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ABSTRACT 

We consider the Erlang A model, a queuing model often applied to analyze call center performance.  While 

not a new model, Erlang A is becoming a popular alternative to the widely used Erlang C model.  In this 

paper we analyze the accuracy of Erlang A predictions in high traffic environments, a situation where the 

Erlang C model is not applicable.  Our findings indicate that in this high traffic region the Erlang A model 

is subject to a moderate to high level of error that has a strong pessimistic bias; that is the system tends to 

perform better than predicted.  This is in sharp contrast to lower volume scenarios where the model tends 

to be optimistically biased.  We find that in addition to utilization, the model is most sensitive to arrival rate 

uncertainty and balking. 

1 INTRODUCTION 

Call centers are examples of queuing systems; calls arrive, wait in a virtual queue, and are then serviced by 

an agent.  Call centers are often modeled as M/M/N queuing systems, or in industry standard terminology 

- the Erlang C model.  The Erlang C model makes many assumptions that are questionable in the context 

of a call center environment.  Most significantly, Erlang C assumes that all callers wait as long as necessary 

for service without abandoning.  An increasingly popular alternative model is the Erlang A model, an 

extension of the Erlang C model that allows for caller abandonment.  While many papers have noted the 

deficiencies of the Erlang C model and advocated the use of the Erlang A model, a systematic analysis of 

the error associated with each model is lacking.  Our paper seeks to close this gap in the literature.   

In this paper we analyze call center performance in a region the Erlang C model is not applicable, the 

high traffic environment often referred to the efficiency-driven regime. In this regime the call center lacks 

the capacity to handle all calls presented. Faced with long waiting times, a significant proportion of callers 

abandon the queue.  This abandonment brings the capacity required in line with the capacity available.  The 

purpose of this study is to evaluate the performance of the Erlang A models in this environment, and to 

determine if it differs substantially from Erlang A performance in lower utilization environments.  We 

conduct this analysis by performing a detailed simulation study.  We develop a simulation model to predict 

steady state expected system performance based on a realistic set of modeling assumptions as identified in 

the literature.  Our findings indicate that the Erlang A model may be subject to reasonably high levels of 

error in this region and further that the model’s error has significantly different characteristics in the high 

traffic region.   

The remainder of this paper is organized as follows.  In Section 2 we review the Erlang C and Erlang 

A models and highlight the relevant literature.  In Section 3 we present a general model of a steady state 

call center environment and review the simulation model we developed to evaluate it.  In Section 4 we 

evaluate the performance of the Erlang A model.   We conclude in Section 5 with summary observations 

and identify future research questions. 
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2 QUEUING MODELS AND THE ASSOCIATED LITERATURE  

2.1 The Baseline Model – Erlang C 

The literature focused on call centers is quite large, with thorough and comprehensive reviews provided in 

(Gans, Koole, and Mandelbaum 2003) and (Aksin, Armony, and Mehrotra 2007).  Empirical analysis of 

call center data is given in (Brown et al. 2005).   

 The most common queuing model used for inbound call centers is the Erlang C model  (Brown et al. 

2005; Gans, Koole, and Mandelbaum 2003).  The Erlang C model (M/M/N queue) is a very simple multi-

server queuing system.  Calls arrive according to a Poisson process at an average rate of  .  All calls that 

enter the queue are serviced by a pool of n  homogeneous (statistically identical) agents at an average rate 

of n.  Service times follow an exponential distribution with a mean service time of 1  .  The offered 

utilization is defined as  𝜌 ≜ λ/(𝑛µ).  Given the assumption that all calls are serviced, the traffic intensity 

must be strictly less than one or the queue grows without bound.  The proportion of callers that must queue 

prior to service, ProbWait, is a basic measure of system performance.  Another relevant performance 

measure for call centers managers is the Average Speed to Answer (ASA).  A third important performance 

metric for call center managers is the Telephone Service Factor (TSF), also called the “service level.”  The 

TSF is the fraction of calls presented which are eventually serviced and for which the delay is below a 

specified level.  For example, a call center may report the TSF as the percent of callers on hold less than 30 

seconds.  A fourth performance metric monitored by call center managers is the Abandonment Rate; the 

proportion of all calls that leave the queue (hang up) prior to service.  Abandonment rates cannot be 

estimated directly using the Erlang C model because the model assumes no abandonment occurs.   

 The Erlang C model assumes also that calls arrive according to a Poisson process.  The interarrival time 

is a random variable drawn from an exponential distribution with a known arrival rate.  Several authors 

assert that the assumption of a known arrival rate is problematic.  Both major call center reviews (Gans, 

Koole et al. 2003; Aksin, Armony et al. 2007) have sections devoted to arrival rate uncertainty.  Brown et 

al. (2005) perform a detailed empirical analysis of call center data and suggest that the arrival rate should 

be modeled as a stochastic process.  Several other authors also argue that call center arrivals follow a doubly 

stochastic process; a Poisson process where the arrival rate is itself a random variable (Chen and Henderson 

2001; Whitt 2006c; Aksin, Armony, and Mehrotra 2007).  Arrival rate uncertainty may exist for multiple 

reasons that are not captured in forecasts. Robbins (2007) compares four months of week-day forecasts to 

actual call volume for 11 call center projects.  He finds that the average forecast error exceeds 10% for 8 of 

11 projects, and 25% for 4 of 11 projects.  The standard deviation of the daily forecast to actual ratio exceeds 

10% for all 11 projects.  Steckley, Henderson, and Mehrotra (2009) compare forecasted and actual volumes 

for nine weeks of data taken from four call centers.  They show that the forecasting errors are large and 

modeling arrivals as a Poisson process with the forecasted call volume as the arrival rate can introduce 

significant error.  Robbins, Medeiros, and Dum (2006) use simulation analysis to evaluate the impact of 

forecast error on performance measures demonstrating the significant impact forecast error can have on 

system performance.  The Erlang C model also assumes that the service time follows an exponential 

distribution.  However, empirical analysis suggests that the exponential distribution is a relatively poor fit 

for service times.  Most detailed analysis of service time distributions find that the lognormal distribution 

is a better fit (Brown et al. 2005; Gans, Koole, and Mandelbaum 2003; Mandelbaum A., Sakov A. , and S. 

2001).   Finally, the Erlang C model assumes that agents are homogeneous.  Empirical evidence supports 

the notion that agents are heterogeneous with different service time distributions (Armony and Ward 2008) 

(Robbins 2007).   

2.2 The Erlang A Extension 

Given the prevalence of caller abandonment in modern call centers, the no abandonment assumption of the 

Erlang C model may be problematic.  Unfortunately, models that allow for abandonment are significantly 
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more complex and difficult to characterize.  The simplest abandonment model is the / /M M N M , or 

Erlang A model.  The model was originally presented by Palm in a 1946 paper written in Swedish.  It was 

presented in English in Palm (1957).  The Erlang A model is presented in detail in Gans, Koole, and 

Mandelbaum (2003) and Mandelbaum and Zeltyn (2007).   

 In the Erlang A model each caller posses an exponentially distributed patience time with mean 1  .  If 

the offered waiting time, the time a caller with infinite patience would be required to wait, exceeds the 

customer’s patience time, the caller will abandon the queue and hang up  (Mandelbaum and Zeltyn 2007).  

While the exponentially distributed patience time makes the calculations tractable, they are by no means 

straightforward.  Details on how to calculate performance metrics for the Erlang A model are provided in 

Mandelbaum and Zeltyn (2009).  Garnett, Mandelbaum, and Reiman (2002) outlines a method for an exact 

calculation of the Erlang A performance metrics, and also provides approximations based on an asymptotic 

analysis of the queue.  Whitt (2006a) develops deterministic fluid models to provide simple first-order 

performance descriptions for multiserver queues with abandonment under heavy loads. 

 The inclusion of abandonment has a profound effect on the performance of the queuing system, the 

specifics of which are discussed in detail in Garnett, Mandelbaum, and Reiman (2002).  First of all, the 

issue of system stability is no longer a concern. Furthermore, even very low levels of caller abandonment 

can dramatically alter system performance.  Comparisons of Erlang C and Erlang A models are developed 

in Mandelbaum and Zeltyn (2007) and Garnett, Mandelbaum, and Reiman (2002). Whitt (2005) examines 

the fit of the Erlang A model.  Whitt (2006b) examines the sensitivity of the Erlang A model to changes in 

the model parameters.  Several papers examine staffing and scheduling issues in call centers where 

abandonment is allowed (Avramidis et al. 2007; Bassamboo, Harrison, and Zeevi 2005; Robbins and 

Harrison 2010).  In order to develop a tractable model, the Erlang A model assumes an exponentially 

distributed patience.  Brown et al. (2005) examine abandonment and a customer’s willingness to wait in 

detail and find significant deviations from this assumption. Several other studies of patience curves have 

concluded that patience can be best modeled as a Weibull distribution (Gans, Koole, and Mandelbaum 

2003).   

 Robbins, Medeiros, and Harrison (2010) examines the fit of the Erlang C model in a realistic call center 

setting. They compare the Erlang model predictions with the results of a simulation study that relaxes 

several of the key assumptions in the Erlang models. Their study evaluates the models over an experimental 

region that encompasses offered utilization rates that range from 65% to 95%, environments often referred 

to as the quality-driven and quality and efficiency-driven (QED) regimes (Gans, Koole, and Mandelbaum 

2003).   That study finds that while the Erlang A model is in general more accurate than Erlang C it tends 

to be optimistically biased when the arrival rate is uncertain.  This paper builds on that analysis by 

examining the performance of Erlang A when the offered utilization level exceeds 100%.   

3 CALL CENTER SIMULATION 

3.1 The Modified Model 

In this section we present a revised model of a call center, relaxing several key assumptions discussed 

previously.  In our model calls arrive at a call center according to a Poisson process.  Calls are forecasted 

to arrive at an average rate of ̂ .  The realized arrival rate is  , where  is a normally distributed random 

variable with mean ̂  and standard deviation  .  The time required to process a call by an average agent 

is a lognormally distributed random variable with mean 1  and standard deviation  .  Arriving calls are 

routed to the agent who has been idle for the longest time if one is available.  If all agents are busy the call 

is place in a FCFS queue.  When placed in queue a proportion of callers will balk; i.e. immediately hang 

up.  Callers who join the queue have a patience time that follows a Weibull distribution with parameters 

and .  If wait time exceeds their patience time the caller will abandon.  Calls are serviced by agents who 

have variable relative productivity ir .  An agent with a relative productivity level of 1 serves calls at the 
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average rate.  An agent with a relative productivity level of 1.5 serves calls at 1.5 times the average rate.  

Agent productivity is assumed to be a normally distributed random variable with a mean of 1 and a standard 

deviation of r .   

3.2 Experimental Design 

In order to evaluate the performance of the Erlang A models against the simulation model, we conduct a 

series of designed experiments.  Based on the assumptions for our call center discussed previously, we 

define the following set of nine experimental factors. 

  Table 1: Experimental Factors in the model. 

 Factor Low High 

1 Number of Agents 10 100 

2 Offered Utilization ( ̂ ) 100% 200% 

3 Talk Time (mins) 2 20 

4 Patience   60 600 

5 Forecast Error CV (ARCV) 0 .2 

6 Patience   .75 1.25 

7 Talk time CV .75 1.25 

8 Probability of Balking 0 .25 

9 Agent Productivity Standard Deviation 0 .15 

 

The forecasted arrival rate in the simulation is a quantity derived from other experimental factors by   

 ˆ ˆ N     (1) 

 

 Given the relatively large number of experimental factors, a well-designed experimental approach is 

required to efficiently evaluate the experimental region.  A standard approach to designing computer 

simulation experiments is to employ either a full or fractional factorial design  (Law 2007).  However, the 

factorial model only evaluates corner points of the experimental region and implicitly assumes that 

responses are linear in the design space.  We chose instead to implement a Space Filling Design based on 

Latin Hypercube Sampling as discussed in (Santner, Williams, and Notz 2003).   Given a set of d 

experimental factors and a desired sample of n points, the experimental region is divided into nd cells.  A 

sample of n cells is selected in such a way that the centers of these cells are uniformly spread when projected 

onto each of the d axes of the design space.  We chose our design point as the center of each selected cell.  

This experimental design allows us to select an arbitrary number of points for any experiment.   

3.3 Simulation Model 

Our call center model is evaluated using a straightforward discrete event simulation model coded in Visual 

Basic.  The purpose of the model is to predict the long term, steady state behavior of the queuing system.  

The model generates random numbers using a combined multiple recursive generator (CMRG) based on 

the Mrg32k3a generator described in (L'Ecuyer 1999).  Common random numbers are used across design 

points to reduce output variance.  To reduce any start up bias we use a warm up period of 5,000 calls, after 

which all statistics are reset.  The model is then run for an evaluation period of 25,000 calls and summary 

statistics are collected.  For each design point we repeat this process for 500 replications and report the 

average value across replications.  Our primary analysis is based on an experiment with 1,000 design points.   
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 The specific process for each replication is as follows.  The input factors are chosen based on the 

experimental design.  The average arrival rate is calculated based on the specified talk time, number of 

agents, and offered utilization rate according to equation (1).  A random number is drawn and the realized 

arrival rate is set based on the probability distribution of the forecast error.  That arrival rate is then used to 

generate Poisson arrivals for the replication.  Agent productivities are generated using a normal distribution 

with mean one and standard deviation
p .  Each new call generated includes an exponentially distributed 

interarrival time, a lognormally distributed nominal talk time, a Weibull distributed time before 

abandonment, and a Bernoulli distributed balking indicator.  When the call arrives it is assigned to the 

longest idle agent, or placed in the queue if all agents are busy.  If sent to the queue the simulation model 

checks the balking indicator.  If the call has been identified as a balker it is immediately abandoned, if not 

an abandonment event is scheduled based on the realized time to abandon.  Once the call has been assigned 

to an agent, the realized talk time is calculated as the product of the nominal talk time and the agent’s 

productivity.  The agent is committed for the realized talk time.  When the call completes the agent 

processes the next call from the queue, or if no calls are queued becomes idle.  If a call is processed prior 

to its time to abandon, the abandonment event is cancelled.  If not, the call is abandoned and removed from 

the queue.  Over the course of the simulation we collect statistics on the proportion of customers forced to 

wait, the average speed to answer, the abandonment rate, and the TSF defined as the proportion of callers 

waiting less than 30 seconds.  

 After all replications of the design point have been executed the results are compared to the theoretical 

predictions of the Erlang A model.  We wish to eliminate any approximation errors in our comparison, so 

rather than use an approximate calculation for the Erlang A model we rerun the simulation configured to 

be consistent with the Erlang A model assumptions, i.e. no balking, homogeneous agents, exponential talk 

time and exponential patience.  The simulation is run using common random numbers from the original 

simulation.  We feel that this approach allows us to focus on the error associated with the Erlang A 

assumptions, rather than the numerical issues associated with estimating Erlang A performance measures.  

The second challenge is how to set the patience parameter for the Erlang A calculation.  Recall that this 

parameter is not directly observable since data is heavily censored.  Since we are attempting to fit the Erlang 

A model to observed data, we approximate the Erlang A parameter as in (Gans, Koole, and Mandelbaum 

2003) and (Brown et al. 2005) by    P Abandon E Wait  . 

4 EXPERIMENTAL ANALYSIS 

4.1 Summary Observations 

Based on the results of this analysis we identify the following summary observations. 

 Errors are correlated in a statistically significant manner.  ProbWait error is strongly correlated with 

the TSF error and utilization error; correlation with the ASA error is moderate, correlation with 

Abandonment error is weak.   

 ProbWait errors are moderate to large.  The average error is 5%, but errors are recorded as high as 24%.   

 ProbWait errors are positively (pessimistically) skewed; the system tends to perform better than 

predicted.    
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4.2 Correlation and Magnitude of Errors 

Table 2: A correlation matrix of measurement errors. 

 

 
 The correlations between the errors and performance measurements are all statistically significant. The 

correlation between the key performance metrics ProbWait and TSF is reasonably strong.  These measures 

are negatively correlated; a higher proportion of callers waiting implies a lower TSF.  ProbWait error 

correlates strongly with the error in the utilization calculation.  ProbWait correlates less strongly with ASA, 

and very weakly with the error in the abandonment calculation.  The correlation between ProbWait and 

ASA, two measures in which a lower value indicates better system performance, are negatively correlated. 

   

 The relationship between the ProbWait and ASA errors are further illustrated in the Figure 1. ASA 

errors tend to be positive.  We term this a pessimistic or conservative error since the system tends to perform 

better than predicted.  Negative, or optimistic, errors in which the system performs worse than expected are 

possible but the magnitudes are relatively small.  ProbWait errors also tend to be positive and these errors 

are also pessimistic as the system is behaving better than predicted with a smaller proportion of calls 

queuing.  It is interesting to note that large ASA errors correspond to relatively small ProbWait errors, and 

large ProbWait errors correspond to relatively small SA errors.   

 

Figure 1: A scatter plot of ASA and ProbWait errors. 

Prob Wait 

Error ASA Error TSF Error
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Utilization 
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Prob Wait Error  1.000 

ASA Error  -.385  1.000 

TSF Error  -.645  .093  1.000 

Abandonment Rate Error  .066  .352  -.416  1.000 

Utilization Error  .690  -.421  -.192  -.282  1.000 
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This effect is further illustrated in Figure 2 where we present a scatter plot of the proportional error, the 

difference in predicted and observed values as a percentage of the predicted value, for ProbWait and ASA.   

 

Figure 2: A comparison of the Proportional Error in ASA. 

 This graph demonstrates the relatively weak correlation between these errors when measured in 

proportional terms.  As the proportional error in the ProbWait increases, the magnitude of the ASA error 

tends to decrease.  More than 21% of the design points evaluated map to quadrant II of this graph; where 

the proportion of customers waiting is less than predicted, but the time to answer is more than predicted.    

 

Figure 3: A scatter plot of ASA predicted and simulated values. 
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Figure 4: A scatter plot of ProbWait predicted and simulated values. 

 Figure 5 plots a histogram of the ProbWait error further illustrating the positive (pessimistic) bias of 

the ProbWait calculation.  The average error is 5%, with errors ranging from -3% to 24%.  The data has a 

strong positive skew with a sample skew measure of 1.19.   

 

Figure 5: A histogram of ProbWait errors. 

4.3 Drivers of Erlang A Errors 

To better understand how each of the nine experimental factors impacts ProbWait error, we perform a 

regression analysis. The dependent variable is the ProbWait error.  For the independent variables we use 

the nine experimental factors normalized to a [-1,1] scale.  This normalization allows us to better assess the 

relative impact of each factor. The results of the regression analysis are shown in Table 3.   
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Table 3: Regression Analysis of ProbWait Errors. 

 
 The model is statistically significant with a reasonably high R2 value of .513. Each of the nine 

independent variables have a statistically significant effect on the error, but three factors, ARCV, utilization 

target, and probability of balking, have a dominant effect as illustrated by the relative magnitude of their 

coefficients. 

 Arrival rate uncertainty has the largest effect.  As the arrival rate becomes less certain, the relative error 

in the ProbWait prediction, on average, increases in a positive (pessimistic) direction.  With higher levels 

of uncertainty the real system tends to perform much better than predicted by the Erlang A model.  It is 

somewhat counterintuitive that uncertain arrival rates would lead to a system with better performance than 

predicted.  We believe this related to the s-shape of the ProbWait curve, an issue we explore in more detail 

below.  The second largest impact comes from utilization target which has an effect in the opposite 

direction. Higher levels of utilization bias the error in the negative or optimistic direction. The next most 

pronounced effect comes from the probability of balking, which also biases the error in a positive or 

pessimistic direction.  Closer examination reveals that these relationships may be more complicated than 

implied by the linear regression model.  Figure 6 presents a scatter plot of the ProbWait error as a function 

of the offered utilization. 

 With relatively low offered utilization rates, the error in the ProbWait measure tends to be large, and 

highly variable. As the offered utilization rate increases the range of errors decreases. At relatively high 

loads the error varies between 0 and 7.6%. At lower utilization levels the error is as high as 24%.  Of course, 

it is important to recall that while offered utilization may exceed 100%, the realized utilization cannot. The 

system equilibrates through abandonment to keep actual utilization below 100%.  Figure 7 presents a scatter 

plot of the ProbWait error versus the realized utilization level.  

 This plot shows a somewhat different shape than Figure 6.  Relatively high error rates persist across 

most of the range of high realized utilization levels.  To examine the impact of the offered utilization more 

directly we develop and execute several additional experiments.  Figure 8 shows the results of an experiment 

in which we vary offered utilization and arrival rate uncertainty while holding all other factors at the 

midpoint. We vary offered utilization from 50% to 200% under three conditions; a known arrival rate, 

moderate uncertainty, and high uncertainty. 

Regression Analysis

R² 0.513 

Adjusted R² 0.508 n  1000 

R  0.716 k  9 

Std. Error  0.032 Dep. Var. Prob Wait

ANOVA table

Source SS  df  MS F p-value

Regression  1.0570 9   0.1174 115.79 5.82E-148

Residual  1.0041 990   0.0010 

Total  2.0611 999   

Regression output confidence interval

variables  coefficients std. error    t (df=990) p-value 95% lower 95% upper

Intercept 0.0463 0.0010  46.007 4.38E-248 0.0444 0.0483 

Num Agents 0.0089 0.0017  5.111 3.85E-07 0.0055 0.0124 

Utilization Target -0.0307 0.0018  -17.519 4.64E-60 -0.0341 -0.0272 

Talk Time -0.0055 0.0017  -3.142 .0017 -0.0089 -0.0021 

Patience 0.0081 0.0017  4.663 3.54E-06 0.0047 0.0116 

AR CV 0.0401 0.0018  22.928 1.17E-93 0.0367 0.0436 

Talk Time CV 0.0042 0.0018  2.413 .0160 0.0008 0.0077 

Patience Shape -0.0046 0.0018  -2.626 .0088 -0.0080 -0.0012 

Probability of Balking 0.0214 0.0018  12.207 5.01E-32 0.0180 0.0249 

Agent Heterogeneity 0.0089 0.0017  5.105 3.96E-07 0.0055 0.0124 
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Figure 6: ProbWait Errors vs. Offered Utilization. Figure 7: ProbWait Errors vs. Realized Utilization. 

  

 
 

Figure 8: ProbWait Errors by AR Uncertainty. Figure 9: ProbWait Errors by Balking.  

 When the arrival rates are known the Erlang A model is quite accurate, in particular for relatively low 

or high loads. The maximum error of 4% occurs with an offered utilization level of 125%. When arrival 

rate uncertainty is introduced the error in the measurement becomes more pronounced, the relative 

maximum still occurs with utilization levels in the 125% range, but the magnitude of the error increases 

substantially, with errors as high as 16.5%. The graphs also reveal a region of negative bias when offered 

utilization levels are below 100%. 

 A similar phenomenon is demonstrated in another experiment illustrated in Figure 9. In this experiment 

we again vary the offered utilization level, but also vary balking rate from 0 to 25%, while holding all other 

factors at their midpoint.  Again we see very low error at the extremes, a moderate negative bias with 

utilization levels in the 80% range, and a strong positive bias with utilization's in the 110% to 160% range.  

In all cases increased balking proportion biases the error in a positive direction.  Recall that balkers have 

no patience, they abandon as soon as they are placed in queue.  Since they abandon immediately, they get 

out of the way and allow better results for callers who are willing to wait, improving the overall performance 

of the system relative to what was predicted by the Erlang A model.  An implication is that actions that 

induce rapid abandonment, such as announcements of anticipated wait times, can improve overall system 

performance. To better understand the utilization effect we examine the theoretical relationship between 

Offered Utilization and ProbWait as predicted by the Erlang A model. Figure 10 plots the proportion of 

callers that must wait as a function of offered utilization when all other factors are held at their midpoint. 
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Figure 10: Erlang A Calculation of ProbWait as a Function of Offered Utilization.  

 Figure 10 reveals a familiar S-curve shape. With offered utilization levels in the range of 75% to 90%, 

the region in which we observed a negative bias, the graph has a convex shape. With offered utilization 

levels above about 120%, the graph becomes concave. Above 160% the graph flattens out as the probability 

of waiting asymptotically approaches 100%. Overall this leads to a negative bias as the improvement from 

lower than anticipated call volume cannot offset the degradation from higher-than-expected call volume.  

In the higher region of utilization, say 120% to 160%, the situation is reversed. In this region, volumes 

higher than anticipated have little impact as nearly 100% of callers will queue. However, volumes lower 

than anticipated offer substantial reduction in the proportion of calls that must wait. Since these effects don't 

balance out overall the prediction tends to be pessimistic, and the system on average performs with a lower 

proportion of callers waiting.  Now recall the impact that arrival rate uncertainty has on our measurement. 

Instead of taking a single point measure at the anticipated arrival rate, we take the average of a sample of 

measures symmetrically scattered about that anticipated arrival rate. When utilization levels are relatively 

low, say 80%, negative deviations and arrival rate have little impact as the proportion waiting is near zero. 

Positive deviations on the other hand, have a significant impact dramatically increasing the relative 

proportion of calls that must wait.  In regions of relatively high utilization this effect is reversed. 

5 SUMMARY AND CONCLUSIONS 

In this paper we analyzed the ability of the Erlang A model to accurately predict long-term, steady-state 

behavior of call centers in high traffic scenarios.  In this region the Erlang A model is a reasonably good 

approximation of actual performance, but when actual conditions deviate from model assumptions 

significant error is introduced.  The errors across different performance metrics are correlated in a 

statistically significant way, but only loosely.  It is not uncommon for the errors on different metrics to be 

reversed.  Overall our study confirms that under realistic conditions even the more sophisticated Erlang A 

model is subject to significant error.   
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