#### Collective flow in 2.76 and 5.02 A TeV Pb+Pb collisions

Wenbin Zhao

Collaborators: Haojie-Xu, **Huichao Song** arXiv:1703.10792 Peking University

July 25th 2017

#### Outline





- 3 Model and Set up
- 4 Results and Discussion



## Introduction

#### The process of heavy-ion collisions



U. W. Heinz, hep-ph/0407360.

#### Collective flow

• Pressure gradients (larger in -plane) push bulk "out" - >" flow":









leading to the "double peaks" structure:



• The internal pressure gradients lead to strong anisotropic flow.



Collective flow in 2.76 and 5.02 A TeV

July 25<sup>th</sup> 2017 5 / 36

#### Higher order flow harmonics

• In experimental, the initial states fluctuate event-by-event.



 One can get higher order flow harmonics by Fourier unfolding of the final observed momentum distribution dN/(p<sub>T</sub>dp<sub>T</sub>dydφ):

$$\frac{dN_{i}}{p_{T}dp_{T}dyd\phi} = \frac{1}{2\pi} \frac{dN_{i}}{p_{T}dp_{T}dy} [1 + 2v_{2}^{i}(p_{T})\cos(2\phi_{p}) + 2v_{3}^{i}(p_{T})\cos(3\phi_{p}) + 2v_{4}^{i}(p_{T})\cos(4\phi_{p}) + ...]. (1)$$

#### Other flow observables

- Many other detailed flow observables can reflect the fluctuations of initial states, non-linear response, flow angle correlations, mode-coupling effects and factorizations breaking effects of the system:
  - event-by-event  $v_n$  distributions
  - event-plane correlations
  - Symmetric Cumulant
  - non-linear response coefficients
  - flow factorizations ratio
- A systematic study of these flow observables can help to test the model calculations and the extracted QGP viscosity as well as to further evaluate and constrain the initial condition models.

# Collective flow in 2.76 and 5.02 A TeV Pb+Pb collisions

#### Motivation

integrated-v<sub>n</sub>



•  $v_n(p_T)$  for all charged



 These can fix parameters in hydro model then to calculate other observables.

## Model and Set up

Model and Set up

#### Heavy-ion collisions process:



• Hydrodynamics simualtions:



C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz. Comput. Phys. Commun. **199**, 61 (2016)

Wenbin Zhao

#### VISHNU hybrid model

• For hydrodynamics part, VISHNU solves  $T^{\mu\nu}$ ,  $\pi^{\mu\nu}$  and  $\Pi$ :

$$\partial_{\mu}T^{\mu\nu}(x) = 0, \qquad T^{\mu\nu} = eu^{\mu}u^{\nu} - (p+\Pi)\Delta^{\mu\nu} + \pi^{\mu\nu},$$
  
$$\dot{\Pi} = -\frac{1}{\tau_{\Pi}} \bigg[\Pi + \zeta\theta + \Pi\zeta T\partial_{\mu} \big(\frac{\tau_{\Pi}u^{\mu}}{2\zeta T}\big)\bigg], \qquad (2)$$
  
$$\Delta^{\mu\alpha}\Delta^{\nu\beta}\dot{\pi}_{\alpha\beta} = -\frac{1}{\tau_{\pi}} \bigg[\pi^{\mu\nu} - 2\eta\nabla^{\langle\mu}u^{\nu\rangle} + \pi^{\mu\nu}\eta T\partial_{\alpha} \big(\frac{\tau_{\pi}u^{\alpha}}{2\eta T}\big)\bigg],$$

• Switch from hydrodynamics to hadron cascade (Cooper-Frye formula):

$$E\frac{d^3N_i}{d^3p}(x) = \frac{g_i}{(2\pi)^3}p \cdot d^3\sigma(x) f_i(x,p)$$
(3)

• Hadron cascade simulated by UrQMD by:

$$\frac{df_i(x,p)}{dt_{\text{PC}}} = C_i(x,p) \tag{4}$$

H. Song, S. A. Bass and U. Heinz, PRC 83, 024912 (2011).

C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. **199**, 61 (2016)

Wenbin Zhao

July 25<sup>th</sup> 2017 12 / 36

#### Initial conditions

• TRENTo parameterizes initial entropy density by:

$$s = s_0 \left(\frac{\tilde{T}_A^p + \tilde{T}_B^p}{2}\right)^{1/p}.$$
(5)

where  $\tilde{T}(x,y) = \sum_{i=1}^{N_{\text{part}}} \gamma_i T_p(x - x_i, y - y_i)$ ,  $T_p(x,y) = \frac{1}{2\pi w^2} \exp(-\frac{x^2 + y^2}{2w^2})$  and turing *p* makes TRENTo match KLN, EKRT, WN, etc.

• AMPT construct energy density by energy decompositions of individual partons via a Gaussian smearing:

$$\epsilon = K \sum_{i} \frac{E_{i}^{*}}{2\pi\sigma^{2}\tau_{0}\Delta\eta_{s}} \exp\left(-\frac{(x-x_{i})^{2} + (y-y_{i})^{2}}{2\sigma^{2}}\right), \quad (6)$$

J. S. Moreland, J. E. Bernhard and S. A. Bass, PRC **92** (2015) no.1, 011901. H. j. Xu, Z. Li and H. Song, PRC **93**, no. 6, 064905 (2016)

Wenbin Zhao

Collective flow in 2.76 and 5.02 A TeV

July 25<sup>th</sup> 2017 13 / 36

#### Set up

#### iEBE-VISHNU + TRENTo / AMPT

- TRENTo :  $\eta/s(T)$  and  $\zeta/s(T)$  (para-I).
- AMPT:  $\eta/s \equiv 0.08$  and  $\zeta/s \equiv 0$  (para-II).



## **Results and Discussion**

#### $p_T$ -spectra for 2.76 A TeV



• iEBE-VISHNU + TRENTo / AMPT describes  $\pi$  , K and proton data well.

W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

#### $p_T$ -spectra for 5.02 A TeV



- Stronger radial flow is developed in systems of 5.02 A TeV collisions energy.
- W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

#### Q-cumulant

• 2-particle azimuthal correlations:

$$\langle 2 \rangle_{n,-n}^{|\Delta\eta|} = \frac{Q_n^A \cdot Q_n^{B*}}{M_A \cdot M_B},\tag{7}$$

flow harmonics:

$$c_n\{2, |\Delta\eta|\} = \langle \langle 2 \rangle \rangle_{n,-n}^{|\Delta\eta|}, \quad v_n\{2, |\Delta\eta|\} = \sqrt{c_n\{2, |\Delta\eta|\}}$$
(8)

where  $Q_n = \sum_{i=1}^{M} e^{in\varphi_i}$ , and  $Q_n$  can be Particles Of Interests (POIs) to calculate  $v_n(p_T)$ .

### $v_n(p_T)$ for all charged hadrons



• iEBE-VISHNU + TRENTO / AMPT can describe  $v_n(p_T)$  of Pb+Pb at 2.76 and 5.02 A TeV well.

W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

#### $v_n(p_T)$ for $\pi$ ,K and proton at 2.76 A TeV



W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

#### $v_n(p_T)$ for $\pi$ ,K and proton at 5.02 A TeV



- Mass-splitting between  $\pi$  and proton increased slightly at 5.02 A TeV collisions energy.
- W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

#### Event-by-event $v_n$ distributions

- The event-by-event v<sub>n</sub> distributions reflect the initial states fluctuations, providing strong constraints for the initial condition models
- One need do standard Bayesian unfolding to suppress the non-flow and finite multiplicities effects.

#### Event-by-event $v_n$ distribution



• The scaled v<sub>n</sub> distributions are insensitive to collision energy. W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

Wenbin Zhao

•

Collective flow in 2.76 and 5.02 A TeV

July 25<sup>th</sup> 2017 23 / 36

#### Event-plane correlations

• Event-plane correlations reveal the patterns of initial state fluctuations, and evaluate correlations of flow angles.



we use Scalar-Product:

$$\cos \left[ c_{1}n_{1}\Psi_{n_{1}} - c_{2}n_{2}\Psi_{n_{2}} \right] = \frac{\langle \tilde{Q}_{n_{1}A}^{c_{1}}\tilde{Q}_{n_{2}B}^{c_{2}*} \rangle}{\sqrt{\langle \tilde{Q}_{n_{1}A}^{c_{1}}\tilde{Q}_{n_{1}B}^{c_{1}*} \rangle} \sqrt{\langle \tilde{Q}_{n_{2}A}^{c_{2}}\tilde{Q}_{n_{2}B}^{c_{2}*} \rangle}}$$

$$\cos \left[ c_{1}n_{1}\Psi_{n_{1}} + c_{2}n_{2}\Psi_{n_{2}} - c_{3}n_{3}\Psi_{n_{3}} \right]$$

$$= \frac{\langle \tilde{Q}_{n_{1}A}^{c_{1}}\tilde{Q}_{n_{2}A}^{c_{2}}\tilde{Q}_{n_{3}B}^{c_{3}*} \rangle}{\sqrt{\langle \tilde{Q}_{n_{1}A}^{c_{1}}\tilde{Q}_{n_{1}B}^{c_{1}*} \rangle \langle \tilde{Q}_{n_{2}A}^{c_{2}}\tilde{Q}_{n_{3}B}^{c_{3}*} \rangle}}, \qquad (9)$$
where  $\tilde{Q}_{n} \equiv \frac{1}{N}\sum_{i} e^{in\varphi_{i}}.$ 

#### Event-plane correlations at 2.76 A TeV



• iEBE-VISHNU + TRENTo / AMPT generately reproduce date.

- Some correlations are sensitive to initial conditions.
- W. Zhao, H. j. Xu and H. Song,. arXiv:1703.10792 [nucl-th].

Wenbin Zhao

#### Event-plane correlations at 5.02 A TeV



• No significant difference between these two collision energies.

W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

## Symmetric Cumulants (SC(m, n))

• SC(m, n) values correlations of flow harmonics:

$$SC^{v}(m,n) = \langle \langle \cos(m\varphi_{1}+n\varphi_{2}-m\varphi_{3}-n\varphi_{4}) \rangle \rangle_{c} \\ = \langle \langle 4 \rangle \rangle_{n,m,-n,-m} - \langle \langle 2 \rangle \rangle_{n,-n} \cdot \langle \langle 2 \rangle \rangle_{m,-m} \\ = \langle v_{m}^{2}v_{n}^{2} \rangle - \langle v_{m}^{2} \rangle \langle v_{n}^{2} \rangle.$$
(10)

• the Normalized Symmetric Cumulants:

$$NSC^{\nu}(m,n) = \frac{SC^{\nu}(m,n)}{\langle v_m^2 \rangle \langle v_n^2 \rangle}$$
(11)

where  $\langle v_m^2 \rangle$  and  $\langle v_n^2 \rangle$  can be calculated by the 2-particle cumulants

July 25<sup>th</sup> 2017 27 / 36

#### Symmetric Cumulants



• iEBE-VISHNU + TRENTO / AMPT describe the  $(N)SC^{\nu}(m, n)$  well.

NSC<sup>v</sup>(m, n) has no significant dependence on collision energies.
 W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

Wenbin Zhao

Collective flow in 2.76 and 5.02 A TeV

July 25<sup>th</sup> 2017 28 / 36

#### Non-linear response coefficients

For low harmonics,  $v_n$ (n=2,3), magnitudes are linear in initial  $\varepsilon_n$ (n=2,3).

Higher harmonics,  $v_n (n \ge 4)$ , receive contributions from mode-coupling.

• Non-linear response coefficients evalue the mode-coupling effects:

$$V_{4} = V_{4L} + \chi_{422} V_{2}^{2}, \quad V_{5} = V_{5L} + \chi_{523} V_{2} V_{3},$$
  

$$V_{6} = V_{6L} + \chi_{624} V_{2} V_{4L} + \chi_{633} V_{3}^{2} + \chi_{6222} V_{2}^{3}, \qquad (12)$$
  

$$V_{7} = V_{7L} + \chi_{725} V_{2} V_{5L} + \chi_{734} V_{3} V_{4L} + \chi_{7223} V_{2}^{2} V_{3}.$$

We implement Scalar-Product method to calculate these coefficients.

#### Non-linear response coefficients



- No obvious centrality or energy dependence;
- It does depend on the initial conditions.

W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

#### $p_T$ -dependent factorization ratio $(r_{2,3}(p_T))$

- Due to the initial state fluctuation, hadrons at different p<sub>T</sub> do not share a common flow angle.
- $r_n(p_T)$  evaluates the break-up of factorizations of flow harmonics:

$$r_n(p_T^a, p_T^b) \equiv \frac{V_{n\Delta}(p_T^a, p_T^b)}{\sqrt{V_{n\Delta}(p_T^a, p_T^a)V_{n\Delta}(p_T^b, p_T^b)}},$$
(13)

where:

$$V_{n\Delta} \equiv \langle \langle \cos(n\Delta\phi) \rangle \rangle = \langle \tilde{Q}_n^{a(b)} \tilde{Q}_n^{a(b)*} \rangle,$$
(14)  
and  $\tilde{Q}_n^{a(b)} \equiv \frac{1}{N} \sum_j e^{in\varphi_j}$  calculated within a specific  $p_T^{a(b)}$  bin .

#### Factorization ratio for 2.76 A TeV



#### Factorization ratio for 5.02 A TeV



W. Zhao, H. j. Xu and H. Song, arXiv:1703.10792 [nucl-th].

# Summary

#### Summary

<code>iEBE-VISHNU</code> + TRENTo / AMPT with two forms of QGP transport coefficients, we calculate:

- integrated and differential  $v_n$ , the event-by-event  $v_n$  distributions, the event-plane correlations, Symmetric Cumulant, the nonlinear response coefficients,  $p_T$ -depentdent factorization ratio.
- Raising from 2.76 to 5.02 A TeV, multiplicities increased by  $\sim$  30%, transport properties of the QGP do not change significantly.

Some observables are sensitive to initial conditions, such as:

- Symmetric Cumulant SC<sup>v</sup>(4,2),
- Event plane correlations  $\langle cos6(\Psi_2 \Psi_6) \rangle$  and  $\langle cos(10\Psi_2 4\Psi_4 6\Psi_6) \rangle$ ,
- The non-linear response coefficients  $\chi_{624}$  and  $\chi_{7223}$ .

• Thank You.