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Abstract 
 

In this paper we evaluate two queuing models used to analyze call centers; the Erlang C and Erlang A models.  The 

Erlang C is a simple model that ignores caller abandonment and is the most commonly used model.  The Erlang A 

model allows for abandonment, but performance measures are more difficult to calculate.  We compare the theoretical 
performance predictions of these models to a steady state simulation model where many of the simplifying assumptions 

used in standard analytical models are relaxed.  Our findings support the assertion that the Erlang A model is more 
accurate, but we find that in contrast to the Erlang C model, Erlang A tends to be optimistically biased.  Our findings 

indicate that neither model clearly dominates the other in all situations and that care must be taken to select the correct 

model based on call center conditions and the intended purpose of the model. 
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Introduction 
 

Call centers are examples of queuing systems; calls arrive, wait in a queue, and are then serviced by an agent.  Call 

centers are typically modeled using the M/M/N queuing model, or in industry standard terminology - the Erlang C 

model. The Erlang C model makes many assumptions which are questionable in the context of a call center 

environment.  Specifically, the Erlang C model assumes that calls arrive at a Poisson process with a known average 

rate, and that they are serviced by a defined number of statistically identical agents with service times that follow an 

exponential distribution.  Most significantly, Erlang C assumes no abandonment.  The model is used widely by both 

practitioners and academics.   
 

Recognizing the deficiencies of the Erlang C model, many papers have advocated using alternative queuing models and 

staffing heuristics which account for conditions ignored in the Erlang C model.   The most popular alternative is the 

Erlang A model, an extension of the Erlang C model that allows for caller abandonment.  For example, in a widely 

cited review of the call center literature (Gans et al., 2003) , the authors state “For this reason, we recommend the use 
of Erlang A as the standard to replace the prevalent Erlang C model.”  Another widely cited paper examines empirical 

data collected from a call center (Brown et al., 2005) and these authors make a similar statement; “using Erlang-A for 

capacity-planning purposes could and should improve operational performance. Indeed, the model is already beyond 
typical current practice (which is Erlang-C dominated), and one aim of this article is to help change this state of 

affairs.”   
 

The purpose of this study is first, to examine the performance of each Erlang model under real–world conditions, and 

second to evaluate the assertion that the Erlang A model is a superior model.  We conduct this analysis by performing a 

detailed simulation study.  We develop a simulation model to predict steady state expected system performance based 

on a realistic set of modeling assumptions as identified in the literature.  We compare key performance metrics from 

our simulation study to those predicted by the Erlang C and Erlang A models and seek to characterize the error in the 

theoretical predictions.  In this paper we restrict the analysis to cases where the call center has sufficient capacity to 

handle all calls without abandonment; sometimes referred to as the quality-driven and the quality and efficiency-driven 

(QED) regimes (Gans et al., 2003).    
 

Our findings confirm that the Erlang A model is indeed a more accurate model in the sense that it makes predictions 

which over a wide range of input conditions result in a lower error.  However, we also find that Erlang A does not 

dominate Erlang C under all conditions; in other words, there are situations in which the Erlang C model provides a 

better estimate, even in cases where the abandonment level is non-negligible.  Furthermore, we find that while the 

Erlang C model tends to provide a pessimistic estimate (i.e., the system performs better than predicted), the Erlang A 

model often provides an optimistic estimate.   
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While it is well established that Erlang C based work force management systems tend to overstaff the call center (Gans 

et al., 2003), we conclude that the use of the Erlang A model may lead to understaffing.  The remainder of this paper is 

organized as follows.  In Section 2 we review the Erlang C and Erlang A models and highlight the relevant literature.  

In Section 3 we present a general model of a steady state call center environment and review the simulation model we 

developed to evaluate it.  In Section 4 we evaluate the performance of the Erlang C model, while section 5 evaluates 

the performance of the Erlang A model.  In Section 6 we compare the two models.  We conclude in Section 7 with 

summary observations and identify future research questions.   
 

Queuing Models and the Associated Literature 
 

Call centers are often modeled as queuing systems. Queuing models are used to estimate system performance so that 

the appropriate staffing level can be determined in order to achieve a desired performance metric such as the Average 

Speed to Answer, or the Abandonment Percentage.  The most common queuing model used for inbound call centers is 

the Erlang C model (Brown et al., 2005; Gans et al., 2003).  The Erlang C model (M/M/N queue) is a very simple 

multi-server queuing.  Calls arrive according to a Poisson process at an average rate of  .  By the nature of the Poisson 

process interarrival times are independent and identically distributed exponential random variables with mean 1 − .  

Calls enter an infinite length queue and are serviced on a First Come – First Served (FCFS) basis.  All calls that enter 

the queue are serviced by a pool of n homogeneous (statistically identical) agents.  Service times follow an exponential 

distribution with a mean service time of 1− .  The steady state behavior of the Erlang C queuing model is easily 

characterized.  Following the derivation presented in (Gans et al., 2003) we define the offered load (R), a unit-less 

quantity often referred to as the number of Erlangs, as 

 R    (1) 

The offered utilization () (aka utilization, traffic intensity or occupancy) is defined as  

 ( )N R N   =  (2) 

The offered utilization represents the proportion of available agent time spent handling calls under the assumption that 

all calls are serviced.  Given the assumption that all calls are serviced, the traffic intensity must be strictly less than one 

or the system becomes unstable, i.e. the queue grows without bound.  This system can be analyzed by solving a set of 

balance equations to find the steady state probability that all N agents are busy, or equivalently the proportions of 

callers that must wait for service.   The proportion of callers that must wait prior to service is  
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The Erlang C ProbWait function is a convex function, with values near 0 for low to moderate levels of utilization but 

increasing rapidly as utilization rises above 75%.   Under Erlang C ProbWait reaches 100% as utilization reaches 

100%.   
 

Another relevant performance measure for call centers managers is the Average Speed to Answer (ASA).   
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Like ProbWait the ASA curve is a convex function that increases very rapidly as utilization approaches 100%, but 

unlike ProbWait it has no upper limit.   
 

A third important performance metric for call center managers is the Telephone Service Factor (TSF), also called the 

“service level.”  The TSF is the fraction of calls presented which are eventually serviced and for which the delay is 

below a specified level.  For example, a call center may report the TSF as the percent of callers on hold less than 30 

seconds.  The TSF metric can then be expressed as 
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The Erlang C TSF function is concave, remaining near 100% for low to moderate levels of utilization, but decreasing 

rapidly for utilization levels above 75%.  TSF approaches 0 as utilization approaches 100%.   
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A fourth performance metric monitored by call center managers is the Abandonment Rate; the proportion of all calls 

that leave the queue (hang up) prior to service.  Abandonment rates cannot be estimated directly using the Erlang C 

model because the model assumes no abandonment occurs.   
 

A substantial amount of research analyzes the behavior of Erlang C model; much of it seeks to establish simple staffing 

heuristics based on asymptotic frameworks applied to large call centers.  Halfin & Whitt (1981) develop a formal 

version of the square root staffing principle for M/M/N queues in what has become known as the Quality and 

Efficiency Driven (QED) regime. Borst, Mandelbaum et al. (2004) develop a framework for asymptotic optimization of 

a large call center with no abandonment.  Janssen, van Leeuwaarden et al. (2011) develops a refinement of the square 

root staffing heuristic by expanding the Erlang C model.  The Erlang C model makes many assumptions, several of 

which are not wholly accurate. In the case of the Erlang C model several assumptions are questionable, but clearly the 

most problematic is the no abandonment assumption, as even low levels of abandonment can dramatically impact 

system performance (Gans et al., 2003).  Many call center research papers however analyze call center characteristics 

under the assumption of no abandonment (Borst et al., 2004; Gans & Zhou, 2007; Green, Kolesar, & Soares, 2003; 

Green, Kolesar, & Soares, 2001; Jennings, Mandelbaum, Massey, & Whitt, 1996; Wallace & Whitt, 2005). 
 

The Erlang C model assumes also that calls arrive according to a Poisson process.  The interarrival time is a random 

variable drawn from an exponential distribution with a known arrival rate.  Several authors assert that the assumption 

of a known arrival rate is problematic.  Both major call center reviews have sections devoted to arrival rate uncertainty.  

Brown, Gans et al. (2005) perform a detailed empirical analysis of call center data.  While they find that a time-

inhomogeneous Poisson process fits their data, they also find that arrival rate is difficult to predict and suggest that the 

arrival rate should be modeled as a stochastic process.  Many authors argue that call center arrivals follow a doubly 

stochastic process; a Poisson process where the arrival rate is itself a random variable (Aksin et al., 2007; Chen & 

Henderson, 2001; Whitt, 2006c).  Arrival rate uncertainty may exist for multiple reasons.  Call center managers attempt 

to account for these factors when they develop forecasts, yet forecasts may be subject to significant error.  Robbins 

(2007) compares four months of week-day forecasts to actual call volume for 11 call center projects.  He finds that the 

average forecast error exceeds 10% for 8 of 11 projects, and 25% for 4 of 11 projects.  The standard deviation of the 

daily forecast to actual ratio exceeds 10% for all 11 projects.  Steckley, Henderson et al. (2009) compare forecasted and 

actual volumes for nine weeks of data taken from four call centers.  They show that the forecasting errors are large and 

modeling arrivals as a Poisson process with the forecasted call volume as the arrival rate can introduce significant error.  

Robbins, Medeiros et al. (2006) use simulation analysis to evaluate the impact of forecast error on performance 

measures demonstrating the significant impact forecast error can have on system performance.  Sivan, Paul et al. (2009) 

develop a model for load forecasting and evaluate it with test data from an Israeli bank.    
 

Several papers address staffing requirements when arrival rates are uncertain or time-varying.  Bassamboo, Harrison et 

al. (2005) develop a model that attempts to minimize the cost of staffing plus an imputed cost for customer 

abandonment for a call center with multiple customer and server types when arrival rates are variable and uncertain.  

Harrison and Zeevi (2005) use a fluid approximation to solve the sizing problem for call centers with multiple call 

types, multiple agent types, and uncertain arrivals.  Whitt (2006c) allows for arrival rate uncertainty as well as 

uncertain staffing, i.e. absenteeism, when calculating staffing requirements.  Steckley, Henderson et al. (2004) examine 

the type of performance measures to use when staffing under arrival rate uncertainty.  Robbins and Harrison (2010) 

develop a scheduling algorithm using a stochastic programming model that is based on uncertain arrival rate forecasts.  

Aktekin and Ekin (2016) develop staffing strategies for a call center model where arrival rate, service time, and 

abandonment distributions are all uncertain.  Heching and Squillante (2014) apply a two-stage stochastic optimization 

approach to optimize service delivery centers. Roubos and Bhulai(2010) use an approximate dynamic programing 

technique to control queues with time-varying parameters.  Feldman, Mandelbaum et al. (2008) develop a staffing 

model to maintain time-stable performance when arrival rates are time-varying.  Lima, Maciel et al. (2014) develop a 

general call center evaluation approach and examine the issue of system downtime.  
     

The Erlang C model also assumes that the service time follows an exponential distribution.  The memoryless property 

of the exponential distribution greatly simplifies the calculations required to characterize the system’s performance, and 

makes possible the relatively simple equations  (3)-(5).  If the assumption of exponentially distributed talk time is 

relaxed, the resulting queuing model is the / /M G N queue, which is analytically intractable (Gans et al., 2003) and 

approximations are required. However, empirical analysis suggests that the exponential distribution is a relatively poor 

fit for service times.  Most detailed analysis of service time distributions find that the lognormal distribution is a better 
fit (Brown et al., 2005; Gans et al., 2003; Mandelbaum A., Sakov A. , & S., 2001). Aktekin (2014) uses a Bayesian 

mixture model to analyze service time for a call center when multiple caller types are present.  The fit of the Erlang C 

model in a call center environment is analyzed in Robbins, Medeiros et al. (2010).   
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Finally, the Erlang C model assumes that agents are homogeneous.  More precisely, it is assumed that the service times 

follow the same statistical distribution independent of the specific agent handling the call.  Empirical evidence supports 

the notion that some agents are more efficient than others and the distribution of call time is dependent on the agent to 

whom the call is routed.  In particular more experienced agents typically handle calls faster than newly trained agents 

(Armony & Ward, 2008). Robbins (2007) demonstrated a statistically significant learning curve effect in an IT help 

desk environment.   
 

The Erlang A Model 
 

Given the prevalence of caller abandonment in modern call centers, the no abandonment assumption of the Erlang C 

model may be problematic.  Unfortunately, models that allow for abandonment are significantly more complex and 

difficult to characterize.  The simplest abandonment model is the / /M M N M+ , or Erlang A model.  The model was 

originally presented by Palm in a 1946 paper written in Swedish.  It was presented in English in (Palm, 1957).  The 

Erlang A model is presented in detail in Gans, Koole et al. (2003) and Mandelbaum and Zeltyn (2004).   
 

Erlang A extends the Erlang C model by allowing abandonment.  In the Erlang A model each caller possesses an 

exponentially distributed patience time with mean 
1 −
.  If the offered waiting time, the time a caller with infinite 

patience would be required to wait, exceeds the customer’s patience time, the caller will abandon the queue and hang 

up (A Mandelbaum & Zeltyn, 2004).  While the exponentially distributed patience time makes the calculations 

tractable, they are by no means straightforward.  In particular, calculation of the performance metrics requires an 

evaluation of the incomplete Gamma function  

 1

0
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y
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Details on how to calculate performance metrics for the Erlang A model are provided in Mandelbaum and Zeltyn 

(2009).  Following their notation, we define the basic building blocks J as 
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We can then calculate the probability of waiting as 
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Garnett, Mandelbaum et al. (2002) outline a method for an exact calculation of the Erlang A performance metrics, and 

provide approximations based on an asymptotic analysis of the queue.  Whitt (2006a) develops deterministic fluid 

models to provide simple first-order performance descriptions for multi-server queues with abandonment under heavy 

loads. Whitt (2016) develop diffusion approximations for the Erlang C and Erlang A models.  Knessl and van 

Leeuwaarden (2015) develop a transient analysis of the Erlang A model.  
 

The inclusion of abandonment has a profound effect on the performance of the queuing system.  The impact of 

abandonment is discussed in detail in Garnett, Mandelbaum et al.(2002).  First, the issue of system stability is no longer 

a concern.  In an Erlang C system the traffic intensity defined in equation (2) must be strictly less than one for a steady 

state to exist; an intensity of one or more leads to an infinite queue size.  Furthermore, even very low levels of caller 

abandonment can dramatically alter system performance.   
 

Abandonment has an important impact on the shape of the performance metric curves.  Due to the moderating effects 

of caller abandonment the curves are no longer strictly concave or convex; the ProbWait curve for example takes on an 

s-shape.  The probability of waiting increases at an increasing level as congestion develops in the queue, but as 

congestion continues to grow abandonment levels begin to increase.  As callers exit the queue in increasing numbers 

the probability of waiting continues to increase, but at a decreasing rate.  The same effect applies to the ASA and TSF 

curves, both of which take on an s-shape under the Erlang A model.   

 



International Journal of Applied Science and Technology            Vol. 9, No. 1, March 2019             doi:10.30845/ijast.v9n1p1 

 

5 

Comparisons of Erlang C and Erlang A models are developed in Mandelbaum and Zeltyn (2004) and Garnett, 

Mandelbaum et al.(2002). Whitt (2005) examines the fit of the Erlang A model. Whitt (2006b) examines the sensitivity 

of the Erlang A model to changes in the model parameters.  Several papers examine staffing and scheduling issues in 

call centers where abandonment is allowed (Avramidis, Gendreau, L'Ecuyer, & Pisacane, 2007; Bassamboo et al., 

2005; Robbins & Harrison, 2010).  Phung-Duc and Kawanishi(2014) evaluate call center performance when callers 

abandon and later retry their call.   
 

In order to develop a tractable model, the Erlang A model assumes an exponentially distributed patience. Brown, Gans 

et al.(2005) examine abandonment and a customer’s willingness to wait in detail.  A customer’s patience is in general 

an unobservable metric; since only customers whose patience expires abandon, the data is right censored.  The 

exponential distribution of patience implies that the hazard rate for abandonment is constant over time.  Brown, Gans et 

al. (2005) show hazard rate graphs estimated from empirical data for two different call types.  Both graphs reveal 

hazard functions that are not constant; in contrast they show a sharp peak near the origin indicating a substantial portion 

of customers are unwilling to wait at all.  Callers who abandon immediately are said to balk.  The graphs also show 

another peak at 60 seconds after an announcement indicating a customer’s position in the queue.  The issue of delay 

estimating and announcing delay times, and the effect it can have on queues is evaluated in Ibrahim & Whitt (2008) 

and (Huang, Mandelbaum, et al (2017).  The hazard function shows a general decline over the range of values plotted 

(0 to 400 secs.)  Several other studies of patience curves have concluded that patience can be best modeled as a Weibull 

distribution (Gans et al., 2003).  The Weibull distribution supports a constant, increasing, or decreasing hazard rate.   
 

While many papers have noted the deficiencies of the Erlang C model, and advocated the use of the Erlang A model, a 

systematic analysis of the error associated with each model is lacking.  Our paper seeks to close this gap in the 

literature.   
 

Call Center Simulation 
 

The Modified Model 
 

In this section we present a revised model of a call center, relaxing several key assumptions discussed previously.  In 

our model calls arrive at a call center according to a Poisson process.  Calls are forecasted to arrive at an average rate of 

̂ .  The realized arrival rate is  , where  is a normally distributed random variable with mean ̂  and standard 

deviation  .  The time required to process a call by an average agent is a lognormally distributed random variable 

with mean 1− and standard deviation
 .  We define the offered utilization ( ̂ ) as the system utilization that would 

occur if all calls were serviced by agents of average productivity.   
 

Arriving calls are routed to the agent who has been idle for the longest time if one is available.  If all agents are busy 

the call is placed in a FCFS queue.  When placed in queue a proportion of callers will balk; i.e. immediately hang up.  

Callers who join the queue have a patience time that follows a Weibull distribution.  The Weibull distribution has two 

parameters, a shape parameter () and a scale parameter ().  When the shape parameter equals one the Weibull 

distribution is identical to the exponential distribution.  (Law, 2007).  If wait time exceeds their patience time the caller 

will abandon.  Calls are serviced by agents who have variable relative productivity ir .  An agent with a relative 

productivity level of 1 serves calls in the average service time.  An agent with a relative productivity level of 1.5 serves 

calls in 1.5 times the average service time.  Agent productivity is assumed to be a normally distributed random variable 

with a mean of 1 and a standard deviation of r .   
 

Experimental Design 
 

In order to evaluate the performance of the Erlang C and Erlang A models against the simulation model, we conduct a 

series of designed experiments.  Based on the assumptions for our call center discussed previously, we define the 

following set of nine experimental factors.  High and low values are defined to cover a broad range of call center 

scenarios.    The forecasted arrival rate in the simulation is a quantity derived from other experimental factors by 

 ˆ ˆN  =  (10) 

Given the relatively large number of experimental factors, a well-designed experimental approach is required to 

efficiently evaluate the experimental region.  A standard approach to designing computer simulation experiments is to 

employ either a full or fractional factorial design (Law, 2007).  However, the factorial model only evaluates corner 

points of the experimental region and implicitly assumes that responses are linear in the design space. Given the 

anticipated non-linear relationship of errors, we chose instead to implement a Space Filling Design based on Latin 

Hypercube Sampling as discussed in (Santner, Williams, & Notz, 2003).   Given a set of d experimental factors and a 

desired sample of n points, the experimental region is divided into nd cells.   
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A sample of n cells is selected in such a way that the centers of these cells are uniformly spread when projected onto 

each of the d axes of the design space.  We chose our design point as the center of each selected cell.  This 

experimental design allows us to select an arbitrary number of points for any experiment.   
 

 Factor Low High 

1 Number of Agents 10 100 

2 Offered Utilization ( ̂ ) 65% 95% 

3 Talk Time (mins) 2 20 

4 Patience Shape Factor   60 600 

5 Forecast Error CV 0 .2 

6 Patience Scale Factor   .75 1.25 

7 Talk time CV .75 1.25 

8 Probability of Balking 0 .25 

9 Agent Productivity Standard Deviation 0 .15 
 

Table 1-Experimental Factors 
 

Simulation Model 
 

Our call center model is evaluated using a straightforward discrete event simulation model.  The purpose of the model 

is to predict the long term, steady state behavior of the queuing system.  The model generates random numbers using a 

combined multiple recursive generator (CMRG) based on the Mrg32k3a generator described in (L'Ecuyer, 1999).  

Common random numbers are used across design points to reduce output variance.  To reduce any start up bias we use 

a warm up period of 5,000 calls, after which all statistics are reset.  The model is then run until 25,000 calls have been 

serviced and summary statistics are collected.  For each design point we repeat this process for 500 replications and 

report the average value across replications.  Our primary analysis is based on an experiment with 1,000 design points.   
 

The specific process for each replication is as follows.  The input factors are chosen based on the experimental design.  

The average arrival rate is calculated based on the specified talk time, number of agents, and offered utilization rate 

according to equation(10).  A random number is drawn and the realized arrival rate is set based on the probability 

distribution of the forecast error.  That arrival rate is then used to generate Poisson arrivals for the replication.  Agent 

productivities are generated using a normal distribution with mean one and standard deviation
p .  Each new call 

generated includes an exponentially distributed interarrival time, a lognormally distributed nominal talk time, a Weibull 

distributed time before abandonment, and a Bernoulli distributed balking indicator.  When the call arrives it is assigned 

to the longest idle agent, or placed in the queue if all agents are busy.  If sent to the queue the simulation model checks 

the balking indicator.  If the call has been identified as a balker it is immediately abandoned, if not an abandonment 

event is scheduled based on the realized time to abandon.  Once the call has been assigned to an agent, the realized talk 

time is calculated as the product of the nominal talk time and the agent’s productivity.  The agent is committed for the 

realized talk time.  When the call completes the agent processes the next call from the queue, or if no calls are queued 

becomes idle.  If a call is processed prior to its time to abandon, the abandonment event is cancelled.  If not, the call is 

abandoned and removed from the queue.  Over the course of the simulation we collect statistics on the proportion of 

customers forced to wait, the average speed to answer, the abandonment rate, and the TSF defined as the proportion of 

total callers serviced with a wait time less than 30 seconds.  Extensive testing of our simulation model verifies that all 

metrics are calculated consistently with the Erlang C and Erlang A predictions when the simulation is configured to 

support those model’s assumptions.   
 

After all replications of the design point have been executed the results are compared to the theoretical predictions of 

the Erlang C and Erlang A models.  In each case we calculate the error as the difference between the theoretical value 

and the simulated value.  For the Erlang C model, we use the standard analytical calculations using the same values of 

arrival rate, talk time, and the number of agents used in the simulation. When testing against the Erlang A model the 

comparison is a bit more complicated.  The first challenge is we wish to eliminate any approximation errors in our 

comparison, so rather than use an approximate calculation for the Erlang A model we rerun the simulation configured 

to be consistent with the Erlang A model assumptions, i.e. no balking, homogeneous agents, exponential talk time and 

exponential patience.  The simulation is run using common random numbers from the original simulation.  We feel that 

this approach allows us to focus on the error associated with the Erlang A assumptions, rather than the numerical issues 

associated with estimating Erlang A performance measures.  The second challenge is how to set the patience parameter 

for the Erlang A calculation.  Recall that this parameter is not directly observable since data is heavily censored.   
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Since we are attempting to fit the Erlang A model to observed data, we approximate the Erlang A parameter  as in 

(Gans et al., 2003) and (Brown et al., 2005) by   [ ]P Abandon E Wait = .  
 

Erlang C Experimental Analysis 
 

Summary Observations 
 

We conducted an experiment with 1,000 design points.  Based on our analysis we can make the following summary 

observations: 
 

• The Erlang C model is, on average, subject to a reasonably large error over this range of parameter values.   

• Measurement errors are strongly correlated across performance measures.   

• The Erlang C model is on average pessimistically biased (the real system performs better than predicted) but may 

become optimistically biased when utilization is high and arrival rates are uncertain.   

• Measurement error is high when the real system exhibits high levels of abandonment.  The error is strongly positively 

correlated with realized abandonment rate and predicted ASA.   

• The Erlang C model is most accurate when the number of agents is large and utilization is low.   

• Errors decrease as caller patience increases.   
 

We will now review our experimental results in more detail.   
 

Correlation and Magnitude of Errors 
 

The magnitude of errors generated by using the Erlang C model across our test space is high on average, and very high 

in some cases.  The errors across the key metrics are correlated with each other, and highly correlated with the realized 

abandonment rate.  Table 2 shows a correlation matrix of the errors generated from the Erlang C model and the 

abandonment rate calculated from the simulation.   

 

One of the key challenges we face when evaluating this model’s performance is choosing what metric to evaluate.  We 

have identified five key performance metrics for the model.  The correlation analysis shows that while there is a 

statistically significant correlation between the metrics, the correlation is far from complete. Table 3 shows the 

summary statistics for each of the performance metrics across the design space.   

Simulated 

Abandonment 

Rate

Prob Wait 

Error

ASA 

Error

TSF  

Error

Utilization  

Error

Simulated Abandonment Rate  1.000 

Prob Wait Error  .867  1.000 

ASA Error  .766  .722  1.000 

TSF  Error  -.880  -.987  -.759  1.000 

Utilization  Error  .970  .861  .745  -.873  1.000  
 

Table 2 – Correlation Matrix for Erlang C Model 

 

PW ECE ASA ECE TSF ECE AB ECE UT ECE

Min -8.0% -2.80 -51.6% -14.3% 0.0%

Avg 8.0% 33.40 -7.8% -2.4% 2.9%

Max 49.4% 1,098.96 3.6% 0.0% 14.0%

Skew 1.30 5.79 -1.56 -1.46 1.33  
 

Table 3- Erlang C Error Statistics 
 

Each statistic has a wide range of errors and those errors are imperfectly correlated.  Our goal is to evaluate the fit of 

the model overall, across all five metrics.  To facilitate an overall assessment of model fit we perform a cluster analysis.  

Specifically, we cluster all one thousand design points into 3 clusters, using a k-means clustering algorithm.  The inputs 

are the normalized errors in each of the five metrics.  The clusters are identified green for best, yellow for middle, and 

red for worst in terms of performance.  Summary metrics for the clusters are provided in  
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Table 4 4.  The cluster analysis shows that most of the design points, 665, are included in the low error cluster.  The 

Erlang C model provides a good estimate for points in this cluster, with errors generally less than 2%.  The second 

largest group is the moderate error/yellow cluster, with 27.8% of the observations.  Here errors are becoming 

reasonably high, with the average error in ProbWait forecast at nearly 18%, and an average ASA error of more than 48 

seconds.  The smallest group is the high error/red which contains 6.1% of the data points.  Here the Erlang C is a very 

poor predictor.  The average error in the ProbWait measure is nearly 35%, and the average ASA error is nearly 5 

minutes.  Abandonment averages more than 8.5%, which of course is predicted to be 0 by the Erlang C model.   
 

Cluster Obs PW ECE ASA ECE TSF ECE AB ECE UT ECE

Green 661 1.25% 3.30 -1.19% -1.04% 1.54%

Yellow 278 17.99% 48.28 -17.20% -4.27% 4.89%

Red 61 34.90% 291.73 -36.67% -8.59% 8.99%  
 

Table 4- Average Erlang C Errors by Cluster 
 

Overall, the errors are generally pessimistically skewed, the system behaves in general better than predicted.  Recall 

that the error is calculated as the predicted value minus the observed value, so a positive value for ProbWait means less 

calls waited than were predicted to wait. Similarly calls were answered faster than predicted, the service level was 

higher than predicted, and agent utilization is lower than predicted.  Since the Erlang C model assumes no 

abandonment, actual abandonment is always higher than predicated.  The pessimistic nature of the Erlang C model is 

most clearly demonstrated by the ASA prediction.  Figure 1 shows the predicted and realized ASA values across the 

design space with points coded based on the cluster assignment.  While the model regularly predicts calls waiting more 

than 30 seconds to be answered, (26.3% of design points) a wait time in excess of 30 seconds occurs only 1 time out of 

1,000. 

 
Figure 1-Erlang C Predicted vs Actual ASA 

 

To further illustrate the predictive performance of the Erlang C model we view the scatter plot matrix of the five 

performance metric errors shown in Figure 2.  From the matrix we can see that low error (green) cluster is tightly 

packed, the medium error cluster is less tightly packed, and the bad (red) cluster is spread out.  This shows that when 

predictions are bad, they can be very bad.  The 4th column of the matrix is also illustrative.  This column shows that the 

abandonment error, which is equivalent to the realized abandonment rate.  These plots clearly show that the error in 

each metric is strongly related to the abandonment rate.    
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Figure 2- Scatter Plot Matrix of Erlang C Errors 

Drivers of Erlang C Error 
 

Having established that error rates are high under the Erlang C model, we now turn our attention to characterizing the 

drivers of that error.  As discussed in the previous section, Erlang C errors are highly correlated with the realized 

abandonment rate.  The notion that abandonment is a major driver of errors in the Erlang C model is further illustrated 

in Figure 3. This graph shows the error in the ProbWait measure on the vertical axis and the abandonment rate from the 

simulation analysis on the horizontal axis.   
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Figure 3-Scatter Plot of Erlang C Errors and Abandonment Rate 
 

The graph clearly shows that as abandonment increases, the error in the ProbWait measure increases as well.  The 

graph also reveals the optimistic errors, i.e. errors in which the system performed worse than predicted, only occur with 

relatively low abandonment rates.  The average abandonment rate for optimistic predictions was .74%.  The graph also 

reveals that significant error can be associated with even low to moderate abandonment rates.  For example, for all test 

points with abandonment rates of less than 5%, the average error for ProbWait is 4.8%.  For test points in which 

abandonment ranged between 2% and 5% the average ProbWait error is 12.2%.     
 

Abandonment however, is an output, not an input of our model.  We now seek to determine the relative impact of the 9 

input parameters.  We ran an Importance Test based on an F Test Statistic and developed the following graph.  This test 

examines the effectiveness for which each input can predict the cluster for the design point.   
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Figure 4-Erlang C Importance Test 

 

The utilization target is clearly the dominant factor, with the number of agents a distant second.   This makes sense 

given the distorting effects of abandonment.  Environments with high offered utilization and a small pool of agents are 

susceptible to high abandonment rates.  To further analyze this phenomenon, we ran a separate experiment, varying the 

number of agents from 10 to 100 for different offered utilization rates, holding other parameters constant.  The results 

are illustrated in Figure 5. 
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Figure 5 - Erlang C ProbWait Errors by Call Center Size and Utilization 
 

This graph demonstrates that the Erlang C model tends to provide relatively poor predictions for small call centers.  

This error tends to decrease as the size of the call center increases.  However, the graph also illustrates that for busy 

centers the error remains high.  For a very busy call center, running at 95% offered utilization, the error rate remains at 

30%, even with a pool of 100 agents.  The errors tend to track with abandonment; abandonment rates increase with 

utilization and decrease with the agent pool.   
 

Conclusion 
 

The Erlang C model is commonly applied to predict queuing system behavior in call center applications.  Our analysis 

shows that when we test the Erlang C model over a range of reasonable conditions, predicted performance measures are 



International Journal of Applied Science and Technology            Vol. 9, No. 1, March 2019             doi:10.30845/ijast.v9n1p1 

 

11 

subject to large errors.  The Erlang C model works reasonably well for large call centers with low to moderate 

utilization rates, but factors that tend to generate caller abandonment; i.e. high utilization, small agent pools, and 

impatient callers, cause the model error to become quite large.  While the model tends to provide a pessimistic estimate, 

arrival rate uncertainty will either reduce that bias or lead to an optimistic bias.  It is clear that great care must be taken 

before using the Erlang C model to make any calculations that require a high level of precision in a real call center 

environment.   
 

Erlang A Experimental Analysis 
 

Summary Observations 
 

We utilize the same 1,000 design points for the analysis of the Erlang A model.  In summary we find the following 

• Erlang A errors are, on average relatively small.   

• Errors across measures are correlated at a statistically significant level.   

• Errors tend to be optimistic, i.e. the system performs worse than predicted.   

• Arrival Rate uncertainty has the largest impact on Erlang A prediction error.   
 

Correlation and Magnitude of Errors 
 

The magnitude of errors generated by using the Erlang A model across our sample is on average relatively low.  Errors 

exhibit a moderately strong correlation as illustrated in Table 5.  The level of correlation is statistically significant, but 

less so than for the Erlang C model.  ASA in particular has a much lower correlation with ProbWait and TSF than in 

the Erlang C model.   

 

Simulated 

Abandonment 

Rate

Prob Wait-

Error

ASA-

Error

TSF-

Error

Abandonment 

Rate-Error

Simulated Abandonment Rate  1.000 

Prob Wait-Error  -.005  1.000 

ASA-Error  -.622  .468  1.000 

TSF-Error  .360  -.790  -.776  1.000 

Abandonment Rate-Error  -.033  .783  .432  -.823  1.000  
 

Table 5 – Correlation matrix for the Erlang A Model 
 

Correlations between measurement errors are statistically significant at the .01 level, with the magnitudes of the 

correlations moderate to high.  The errors in the ASA and TSF measures correlate strongly with the realized 

abandonment rate, though the ProbWait error does not.  Errors are correlated with the realized abandonment, but the 

correlation is fairly weak.  Statistics for the error in each measure are summarized in Table 6.  While the error rate can 

be non-trivial, they are much less than the error rates seen with the Erlang C model.  The magnitude of the error when 

using the Erlang A model is relatively low, but negatively (optimistically) biased, the system behaves in general worse 

than predicted.  Again, recall that the error is calculated as the predicted value minus the observed value, so a negative 

value for ProbWait means more calls waited than were predicted to wait. Similarly, calls were answered slightly slower 

than predicted, the service level was lower than predicted, and as was the case with the Erlang C model agent 

utilization is lower than predicted.  The errors for ProbWait, ASA, and TSF have opposite signs as compared to the 

Erlang C model and are skewed in the opposite direction.    

 

PW EAE ASA EAE TSF EAE AB EAE UT EAE

Min -9.1% -15.05 -1.8% -2.6% -0.3%

Avg -1.3% -1.02 1.2% -0.3% 1.2%

Max 3.3% 0.83 13.2% 1.3% 4.8%

Skew -1.14 -2.87 2.05 -1.03 1.07  
 

Table 6 - Erlang A Error Statistics 
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We once again perform a cluster analysis to group the data points based on a total assessment across all errors.  The 

clusters are once again ranked green for best, yellow for middle, and red for worst in terms of overall performance.  

The results are shown in Table 7.  Just under 60% of the design points are in the low error cluster.  Points in this cluster 

are very accurate, with the average for all percentage-based metrics within 1% and the ASA average at less than a 

second.  The second largest group is the medium error/yellow cluster.  The errors here are much larger than the green 

cluster, but still relatively small, especially as compared to the Erlang C model.   The smallest group is the red or high 

error group.  At 11.5% there are a non-trivial number of points in this space, yet the errors remain relatively small, with 

ProbWait and TSF errors just under 5%.   Figure 6 shows a scatter plot matrix of the 5 error measures.   

 

Cluster Obs PW ECE ASA ECE TSF ECE AB ECE UT ECE

Green 599 -0.21% -0.45 0.40% 0.01% 0.64%

Yellow 286 -2.22% -1.40 1.76% -0.59% 1.59%

Red 115 -4.53% -3.03 4.20% -1.42% 2.71%  
 

Table 7 - Average Erlang A Errors by Cluster 

 

 
Figure 6-Erlang A Error Scatter Plot Matrix 



International Journal of Applied Science and Technology            Vol. 9, No. 1, March 2019             doi:10.30845/ijast.v9n1p1 

 

13 

 
Figure 7-Erlang A ProbWait Predicted vs Actual 

 

We examine the performance of the Erlang A prediction compared to the simulated value in Figure 7.  This scatter plot 

show the ProbWait value predicted by the model and that obtained from the simulation.  The scatter graph show that 

the error in ProbWait is generally independent of the expected wait.  High and low errors occur for low wait 

probabilities and high wait probabilities.  The higher error conditions tend to be optimistic errors, scenarios where the 

system performs worse than expected. 
 

Drivers of Erlang A Errors 
 

As we did with the Erlang C model, we now turn our attention to determining the drivers of the relative error.  We 

again run an importance test to determine which inputs are most influential in determining a points error cluster.   

The results are shown in Figure 8.  By far the most influential factor is Arrival Rate Uncertainty.  This issue is further 

illustrated in Figure 9, which shows the error in the ProbWait metric vs. the ARCV parameter.  For low values of 

ARCV, precise arrival rate prediction, the error is low and often positive.  As ARCV increases the error in ProbWait 

increases dramatically and is mostly negative.  Recall that the ARCV parameter defines the uncertainty in the arrival 

rate, not the overall error. Scenarios with high ARCV correspond to conditions where the arrival rate is accurate on 

average, but varies from period to period more than predicted by the Poisson distribution.  

 
Figure 8-Erlang A Importance Test 



ISSN 2221-0997 (Print), 2221-1004 (Online)                        ©Center for Promoting Ideas, USA                    www.ijastnet.com 

 

14 

 
Figure 9- Erlang A ProbWait error vs Arrival Rate Uncertainty 

Conclusion 
 

Overall the Erlang A model is reasonably accurate model of a call center’s behavior.  The average error rates across all 

design points are relatively low.  The model can however, under certain conditions, exhibit significant error rates.  The 

model is most susceptible to variability/uncertainty in the arrival rate.  Unlike the Erlang C model, the highest errors 

tend to be optimistic, the call center performs worse than predicted.   

 

Comparing the Erlang C and A Models 
 

Overview 
 

In this section we compare the relative performance of the Erlang C and Erlang A models.  We compare prediction 

errors between the two models for each of the 1,000 points in our experimental design.  Figure 10 shows a scatter plot 

of error in the ProbWait calculation for each observed point.   
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Figure 10 – Comparing ProbWait Errors for Erlang C and A 

 

Note the different scales; Erlang C error occurs over a range of -8% to 50%, while Erlang A error occurs over a range 

of -9.1% to 3.3%.  The average error of the Erlang C model is 7.96%, while the average error from the Erlang A model 

is -1.28%.  The overall assertion that the Erlang A model is more accurate is in general supported by the data; the 

average error is smaller, and the range of errors is much smaller.  However, as the figure shows the model is not 

universally more accurate, the graph is configured to indicate which model has the lower absolute error at each point.  

Of the 1,000 points tested, the absolute value of the error from the Erlang A model is less than the absolute value of the 

Erlang C model error 63.5% of the time, while the Erlang C model was more accurate 36.5% of the time.   
 

One of the key observations of our analysis has been the pessimistic nature of the Erlang C estimate, and the somewhat 

optimistic nature of the Erlang A estimate.  To further investigate this issue, we calculate the prediction percentile for 

each design point, i.e. the proportion of observations where the realized proportion of callers waiting was less than then 

that predicted by each model.  
  

Erlang C has a percentile score higher than or equal to the Erlang A score 100% of the time.  The Erlang C model is 

quite conservative, with a percentile value of 100 12.9% of the time.  The percentile score exceeds 95 25.9% of the 

time.  In some cases, the Erlang A has relatively low percentile scores, as low as 32.6, but overall the Erlang A has a 

somewhat surprisingly high percentile value, greater than 50% in 93.5% of the test points.  This implies that even for 

points with an optimistic bias, performance will be better than predicted in many cases but far worse in some cases.  

Due to arrival rate uncertainty, performance measures such as ProbWait are more variable than predicted by a model 

which assumes known arrival rates.  Furthermore, the distribution of ProbWait tends to have a relatively high positive 

skew.   
 

Drivers of Relative Performance 
 

We have seen that the Erlang A model is not universally more accurate than the Erlang C model.  An interesting 

question is under what conditions is the Erlang C model more accurate.  To better understand this we segregated the 

design points into two groups, as illustrated in Figure 10; those where the absolute error of the Prob Wait metric in the 

Erlang C model was smaller, and those where the absolute error of the Erlang A model was smaller.   
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Overall

Min Avg Max Min Avg Max Average p value

Num Agents 15 65.0 100 10 49.8 100 55 2.72E-19

Utilization Target 65.02% 74.74% 90.73% 65.11% 82.75% 94.99% 80% 1.47E-48

Talk Time 2.05 10.46 19.92 2.01 11.28 19.99 11 .0172

Patience 61.4 342.5 597.6 60.3 323.5 599.7 330 .0673

AR CV 0.035 0.136 0.200 0.000 0.081 0.200 0.1 5.02E-52

Talk Time CV 0.753 1.008 1.250 0.750 0.996 1.249 1 .2313

Patience Shape 0.753 1.002 1.249 0.750 0.999 1.250 1 .7370

Probability of Balking 0.01% 11.02% 24.84% 0.06% 13.28% 24.99% 12.5% 2.36E-06

Agent Heterogeneity 0.000 0.071 0.150 0.000 0.077 0.150 0.075 .0339

Abandonment 0.01% 0.92% 3.99% 0.00% 3.17% 14.29% 2.40% 3.72E-50

Erlang C Erlang A

 
 

Table 8 - Conditions of Model Accuracy 
 

 

Table 8 summarizes this data.  For each group it calculates the minimum, maximum, and average values of each design 

parameter in each group.  It also presents the p value generated from a simple hypothesis test that the mean values of 

each group is the same.  Factors such as caller patience, the shape of the patience distribution, and the variability of talk 

time have little impact on which model is more accurate.  Agent Heterogeneity has a moderate impact, with higher 

levels of heterogeneity present in cases where Erlang A is more accurate. Similarly, moderately longer talk times are 

present in the Erlang A group.   
 

The most significant factors are the number of agents in the call center, their utilization, the uncertainty of arrival rates, 

and the probably of balking.  Erlang C tends to be more accurate in call centers with large pools of agents that are 

moderately utilized, and arrival rates that are less certain.  As we have seen, arrival rate uncertainty tends to reduce the 

error in Erlang C predictions, while increasing the error in Erlang A predictions.  Higher levels of balking tend to make 

the Erlang A model the preferred model.  Looking at the realized abandonment rate, it is not surprising that Erlang A is 

more accurate when abandonment levels are high.     
 

Summary and Conclusions 
 

Erlang C is a model commonly applied to the analysis of call centers, and often used as the basis for determining 

staffing level requirements.  Erlang C is a relatively simple model that makes many assumptions that are clearly suspect 

in the context of a call center.  Many authors now advocate the use of the more realistic and more complex Erlang A 

model.  We have conducted a comprehensive simulation analysis that shows that the Erlang C model is in fact subject 

to significant prediction error and that the Erlang A model is on average much more accurate under steady state 

conditions.   
 

However, our analysis also finds that while the Erlang C is conservative, making pessimistic predictions most of the 

time, the Erlang A model often makes overly optimistic predictions.  The optimistic bias of the Erlang A model is 

driven in large part by arrival rate uncertainty, a condition that somewhat paradoxically reduces the error of the Erlang 

C model.  The results of our study suggest that care must be taken when using the Erlang A model to make staffing 

decisions; particularly in cases where arrival rates are subject to significant uncertainty and service level requirements 

are strict.  Erlang C is the safer bet in that staffing based on an Erlang C prediction is more likely to result in the service 

level being met, even if the arrival rate is uncertain.   
 

The analysis in this study is restricted to cases where the call center possesses the capacity to handle all calls presented; 

a requirement for the Erlang C model to have a defined output.  In some call center environments staffing costs are 

significantly higher than the implied cost of customer delay and the number of agents is limited so that essentially all 

customers must wait before receiving service and agent utilization is close to 100%. This environment is sometimes 

referred to as the efficiency-driven regime (Gans et al., 2003).  In this environment the offered utilization is in excess of 

100%, so the Erlang C model becomes unstable and cannot be used to predict performance. The Erlang A model on the 

other hand allows for abandonment and can be used to predict performance in this regime.  A separate study is 

warranted to determine the accuracy of the Erlang A model in this environment.  Our analysis is also focused on long 
term average performance under steady-state conditions.  We do not examine the impact of shifting arrival rates that 

occurs in real scenarios.  In practice many call centers divide the day into a series of short intervals and assume that 

steady state is achieved in each period.  A further study could examine the impact of this assumption on model 

accuracy.   
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