

Investigating the NCQ scaling of elliptic flow at LHC with AMPT

Speaker: Liang Zheng Central China Normal University

Eur. Phys. J. A53, 124, (2017) LZ, Hui Li, Hong Qin, Qi-Ye Shou and Zhong-Bao Yin

Outline

- Elliptic flow and quark number scaling
- Quark coalescence model
- Insights to v₂ NCQ scaling from AMPT
- Outlook and Summary

Elliptic flow in heavy ion collisions

- Elliptic flow: Momentum space anisotropy of particle production $v_2 = \langle \cos(2(\phi - \Psi)) \rangle$
- Arising due to coordinate space anisotropy (b>0) and interactions among medium constituents
- Why do we care:
 - Sensitive to the properties of QGP medium, e.g. shear viscosity
 - Provide information on the initial state of the collisions

v₂ and quark number scaling

- Mass ordering at low p_T driven by the hydrodynamic pressure gradient.
- Baryon meson ordering in the high p_T region.
- NCQ scaling observed in a wide range of KE_T indicates the dominance of partonic degrees of freedom.

Quark coalescence model

Assume quark momentum distribution:

$$f_i(\vec{p_{\perp}}) \equiv rac{dN}{d^3p} = g_i(p_{\perp}) \left[1 + 2v_{2,i}(p_{\perp})\cos(2\phi)
ight]$$

Yield simple relations of quark and hadron flow:

$$v_{2,M}(p_{\perp}) \approx 2v_{2,q}(\frac{p_{\perp}}{2}) \qquad v_{2,B}(p_{\perp}) \approx 3v_{2,q}(\frac{p_{\perp}}{3})$$

Workshop on AMPT for Heavy Ion Collisions

Violation to NCQ scaling

- Deviations from the NCQ scaling at the level of 20% observed in LHC data
- Possible reasons:
 - Narrow wave function width, Resonance decay, Space-Momentum correlations at freeze-out, Phase-space density

The paradigm in AMPT

Identified particle v₂ in AMPT

 v_2 obtained with event plane method.

Ampt-v1.26t5-v2.26t5 a=0.3, b=0.15 GeV⁻² μ =2.3 fm⁻¹, α_s =0.33, σ_{parton} =3 mb PRC 90, 014904 (2014)

$$f(z) \propto z^{-1}(1-z)^a \exp(-b \ m_{\perp}^2/z)$$
$$\sigma_{PP} \approx \frac{9\pi\alpha_s^2}{2\mu^2}$$

Identified particle v_2 within $|\eta| < 0.8$ agree with data except in the high p_T region, where model results are systematically smaller than data.

Charged particle v₂ with different initial and final state conditions

	а	b (GeV ⁻²)
Set A	0.3	0.15
Set B	0.5	0.9

 $\kappa \propto 1/[b(2+a)]$ $\kappa_B \approx 1/6\kappa_A$

- Small string tension leads to large low p_T v₂
- Large parton-parton scattering cross section generates stronger high p_T v₂.

v₂ with different initial conditions

Right after coalescence

- v₂ from different initial conditions converge at high p_T.
- Mass ordering exists in both two sets, while the magnitude of the mass splitting changes a little.

Test of scaling properties

PbPb 2.76 TeV 30-40%, hadron formed right after coalescence

- NCQ scaling behavior relies on the initial conditions even within the quark coalescence context.
- Violation to the NCQ scaling observed in the case generated with smaller string tension.
- The final state parton scattering effect is less important in the formation of NCQ scaling phenomenon.

Parton distribution before coalescence

Quark distribution before hadronization in PbPb 2.76 TeV 30-40%

- Quark number densities are quite similar in all cases.
- Smaller string tension generates softer initial parton spectrum.
- The violation to NCQ scaling may arise from the higher parton-parton interaction rate in the overlap region.

v₂ NCQ scaling varying with collision centrality

- NCQ scaling violated in central collisions and restored in peripheral collisions.
- Similar trend can be extracted from the measured data.

Integrated v₂ varying with collision centrality

PbPb 2.76 TeV, v_2 integrated over 0.3< $(m_T-m_0)/n_a$ <1 GeV

- Integrated flow reaches maximum in semi-central collisions.
- K over π scaled v₂ ratio slightly depends on the centrality.
- p over π scaled v₂ ratio grows from central to peripheral collisions.

Hadronic evolution effects

PbPb 2.76 TeV 30-40%

- Primordial v2: formed right after coalescence procedure.
- Resonance decay and hadron rescattering modifies the primordial v₂ in opposite way.
- Responses to the modification of hadronic evolution depend on the particle types.

Impact of hadronic evolution to NCQ scaling

Workshop on AMPT for Heavy Ion Collisions

Energy dependence of NCQ scaling

PbPb 5.02 TeV

 Similar centrality and hadronic evolution impact on NCQ scaling expected with higher collision energy.

Outlooks – NCQ scaling in higher order flow

- NCQ scaling seems to work better for v₃
- Additional constraint on medium expansion

Outlooks – NCQ scaling in small systems

• NCQ scaling holds better in pPb than in peripheral PbPb

Summary

- It is shown in the AMPT framework that NCQ scaling structure not only depends on the hadronization procedure but also relies on the parton dynamics at the initial stage.
- A sizable distortion to NCQ scaling arises due to the hadronic interactions.
- The coalescence AMPT coalescence in coordinate space, what if in momentum space?

Thank you for your attention!

Why do we care about flow?

- Sensitive to the properties of QGP, e.g.: shear viscosity over entropy density, $\eta/s,$ of the produced medium
- Provide information on the initial state of the collisions

Quark coalescence model

EPJC 62, 237 (2009)

Freeze-out hypersurface

$$E\frac{dN_{M}(\vec{p})}{d^{3}p} = \int d\sigma^{\mu}p_{\mu} \int d^{3}q |\psi_{\vec{p}}(\vec{q})|^{2} f_{\alpha}(\vec{p_{\alpha}}, x) f_{\beta}(\vec{p_{\beta}}, x)$$

$$E\frac{dN_{B}(\vec{p})}{d^{3}p} = \int d\sigma^{\mu}p_{\mu} \int d^{3}q_{1}d^{3}q_{2} |\psi_{\vec{p}}(\vec{q_{1}}, \vec{q_{2}})|^{2} f_{\alpha}(\vec{p_{\alpha}}, x) f_{\beta}(\vec{p_{\beta}}, x) f_{\gamma}(\vec{p_{\gamma}}, x)$$
Quark phase space density

Already assumed: rare process, small binding energy, factorization of 2-parton distribution functions, slowly-varying quark spatial-distributions, same hypersurface

Assume quark momentum distribution:

$$f_i(\vec{p_\perp}) \equiv rac{dN}{d^3p} = g_i(p_\perp) \left[1 + 2v_{2,i}(p_\perp)\cos(2\phi)
ight]$$

Yield simple relations of quark and hadron flow:

$$v_{2,M}(p_{\perp}) \approx 2v_{2,q}(\frac{p_{\perp}}{2}) \qquad v_{2,B}(p_{\perp}) \approx 3v_{2,q}(\frac{p_{\perp}}{3})$$

v₂ and quark number scaling

- Mass ordering at low p_T driven by the hydrodynamic pressure gradient.
- Baryon meson ordering in the high p_T region.
- NCQ scaling observed in a wide range of KE_T indicates the dominance of partonic degrees of freedom.

Elliptic flow in default mode

- Mass ordering exists in the low p_T region
- No baryon meson grouping of v₂
- NCQ scaling doesn't exist

Violations to NCQ scaling

- Possible reasons:
 - Narrow wave function width Phys. Lett. B 618:77 (2005)
 - Resonance decay Phys. Rev. C 71:041901 (2005)
 - Higher Fock states contribution J. Phys. G 32:S135 (2006)
 - Space-Momentum correlations at freeze-out
 - Phase-space density Phys. Rev. C 93, 034908 (2016)

Nucl. Phys. A 749:268 (2005) , nucl-th/0408044, nuclth/0505061, *Phys. Rev. C* 68:034904 (2003) , *Phys. Rev. C* 70:024901 (2004)

Quark hadron flow relations

- Constituent quark flow very close to the formed hadron, different from the amplification behavior expected in coalescence model.
- Hadron flow can not be reverted to the quark flow through simple NCQ rule while NCQ scaling exists!