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Abstract

We consider the problem of constructing first-order definitions in the language of rings of holomorphy rings
of one variable function fields of characteristic 0 in their integral closures in finite extensions of their fraction
fields and in bigger holomorphy subrings of their fraction fields. This line of questions is motivated by similar
existential definability results over global fields and related questions of Diophantine decidability.

1 Introduction.

This paper grew out of attempts to reproduce some existential definability results, obtained for global fields,
over one variable function fields of characteristic zero. To refer to fields of both types we will use the term
“product formula fields”. Product formula fields posses discrete valuations, i.e. homomorphisms from the
multiplicative group of the field into Z. These valuations correspond to prime ideals of rings of algebraic
integers when K is a number field or to the prime ideals of the integral closure of a polynomial ring,
when K is a function field. This correspondence will allow us to use the terms “valuations” and “primes”
interchangeably.

If W is a set of primes of K, we can define a ring

OK,W = {z ∈ K|ordtz ≥ 0, ∀t 6∈ W},

where ordtz is the value of the valuation corresponding to the prime t on z. If W is finite, OK,W is called a
ring of W-integers. If W is arbitrary and K is a function field, then OK,W is called a holomorphy ring of K.
(More information about these rings can be found in Chapter 2 of [12].) Given a finite extension L/K of
product formula fields, one could try to give an existential definition in the language of rings of OK,W in its
integral closure in L. (The integral closure of a holomorphy ring or its analog over a number field is also a
holomorphy ring or its analog.) Another existential definability question concerns producing an existential
definition in the language of rings of OK,W over K. Both questions grew out of attempts to extend Hilbert’s
Tenth Problem originally solved over Z to other domains. (See [9] for an introduction to the subject.)

Existential definitions of Z have been constructed over rings of integers of some number fields, but the
general problem is still open. There are also some results where Z and rings of integers are existentially
defined over some rings OK,W , where K is a number field distinct from Q and W is infinite. (These results
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can be found in [5], [8], [7], [20], [27], [28], [33], [35], [39], and [21].) However, we have no results concerning
existential definability of rings of integers over any number field and there are serious doubts about the
existence of such definitions. (See [15], [16], [17], [18], [3], [4], [40] and [22] for more details concerning this
issue.)

Similar questions have been investigated over function fields of positive characteristic. There the question
of giving an existential definition of rings ofW-integers over their integral closure in the extensions has been
resolved completely in [30] for the case when the constant field is finite. Further, existential definitions of
rings of S-integers have been constructed over holomorphy rings OK,W for function fields K over finite field
of constants and infinite W of Dirichlet density arbitrarily closed to 1. (See [34] and [37] for more details.)
However, the problem of giving an existential definition of a ring of integers over its fraction field remains
unsolved.

The questions of the first-order definability over global fields have been resolved completely by J. Robinson
for number fields (see [24] and [25]) and R. Rumely for function fields over finite fields of constants (see [26]).

The definability (and (un)decidability) situation turned out to be far more vexing over function fields
of characteristic 0. There are existential and first order definability results producing definitions of Z and
Diophantine models over various rings and fields of rational and algebraic functions (e.g. [2], [1], [6], [13],
[41], [42], [19], [11], [10], [29] and [38]). The most general Diophantine undecidability results for one-variable
case are due to Moret-Bailly ([19]) and Eisenträger ([10]). These results, which are generalizations of results
by Denef and Kim and Roush, show Diophantine undecidability of function fields whose constant fields are
subfields of p-adics or are formally real. They also show Diophantine undecidability of semilocal subrings of
function fields over any field of constants of characteristic 0.

The results which are conspicuously absent from the “known” list concern the fields with algebraically
closed fields of constants. The main stumbling block here is an existential or even a first-order definition of
order at a function field prime. We should also note here that an undecidability or a definability result for
a field usually implies the analogous results for all the holomorphy subrings of the field. On the other hand,
results for rings (e. g. semi-local holomorphy subrings) do not in general imply the analogous results for all
the other holomorphy sub rings of the field unless we have a definition of order.

Despite a great deal of progress in the study of definability and decidability of function fields of charac-
teristic 0, until now there have been no results asserting first-order or existential definability of any ring of
S-integers of a function field of characteristic 0 over a much bigger holomorphy ring. In this paper we produce
the first results of this kind. We also will produce some existential undecidability results for holomorphy
subrings complementing results of Moret-Bailly and Eisenträger.

Before proceeding further we should describe the languages we will use for our first-order definitions. Let

LR(a1, . . . , am) = (0, 1,+, ·, a1, . . . , am)

be a language of rings with finitely many additional constant symbols besides “0” and “1”. All the first-order
and existential definitions in this paper will be done in such a language.

Our main results are contained in the following theorems.

Theorem 5.3.

Let E/K be a finite extension of function fields of characteristic 0 such that the field of constants of E is a
number field. Let SK be a finite set of primes of K. Let SE be the set of all the primes of E lying above
SK . Then OK,SK is first-order definable over OE,SE .

Theorem 5.2.

Let K be a function field of characteristic 0 over a field of constants C. LetM be any number field contained
in C, including Q. Let SK be a finite set of primes of K. Let x ∈ OK,SK . Then M [x] has a first order
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definition over OK,SK .

Theorem 5.5.

Let K be a function field of characteristic 0 over a field C satisfying the “high genus equations” condition or a
formally real field with Archimedean order. (The “high genus equations” condition is described in Definition
4.8.) Let SK be a finite set of primes of K. Then there exists an infinite set of K-primes WK (with infinite
complement) such that OK,SK and Z have first-order definitions over OK,WK

.

We also prove several other definability and undecidability results over holomorphy rings.

2 Overview of Main Ideas and Some Preliminary Facts.

The main method used in this paper is a version of a “weak vertical method” described in [36]. The obstacle,
which arises over function fields of characteristic 0 and which has been overcome over global fields, is the lack
of suitable “bound equations” as described in [36]. To construct “bound equations” over global fields one
can rely on the fact that the residue fields of all the primes are finite, while this is certainly not the case in
the case of characteristic zero function fields. The lack of “bound equations” leads to first-order definability
results only, in place of results asserting existential definability.

Given a finite extension of fields L/K, the “weak vertical method” requires an equation with infinitely
many solutions over L, all of which are actually in K. In our case L and K will be function fields of
characteristic 0 and the requisite equations will be equations defining constants of K. Thus, a significant
portion of the paper is devoted to the discussion of first-order or existential definitions of constants over
function fields and rings of characteristic 0.

Before we can proceed with the technical core of the paper, we need to note two useful technical facts
whose proof can be found in [31].

2.1 Proposition.

Let K be a product formula field, W any set of non-archimedean primes of K. Then the set of non-zero
elements of OK,W has an existential definition over OK,W .

2.2 Corollary.

Let K be a product formula field, W any set of non-archimedean primes of K. Let A ⊂ K be first-order
(existentially) definable. Then A ∩OK,W is first-order (respectively existentially) definable over OK,W .

We conclude this section with a notation list to be used in Section 3 and Section 4 of the paper.

2.3 Notation.

• K will denote a one variable function field of characteristic zero over a field of constants C.

• Let x ∈ K \ C be a fixed element.

• Let [K : C(x)] = n.

• Let qC(x) be the prime of C(x) which is the pole of x in C(x).

• For h ∈ C(x), let deg(h) = −ordqC(x)h. (For h ∈ C[x], deg(h) will be the degree of the polynomial.)

• Let qK,1, . . . , qK,r, r ≤ n be all the factors of qC(x) in K.
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• Let SK = {qK,1, . . . , qK,r}.

• Let P(K) be the set of all the primes of K.

• Let WK ⊂ P(K) be such that SK ⊂ WK and P(K) \WK is infinite.

• For any UK ⊆ P(K), let
OK,UK = {z ∈ K|ordtz ≥ 0, ∀t 6∈ UK}.

• Let VK ⊂ P(K) \WK be an infinite set.

• Let CVK be the set of all constants of K such that all K-primes dividing x− c are in VK .

• Let G be a subfield of C.

• Let GVK = CVK ∩G be infinite.

• Let γ ∈ K \ C be such that K = C(x, γ).

• Let D = D(γ) be the discriminant of the power basis of γ.

• Let g be the genus of K.

2.4 Remark.

Before proceeding with the technical core of the paper, we would like to discuss the relationship between the
rings of S-integers and the rings of integral functions. The rings of S-integers are holomorphy rings where
only finitely many primes are allowed as poles. A ring of integral functions is the integral closure in a function
field of a polynomial ring of a rational subfield. It is pretty clear that any ring of integral functions is a ring
of S-integers, where the only primes allowed as poles are the poles of the element generating the polynomial
ring. However, the converse is also true, i.e. any ring of S-integers is an integral closure in the function field
under consideration of a polynomial ring generated by some (non-constant) element of the field. The Strong
Approximation Theorem guarantees the existence of a field element with poles at all the valuations in S and
no other poles. Thus the integral closure of the polynomial ring generated by this element will be precisely
the given ring of S-integers.

3 Defining Polynomials Using Congruences.

In this section we set up the foundation for the “weak vertical method”.

3.1 Lemma.

Let z ∈ OK,SK . Then for some b0, . . . , bn−1 ∈ C[x], it is the case that

D(γ)z =
n−1
∑

i=0

biγ
i.

(The proof of this lemma is identical to the proof of Lemma 4.1 of [36].)
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3.2 Lemma: Weak Vertical Method.

Let f, g ∈ C[x]. Let w =
∑n−1
i=0 aiγ

i ∈ OK,SK , where a0, . . . , an−1 ∈ C(x) and for i = 0, . . . , n− 1, we have
that

deg(f) > deg(ai) + deg(D(γ)). (3.1)

Further, suppose that in OK,SK , we also have that

w ∼= g mod f. (3.2)

Then w ∈ C[x], or in other words for i = 1, . . . , n− 1, it is the case that ai = 0.

Proof.

Equation (3.2) implies

(a0 − g)
f

+
n−1
∑

i=1

ai
f
γi ∈ OK,SK , (3.3)

and therefore for i = 1, . . . , n − 1, we have that Dai
f ∈ C[x]. This however implies that either ai = 0 or

deg(Dai) ≥ deg(f). The second alternative is ruled out by our assumptions. Thus, the lemma holds.

3.3 Proposition.

C(x) ∩OK,WK
= {v ∈ OK,WK

|(∀c ∈ CVK )(∃b ∈ C)(∃h ∈ OK,WK
)(v − b = (x− c)h)} (3.4)

Proof.

Let
V = {v ∈ OK,WK

|(∀c ∈ CVK )(∃b ∈ C)(∃h ∈ OK,WK
)(v − b = (x− c)h)}.

First of all we note that any element of C(x) ∩OK,WK
is in V . Indeed, let p(x) ∈ C(x) ∩OK,WK

. Then for
all c ∈ C,

h =
p(x)− p(c)
x− c

∈ C(x) ∩OK,WK
,

and we can let b = p(c).
Now let v ∈ V . Then for some u, z ∈ OK,SK , we have that

v =
u

z
,

Z = NK/C(x)(z) ∈ C[x]

and
Zv ∈ OK,SK .

Further, v ∈ C(x) if and only if Zv ∈ C[x]. Since Z is a polynomial in x, as above, for all c ∈ C,

Z(x) ∼= Z(c) mod (x− c) in C[x] ⊂ OK,WK
.

Therefore, if for all c ∈ CVK ,∃b ∈ C,

v ∼= b mod (x− c) in OK,WK
,

then for all c ∈ CVK ,∃b ∈ C,
Zv ∼= bZ(c) mod (x− c) in OK,WK

.
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Now we can write

Zv =
n−1
∑

i=0

aiγ
i, ai ∈ C(x).

Since CVK is infinite, we can choose distinct c1, . . . , cm ∈ CVK with

m > deg(ai) + deg(D(γ)).

Let bi ∈ C be such that v ∼= bi mod (x− ci) in OK,WK
. Next let g ∈ C[x] be such that

g ∼= Z(ci)bi mod (x− ci) in C[x].

(Such a g exists by the Strong Approximation Theorem (see page 23 of [12]).) Now we conclude that

Zv − g = h

m
∏

i=1

(x− ci), h ∈ OK,WK
.

Next we note that

h =
Zv − g

∏m
i=1(x− ci)

,

and poles of h can come from poles of Zv − g or zeros of
∏m
i=1(x − ci). However, by definition of CVK , no

prime of K which is a zero of x− ci belongs to WK . Therefore, all the poles of h come from poles of Zv− g.
This means that h ∈ OK,SK and

Zv ∼= g mod
m
∏

i=1

(x− ci) in OK,SK .

In this case, however, using our assumptions and Lemma 3.2 we can conclude that Zv ∈ C[x] and v ∈ C(x).

We next prove a refinement of Proposition 3.3.

3.4 Proposition.

G(x) ∩OK,WK
= {v ∈ OK,WK

|(∀c ∈ GVK )(∃b ∈ G)(∃h ∈ OK,WK
)(v − b = (x− c)h)} (3.5)

Proof.

As in Proposition 3.3, it is easy to verify that

G(x) ∩OK,WK
⊆ {v ∈ OK,WK

|(∀c ∈ GVK )(∃b ∈ G)(∃h ∈ OK,WK
)(v − b = (x− c)h)}

Indeed, if v ∈ G(x), then for all c ∈ G, v(c) ∈ G. Suppose now that, that

z ∈ {v ∈ OK,WK
|(∀c ∈ GVK )(∃b ∈ G)(∃h ∈ OK,WK

)(v − b = (x− c)h)} (3.6)

From Proposition 3.3 we know that z ∈ C(x) and for infinitely many values a ∈ G we have that z(a) ∈ G.
Then by Lemma 2.3 of [32], z ∈ G(x).

We will next consider an example of definability within the same function field.

3.5 Proposition.

Let C contain an algebraic extension M of Q. Let OM be the set of algebraic integers of M . Assume all but
finitely many elements of OM belong to CVK . Then

OM [x] ⊂ V = {v ∈ OK,WK
|(∀c ∈ OM ∩ CVK )(∃b ∈ OM , h ∈ OK,WK

) : v − b = h(x− c)} ⊂M [x]. (3.7)
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Proof.

First of all, it is clear that OM [x] ⊂ V . Further, by Proposition 3.4, if v ∈ V , then v ∈ M(x). Assume
v 6∈M [x] and let Q(x) be a monic irreducible over M polynomial dividing the reduced denominator of v so
that

v(x) =
A(x)

Q(x)iB(x)
,

where
(A(x), Q(x)) = (B(x), Q(x)) = (A(x), B(x)) = 1

as polynomials over M . Let α be a root of Q(x) in the algebraic closure of M . Then

B(α)A(α) 6= 0.

Let M1 ⊂ M be a number field containing all the coefficients of Q(x). Let p be a prime of M1 unramified
and splitting completely in the Galois closure of M1(α) over M1. By Chebotarev Density Theorem, there
are infinitely many such primes and therefore we can pick such a prime p satisfying the following conditions

1. α is integral at p.

2. All the coefficients of A(x) and B(x) are integral at p.

Let p1 be a factor of p in M1(α). By Lemmas 6.1 and 6.2, for any l > 0, there exists a ∈ OM1 ∩ CVK such
that

l = ordp1(a− α) > max(ordp1A(α) + ordp1B(α), ordp1α)

and
ordp1Q(a) = l,

ordp1A(a) = ordp1A(α),

ordp1B(a) = ordp1B(α).

Then
ordpv(a) = ordp1v(a) = ordp1A(a)− ordp1B(a)− iordp1Q(a) < 0.

Thus v(x) cannot have a pole at any valuation different from the valuation which is the pole of x. Therefore,
v(x) ∈ C[x].

The results above can be reformulated as the following theorems.

3.6 Theorem.

If C is first-order definable over OK,WK
, then OK,WK

∩ C(x) is first-order definable over OK,WK
.

Proof.

It is sufficient to replace “CVK” in Equation (3.4) by “C” to obtain a first order formula definingOK,WK
∩C(x)

over OK,WK
.

3.7 Theorem.

If G is first-order definable over OK,WK
, then OK,WK

∩G(x) is first order definable over OK,WK
.

Proof.

As above, it is sufficient to replace “GVK” in Equation (3.5) by “G” to obtain a first order formula defining
OK,WK

∩G(x) over OK,WK
.
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3.8 Theorem.

If M is a number field contained in C and OM is first-order definable over OK,WK
, then M [x] is first order

definable over OK,WK
.

Proof.

Here we note the following. As above, we can replace “OM ∩ CVK” by OM to obtain

OM [x] ⊂ V = {v ∈ OK,WK
: ∀c ∈ OM ,∃b ∈ OM ,∃h ∈ OK,WK

: v − b = h(x− c)} ⊂M [x].

Next we can observe that z ∈M [x] if and only if ∃c ∈ OM : cz ∈ V .

4 Defining Constants.

From the preceding section we can conclude that definability of the polynomials and S-integers follows from
the definability of the constant field and its subfields. In this section we review some old and provide some
new existential and first order definitions of constants. We will start with rings of S-integers and review the
existential definition of constants from [29].

4.1 Proposition: Defining Constants over the Rings of S-integers.
Let x ∈ OK,SK . Then x ∈ C if and only if for all i = 0, . . . , r, it is the case that

x = −i ∨ ∃yi ∈ OK,SK such that yi(x+ i) = 1. (4.1)

Proof.

If x is a constant, then for any i ∈ N, we have that x+ i is a constant and, unless x+ i = 0, a unit of OK,SK .
Further, if x + i is a unit but not a constant, all the zeros of x + i are at some or all of qK,1, . . . , qK,r. On
the other hand, for i, j ∈ N, i 6= j, the zeros of x+ i and x+ j are distinct. Thus if (4.1) holds, for at least
one i = 0, . . . , r, it is the case that x+ i does not have a zero at any qK,i, but is a unit of OK,SK . Therefore,
for some i, we have that x+ i is a constant and therefore x is a constant.

The following proposition was also proved in [29].

4.2 Proposition.

Z is existentially definable over OK,SK .

We next proceed to results where we will restrict the possible fields of constants. The proof of the
following result can be found in [38].

4.3 Proposition.

Let C be finitely generated over Q. Let E/K be a finite extension and let W be a set of primes of K such
that all but finitely many primes of W do not split in the extension E/K and the degree of all the primes in
W is bounded by b ∈ N. Then for some set of K-primesW ′, it is the case that Z has an existential definition
over OK,W′ , and W ′ and W differ by at most finitely many primes.

In [41] and in [42], Karim Zahidi gave an existential definition of Z over hyperelliptic fields over real
closed fields of constants and over semi-local and local rings of rational functions over algebraically closed
fields of constants. In [1], Luc Belair proved the following first-order definability result which we will use
later.
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4.4 Theorem.

Let C be a formally real field with an Archimedean order. Then Z is first-order definable over K.

In [14], Königman introduced several ideas leading to a fairly general method of defining constants
existentially. Unfortunately, Königman’s method and our elaboration of it require the constant fields to be
rather large, as we will explain below. (Using similar ideas, Pop defined constants when the field of constants
is algebraically closed in [23].)

4.5 Proposition.

Let f(X,Y ) ∈ C[X,Y ] be an absolutely irreducible polynomial of genus gf > g. Then for all a, b ∈ K,
f(a, b) = 0⇒ a, b ∈ C.

Proof.

Suppose f(a, b) = 0 for some a, b ∈ K. Since C is algebraically closed in K, a ∈ C if and only if b ∈ C.
So suppose a, b 6∈ C. Let K0 = C(a, b) and note that K/K0 is a finite separable extension where the genus
of K0 is equal to the the genus of f(X,Y ) and therefore is greater than the genus of K. However, by the
Riemann-Hurwitz formula (see, for example, [12], page 24) this cannot happen.

Actually we can easily push this proposition a little bit further. In order to do this we need to make a
definition.

4.6 Definition.

Let U be finitely generated over C of transcendence degree m. Let C be the set of all chains c = (K0 ⊂
. . . ⊂ U = Km) such that for i = 0, . . . ,m− 1, it is the case that Ki is algebraically closed in Ki+1, and for
i = 1, . . . ,m, we have that Ki is of transcendence degree 1 over Ki−1. Given a chain c = (C ⊂ K1 . . . ⊂ U),
let the genus g(c) of c be the maximum of the set {g1, . . . , gm}, where for i = 1, . . . ,m, we have that gi is
the genus of Ki as a one-variable function field over Ki−1. Finally, let gU = min{g(c), c ∈ C}.

Now we can state an obvious but useful corollary of Proposition 4.5.

4.7 Corollary.

Let U be as in Definition 4.6. Let f(X,Y ) ∈ C[X,Y ] be absolutely irreducible with the genus gf > gU .
Then for all a, b ∈ U , we have that f(a, b) = 0⇒ a, b ∈ C.

Now, in order to make Proposition 4.5 and Corollary 4.7 useful we need to make sure f(a, b) has enough
solutions in C. It will certainly be true if C is algebraically closed, but we can also make do with smaller
fields. To describe the fields we have in mind we need another definition.

4.8 Definition.

A field C will be called a high genus equations field if for any g > 0 there exists a polynomial f(X,Y ) ∈
C[X,Y ] absolutely irreducible over C, of genus greater than g, such that the following conditions are satisfied.

• There exists a finite family of polynomials {hi(x1, . . . , xk)} ⊂ C[x1, . . . , xk] such that hi(a1, . . . , ak) ∈ C
for all i implies a1, . . . , ak ∈ C.

• For any c ∈ C, for some a2, . . . , ak ∈ C, for all i, we have that polynomial f(hi(c, a2, . . . , ak), Y ) = 0
has a root in C.
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Given this definition, it is trivial to show that the following proposition holds.

4.9 Proposition.

Let C be a high genus equations field. Let U be a function field in several variables over C. Then C is
existentially definable over U .

Koenigman provided several interesting examples of high genus equations fields in [14] (though he did
not use this terminology). In particular, he showed that ample/large fields and fields F with (Fn/F )∗ finite
are high genus equations fields. (In case of positive characteristic n has to be prime to the characteristic.)
However, one can easily generate additional examples as shown below.

4.10 More Examples of High Genus Equations Fields.

Let

fn,m(X,Y ) = Y n −
m
∏

i=1

(X − ci),

where c1, . . . , cm ∈ C are distinct. Assume (m,n) = 1 and consider the extension C(X,Y )/C(X), where
fn,m(X,Y ) = 0. It is clear that in this extension the infinite prime of C(X) as well as the primes corre-
sponding to (X − c1), . . . , (X − cm) are completely ramified. It is also clear that no other prime of C(X) is
ramified in the extension C(X,Y )/C(X). Furthermore, the C(X,Y )-factor of (X − ci) is of relative degree
1 and also of degree 1 in C(X,Y ). Let gX = 0 be the genus of C(X), and let gf be the genus of C(X,Y )
(and the genus of f). Then by the Riemann-Hurwitz formula,

2gf − 2 = n(gX − 2) + deg
m
∑

i=0

(n− 1)Pi,

where P0 is the prime above the infinite valuation in C(X,Y ), and for i = 1, . . . ,m, we let Pi denote the
prime above X − ci. Thus,

gf =
1

2
((m+ 1)(n− 1)− 2n+ 2) =

1

2
(mn− n−m+ 1) =

(m− 1)(n− 1)

2
.

If we fix n and consider arbitrarily large m’s, we get another proof of the fact that fields where “almost”
every element is an n-th power are high genus equations fields. On the other hand we can fix m and let
n = pk, k ∈ N. A field such that for all k ∈ N, ∀c ∈ C,∃b ∈ C : fpk,m(b, c) = 0 will also be a high genus
equations field.

4.11 Remark.

In many applications we don’t need an existential definition of the set of all constants but of a constant set
containing Q. In these cases the constant field C can be smaller than in the examples above. For example, we
would not need almost every element of C to be an nk-th power for all k ∈ N, just elements of Q. Similarly,
it would be enough to require that for all k ∈ N, ∀c ∈ Q,∃b ∈ C : fpk,m(b, c) = 0.

We can now prove a new version of Proposition 4.3

4.12 Proposition.

Let C contain a high genus equations field, but assume that C is not algebraically closed. Let E/K be a
finite extension and let W be a set of primes of K such that all but finitely many primes of W do not split
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in the extension E/K. Then for some set of K-primes W ′, Z has an existential definition over OK,W′ , and
W ′ and W differ by at most finitely many primes.

Proof.

From the proof of Theorem 5.1 of [38], it follows that for some W ′ as described in the statement of the
proposition and some prime P 6∈ W ′ there exists a polynomial p(t, z1, . . . , zk) ∈ OK,W′ [t, z1, . . . , zk] such
that if for some t, z1, . . . , zk ∈ OK,W′ , we have that

p(t, z1, . . . , zk) = 0, (4.2)

then there exists n ∈ N such that
(t− n) = wv, (4.3)

where w, v ∈ OK,W′ and ordPw > 0. Further for any n ∈ N, there exist t, z1, . . . , zk ∈ OK,W′ such that (4.2)

and (4.3) are satisfied. We now combine (4.2) and the following conditions:

c ∈ C ∧ t− c = wu, (4.4)

Then (4.2) and (4.4) together will imply that c − n has a zero at P, implying that the difference is 0.
Conversely, for any n ∈ N, we can satisfy (4.2) and (4.4).

5 First Order Definitions Using Constants.

Using the results of the preceding sections we can now construct several first-order definitions. We will start
with the first-order definability zero characteristic function field analogs of existential definability results in
[5], [8], [7], [20], [27], [28], [21] (these results cover number fields), and [30] (this paper deals with function
fields of positive characteristic).

5.1 Theorem.

Let E/K be a finite extension of function fields of characteristic 0 over the same field of constants C. Let
SK be a finite set of primes of K. Let SE be the set of all the primes of E lying above SK . Then OK,SK is
first order definable in the language of rings over OE,SE .

Proof.

By Proposition 4.1, C is first order definable in OE,SE . Let x ∈ OK,SK be such that x has a pole at every
prime of SK and no other poles. Such an x exists by Strong Approximation Theorem (see [12], page 21).
Then C[x] ⊆ OK,SK , and C[x] = OE,SE ∩C(x) (see Proposition 2.12, page 22 of [12]). By Theorem 3.6, C[x]
has a first-order definition over OE,SE . Let α ∈ OK,SK be a generator of K over C(x). Then y ∈ OK,SK if

and only if y =
∑[K:C(x)]−1
i=0

ai(x)
bi(x)

αi, where ai(x), bi(x) ∈ C[x], bi 6= 0 and y ∈ OE,SE .

Next we use Proposition 4.2 to obtain two definability results. The first theorem follows immediately
from Proposition 4.2 and Theorem 3.8. The proof of the second theorem is almost identical to the proof of
Theorem 5.1.

5.2 Theorem.

Let K be a function field of characteristic 0 over a field of constants C. LetM be any number field contained
in C, including Q. Let SK be a finite set of primes of K. Let x ∈ OK,SK be such that it has a pole at every
valuation of SK . Then M [x] has a first-order definition over OK,SK .
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5.3 Theorem.

Let E/K be a finite extension of function fields of characteristic 0 such that the field of constants of E is a
number field. Let SK be a finite set of primes of K. Let SE be the set of all the primes of E lying above
SK . Then OK,SK is first order definable over OE,SE .

We will now make use of definitions of constants over holomorphy rings and fields. Here we will prove
results which are the first-order definability analogs of the results in [33], [35], [39] (number field case) and
[34], [37] (function fields of positive characteristic). We should note here that dealing with function fields of
characteristic 0 we are missing an essential tool to measure the “size” of the holomorphy rings – Dirichlet
density. Thus we cannot estimate how close we are to the fraction field of the ring under consideration.

5.4 Theorem.

Let K be a function field over a high genus equations field C or a formally real field with Archimedean order.
Let WK be a set of primes of K. Let x ∈ OK,WK

. Assume that for infinitely many a ∈ C, the primes which
are zeros of x− a are not in WK . Then C(x) ∩ OK,WK

is first-order definable over OK,WK
. (This theorem

follows immediately from Proposition 4.9 and Theorems 4.4 and 3.6.)

5.5 Theorem.

Let K be a function field over a high genus equations field C or a formally real field with Archimedean
order. Let SK be a finite set of primes of K. Then there exists an infinite set of primes WK such that its
complement in the set of all primes of K is also infinite, and OK,SK and Z have a first-order definition over
OK,WK

.

Proof.

By Lemma 6.3, there exists z ∈ OK,SK such that the integral closure of C[z] in K is OK,SK , and infinitely
many primes of K have a conjugate distinct from itself over C(z). We describe the steps leading to a
construction of a set WK with required properties. Let UK contain SK and all the primes with a distinct
conjugate over C(z). Next consider all the primes of UK outside SK lying above primes occurring in the
numerator of z − a for some a ∈ C. If this set is finite, set WK = UK . If this set is infinite then divide all
a ∈ C such that a zero of z− a is in UK \ SK into two infinite subsets, and remove all the zeros of z− a with
a in the first subset from UK . Call the resulting set VK . Finally consider all the full sets of C(z)-conjugates
in VK \ SK . From each full set of conjugates remove one prime. Then call the resulting set WK . Now
by Theorem 5.4, C[z] = C(z) ∩ OK,WK

is first-order definable over OK,WK
. Further, if y ∈ OK,WK

, then
y ∈ OK,SK if and only if y satisfies a monic polynomial of degree [K : C(z)] over C[z]. Finally, by Proposition
4.2, Z is existentially definable over OK,SK .

5.6 Remark.

As in all the other cases, the first-order definability of Z leads to the first order undecidability of the ring in
question. We must note here that not all the rings to which the theorem above applies are covered by the
previously known results. In particular, if C is algebraically closed, the resulting first-order undecidability
result is new.

5.7 Theorem.

Let K be a function field in one variable over a field of constants C finitely generated over a subfield of C.
Let WK be a set of primes of K such that

1. for some finite extension E of K all but finitely many primes ofWK do not split in the extension E/K;
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2. either C contains a high genus equations field, or C is formally real with Archimedean order, or C is
finitely generated over Q and for some positive integer b all the primes of WK are of degree b or less;

3. for some z ∈ OK,WK
, for all but possibly finitely many a ∈ Z, the primes dividing z−a are not inWK .

Then Q[z] is first-order definable over OK,W′K , where W
′
K is a set of K-primes differing from WK by finitely

many elements only.

Proof.

By Proposition 4.3 and Proposition 4.12, Z is existentially definable over OK,W′K , where W
′
K is a set of

K-primes differing from WK by finitely many elements. Now the result follows by Theorem 3.8.

Finally we remark that examples of rings OK,WK
satisfying the requirements of Theorem 5.7 can be

found in [38].

5.8 Remark.

The author was recently informed by Bjorn Poonen that he has constructed a uniform first-order definition
of Q and Z over any finitely generated function field of characteristic 0. Taking this result into account, one
can obtain results analogous to Theorems 5.4 and 5.5 for these fields also. Further in Theorem 5.7 we can
drop the assumption that the degrees of primes are bounded in the finitely generated case.

6 Appendix.

6.1 Lemma.

Let F/L be a Galois number field extension of degree m. Let α ∈ F and let Q(x) the monic irreducible
polynomial of α over L. Let p be a prime of L such that all the coefficients of Q(x) are integral at p, and
p splits completely in the extension F/L. Then for any positive integer l there exists al ∈ L such that for
some prime factor p1 of p in F we have that ordp1(al − α) ≥ l and ordpQ(al) ≥ l.

Proof.

Let
∏m
i=1 pi be the factorization of p in F . Then for all i the relative degree of pi over p is 1. Further,

let {σ1, . . . , σm} = Gal(F/L). Without loss of generality, since p splits completely and the Galois group
of the extension acts transitively on all the factors of p, we can assume that σi(p1) = pi. Also we can let
αi = σi(α). (Note that while by assumption p1, . . . , pm are all distinct, α1 = α, . . . , αm are not necessarily
all distinct.) Let π ∈ OL be such that such that ordpπ = 1. Then in Fp1 – the completion of F under p1,

α =
∑∞
i=0 bjπ

j , bj ∈ OL. Let al =
∑l
i=0 bjπ

j ∈ OL. Then al ∼= α mod pl1, and using the transitive action
of the Galois group on the factors of p we conclude that for all i = 1, . . . ,m we have that al ∼= αi mod pli.
Thus, Q(al) =

∏

distinct αi(a− αi) ∼= 0 mod pl.

6.2 Lemma.

Let F/L be a Galois number field extension of degree m. Let α ∈ F . Let P (X) ∈ L[X] be such that
P (α) 6= 0. Let q be a prime of F of relative degree 1 over L such that α is integral at q. Then there exists a
positive integer l such that for all a ∈ L with ordq(a− α) > l we have that ordqP (a) = ordqP (α).
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Proof.

Let P (X) =
∑m
i=0AiX

i, Ai ∈ L. Let b = min{ordqAi, i = 0, . . . ,m}. Next let a ∈ L with

ordq(a− α) = l > max(−b+ ordqP (α), ordqα)

and consider

ordqP (a) = ordq(P (a)− P (α) + P (α)) = min(ordq(P (a)− P (α)), ordqP (α)) =

min(ordq(
m
∑

i=1

Ai(a
i − αi)), ordqP (α)) = ordqP (α),

since ordqa = ordq(a− α+ α) = min(ordq(a− α), ordqα) = ordqα ≥ 0 and

ordq(
m
∑

i=1

Ai(a
i − αi)) ≥ ordq(a− α) + b > ordqP (α).

6.3 Lemma.

Let K be a function field over a field of constants C. Then there exists an infinite set of primes UK and a
finite rational sub-extension C(z), z ∈ K of K over the same field of constants C such that every prime of
UK has an C(z)-conjugate distinct from itself.

Proof.

Let x ∈ K. Let z = xn, n > 1. Then, we can let UK consist of all the K-primes lying above C(x)-primes of
the form x− a, where a ∈ C.
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