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a b s t r a c t

We consider the issue of call center scheduling in an environment where arrivals rates are highly vari-
able, aggregate volumes are uncertain, and the call center is subject to a global service level constraint.
This paper is motivated by work with a provider of outsourced technical support services where call vol-
umes exhibit significant variability and uncertainty. The outsourcing contract specifies a Service Level
Agreement that must be satisfied over an extended period of a week or month. We formulate the problem
as a mixed-integer stochastic program. Our model has two distinctive features. Firstly, we combine the
server sizing and staff scheduling steps into a single optimization program. Secondly, we explicitly rec-
ognize the uncertainty in period-by-period arrival rates. We show that the stochastic formulation, in gen-
eral, calculates a higher cost optimal schedule than a model which ignores variability, but that the
expected cost of this schedule is lower. We conduct extensive experimentation to compare the solutions
of the stochastic program with the deterministic programs, based on mean valued arrivals. We find that,
in general, the stochastic model provides a significant reduction in the expected cost of operation. The
stochastic model also allows the manager to make informed risk management decisions by evaluating
the probability that the Service Level Agreement will be achieved.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

A call center is a facility designed to support the delivery of some interactive service via telephone communications; typically an office
space with multiple workstations manned by agents who place and receive calls (Gans et al., 2003). Call centers are a large and growing
component of the US and world economy, and are estimated to employ over 2 million call center agents (Aksin et al., 2007). Large scale call
centers are technically and managerially sophisticated operations and have been the subject of substantial academic research. Call center
applications include telemarketing, customer service, help desk support, and emergency dispatch.

Staffing is a critical issue in call center management, as direct labor costs often account for 60–80% of the total operating budget of a call
center (Aksin et al., 2007). This paper addresses the scheduling problem in a call center with highly variable and uncertain arrival rates. The
work is directly related to a research project with a provider of outsourced technical support delivered via globally distributed call centers.
This operation involves providing help desk support to large corporate and government entities. While the scope of services varies from ac-
count to account, many accounts require 24 � 7 support and virtually all accounts are subject to some form of Service Level Agreement (SLA).
There are multiple types of SLAs, but the most common specifies a minimum level of the Telephone Service Factor (TSF). A TSF SLA specifies
the proportion of calls that must be answered within a specified time. For example, an 80/120 SLA specifies that 80% of calls must be an-
swered within 120 seconds. A very important point is that the service level applies to an extended period, typically a week or month. There-
fore, the desk is often staffed so that at some times the service level is underachieved, sometimes overachieved, and is on target for the entire
month. The key challenge involved with staffing this call center is meeting a fixed SLA with a variable and uncertain arrival rate pattern.

Throughout this analysis, we will evaluate the models using three test problems based on specific outsourcing projects. Project J is a
corporate help desk for a large industrial company averaging about 750 calls a day, where the volatility of call volume is relatively low.
Project S is a help desk that provides support to workers in a large national retail chain. Call volume on this desk is about 2000 calls a
day. Because this desk supports users in retail stores, as opposed to a corporate office, the daily seasonality of call volume is quite different.
ll rights reserved.
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This company is making major changes in its IT infrastructure and therefore call volume is very volatile and difficult to forecast. Project O is
a help desk that provides support to corporate and retail site users of another retail chain. This is a smaller desk with about 500 calls a day,
where call volume is fairly volatile and shocks are relatively common. We also examine various scheduling options. At one extreme, we
only allow workers to be assigned to five 8-hour shifts per week. At the opposite extreme, we allow a wide range of part time schedules.
We allow for a total of five different flexibility options (A-E), which are summarized in the Appendix in Tables A.1 and A.2.
2. Literature

There is a large body of literature addressing call center issues. Gans et al. (2003) provides a detailed and comprehensive review of the
literature. Aksin et al. (2007) is another more recent review of the call center literature. Call center papers cover a wide range of topics and
encompass a number of OR methodologies, including queuing theory, optimization, and simulation.

The primary problem we address in this paper is shift scheduling. The basic approach to this problem was first outlined in a paper by Dant-
zig (1954), which addressed scheduling toll booth operators. Dantzig formulated his model as a weighted set covering problem with known
staffing requirements; the objective being to find the minimal cost covering from a set of available schedules. In the weighted set covering
approach, the staffing levels in each time period are calculated exogenously and are defined as hard constraints that must be satisfied in any
feasible schedule. Segal (1974) showed that without considering breaks the problem could be solved as a network flow problem in polyno-
mial time. However, when breaks are scheduled explicitly the problem becomes NP Hard (Garey and Johnson, 1979). Due to the large number
of potential schedules, especially when breaks are explicitly scheduled, much of the early research focused on solution algorithms.

Many early papers focused on heuristic algorithms. Henderson and Berry (1976) apply two types of heuristics. The first heuristic reduces
the number of shift types, scheduling against only a reduced set of schedules referred to as the working subset. The second approximation is
the scheduling algorithm, where the authors use three different scheduling heuristics. Another stream of research attacks the problem
using an implicit scheduling approach. Implicit scheduling models use two sets of decision variables; one to assign breakless shifts, another
to fit breaks. Implicit scheduling approaches are addressed in Bechtold and Jacobs (1990), Thompson (1995) and Aykin (1996). Several
other papers address related problems (Brusco and Johns, 1996; Brusco and Jacobs, 1998, 2000). A succinct overview of a two-stage ap-
proach to scheduling in a call center environment is provided in Section 12.7 of Pinedo (2005).

Customer service is an important consideration in call centers, and many centers are subject to SLAs. Milner and Olsen (2008) examine
contract structures in call centers with SLAs. Baron and Milner (2006) examine optimal staffing under various SLAs. These papers classify
SLAs as Individual Based (IB), Period Based (PB), or Horizon Based (HB). IB-SLAs assess a financial penalty for every customer not served
within the specified service level. The PB-SLA specifies penalties for each time period in which the service level target is not achieved. Peri-
ods are defined as intervals over which the arrival rate can be considered constant – typically 15 or 30 minute intervals. The HB-SLA spec-
ifies penalties for service level shortcomings over an extended period such as a week or month. In this paper we examine scenarios where a
HB-SLA has been specified with the horizon specified as one week.

Most call center scheduling models in the literature implement a hard constraint for service level on a period-by-period basis – a PB-
SLA. Scheduling for a PB-SLA is straightforward using the Stationary Independent Period by Period (SIPP) approach. The SIPP approach is
described in detail in Green et al. (2001), but essentially the day is divided into short periods, typically 15 or 30 minutes. In each period, the
arrival rate is assumed to be constant and performance is assumed to be independent of the performance in other periods. In each period, a
queuing model, often the Erlang C model, is used to calculate the staffing level required to achieve the service level requirement. A set cov-
ering integer program is then used to schedule shifts. This two phased approach splits the task into a server sizing task, based on queuing
models, and a staff scheduling task, based on discrete optimization.

A few models are formulated to solve a global service level requirement, i.e. an HB-SLA. It is our experience that outsourcing contracts
often specify an HB-SLA, and all of the projects we examined were subject to this type of SLA. Koole and van der Sluis (2003) attempt to
develop a staffing model that optimizes a global objective based on an HB-SLA. Their model uses a local search algorithm, and to ensure
convergence to a global optimum they require agent schedules with no breaks, and assume no abandonment. Their model also assumes a
time varying, but known, arrival rate. Cezik and L’Ecuyer (2007) solve a global service level problem using simulation and integer program-
ming. They use simulation to estimate service level attainment and integer programming to generate the schedule. The IP model generates
cuts via subgradient estimation calculated via simulation. The model solves the sample average problem and therefore ignores arrival rate
uncertainty, but it does allow for multiple skills. This model is an extension of the model presented in Atlason et al. (2004). In a related
paper Avramidis et al. (2007a) use a local search algorithm to solve the same problem. A related model is presented in Avramidis et al.
(2007b). Fukunaga et al. (2002) describe a commercial scheduling application widely used for call center scheduling. Global service level
targets are modeled as soft constraints while certain staffing restrictions are modeled as hard constraints. The algorithm uses an artificial
intelligence based search heuristic. Atlason et al. (2008) develop an algorithm that combines server sizing and staff scheduling into a single
optimization problem. This model focuses on the impact that staffing in one time period can have on performance in the subsequent per-
iod, a fact ignored in SIPP models. The algorithm utilizes discrete event simulation to calculate service levels under candidate staffing mod-
els, and a discrete cutting plane algorithm to search for improving solutions.

Each of these models either assumes that the per-period arrival rate is known or schedules against the expected arrival rate. The issue of
arrival rate uncertainty has been addressed in several recent papers. Both major call center reviews (Gans et al., 2003; Aksin et al., 2007) have
sections devoted to arrival rate uncertainty. Brown et al. (2005) perform a detailed empirical analysis of call center data. While they find that
a time-inhomogeneous Poisson process fits their data, they also find that arrival rate is difficult to predict and suggest that the arrival rate
should be modeled as a stochastic process. Many authors argue that call center arrivals follow a doubly stochastic process, a Poisson process
where the arrival rate is itself a random variable (Chen and Henderson, 2001; Whitt, 2006; Aksin et al., 2007). Arrival rate uncertainty may
exist for multiple reasons. Arrivals may exhibit randomness greater than that predicted by the Poisson process due to unobserved variables;
the weather may have an impact on emergency calls (Chen and Henderson, 2001), the state of an organization’s IT infrastructure may have
an impact on support center calls (Robbins, 2007), and TV advertising may have an impact on inbound volume to a sales center (Andrews and
Cunningham, 1995). Call volume is highly seasonal over the course of a day, week, month and year (Andrews and Cunningham, 1995; Gans
et al., 2003; Robbins, 2007). Call center managers attempt to account for these factors when they develop forecasts, yet forecasts are subject
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to significant error. Robbins (2007) compared four months of weekday forecasts to actual call volume for 11 call center projects. He found
that the average forecast error exceeds 10% for 8 of 11 projects, and 25% for 4 of 11 projects. The standard deviation of the daily forecast to
actual ratio exceeds 10% for all 11 projects. Steckley et al. (2009) compared forecasted and actual volumes for nine weeks of data taken from
four call centers. They showed that the forecasting errors are large and modeling arrivals as a Poisson process with the forecasted call volume
as the arrival rate can introduce significant error. Robbins et al. (2006) used simulation analysis to evaluate the impact of forecast error on
performance measures, demonstrating the significant impact forecast error can have on system performance.

Some recent papers address staffing requirements when arrival rates are uncertain. Bassamboo et al. (2005) develop a model that at-
tempts to minimize the cost of staffing plus an imputed cost for customer abandonment for a call center with multiple customer and server
types when arrival rates are variable and uncertain. They solve the staffing and routing problems using an LP based method that is asymp-
totically optimal. Harrison and Zeevi (2005) use a fluid approximation to solve the sizing problem for call centers with multiple call types,
multiple agent types, and uncertain arrivals. Their model seeks to minimize a deterministic staffing cost function along with a penalty cost
associated with abandonment. Their approach models the staffing problem as a multidimensional newsvendor model and solves it through
a combination of linear programming and simulation. Whitt (2006) allows for arrival rate uncertainty as well as uncertain staffing, i.e.
absenteeism when calculating staffing requirements. Steckley et al. (2004) examine the type of performance measures to use when staffing
under arrival rate uncertainty. Each of these models incorporate arrival rate uncertainty into the server sizing step, but do not explicitly
address the staff scheduling step.

The model presented in our paper seeks to allow for arrival rate uncertainty while simultaneously integrating the server sizing and staff
scheduling steps. We do this through a model formulated as a stochastic integer program. The theory of stochastic programming is well
defined. Birge and Louveaux (1997) is a classic text that reviews both the theory of stochastic programming and numerous solution algo-
rithms. A standard method of solving stochastic programs is to solve the sample path problem, solving the optimization problem against a
discrete set of samples referred to as scenarios. Mak et al. (1999) discuss important statistical properties associated with sample path
optimization.

3. Problem formulation and solution approach

In this model, we attempt to find a minimal cost staffing plan that satisfies a global service level requirement. Our model estimates the
number of calls that meet the service level requirement in each period by making a piecewise linear approximation to the TSF curve; the curve
that relates the number of agents to a given service level for a given arrival rate. In this section, we first present our formulation of the model,
including our approach for estimating service levels. We then outline a process for solving large-scale integer program that results. Finally, we
present a post-optimization approach to assess the quality of the resulting solution, an important consideration in stochastic program.

3.1. Formulation

We formulate the model as a two stage, mixed-integer stochastic program. In the first stage, staffing decisions are made and in the sec-
ond stage, call volume is realized and we calculate SLA attainment. We formulate a model with the following definitions:

Sets
I time periods
J possible schedules
K scenarios
H points in a linear approximation

Deterministic parameters
cj cost of schedule j
aij indicates if schedule j is staffed in time period i
g global SLA goal
mikh slope of piecewise TSF approximation h in period i of scenario k
bikh intercept of piecewise TSF approximation h in period i of scenario k
pk probability of scenario k
li minimum number of agents in period i
dj maximum number of agents available for schedule j
r per point penalty cost of TSF shortfall

Decision variables
xj number of resources assigned to schedule j

State variables
yik number of calls in period i of scenario k answered within service level
Sk proportional TSF shortfall in scenario k

Stochastic parameters
nik number of calls in period i of scenario k
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subject to yik 6 nik mikh

X
j2J

aijxj þ bikh

 !
8i 2 I; k 2 K; h 2 H; ð3:2Þ

X
i2I

nikSk P
X
i2I

ðgnik � yikÞ 8k 2 K; ð3:3Þ

yik 6 nik 8i 2 I; k 2 K; ð3:4ÞX
j2J

aijxj P li 8i 2 I; ð3:5Þ

xj 6 dj 8j 2 J; ð3:6Þ
xj 2 Zþ; yik 2 Rþ; Sk 2 Rþ 8i 2 I; k 2 K; j 2 J: ð3:7Þ
The objective of this model (3.1) is to minimize the sum of the total cost of staffing and the expected penalty cost associated with failure
to achieve the desired service level. The optimization occurs over a set K of sample realizations of call arrivals. Constraint (3.2) defines the
variable yik as the number of calls answered within the SLA target in period i of scenario k based on a convex linear approximation of the
TSF curve shown in Fig. 3.1. Constraint (3.3) calculates the TSF proportional shortfall, Sk: the maximum of either the percentage point dif-
ference between the target TSF and achieved TSF or zero. Constraint (3.4) limits the calls answered within the SLA target to the total calls
received in the period. Constraint (3.5) defines the minimum number of agents in any period. The minimum agent level is set to the max-
imum of the global minimum number of agents required by policy, typically two agents, and the staffing level required to achieve a min-
imum service level at expected call volumes. In our test cases, the parameter dj is set to the maximum of two, and the number of agents that
results in a service level of at least 50% at the average volume for the period. Constraint (3.6) sets an upper limit on the number of agents
assigned to each schedule. The purpose of this constraint is to limit the number of agents assigned to a schedule based on agent availability
or willingness to work. In practice, this constraint also allows the call center manager to turn off certain schedules as he sees fit. Constraint
(3.7) defines the non-negativity and integer conditions for program variables.

For a given planning horizon and scheduling interval, the size of the model, and therefore the computation effort required to solve it, is
driven in large part by two factors; the number of potential schedules (J) and the number of scenarios (K). The number of integer variables
is equal to the number of schedules, while the number of continuous variables is equal to the product of the number of scenarios and the
number of time periods, plus the number of scenarios. A common planning horizon is one week, and a common interval is 30 minutes.
Increasing the planning horizon or decreasing scheduling interval will directly increase the number of time periods (I) and indirectly in-
crease the number of schedules (J) and therefore the resources required to solve the problem.

In this analysis, we are creating schedules for a week (with explicit breaks between shifts, but not within shifts.) In simple cases, where
we allow only 5 day a week, 8-hour shifts, the number of possible schedules is 576. In more complex cases, where we have a wider range of
full and part time schedule options we have 3696 schedules. (Details are presented in Table A.2.) We investigate the number of scenarios
required in the next section, but 50 scenarios are not unreasonable. This implies the requirement to solve models with 3696 integer vari-
ables and over 16,000 continuous variables.

This program (3.1)–(3.7) is solved over some set of sample outcomes from the statistical model of call arrival patterns. Multiple ap-
proaches are available for generating simulated arrival patterns. A thorough analysis is provided in Avramidis et al. (2004). For our test
problems, we use a simple two-stage algorithm similar to the model in Weinberg et al. (2007). We use a multiphase, multiplicative model
where the arrival rate is the product of a daily number of calls and the proportion of daily calls received in that time period; both of which
Fig. 3.1. Piecewise approximation of TSF.
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are random. Details of the algorithm are presented in the Appendix in Fig. A.1, but it should be noted that the scheduling algorithm is in no
way dependent on the model of arrivals.

3.2. TSF approximation

The objective of our optimization model is to find the lowest cost staffing plan giving a service level constraint based on the TSF. In order
to satisfy service level constraints, the model must estimate the service level that will be achieved for a given staffing model and call pat-
tern. We perform this estimate by using a piecewise linear approximation of the TSF curve based on the Erlang A queuing model.

The Erlang A model is a widely accepted model for call center systems with a non-negligible abandonment rate. Erlang A assumes calls
arrive via a Poisson process with rate k and are served by a set of homogeneous agents with an exponentially distributed service time with
mean 1/l. If no agent is available when the call arrives, it is placed in an infinite capacity queue where it waits for the next available agent.
Each caller has a patience level, which are iid draws from an exponential distribution with mean 1/h. If a caller is not served by the time her
patience expires, she hangs up. The call center is also assumed to have infinite capacity, so no calls are blocked. For each test project, we
utilize estimates derived from actual call center data. In steady state, the staffing decision then involves forecasting the arrival rate ki and
setting the staff level based on the Erlang A approximation. The result is a nonlinear S-shaped curve that, for a fixed arrival rate, relates the
achieved service level to the number of agents staffed.

The TSF curve is neither convex nor concave over the full range of staffing. For very low staffing levels, where performance is very poor,
the curve is convex, and we experience increasing efficiency from incremental staffing. For higher staffing levels, the curve becomes
concave, and the impact of incremental staffing becomes decreasing. Note that the area of convexity corresponds to very poor system per-
formance, an area where we do not plan to operate. In addition, embedding this function in our optimization model would create a non-
convex optimization problem. To address this problem we create a piecewise linear approximation to the TSF curve as shown in Fig. 3.1.

In this graph, the straight lines represent the individual constraints, and the piecewise linear function is our approximation of the non-
linear curve. This graph has five linear segments, including a horizontal segment at a service level of 100%. The optimization model requires
that the TSF is less than each line segment. The piecewise linear approximation and the true TSF curve are very close for service levels
above 25%. For very low staffing levels, the linear approximation will overly penalize performance, potentially calculating a negative
TSF level. The optimization process will force these constraints to be binding and will force the TSF to be non-negative. Our assumption
is that we are almost always operating in the higher performance region. In all our test cases, we constrain the problem so that expected
performance in any period is greater than 50% via constraint (3.5).

3.3. Solution algorithm

Our model is formulated with a finite number of call arrival patterns, and can therefore be expressed as a deterministic equivalent
mixed integer program and as such can be solved by an implicit enumeration (branch and bound) algorithm. Algorithms such as branch
and bound, which ignore the special structure of a stochastic program, tend to become quite inefficient for large-scale stochastic programs
(Birge and Louveaux, 1997). A common approach for solving stochastic programs is to exploit the structure of the program through a
decomposition algorithm (Birge and Louveaux, 1997). We implemented a version of the L-Shaped decomposition algorithm adapted for
a discrete first stage. We decompose the problem into a master problem where the staffing decision is made, and a series of sub-problems
where the TSF shortfall is calculated for each scenario.

Let v denote the major iterations of the algorithm. Also let Ev
ik and ev

ik denote the coefficients of the cut generated in iteration k. The mas-
ter problem is then defined asX
min
j2J

cjxj þ hv ð3:8Þ

subject to hv P
X
k2K

pkEv
ik

X
j2J

aijxj þ ev
ik 8i 2 I; v; ð3:9Þ

X
j2J

aijxj P li 8i 2 I; ð3:10Þ

xj 6 dj 8j 2 J; ð3:11Þ
xj 2 Zþ; hv 2 Rþ 8j 2 J: ð3:12Þ
In this problem, hv represents an estimate of the TSF shortfall penalty term. Let (xv,hv) be an optimal solution. For each realization of the
random vector k = 1, . . .,K, we then solve the following subproblem
min rSk ð3:13Þ

subject to yik 6 nik mikh

X
j2J

aijxv
j þ bikh

 !
8i 2 I; k 2 K; h 2 H; ð3:14Þ

X
i2I

nikSk P
X
i2I

ðgnik � yikÞ k 2 K; ð3:15Þ

yik 6 nik 8i 2 I; k 2 K; ð3:16Þ
xj 2 Zþ; yik 2 Rþ; Sk 2 Rþ 8i 2 I; j 2 J; k 2 K: ð3:17Þ
We use the dual variables from the solution of the set of sub-problems to improve the approximation of the penalty term. Let p1v
ikh be

the dual variables associated with (3.14), p2v
k the dual variables associated with (3.15), and p3v

ik the dual variables associated with (3.16).
We then calculate the following parameters used for cut generation:
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p3v
iknik þ
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ikhbikhnik

" #
� p2v

k g
X
i2I

nik:
We use these values to generate a constraint of the form (3.9). Set v = v + 1, add the constraint to the master program and iterate. The
algorithm solves the master program and then solves each subprogram for the fixed staffing level defined in the master solution. Based on
the solution of the sub-problems, each iteration adds a single cut to the master problem. These cuts create an outer linearization of the
penalty function (Geoffrion, 1970).

The solution of the master problem provides a lower bound on the optimal solution, while the average of the subproblem solutions pro-
vides an upper bound (Birge and Louveaux, 1997). In our implementation, we solve the LP relaxation of the master until an initial tolerance
level on the optimality gap is achieved, and we then reapply the integrality constraints. We continue to iterate between the master MIP and
the subprogram LPs until a final tolerance gap is achieved. Whereas the branch and bound approach solves a single large MIP, the decom-
position solves a large number of relatively small LPs and a small number of moderately sized MIPs and MIP relaxations. A representative
instance with 100 scenarios required 30 major iterations, thereby requiring the solution of the master problem 30 times and the subprob-
lem 3000 times. The master was solved as an LP relaxation 26 times and as a MIP four times. (Fig. 10-8 in the supplementary material
illustrates the convergence of the L-Shaped decomposition algorithm for a particular instance with 384 schedules and 100 scenarios.)
As is the case with a branch and bound algorithm, relatively good bounds are found in the first few iterations. Convergence then slows
as each successive iteration cuts a smaller area from the feasible region of (3.8)–(3.12).

3.4. Post-optimization analysis

The solution to the simple path formulation of a stochastic program is an approximation of the solution to the true optimization prob-
lem in which parameters are random variables (Mak et al., 1999). A well-developed theory exists for assessing the quality of simple path
approximations based on Monte Carlo sampling techniques (Birge and Louveaux, 1997; Mak et al., 1999; Bayraksan and Morton, 2009). In
this section, we outline a process whereby we used this method to test the quality of the solution we obtain when evaluating against the
sample of 25 arrival patterns.

The solution of (3.1)–(3.7) is the optimal solution of the sample path problem. We denote the objective value of this solution as z�n,
where n is the number of scenarios used to calculate the solution. This is a biased estimate of the solution to the true problem; that is,
the problem evaluated against the continuous distribution of arrival rates. We denote the objective of the true solution as z*. Mak et al.
(1999) show that the expected bias in the solution is decreasing in sample size
E½z�n� 6 E½z�nþ1� 6 z�:
From a practical perspective, a key decision is determining the number of scenarios to use in our optimization. As we increase the number of
scenarios, the solution becomes a better approximation of the true solution, but the computational cost of finding that solution increases.

To aid in this process, we perform a post-optimization evaluation of the candidate solution using a Monte Carlo bounding process de-
scribed in Mak et al. (1999). Denote the solution to the sample problem as x̂. We then solve the subprogram (3.13)–(3.17) using x̂ as the
candidate solution, to obtain the expected cost of implementing this solution. In this analysis, we solve the subprogram with nu equal 500
scenarios generated independently from the scenarios used in the optimization. The solution to the subprogram gives us an upper bound
on the true solution ðUðnuÞÞ, while the solution to the original problem, z�n, is a lower bound ðLðnlÞÞ.

To obtain better bounds on the true optimal solution, we may choose to solve the original problem multiple times, each with indepen-
dently generated scenarios. Denote the number of batches (sets of scenarios) used to solve the original problem as n‘ and the sample var-
iance of the objective as s‘(n‘). Similarly, we calculated the sample variance of the expected outcome of the candidate solution against the
nu evaluation scenarios. We can then define the following standard errors
~eu ¼
tnu�1;asuðnuÞffiffiffiffiffi

nu
p ;

~e‘ ¼
tn‘�1;a; s‘ðn‘Þffiffiffiffiffi

n‘
p ;
where tnu�1;a is a standard t-statistic, i.e. PfTn 6 tnu�1;ag ¼ 1� a. We can now define an approximate (1 � 2a) confidence interval on the opti-
mality gap as
0; UðnuÞ � Lðn‘Þ
� �þ þ ~eu þ ~e‘

h i
: ð3:18Þ
Note that we take the positive portion of the difference between the upper and lower bounds because it is possible, due to sampling
error, that this difference is negative. This procedure allows us to generate a statistical bound on the quality of our solution. (A graphical
analysis of the optimality gap is shown in Figs. 10-13 and 10-14 of the supplementary material.) In an optimization problem with 25 sce-
narios we achieved a gap of $50 on a schedule with a cost in excess of $11,000, a gap of less than 0.5%. Based on this analysis, we concluded
that solving the stochastic program with 25 scenarios would provide near optimal solutions. In our test cases, we used 50 scenarios unless
noted otherwise.
4. Cost and service level tradeoffs

In our model we control the certainty with which the target service level is achieved by assigning a financial penalty to a service level
shortfall. By adjusting the performance penalty factor, r, we adjust the preferred degree of certainty associated with meeting the target.
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While the penalty rate r may be set based on the contractual penalty for failing to achieve the service level, there is an additional implicit
cost associated with the perception of poor quality. Put another way, managers typically wish to provide a higher probability of achieving
the service level than implied by the explicit penalty rate. We now analyze the relationship between the penalty rate, the cost of service
delivery, and the confidence associated with the performance target, i.e. the probability that the service level target is achieved.

In a deterministic optimization approach to call center scheduling, we set a performance target for some metric and then find the min-
imal cost schedule that satisfies that constraint; i.e. we implement the service level requirement as a hard constraint. In a stochastic setting,
the call volume, and therefore the service level, is random, and the performance target can only be expressed in probabilistic terms. Given
the nature of arrival variability, it is neither practical nor desirable to generate a schedule that will always achieve the service level target as
this schedule would be prohibitively expensive. Therefore, we wish to implement the service level requirement as a soft constraint.

In Tables 4.1–4.3, we show the result of an experiment evaluating the impact of various penalty rates. For each project, we test eight
design points, (DPs), each with a different penalty rate. (The same data is shown graphically in Fig. 10-9 of the supplementary material.)
The purpose of this experiment is to determine the penalty rate that should be used for each project to achieve a desired confidence of
achieving the service level target. In each case, we solve the stochastic problem five times, each with an independent batch of 50 scenarios.
We then evaluate each solution against an independently generated set of 500 scenarios to estimate the expected outcome of implement-
ing the candidate solution. The model is solved with the constraint that all schedules are full-time (40 hours), using schedule B defined in
Table A.2.

In all cases, low penalties result in a zero confidence and an expected TSF near 60%. As the penalty rate increases, the expected TSF be-
gins to increase as additional staffing is added to offset shortfall penalties. Both factors increase rapidly and then level off as it becomes
increasingly expensive to meet the service levels in the tail of the arrival rate distribution. It is interesting to note that each project requires
a different penalty rate to achieve a desired confidence level. Project S, which has the largest staff levels and a high degree of variability,
requires penalty rates in the range of $200,000 ($2000 per percentage point shortfall) to schedule with greater than 80% confidence. Project
O, a smaller project with moderate variability, plateaus with penalty rates around 100,000. Project J, a stable project, stabilizes with penalty
rates at or above 75,000. The call center manager seeks to minimize the cost of staffing, while maximizing the probability of achieving the
target service level. These two goals are clearly in conflict and the manager must decide how to balance cost and risk: a decision that is
obscured in a deterministic optimization approach.
Table 4.1
Cost and service level tradeoffs – Project J.

DP Penalty rate Average Standard deviation

Labor cost Expected outcome Average TSF (%) Confidence (%) Labor cost Expected outcome Average TSF (%) Confidence (%)

1 0 8800 8800 60.5 0.0 0 0 0.00 0.00
2 25,000 10,800 11,008 80.6 61.6 0 18 0.16 2.73
3 50,000 10,880 11,249 81.0 65.7 179 40 1.16 12.71
4 75,000 11,120 11,332 82.6 82.9 179 28 1.11 11.35
5 100,000 11,120 11,419 82.7 83.1 179 127 1.11 11.74
6 150,000 11,200 11,458 83.1 87.9 0 36 0.30 2.74
7 200,000 11,200 11,504 83.1 88.8 0 56 0.23 2.36
8 250,000 11,200 11,597 83.1 89.0 0 72 0.31 2.30

Table 4.2
Cost and service level tradeoffs – Project S.

DP Penalty rate Average Standard deviation

Labor cost Expected outcome Average TSF (%) Confidence (%) Labor cost Expected outcome Average TSF (%) Confidence (%)

1 0 20,880 20,880 52.5 0.0 179 179 0.82 0.00
2 25,000 22,880 26,869 64.1 1.9 179 23 0.71 1.00
3 50,000 26,160 29,280 75.2 41.1 358 31 1.07 7.26
4 75,000 26,800 30,677 77.0 53.2 283 59 0.71 4.76
5 100,000 27,920 31,801 79.5 67.3 769 118 1.42 6.45
6 150,000 29,040 33,554 81.5 76.1 1152 89 1.72 5.03
7 200,000 30,480 34,801 83.7 80.9 1481 343 2.20 6.47
8 250,000 31,920 35,662 85.7 84.4 1559 392 2.26 4.23

Table 4.3
Cost and service level tradeoffs – Project O.

DP Penalty rate Average Standard deviation

Labor cost Expected outcome Average TSF (%) Confidence (%) Labor cost Expected outcome Average TSF (%) Confidence (%)

1 0 8240 8240 54.2 0.0 219 219 1.49 0.00
2 25,000 10,800 11,705 76.8 27.2 0 37 0.17 1.52
3 50,000 11,360 12,294 79.9 62.0 219 37 0.97 11.80
4 75,000 11,600 12,736 80.6 71.6 0 58 0.33 3.72
5 100,000 11,600 13,022 80.9 74.2 0 46 0.21 1.89
6 150,000 12,000 13,595 82.5 86.2 0 21 0.17 2.49
7 200,000 12,000 14,127 82.4 86.0 0 112 0.36 3.40
8 250,000 12,320 14,591 83.1 89.3 179 72 0.71 2.30
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The managerial implications here are important. When making day-to-day staffing decisions managers must consider how much risk of
missing the service level target they are willing to tolerate. Conversely, they also decide how much insurance to buy in the form of excess
capacity. In most situations, managers must make these decision based on intuition. Our model operationalizes this decision by assigning a
financial penalty to the possibility of failing to meet the service level target.

5. The impact of variability and VSS

5.1. Overview

The solution of the mean value program generates a biased estimate of the true cost of implementing the proposed solution. Solving a
stochastic program reduces that bias, and the bias declines with the number of scenarios, going to zero as the number of scenarios goes to
infinity (Mak et al., 1999). The expected cost of implementing the stochastic solution is lower than the cost of implementing the mean
value solution, or stated differently we can lower the expected cost of operating the system by explicitly considering variability in our opti-
mization problem. This reduction in cost is known as the Value of the Stochastic Solution (VSS). It is easily shown that VSS is a non-negative
quantity (Birge, 1982; Birge and Louveaux, 1997). (Fig. 10-11 in the supplementary material graphically depicts the relationship of the var-
ious costs.) We calculate the VSS to determine if there is benefit from solving the stochastic version of the problem. In this section, we cal-
culate the VSS to demonstrate that mean value solutions are optimistically biased, but unlikely to achieve the desired service level, for each
of our three test projects.

5.2. VSS and solution convergence

In this section, we estimate the bias and the VSS for the same three test projects previously analyzed for various scenario levels. At each
scenario level, we generate five independent batches and solve the program once for each batch. The expected outcome is found by eval-
uating that solution against 500 evaluation scenarios. Table 5.1 summarizes the results.

In each case we find substantial bias in the Mean Value Solution and find substantial value from implementing the stochastic solution.
On the moderately variable project J, the stochastic program reduces expected cost by 13%. On the more variable projects S and O, the sto-
chastic solution reduces cost by over 20%. Also note that the stochastic solution provides a higher confidence that the performance target
will be achieved.

For each project listed in Table 5.1 the stochastic program lowers overall expected cost by increasing direct labor. It is somewhat par-
adoxical that stochastic programs provide better results by calculating worse objective functions. The intuition is, however, straightfor-
ward; deterministic optimization programs assume away uncertainty and therefore do not adequately hedge for variability; incremental
staffing is added in periods with relatively high volumes and high variability.

In Section 3, we showed that the average solution to the stochastic program provides a point estimate on the lower bound of the true
optimal solution, while the average expected outcome of the candidate solution forms a point estimate of the upper bound of the true opti-
mal. (Fig. 10-12 in the supplementary material plots the point estimate of the upper and lower solution bounds. Fig. 10-13 plots the 90%
confidence interval on the magnitude of the optimality gap.) These graphs show that the mean value problem exhibits significant bias, but
that even with a moderate number of scenarios, and a few batches, we are able to generate fairly tight bounds on the true optimal value.
The data suggests that solving the problem with as few as 25 scenarios provides reasonably good results, while a 50 or 100 scenario model
gives us a tighter bound, which may be useful when trying to make detailed comparisons between alternatives.

6. Comparative analysis

6.1. Introduction

Throughout this paper, we have analyzed a model that includes abandonment and arrival rate uncertainty. Neither of these conditions is
included in many industry standard models. As noted in Gans et al. (2003), ‘‘common practice uses the M/M/N (Erlang C) queuing model to
Table 5.1
Solution bias and VSS.

Project Scenarios Direct cost Calculated optimum Expected outcome Solution bias VSS VSS (%) Confidence level (%)

Project J MV 10,020 10,081 12,838 2758 1.6
10 10,824 10,959 11,253 295 1585 12.3 63.5
25 10,848 11,044 11,146 121 1693 13.2 70.6
50 10,868 11,044 11,108 64 1730 13.5 74.4
100 10,884 11,075 11,092 36 1747 13.6 76.8

Project S MV 23,200 23,240 34,860 11,620 14.0
10 25,400 25,710 28,663 2953 6197 17.8 56.2
25 26,720 27,376 27,540 193 7320 21.0 84.6
50 26,440 27,280 27,496 303 7364 21.1 81.2
100 26,260 27,069 27,337 304 7523 21.6 81.5

Project O MV 8820 8820 13,855 5035 69.9
10 10,488 10,717 11,079 361 2776 20.0 80.2
25 10,500 10,844 11,009 199 2846 20.5 80.5
50 10,388 10,872 10,993 125 2862 20.7 80.1
100 10,520 10,879 10,956 77 2899 20.9 80.8
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estimate the stationary system performance of short – half hour or hour – interval” p. 92. Fukunaga et al. (2002) describe a commercial
system deployed at over 800 call centers in which ‘‘agent requirements are computed by applying the well-known Erlang-C formula.” Fur-
thermore, standard industry practice is to make staffing decisions based on a period-by-period (local) service level requirement, ‘‘each half
hour interval’s forecasted ki and li give rise to a target staffing level for the period. . . . determination of an optimal set of schedules can then
be described as the solution to an integer program” (Gans et al., 2003), p. 93. In Section 5.2, we showed that ignoring arrival rate uncer-
tainty leads to verifiably more expensive solutions, on an expected cost basis, than models that account for variability. In this section, we
compare the stochastic Erlang A model to the commonly applied mean value arrival rate Erlang C model.

The standard approach described above generates a set of fixed staffing requirements in each period, and then attempts to find the low-
est cost schedule to satisfy these requirements. The resulting integer program is a standard weighted set covering problem, which can be
expressed as
min
X
j2J

cjxj

subject to
X
j2J

aijxj P bi; 8i 2 I;

xij 2 Zþ;
where cj is the cost of the schedule j, xj is the number of resources assigned to the jth schedule, and aij is the mapping of schedules to time
periods.

6.2. Locally constrained Erlang C model

We refer to the standard approach described in Gans et al. (2003) as the locally constrained Erlang C model because it uses Erlang C to
generate a hard constraint in each period. The general problem with this approach is the constraint created by the per-period service level
requirement, coupled with the requirement to schedule resources in shifts. The peak staffing level is set by the peak arrival period and,
depending on the length of the arrival peak and the length of the flexibility of the staffing model, a substantial amount of excess capacity
may be created in other periods due to shift constraints. The magnitude of the excess capacity will be a factor of the flexibility of the avail-
able set of schedules. With more flexible staffing options, the weighted set covering algorithm can match the requirement more closely.

To quantify the impact, we run a locally constrained Erlang C model for each of the three test projects for each of the five schedule sets.
The per-period constraints are set so that the service level with expected volumes is at least 80% in every 30 minute period, thus ensuring
the global SLA of 80% is met. In Table 6.1, we compare the results of this analysis with the results generated from solving the stochastic
program. We solve each test project for each of the five levels of staffing flexibility defined in Table A.2.

The data confirms that the excess staffing is high for 5 � 8 staffing, but decreases quickly with more flexible scheduling options. It also
shows that this is a more significant problem for project J, which has a strong seasonality pattern, than for either Project S or O. The set
covering approach tends to overstaff the project and achieves expected service levels higher than those achieved in the stochastic model.
However, because the set covering model considers only the expected value and not the variance of arrivals, it is less effective at hedging
than the stochastic model. Consider the case of schedule D for project S. The deterministic model has an expected service level of 86.1%,
versus the goal of 80%, but still has an expected penalty cost of $4820. The stochastic model, on the other hand, has an expected service
level of 83.5%, 2.6% lower, but an expected penalty only slightly higher at $4493.

In all cases, the stochastic model yields a lower direct labor cost and a lower expected cost of operation. The benefit of using the sto-
chastic model is most significant when arrivals have a strong seasonal pattern, as in Project J, or when workforce flexibility is low. With
5 � 8 only staffing, the stochastic model provides at least 10.8% reduction in operating costs.

6.3. Globally constrained Erlang C model

In the previous section, we showed that the stochastic model based on the Erlang A model provides lower cost solutions than the locally
constrained Erlang C model discussed in the literature. An alternative approach is to use a deterministic Erlang C model, ignoring abandon-
ment and uncertainty as in the previous model, but optimizing to global versus local constraints. While this approach is not presented in
the literature as far as we know, it is a natural simplification of the stochastic model we have analyzed so far. Because the model is deter-
ministic, it assumes arrival rates are known, and, it will, in general, be easier to solve than the stochastic model. Ignoring abandonment will
tend to increase recommended staffing, but ignoring uncertainty will tend to decrease staffing. It may be the case that under some circum-
stances these errors will cancel each other out, and we can achieve good solutions at a lower computational cost.

The method for formulating and solving these problems is a straightforward implementation of the model (3.1)–(3.7). We solve a mean
value version of the problem. The major change is that the coefficients for constraints (3.3) and (3.5) are calculated based on the Erlang C
model. We still require a minimum of two agents staffed at all times and a minimum service level at expected volume in every period of at
least 50%.

We solve this version of the problem for each of the three projects and for each scheduling option. Since the model is deterministic,
there is no need to solve multiple batches. To evaluate the expected cost of implementing the solution, we continue to evaluate the result-
ing schedule against the stochastic Erlang A model. We assume that the Erlang A model with uncertain arrivals is the correct model and the
objective of this analysis is to determine the error introduced by using a Globally Constrained Erlang C model. The results of this analysis
are shown in Table 6.2.

This analysis leads to several interesting insights. First, the stochastic model outperforms the global Erlang C model in all cases; in some
cases this improvement is large and in others it is small. Given that both models are scheduling to a global objective, the difference is due to
a better hedging strategy. Sometimes the stochastic model schedules fewer hours, other times more.

The second insight is that the Mean Value Globally Constrained Erlang C (GCEC) model does much better than the Mean Value Globally
Constrained Erlang A (GCEA) model, even under the assumption that the Erlang A model is correct. The GCEC model makes two simplifying



Table 6.1
Comparing the stochastic and local Erlang C schedules.

Locally constrained Erlang C SCCS – Erlang A

Direct
labor

Expected
penalty

Expected
outcome

Average
TSF (%)

Excess
cap.

Excess cap.
(%)

Direct
labor

Expected
penalty

Expected
outcome

Average
TSF (%)

Direct labor
savings

Expected
savings

Project J
Sched A 16,000 0 16,000 91.8 4055 34 11,280 380 11,660 81.1 4720 29.5% 4340 27.1%
Sched B 13,200 0 13,200 91.0 1255 11 10,800 439 11,239 80.4 2400 18.2% 1961 14.9%
Sched C 12,880 0 12880 90.4 935 8 10,944 291 11,235 81.3 1936 15.0% 1645 12.8%
Sched D 12,500 0 12500 89.5 555 5 10,844 259 11,103 81.5 1656 13.2% 1397 11.2%
Sched E 12,300 0 12300 89.2 355 3 10,720 299 11,019 81.3 1580 12.8% 1281 10.4%

Project S
Sched A 38,000 1565 39,565 91.6 8340 28 30,960 4345 35,305 83.2 7040 18.5% 4260 10.8%
Sched B 32,800 3847 36,647 88.0 3140 11 30,320 4408 34,728 83.7 2480 7.6% 1919 5.2%
Sched C 32,320 4184 36,504 87.4 2660 9 30,384 4349 34,733 83.6 1936 6.0% 1772 4.9%
Sched D 30,900 4820 35,720 86.1 1240 4 30,092 4493 34,585 83.5 808 2.6% 1135 3.2%
Sched E 30,980 4796 35,776 86.2 1320 4 30,096 4499 34,595 83.5 884 2.9% 1181 3.3%

Project O
Sched A 13,600 384 13,984 85.7 2180 19 11,600 843 12,443 80.2 2000 14.7% 1542 11.0%
Sched B 12,400 514 12,914 83.4 980 9 11,360 897 12,257 80.1 1040 8.4% 656 5.1%
Sched C 12,160 544 12,704 83.0 740 6 11,296 982 12,278 79.5 864 7.1% 426 3.4%
Sched D 11,980 592 12,572 82.4 560 5 11,352 858 12,210 80.2 628 5.2% 362 2.9%
Sched E 11,880 624 12,504 82.1 460 4 11,316 910 12,226 79.9 564 4.7% 278 2.2%

Table 6.2
Comparing the stochastic and global Erlang C schedules.

Globally constrained Erlang C SCCS – Erlang A

Direct
labor

Expected
penalty

Expected
outcome

Average
TSF (%)

Direct
labor

Expected
penalty

Expected
outcome

Average
TSF (%)

Direct labor
savings

Expected
savings

Project J
Sched A 14,000 20 14,020 88.6 11,280 380 11,660 81.1 2720 19.4% 2360 16.8%
Sched B 12,000 2 12,002 87.1 10,800 439 11,239 80.4 1200 10.0% 763 6.4%
Sched C 11,760 5 11,765 86.3 10,944 291 11,235 81.3 816 6.9% 530 4.5%
Sched D 11,600 7 11,607 86.3 10,844 259 11,103 81.5 756 6.5% 504 4.3%
Sched E 11,580 26 11,606 85.8 10,720 299 11,019 81.3 860 7.4% 587 5.1%

Project S
Sched A 35,200 953 36,153 87.3 30,960 4345 35,305 83.2 4240 12.0% 848 2.3%
Sched B 30,400 5412 35,812 84.8 30,320 4408 34,728 83.7 80 0.3% 1084 3.0%
Sched C 30,160 5426 35,586 84.7 30,384 4349 34,733 83.6 �224 �0.7% 854 2.4%
Sched D 29,340 6080 35,420 83.6 30,092 4493 34,585 83.5 �752 �2.6% 835 2.4%
Sched E 29,320 6050 35,370 83.7 30,096 4499 34,595 83.5 �776 �2.6% 775 2.2%

Project O
Sched A 11,600 976 12,576 79.9 11,600 843 12,443 80.2 0 0.0% 133 1.1%
Sched B 11,200 1305 12,505 78.5 11,360 897 12,257 80.1 �160 �1.4% 247 2.0%
Sched C 11,120 1394 12,514 78.3 11,296 982 12,278 79.5 �176 �1.6% 236 1.9%
Sched D 10,960 1442 12,402 78.0 11,352 858 12,210 80.2 �392 �3.6% 192 1.5%
Sched E 11,080 1421 12,501 78.1 11,316 910 12,226 79.9 �236 �2.1% 276 2.2%
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assumptions. First, it assumes away abandonment, which causes the model to be overstaffed. The model also assumes away arrival rate
uncertainty, which leads to understaffing. These two effects tend to counterbalance each other, implying it may not be wise to introduce
abandonment unless arrival rate uncertainty is also considered.

7. Conclusions and future research

In this paper, we examined the issue of short term shift scheduling for call centers for which it is important to meet a service level com-
mitment over an extended horizon. While the analysis focused exclusively on a TSF based SLA, the model could easily be adapted to sup-
port other forms of an SLA; such as abandonment rate or average speed to answer. The model was designed to recognize the uncertainty in
arrival rates and was formulated as a mixed-integer two-stage stochastic program. Although difficult to solve, we showed the model is
tractable and can be solved in a reasonable amount of time. We also showed that uncertainty is highly relevant in call centers, and that
it has a real impact on scheduling decisions.

In Section 5.2, we showed the Value of the Stochastic Solution for this model is substantial; ranging from 12.3% to over 21%. The clear
implication is that, for this model formulation, ignoring variability is a costly decision. However, most models in practice ignore both
uncertainty and abandonment. The implication is that one should not introduce abandonment into the model without also considering
uncertainty. In Section 6.2, we compared this model with the common practice of scheduling to a local Erlang C constraint; that is, sched-
uling based on a model that ignores abandonment and uncertainty but requires the service level target is achieved in every period. Com-
paring our model to this common practice, we again found our model achieves lower cost results, ranging from 2.4% to 27%. The basic
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implication here is that the Erlang C model sometime achieves good results, likely because the abandonment and uncertainty assumptions
create counter balancing errors. However, the stochastic model always achieves a better solution, and in many practical cases the results
are substantially better. This is particularly true when the flexibility of the workforce is limited to full- or near-full-time shifts and the set
covering approach introduces considerable slack in the schedule.

Finally, we compared this model to a Globally Constrained Erlang C model. This model gives superior results as compared to the local
constrained Erlang C, but again our stochastic model outperforms this model in every case, by as little as 1% but by as much as 16%. The
overall conclusion is that, compared to the alternative methods analyzed here, the stochastic model gives a lower cost of operation sche-
dule, and sometimes this difference can be substantial. This is a basic property of stochastic programming in general, but in this analysis we
have shown that the difference is significant in real world cases.

In addition to providing a lower cost solution, the model presented in this paper addresses the scheduling problem from a fundamen-
tally different perspective. In the standard set covering approach, the service level constraint is a hard constraint, it must be satisfied and
any candidate schedule either achieves the service level requirement or does not. But, in reality, the service level is a random variable and
we will achieve the SLA target with some probability. Our analysis examines this explicitly and addresses the tradeoffs that managers must
make in terms of cost and the confidence of achieving the service level. Our analysis shows that the cost of operation increases nonlinearly
with the desired confidence level. This tradeoff is obscured in the deterministic setting.

In future research, this model can be easily extended to use different queuing assumptions, for example, that relax the requirement for
exponential service times. The tradeoff of solution precision and computational effort is also an area for future research, examining the
impact of changing the convergence parameters discussed in Section 3.1. We will also investigate the implicit scheduling of breaks.

Appendix A. Algorithms and shift patterns

See Figs. A.1–A.4 and Tables A.1 and A.2.
Fig. A.1. Simulated call generation algorithm.

Fig. A.2. Scenario based TSF approximation approach.

Fig. A.3. Minimum staff level constraint generation.

Fig. A.4. Local constraint generation.

Table A.1
Shift patterns.

Pattern Description

5 � 8 5 days a week, 8 hours a day (40 hours week)
4 � 10 4 days a week, 10 hours a day (40 hours week)
4 � 8 4 days a week, 8 hours a day (32 hours week)
5 � 6 5 days a week, 6 hours a day (30 hours week)
5 � 4 5 days a week, 4 hours a day (20 hours week)



Table A.2
Scheduling patterns.

Pattern Schedule types included Feasible schedules

A 5 � 8 only 336
B 5 � 8, 4 � 10 1680
C 5 � 8, 4 � 10, 4 � 8 3024
D 5 � 8, 4 � 10, 4 � 8, 5 � 6 3360
E 5 � 8, 4 � 10, 4 � 8, 5 � 6, 5 � 4 3696
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ejor.2010.06.013.
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