

IVERSITY

A Cold Atom Experiment

Fuqiang Wang 王福强

Huzhou University, Purdue University

Outline

Hydro flow or escape? Motivation for a cold atom experiment Cold atom laboratory To verify the uncertainty principle* Summary

Heavy ion experiment

The Hydrodynamics Paradigm

Is it really hydro?

(%)

Mean free path: $L_{mfp} = 1/\rho\sigma$ Ncoll = Opacity = $L/L_{mfp} = \rho\sigma L$

Heavy ion collision: $dN/dv \sim 1000 \ \alpha \sim 1000/\pi R^2 \tau$

dN/dy ~ 1000, ρ ~ 1000/ $\pi R^2 \tau$ ~ 6 fm^{-3} $\rho\sigma L$ ~ 7fm^{-3}*3mb*3fm ~ 5

Hydro questionable!

Relative escape contribution

• Escape contribution still sizeable even at x10 larger x-sections.

Strong anisotropy, but no energy loss

Small system collisions

Müller 1306.3439; I. Kozlov et al. 1405.3976; A. Bzdak et al.

1304.34003, K. Kawaguchi et al. Poster 206

Flow from Coulomb interaction

Flow from Coulomb and Elastic scattering

Trap size: ab = 240 nm², c = 50 nm. Number of particles: 1000 a = 10 nm, b = 24 nm, c = 50 nm

Anisotropy mechanism

Expansion, flow Hydro paradigm

No expansion Escape

Heavy ion collisions

Low density/opacity Mundane physics

Need experimental test!

Perfect liquid

Hydrodynamics

Another system with large anisotropy

K. M. O'Hara *et al.*, Science 298, 2179 (2002)

7/26

2000 µs

200 µs

400 µs

600 µs

800 µs

1000 µs

1500 µs

Sichuan University AMPT Workshop

2179 (2002)

K. M. O'Hara et al., Science 298,

Opacity

Mean free path: L_{mfp} = 1/ $\rho\sigma$, Ncoll = Opacity = L/L_{mfp} = $\rho\sigma L$

Cold atom system:

a ≈ 5×10⁻⁵ cm

$$\sigma_{int} \approx 10^{-8} cm^2$$

 $\rho \approx 5×10^{13} / cm^3$
 $L_{mfp} \approx 2×10^{-6} cm$
 $L \approx 2×10^{-3} cm$
 $L/L_{mfp} \approx 1000$

Very high opacity for the cold atom system

Indeed hydro!

Heavy ion collision:

dN/dy ~ 1000, ρ ~ 1000/ π R² τ ~ 6 fm⁻³ p\sigmaL ~ 7fm⁻³*3mb*3fm ~ 5

Low opacity in AMPT

Hydro??

A cold atom experiment

Setting up a cold atom experiment in Huzhou University

Summary

- Close connections between hot QGP and cold atoms.
- Cold atoms are hydrodynamical; QGP may not be.

Make it less interacting, more dilute, or smaller to mimic QGP.

• QGP is quantum mechanical; cold atoms are "classical."

Make it smaller, or colder to mimic QGP, and measure the uncertainty principle.

• Use controllability of cold atom system to address QGP questions

To verify the uncertainty principle*

Hot QGP vs Cold Atoms

$T = 10^4 K$

Quark-gluon plasma T = 10¹² K BIG BANG Computer simulation of RHIC collision

Quantum Mechanical?

Ultracold atomic gas T = 10⁻⁷ K

7/26/2017

Sichuan University AMPT Workshop

QM uncertainty principle

 $\Delta x \cdot \Delta p > \hbar / 2$ $p_x > p_y$

$$\varepsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle} \qquad \qquad v_2 = \langle \cos 2\varphi \rangle = \frac{\langle p_x^2 \rangle - \langle p_y^2 \rangle}{\langle p_x^2 \rangle + \langle p_y^2 \rangle}$$

Infinite square well

$$-\frac{\hbar^2}{2m}\nabla^2 \psi = E\psi \quad \Rightarrow \quad \psi \propto \begin{cases} \cos\frac{n_{odd}\pi}{a}x\\ \sin\frac{n_{even}\pi}{a}x \end{cases}$$

Take even mode for example:

$$\left\langle p_x^2 \right\rangle = \hbar^2 k^2 ; \quad \left\langle x^2 \right\rangle = \frac{a^2}{4} - \frac{2}{k^2} ; \qquad k = \frac{n_{odd}\pi}{a}$$
$$\sqrt{\left\langle p_x^2 \right\rangle \cdot \left\langle x^2 \right\rangle} = \hbar \sqrt{\frac{k^2 a^2}{4} - 2} = \hbar \sqrt{\frac{\pi^2}{4} n_{odd}^2 - 2} > \hbar / 2$$

$$v_{2} = \frac{\left\langle p_{x}^{2} \right\rangle - \left\langle p_{y}^{2} \right\rangle}{\left\langle p_{x}^{2} \right\rangle + \left\langle p_{y}^{2} \right\rangle} = \frac{b^{2} - a^{2}}{b^{2} + a^{2}} = \varepsilon \quad \text{for all } n.$$

Single state anisotropy

Harmonic oscillator

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + \frac{1}{2}m\omega^2 x^2\right)\psi = E\psi \; ; \quad E = \left(n + \frac{1}{2}\right)\hbar\omega$$

Thermal probability

x, y at same Fermi energy, so different number of filled energy levels.

At high temperature, classical limit, sum is approximated by integral:

$$\frac{dN}{d\mathbf{p}} = N \frac{\int d\mathbf{r} \, e^{-H_1(\mathbf{p}, \mathbf{r})/T}}{\int d\mathbf{r} \, d\mathbf{p} \, e^{-H_1(\mathbf{p}, \mathbf{r})/T}} = N \frac{e^{-K(\mathbf{p})/T}}{\int d\mathbf{p} \, e^{-K(\mathbf{p})/T}}$$

then it's independent of potential.

It's isotropic at all temperature because $K = (p_x^2 + p_y^2)/2m$ is isotropic.

Thermal probability weight

$$\rho(\mathbf{r}) \equiv \frac{dN}{d\mathbf{r}} = \frac{1}{Z} \sum_{j} |\psi_{j}(\mathbf{r})|^{2} e^{-E_{j}/T} \qquad f(\mathbf{p}) \equiv \frac{dN}{d\mathbf{p}} = \frac{1}{Z} \sum_{j} |\psi_{j}(\mathbf{p})|^{2} e^{-E_{j}/T}$$

$$Z \equiv \sum_{j} e^{-E_{j}/T}$$

$$\langle p_{i}^{2} \rangle = \frac{M\omega_{i}}{2} \coth \frac{\omega_{i}}{2T} , \quad \langle r_{i}^{2} \rangle = \frac{1}{2M\omega_{i}} \coth \frac{\omega_{i}}{2T} .$$

$$\overline{v}_{2} \approx \frac{\hbar^{2}}{12k_{B}TM \langle r_{x}^{2} \rangle} \cdot \frac{\varepsilon}{1+\varepsilon}$$

$$\stackrel{\text{exact}}{1+\varepsilon} \times \frac{1}{12\text{TM} \langle r_{x}^{2} \rangle} \stackrel{\text{T=0.2 GeV}}{\text{M=0.3 GeV}} \stackrel{\text{G}}{\text{M=0.3 GeV}} \stackrel{\text{G}}{\text{M=0.$$

(T = 0.2 GeV)

0.75

1

1

0

4

0.25

0.5

ε

0.75

0

0

0.2

0.4

T [GeV]

0.6

0.8

0

0.25

0.5

p_T [GeV]

4

3

1

0

0

1

7/26/2017

2

3

<r²/_x>^{1/2} [fm]

 $v_2 \quad (\times \, 10^2)$ 2

Quantum physics anisotropy

D. Molnar, FW, and C.H. Greene, arXiv:1404.4119

100 µs

2000 µs

Cold atoms

Strong elliptic anisotropy

K. M. O'Hara et al., Science 298, 2179 (2002).

Lithium atoms M ~ 6000 MeV Temperature T \sim 1 μ K \sim 10⁻¹⁶ MeV Trap size x \sim 20 μ m, y \sim 100 μ m

Typical momentum $(TM)^{1/2} \sim 10^{-6} MeV$ Intrinsic momentum quantum ~ 1/r ~ 10^{-8} MeV, negligible.

Typical energy $\sim T \sim 10^{-16}$ MeV Intrinsic energy quantum $1/(mr^2) \sim 10^{-20}$ MeV, negligible.

Cold Lithium atoms are actually "hotter" than the hot QGP.

$$\bar{v}_2 \approx \frac{\hbar^2}{12k_B T M \langle r_x^2 \rangle} \cdot \frac{\varepsilon}{1+\varepsilon} ~~~ 10^{-5}$$

The observed large v_2 is indeed due to strong interactions.

Sichuan University AMPT Workshop

Summary

- Close connections between hot QGP and cold atoms.
- Cold atoms are hydrodynamical; QGP may not be.

Make it less interacting, more dilute, or smaller to mimic QGP.

• QGP is quantum mechanical; cold atoms are "classical."

Make it smaller, or colder to mimic QGP, and measure the uncertainty principle.

• Use controllability of cold atom system to address QGP questions