.5. It will also construct a foundation of a

tower, but on top of the constructed tower −1 will be a square at all the dyadic completions.

Lemma 5.10. Let K be a number field containing neither
√

3, nor
√

2. Then there exists

an extension L of M = K(
√

3,
√

2) such that for every prime of M of relative degree greater

than one over K and lying above a K-prime not ramified in the extension L/K, all of its

L-factors will be of relative degree greater than 1 over M, and L/M is Galois of degree 4

with the Galois group isomorphic to Z/2× Z/2. Further, the extension L/K will satisfy the

strong real embeddings condition.

Proof. Consider the field diagram below, where fields U and S are obtained in the following

fashion. First of all observe that K(
√

2) has an element with K-norm equal to -1, i.e. 1−
√

2.

Thus by Lemma 5.1 and Corollary 5.2, there exists an extension U of K(
√

2) such that U/K

is cyclic of degree 4 and the extension U/K satisfies the strong real embeddings condition.

(For future reference we note that since (1−
√

2

2
) = (1−

√
2)2(1 +

√
2

2
), by Lemma 5.1, we

can take U = K(
√

2,

√

1−
√

2

2
).)

Further, K(
√

2,
√

3) has an element whose K(
√

2)-norm is −1, that is
√

2 −
√

3. Thus,

again by Lemma 5.1 and Corollary 5.2, it follows that M = K(
√

3,
√

2) has an extension S of

degree 2, such that S/K(
√

2) is a cyclic extension of degree 4 and the extension S/K(
√

2)

satisfies the strong real embeddings condition. (Again for future reference, note that (1−
√

2√
3

) = (
√

2−
√

3)2(1 +
√

2√
3

). Thus by Lemma 5.1, we can take S = K(
√

2,
√

3,
√

1−
√

2√
3

).)

Note also that [MU : M] = [MU : U] = 2. Otherwise, M = U contradicting the fact

that the extension U/K is cyclic of degree 4 and the Galois group of M/K is isomorphic to

Z/2× Z/2. Note further that the extension MU/K(
√

3) is a cyclic extension of degree 4.
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K
•

K(
√

3)•

K(
√

2)
•

K(
√

3,
√

2) = M•

U
•

MU•

S• L = SU•

Next we analyze prime splitting in the extension L/K, where L = SU. Let PM be a prime

of M of relative degree greater than 1 over K. Let PK be the prime below PM in K such

that PK is not ramified in the extension L/K. Then we have to consider three cases.

Case 1: PK does not split in the extension K(
√

3)/K but splits in the extension K(
√

2)/K.

Then, by Lemma 4.2, we have that PM lies above a non-splitting prime from the

extension M/K(
√

2) and therefore PM does not split in the extension S/M by Lemma

3.3.

Case 2: PK splits in the extension K(
√

3)/K but not in the extension K(
√

2)/K. By Lemma

4.2 again, PM lies above a non-splitting prime in the extension M/K(
√

3) and there-

fore, PM will not split in the extension MU/M by Lemma 3.3.

Case 3: PK splits in neither K(
√

2)/K, nor in K(
√

3)/K. Let P
K(
√

2)
be the prime above PK

in K(
√

2). Then P
K(
√

2)
splits completely in the extension M/K(

√
2) and does not

split in the extension U/K(
√

2) yet again by Lemma 4.2 and Lemma 3.3. Thus, in

this case PM does not split in the extension MU/M by Lemma 4.2 again.

Thus, in either case, PL – a factor of PM in L, will have a relative degree of at least 2 over

M.

Finally, the fact that the extension L/K satisfies the strong real embeddings condition

follows from the fact that

L = K(
√

2,
√

3,

√

1−
√

2√
3
,

√

1−
√

2

2
).

�

We now construct the rest of the tower for the case −1 is not a square of all dyadic

completions of the ground field.

Lemma 5.11. Let K be a number field such that the extension Y = K(
√

2,
√

3,
√

5)/K is not

trivial. Then for any n there exists a field Zn such that for any prime PY of relative degree

greater than 1 over K and lying above a K-prime not ramified in the extension Zn/K, all of

its Zn-factors are of relative degree greater or equal to n over Y .

Proof. We will assume first that K does not contain
√

2,
√

3, or
√

5. Please note that

by Lemma 5.9, all the dyadic completions of Y have the roots of the polynomial x2 + 1.

Consider next the field extension diagram below, where fields L, T1, T2, R are constructed
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in the following fashion. L is the extension of M = K(
√

2,
√

3) constructed in the Lemma

5.10. From the explicit calculations done in the proof of Lemma 5.10 it follows that L and

Y are linearly disjoint over M and therefore LY is of degree 4 over Y . Since all the dyadic

completions of Y have the square roots of -1, and by construction of L and Lemma 5.4, the

extension LY/Y satisfies the strong real embeddings condition, by Corollary 5.8, there exists

an extension T2 of LY such that any prime of LY of relative degree higher than 1 over Y will

have T2-factors of relative degree higher than n over LY .

Next we consider the extension K(
√

5)/K. Note that 22 − 5 = −1 and therefore by

Lemma 5.1 and Corollary 5.2, there exists an extension R of K(
√

5) such that R/K is a

cyclic extension of degree 4 and the extension R/K satisfies the strong real embeddings

condition. Further since M and K(
√

5) are linearly disjoint over K, it is the case that RY/Y

is an extension of degree 2. Further, by Lemma 5.4 and construction of R and Y , the

extension RY/K satisfies the strong real embeddings condition and therefore the extension

RY/Y satisfies the strong real embeddings condition. Consequently, by Corollary 5.8 again,

there exists an extension T1 of RY such that any RY -prime of relative degree greater than

1 over Y will have T1-factors of relative degree greater than n over RY . Finally, we set

Zn = T1T2.

K
•

K(
√

5)
•

R
•

M = K(
√

2,
√

3)
•

L•

M(
√

5) = Y
•

LY = L(
√

5)•

RY
•

T1•

Zn = T1T2•T2•

Next let PY be a prime of Y of relative degree higher than 1 over K. Let PK,PM,PK(
√

5)
be

the primes below PY in K,M and K(
√

5) respectively with PK not ramified in the extension

Zn/K. Let PLY be a prime above PY in LY . Let PL be a prime below PLY in L. As in Lemma

5.10, we have to consider three cases:

(1) The case of f (PM/PK) > 1 and f (P
K(
√

5)
/PK) = 1:

In this case, f (PL/PM) > 1 by construction of L. Note that on the one hand,

f (PLY /PK) = f (PLY /PY )f (PY /PK(
√

5)
f (P

K(
√

5)
/PK) = f (PLY /PY )f (PY /PK(

√
5)

),

On the other hand,

f (PLY /PK) = f (PLY /PL)f (PL/PM)f (PM/PK).
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Since PK splits completely in the extension K(
√

5)/K, the prime PL above PK in L

splits completely in the extension LY/L = L(
√

5)/L by the repeated application of

Lemma 4.1. Consequently, f (PLY /PL) = 1. Thus,

f (PLY /PK) = f (PL/PM)f (PM/PK).

Therefore,

f (PL/PM)f (PM/PK) = f (PLY /PY )f (PY /PK(
√

5)
),

Further,

f (PM/PK) = f (PY /PK(
√

5)
),

since the relative degree is 1 from K to K(
√

5) at PK and thus f (PY /PM) = 1 by

Lemma 4.1. Consequently,

1 < f (PL/PM) = f (PLY /PY ).

In this case by construction of T2, for any prime PT2
above PLY , we have that

f (PT2
/PLY ) > n. Hence, f (PT2

/PY ) > n. Finally if PZn is any prime above PY

in Zn, then clearly f (PZn/PY ) > n.

(2) The case of f (PM/PK) = 1 and f (P
K(
√

5)
/PK) > 1:

In this case, by a double application of Lemma 4.2, we have that

f (PY /PK(
√

5)
) = 1,

f (PY /PM) = f (P
K(
√

5)
/PK) = 2.

Indeed, let P
K(
√

2)
be the primes below PM in K(

√
2). Let P

K(
√

2,
√

5)
be the prime

above P
K(
√

2)
in K(

√
2,
√

5). Then by assumption we have that

f (P
K
√

2
/PK) = f (PM/PK

√
2
) = 1,

and by Lemma 4.2 applied two times (to K(
√

2,
√

5)/K and to Y/K(
√

2)), it follows

that

f (P
K(
√

2,
√

5)
/P

K(
√

2)
) = f (PY /PM) = 2,

Further, extension RY/M is a cyclic extension of degree 4. Therefore, if PRY is a prime

above PY in RY , then, by Lemma 3.3, f (PRY /PY ) = 2. Further, by construction

of T1, if PT1
is any prime above PY in T1, we conclude that f (PT1

/PRY ) > n.

Consequently, f (PT1
/PY ) > n and f (PZn/PY ) > n.

(3) The case of f (PM/PK) > 1 and f (P
K(
√

5)
/PK) > 1:

In this case, by two applications of Lemmas 4.2 again, and by construction of R, we

have

f (PY /PK(
√

5)
) = f (PRY /PR) = 1,

f (PRY /PY ) = f (PR/PK(
√

5)
) = 2.

Indeed, let P
K(
√

2)
,P

K(
√

3)
be the primes below PM in K(

√
2) and K(

√
3) respec-

tively. Let P
K(
√

2,
√

5)
be the prime below PY in K(

√
2,
√

5). By Lemma 4.2, either

f (PM/PK(
√

2)
) = 1 or f (PM/PK(

√
3)

) = 1 (since M/K is of degree 4 and not a cyclic
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extension). Without loss of generality assume that f (PM/PK(
√

2)
) = 1. Therefore,

given our assumptions,

f (P
K(
√

2)
/PK) = 2.

Then applying Lemma 4.2 to the extension K(
√

2,
√

5)/K, we conclude that

f (P
K(
√

2,
√

5)
/P

K(
√

5)
) = 1.

Applying Lemma 4.2 to the extension Y/K(
√

2), we now conclude that

f (PY /PK(
√

2,
√

5)
) = 1.

Thus,

f (PY /PK(
√

5)
) = 1.

Now applying Lemma 4.2 twice to the extension RY/K(
√

5), we conclude that

f (PRY /PR) = 1. Further, the comparison of relative degrees gives

f (PRY /PY ) = f (PR/PK(
√

5)
),

where by construction of R, we know that f (PR/PK(
√

5)
) = 2. Consequently, as

above, by construction of T1, we have that f (PT1
/PY ) > n and f (PZn/PY ) > n.

We still have to consider the cases where K contains exactly one of
√

2,
√

3,
√

5 and the

cases when K contains exactly two of
√

2,
√

3,
√

5. These are cases handled in a manner

similar to the one used above. We will go over them briefly.

Assume that K contains
√

5 but not
√

2 or
√

3. This case can proceed pretty much as the

proof of Lemma 5.10. The only difference will come at the end when we have constructed

the extension L/M. We can note that M contains
√

2,
√

3, and
√

5. Thus, by Lemma 5.9,

all dyadic completions of M will have roots of the polynomial x2 + 1. Hence by Corollary

5.8, we can construct an extension Zn of L such that every L-prime of relative degree higher

than one over M has all of its Zn-factors of relative degree higher than n over M. But by

construction of L, every M-prime of degree higher than one over K, has all of its L factors

of relative degree higher than one over M. Therefore, Zn will have the required properties.

Assume now that K contains
√

2 but not
√

3 or
√

5. Then this case can be handled by the

following diagram, where U5/K(
√

3) is a cyclic extension of degree 4 satisfying the strong real

embeddings condition, T3 is an extension of U5 such that every U5-prime of relative degree

greater than 1 over M has all of its T3-factors of relative degree higher than n over M,

extensions U3/K, MU3/K(
√

5) are cyclic of degree 4 satisfying the strong real embeddings

condition, T5 is an extension of MU3 such that every MU3-prime of relative degree greater

than 1 over M has all of its T5 factors of relative degree higher than n over M. The existence

of all of these extensions is justified the same way as in the arguments above.
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•

K
•

K(
√

5)
•

K(
√

3)
•

M = K(
√

3,
√

5) = Y
•

U3

•

MU3•

U5

T3 •

T5•

Zn•

The case of K containing
√

3 but not
√

2 or
√

5 is handled in almost identical fashion with

K(
√

3) replaced by K(
√

2), since 1 +
√

2 is a K(
√

2)-element of K-norm equal to −1.

Finally, we consider the cases of K containing exactly two of the three roots. If K contains√
5 and

√
3, then all the dyadic completions of K have square root of −1 as above and

the extension K(
√

2)/K can be handled by Corollary 5.7. If K contains
√

2 and
√

5. Then

K(
√

3) has an extension U3 such that U3/K is cyclic of degree 4 satisfying the strong real

embeddings condition. From this point we proceed as above. The case of K containing√
3,
√

2 but not
√

5 is identical to the preceding case. �

We now state an prove the main proposition of this section which summarizes the above

discussion of extensions of degree 2.

Proposition 5.12. Let M/K be an extension of number fields of degree 2 satisfying the real

embeddings condition. Then for any n ∈ Z>0 there exists an extension Fn of M such that any

prime of M of relative degree 2 over K and lying above a K-prime unramified in the extension

Fn/K, will have all of its Fn-factors of relative degree greater than n over M.

Proof. If all the dyadic completions of K have square root of −1, then we are done by

Corollary 5.8. If this is not the case, then the extension K(
√

3,
√

5)/K is non-trivial. If

M ⊆ K(
√

2,
√

3,
√

5) , then we are done by Lemma 5.11. Otherwise, K(
√

2,
√

3,
√

5)

and M are linearly disjoint over K. So assume M 6⊆ K(
√

2,
√

3,
√

5) and consider the

following diagram, where Ln is such that any prime of M(
√

2,
√

3,
√

5) of relative degree

greater than one over K(
√

2,
√

3,
√

5) and lying above K(
√

2,
√

3,
√

5)-prime unramified in

the extension Ln/K(
√

2,
√

3,
√

5), will have all of its Ln factors of relative degree higher

than n over M(
√

2,
√

3,
√

5). Ln exists by Corollary 5.8, since all the dyadic completions of

K(
√

2,
√

3,
√

5) have square root of -1 and the real embeddings condition is satisfied by the

extension M(
√

2,
√

3,
√

5)/K(
√

2,
√

3,
√

5) by Lemma 5.4. Further, Z2n is an extension of

K(
√

2,
√

3,
√

5) such that any prime of K(
√

2,
√

3,
√

5) of relative degree greater than one

over K and lying above a K-prime unramified in the extension Z2n/K, will have all of its Z2n
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factors of relative degree higher than 2n over K(
√

2,
√

3,
√

5). Existence of Z2n is guaranteed

by Lemma 5.11.

K
•

M•

K(
√

2,
√

3,
√

5)
•

M(
√

2,
√

3,
√

5)•

Ln•

Z2n

•

Fn = LnZ2n•

Let PM be a prime of relative degree 2 over PK, the prime below it in K unramified in

the extension Fn/K. We will consider two cases: the case of PK splitting completely in the

extension K(
√

2,
√

3,
√

5)/K and the case when this does not happen. In the first case, let

P
M(
√

2,
√

3,
√

5)
be the prime above PM in M(

√
2,
√

3,
√

5) . Then P
M(
√

2,
√

3,
√

5)
is of relative

degree 2 over K(
√

2,
√

3
√

5) since f (P
M(
√

2,
√

3,
√

5)
/PK) ≥ 2. Let PFn be any prime above PM

in Fn. Then we have the following.

f (PFn/PM) ≥ f (PLn/PM) ≥ f (PLn/PM(
√

2,
√

3,
√

5)
) > n,

where the last inequality is true by construction of Ln and the fact that P
M(
√

2,
√

3,
√

5)
is of

relative degree 2 over K(
√

2,
√

3,
√

5). We now consider the second case, the case PK not

splitting completely in the extension K(
√

2,
√

3,
√

5). Then by construction of Z2n , using the

same notational scheme as above

f (PFn/PK) ≥ f (PZ2n
/PK) > 2n,

f (PFn/PM) =
1

2
f (PFn/PK) > n.

�

6. Cyclic extensions of prime degree of function fields.

In this section we consider the cyclic and totally inseparable extensions of algebraic function

fields in one variable over finite fields of constants (abbreviated as “function fields” in the

future). The case of cyclic extensions of these fields is very similar to the cyclic case for

number fields. The main difference is that in the case of function fields we will have to

consider separately not necessarily the case of extensions of degree 2 but rather the case of

extensions whose degree is equal to the characteristic of the field. We start with the case

when the degree of the extension is different from the characteristic.

Proposition 6.1. Let M/K be a cyclic extension of degree q of function fields over finite

field of constants of characteristic p > 0. Assume q is a rational prime distinct from p. Then

for any n ∈ Z>0 there exists a finite separable extension L of M such that any prime of M of
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relative degree higher than 1 over K lying above a K-prime unramified in the extension L/K,

will have all of its factors in L of relative degree greater than n over M.

Proof. First observe the following. If ξq ∈ K, then of course [M : K] = [M(ξq) : K(ξq)].

At the same time, if ξq 6∈ K, then, due to the fact that ([K(ξq) : K], q) = 1, M and K(ξq)

are linearly disjoint over K, and thus we still have [M : K] = [M(ξq) : K(ξq)]. Further, by

Lemma 4.1, a prime of K(ξq), lying above a prime of K unramified in the extension M(ξq)/K,

splits in the extension M(ξq)/K(ξq) if and only if the prime below it splits completely in the

extension M/K. Thus, as in some cases for number fields we can consider the extension

M(ξq)/K(ξq) instead of M/K. Given this simplification, we are led to consider three cases

below.

(1) The Case of ξq2 ∈ K(ξq): Consider the field diagram below, where F , a finite separa-

ble extension of M(ξq), is such that every prime PM(ξ
q2 ) of M(ξq) of relative degree

higher than one over K(ξq) and lying above a prime of K(ξq) unramified in the ex-

tension F/K(ξq), will have all of its F -factors of relative degree higher than n over

M(ξq). The existence of F follows from Theorem 10, page 214 of [7], the fact that

ξq2 ∈ K(ξq) and Lemma 3.4. Indeed, by Theorem 10, page 214 of [7] we have as in

the case of number fields

K1 = M(ξq) = K(ξq, α1) = K0(α1),

where K0 = K(ξq) and αq1 ∈ K0. Let K2 = K1(α2), where αq2 = α1. Since ξq2 ∈ K0,

the extension K2/K0 is cyclic of degree q2. Now we can continue as in Lemma 3.4

to construct a chain K0 ⊂ K1 . . . ⊂ Kn+1 = F such that Ki+2/Ki , i = 0, . . . , n − 1 is

a Galois extension of degree q2, and the primes of K0 not splitting in the extension

K1/K0 do not split in the extension F/K0. Therefore, any prime of M(ξq) of degree

greater than 1 over K(ξq) and lying above K0-prime not ramified in the extension

F/K0, will have all of its F -factors of degree greater than qn ≥ n over M(ξq).

K
•

M•

K(ξq) = K(ξq2)
•

M(ξq) = M(ξq2)
•

F•

Let PM be a prime of M of relative degree greater than 1 over K. Let PF be a

prime above PM in F . Let PM(ξq),PK(ξq),PK be the primes below PF in the fields

M(ξq), K(ξq) and K respectively with PK unramified in the extension F/K. Then,

as has been noted above, f (PM(ξq)/PK(ξq)) = q and therefore by construction of F ,

f (PF/PM(ξq)) ≥ n. Thus,
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f (PF/PM) =
1

q
f (PF/PK) =

1

q
f (PF/PM(ξq))f (PM(ξq)/PK(ξq))f (PK(ξq)/PK) ≥

1

q
nq = n

Thus we can set L = F .

(2) The Case of ξq2 6∈ K(ξq) and M(ξq) = K(ξq2): Consider the following picture.

K
•

M•

K(ξq)
•

M(ξq) = K(ξq2)•

F = K(ξqn+1)•

In this case we also set L = F and the conclusion of the lemma follows by an

argument similar to the one used in Case 1.

(3) The Case of ξq2 6∈ K(ξq), and M and K(ξq2) are linearly disjoint over K(ξq): Consider

the field diagram below, where, by Theorem 10, page 214 of [7] we have that

M(ξq2) = K(ξq2, α), where αq ∈ K(ξq2) and α 6∈ K(ξq2).

Hence, in this case, as in the first case, by Lemma 3.4, there exists a finite separable

extension F of M(ξq2) such that every prime of M(ξq2) of relative degree higher than

1 over K(ξq2) and lying above a K(ξq2)-prime unramified in the extension F/K(ξq2),

has all of its F -factors of relative degree higher than nq over M(ξq2).

Next let CK be the constant field of K. Let Cn be an extension of degree qn+1 > nq

of C(ξq2) – the constant field K(ξq2). Such an extension exists by propositions on

pages 184-186 of [7]. Then the extension Cn/C(ξq2) is cyclic and so is the extension

KCn/K. Further, [KCn : K] = [Cn : C] by Theorem 11, page 280 of [1]. Let

G = KCn. Then we can apply Lemma 3.4 to conclude that every prime of K(ξq2) of

relative degree greater than one over K(ξq) will have all of its factors in G of relative

degree greater than qn+1 > nq over K(ξq2). (Note that since G/K is a separable

constant field extension, no prime of K ramifies in this extension.)
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K
•

M
•

K(ξq)
•

M(ξq)
•

M(ξq2)
•

K(ξq2)
•

F
•

G
•

FG
•

Now let PFG be an FG-prime lying above an M-prime PM of relative degree q

over K. Let PF , PG, PM(ξ
q2 ), PM(ξq), PK(ξq), PK be the primes below PFG in the

fields F,G,M(ξq2),M(ξq), K(ξq), K respectively, with PK unramified in the exten-

sion FG/K. By Lemma 4.1, we know that PK(ξq) does not split in the extension

M(ξq)/K(ξq). Unfortunately, PK(ξ
q2 ) can split in the extension M(ξq2)/K(ξq2). How-

ever, by Lemma 4.2 this will happen if and only if PK(ξq) does not split in the extension

K(ξq2)/K(ξq). Thus we consider two cases below:

(a) PK(ξq) splits in the extensionK(ξq2)/K(ξq) but its factors do not split inM(ξq2)/K(ξq2).

Then

f (PFG/PM) =
1

q
f (PFG/PK) ≥

1

q
f (PF/PK) ≥

1

q
f (PF/PM(ξ

q2 )) ≥ n.

(b) PK(ξq) does not split in the extension K(ξq2)/K(ξq). In this case consider

f (PFG/PM) =
1

q
f (PFG/PK) ≥

1

q
f (PG/PK) ≥

1

q
f (PG/PK(ξ

q2 )) ≥ n.

So in this case we set L = FG.

�

The next lemma is in part the additive analog of Lemma 5.1. The proof relies on the

additive version of Hilbert’s Theorem 90.

Lemma 6.2. Let M/K be a cyclic extension of degree p > 0 of function fields over finite

fields of constants of characteristic p. Then there exists a finite separable extension Ln of

M such that every prime of M of relative degree higher than one over K and lying above a

prime of K unramified in the extension Ln/K has all of its Ln factors of relative degree higher

than n over M.

Proof. First let δ ∈ M be such that TrM/K(δ) ∈ {1, . . . , p − 1}. Then

TrM/K(δp − δ) = 0

and by the additive version of Hilbert’s Theorem 90, we have

δp − δ = b − σ(b),
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for some b ∈ M and some σ ∈ Gal(M/K) such that σ 6= id. Note further, that

σi(δp)− σi(δ) = σi(b)− σi+1(b)

and for i ≥ 1 it is the case that

b − σi(b) =

i−1
∑

j=0

(σj(b)− σj+1(b)) =

i−1
∑

j=0

(σj(δp)− σj(δ)).

Next consider a field L generated over M by the roots of

(6.1) Xp −X − b = 0.

Any two roots of (6.1) differ by an element of Fp and therefore L is Galois over M of degree

at most p. Note that if β is a root of Xp −X − b = 0, then

β −
i−1
∑

j=0

σj(δ)

is a root of

Xp −X − σi(b) = 0.

Thus, L is also Galois over K. Next let σ̄ ∈ Gal(L/K) be an extension of σ to an element

Gal(L/K) sending β to β − δ. Then σ̄p(β) = β − T rM/K(δ) 6= β. Thus, σ̄ is not of order p

and hence must be of order p2. Thus L/K is cyclic of degree p2.

Next note that M has an element whose trace is 1. Indeed, by Artin Schreier Theorem,

M is generated by an element α satisfying Xp − X − a = 0, a ∈ K. Then α−1 satisfies,

Xp + a−1Xp−1 − a−1 = 0, i.e. has K-trace equal to −a−1. Therefore, a

α
will have trace

equal to -1. Thus, there exists an extension L1 of M such that L1/K is cyclic of degree p2.

Applying the same reasoning to the extension L1/M we construct a cyclic extension L2/M

of degree p2, etc. Now the the desired conclusion follows by Lemma 3.4. �

The last lemma of this section will demonstrate that the inseparable extensions are irrele-

vant for our purposes.

Lemma 6.3. Let M/K be a totally inseparable finite extension of function fields over finite

fields of constants. Then all but possibly finitely many primes of K have all their M-factors

of relative degree 1.

Proof. It is sufficient to consider the case of M = K(t1/p) for t ∈ K. Without loss of

generality, we can assume that t is not a p-th power in K and therefore the extension

K/CK(t), where CK is the constant field of K, is separable. Since in CK(t) every prime

corresponds to an irreducible polynomial in t or 1/t, it is easy to see that in the extension

CK(t1/p)/CK(t) all the primes will be ramified with ramification degree p. Further, the

extension K(t1/p)/CK(t1/p) is separable (since it will be generated by the same element as

the extension K/CK(t) and therefore only finitely many primes can ramify in this extension.
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CK(t) CK(t1/p)

K M = K(t1/p)

If PCK(t1/p) is a CK(t1/p)-prime without ramified factors in K(t1/p), then a K(t1/p)-prime

PK(t1/p) above PCK(t1/p) has the same ramification degree over K as PCK(t1/p) does over CK(t).

Therefore this ramification degree is equal to the degree of extension. Thus, by Theorem 1,

page 52 of [2], all but finitely many primes have relative degree 1 in the extension M/K. �

7. Extending Rational Separability Up.

In this section we use the results from the earlier sections to prove the main theorems. As

was promised in the proof overview, the first proposition of this section reduces the case of

an arbitrary Galois extension of global fields to the case of a cyclic extension of prime degree.

Proposition 7.1. Let E/F be a Galois extension of global fields. Let n ∈ Z>0. Let E1, . . . , Em
be all the subextensions of E such that F ⊂ Ei and pi = [E : Ei ] is a prime number. For

each i = 1, . . . , m, let Li be an extension of E such that all E-primes PE lying above any

Ei -prime PEi not splitting in the extension E/Ei and unramified in the extension Li/Ei , have

all of their Li -factors of relative degree higher than n over E. Let L =
∏

m

i=1
Li . Let PE be an

E-prime lying above a F -prime PF unramified in the extension L/F and with f (PE/PF ) > 1.

Then, PE will have all of its L-factors of relative degree higher than n over E.

Proof. Let PE be an E-prime lying above an F -prime PF with f = f (PE/PF ) > 1. Let

σ ∈ Gal(E/F ) be the Frobenius automorphism of PE. Then σ 6= id. Let Eσ be the fixed

field of σ and let PEσ be the prime below PE in Eσ. Then PEσ does not split in the extension

E/Eσ. Further for any k ∈ N, the prime above PEσ in Eσ
k

does not split in the extension

E/Eσ
k

. Let
∏

s

i=1
qai
i

, where q1, . . . , qs are prime integers, be the order of σ in Gal(M/K).

Let k = qa1−1

1

∏

s

i=2
qai
i

. Then σk has order q1 and Eσ
k

must be one of E1, . . . , Em. Thus PE

lies above a prime of some Ei not splitting in the extension E/Ei . Therefore, all the factors

of PE in Li and consequently in L will be of relative degree greater than n over E. �

The purpose of the next lemma is to demonstrate the necessity of the weak real embeddings

condition.

Lemma 7.2. Let M/K be a number field Galois extension not satisfying the weak real em-

beddings condition. Then for any extension L of M, infinitely many primes of M of relative
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degree higher than 1 over K will split completely in the extension L/M. These primes will

be the primes whose Frobenius automorphism (under some embedding of M into C) is the

complex conjugation.

Proof. First of all, it is enough to show that the lemma holds for a field L such that L/K is

Galois. Secondly, by replacing L and M by σ(L) and σ(M) if necessary for some embedding

σ : L −→ ˜Q, without loss of generality we can assume that some subextension M1 of M

of degree 2 is a subset of R while M 6⊂ R. (This of course implies that K ⊂ R.) Let

σ ∈ Gal(M/M1), σ 6= id. Then σ must be complex conjugation. Let VM be the set of all M-

primes whose Frobenius automorphism over K is σ. This set is infinite. Note that Gal(L/K)

will also contain complex conjugation which will be of order two in that group. (Gal(L/K)

contains complex conjugation because every element of L satisfies a real coefficient polynomial

over K, and therefore L is closed under the complex conjugation which keeps K ⊂ R fixed.)

Thus by Corollary 3.2 all elements of VM will split completely in the extension L/M. �

We are now ready to state and prove the main theorems of the paper. The first result

follows immediately from Propositions 7.1, 4.6, and 5.12.

Theorem 7.3. Let M/K be a Galois extension of number fields satisfying the weak real

embeddings condition. Then for any n there exists an extension L of M such that all but

finitely many M-primes of relative degree higher than 1 over K will have all of their L-factors

of relative degree higher than n over M.

We now use the arbitrarily high relative degrees from the previous theorem to show that

maximal separable sets can remain separable in the extensions.

Theorem 7.4. Let K be a number field. Let WK be a maximal K-separable set. Then WK

is separable if and only if the corresponding Galois extension M/K satisfies the weak real

embeddings condition.

Proof. Let M/K be the Galois extension corresponding to WK. First assume that the exten-

sion M/K satisfies the weak real embeddings condition. Next let F/K be any finite extension

of K. Let WF be the set of all the F -primes lying above the primes of WK. Let L ⊃ M ⊃ K
be a finite extension such that all the primes of L lying above all but finitely many primes

of WK, are of relative degree n > [F : K] over K. Such an extension L exists by Theorem

7.3. Then consider the extension FL/F . Let PF lie above PK ∈ WK with all of its L factors

of relative degree n over K, and let PFL be an FL-prime above PF . Finally, let PL be the

L-prime below PFL. Then

f (PFL/PF ) =
f (PFL/PK)

f (PF/PK)
≥
f (PL/PK)

[F : K]
> 1,

by construction of L.

The case of M/K not satisfying the weak real embeddings condition follows from Lemma

7.2. In other words, WM – the set of all M-primes above the primes of WK is not M-

separable. �
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We now proceed to examine extensions which are not necessarily Galois and sets of primes

not splitting completely in these extensions.

Theorem 7.5. Let M/K be a finite extension (not necessarily Galois) of number fields such

that in the extension MG/K, where MG is the Galois closure of M over K, subextensions of

degree 2, MG/Mi , i = 1, . . . , k are all the subextensions of degree 2 which do not satisfy the

real embeddings condition. Let WK be the set of all K-primes without relative degree 1 one

factors in M. Let G = Gal(MG/K). Then WK is separable if and only if

(7.2) ∀i = 1, . . . , k, we have that σi ∈
⋃

τ∈G

τGal(MG/M)τ−1,

for all σi – generators of Gal(M/Mi).

Proof. Suppose Condition (7.2) is satisfied. Then if PMG is a prime whose Frobenius auto-

morphism is σi for some i , then by Proposition 2.8, page 101 of [4], we have that PK – the

prime below PMG in K, has a relative degree one factor in M and thus is not in WK. (This

is so because Gal(MG/M)τ−1 = Gal(MG/M)τ−1σi .) Let Ni , i = 1, . . . , r be all the cyclic

subextensions of MG of prime degree and containing M but not generated by σi for any i .

Then every M-prime lying above a prime of WK will have all of its MG factors lie above a

non-splitting prime of some Ni . Given n ∈ Z>0, by Propositions 4.6, and 5.12, as in Theorem

7.3, we can construct an extension L of MG such that all but finitely many primes of MG of

relative degree greater than 1 over some Ni will have all of their L-factors of relative degree

greater than n over MG. Thus, as in Theorem 7.4 we can conclude that WK is separable.

Suppose now that Condition (7.2) does not hold. Then for some σi , we have that

σi 6∈
⋃

τ∈G

τGal(MG/M)τ−1.

Therefore, for any τ ∈ Gal(MG/K), it is that case

Gal(MG/M)τσi 6= Gal(MG/M)τ.

Thus, by Proposition 2.8, page 101 of [4], for all MG-primes PMG with Frobenius automor-

phism equal to σi , the K-prime PK below PMG will not have any relative degree one factors

in M and therefore will be in WK. However, as in the proof of Lemma 7.2, in any extension

L of M such that L/K is Galois, infinitely many primes of MG with Frobenius automorphism

equal to σi will split completely. �

We now turn our attention to the function fields.

Theorem 7.6. Let K be a function field over a finite field of constants. Let WK be a set of

K-separable primes. Then WK is a separable set of primes.

Proof. Let M/K be a finite extension of K where all but finitely many primes of WK do not

have relative degree one factors. Then by Lemma 6.3, there exists a non-trivial extension

Ms of K such that Ms/K is separable, M/Ms is completely inseparable and all but finitely

many primes of WK, do not have relative degree one factors in Ms . Let MG be the Galois

closure of Ms over K. Then all but finitely many primes of K do not have relative degree
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one factors in the extension MG/K. Now the result follows by Proposition 6.1, Lemma 6.2

and Proposition 7.1. �

Some of the results described above can be restated in the following form.

Theorem 7.7. Let M/K be a Galois extension of number fields satisfying the weak real

embeddings condition or a Galois extension of function fields over a finite fields of constants.

Then there exists a Galois extension L of M such that the extension L/K is Galois and has

the following property. If σ ∈ Gal(M/K) is of order

n =
∏

pai
i
,

where all pi ’s are distinct, then any σ̄ ∈ Gal(L/K) extending σ will have order

n̄ =
∏

pbi
i
q
cj

j
,

where bi > ai , pi 6= qj .

Proof. Let L be such that all but finitely many primes of M of relative degree greater than 1

over K have all of their L-factors of relative degree greater than 1 over M, and L/K is Galois.

It is clear, by definition of an extension, that bi ≥ ai . Thus what we have to show is that the

strict inequality holds. Suppose for some pi we have that bi = ai . Let τ̄ = σ̄n̄/p
bi
i , τ = σn̄/p

bi
i .

Then τ̄ is an extension of τ . Further the order τ̄ = pbi
i

and so is the order of τ . By Corollary

3.2 this would contradict our assumption on factors of M-primes of relative degree higher

than one over K. �
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