Transport model studies of polarization

Shaowei Lan¹ Zi-Wei Lin^{1,2}, *Shusu Shi*¹, Xu Sun¹

¹ Central China Normal University
 ² East Carolina University

Workshop on AMPT for Relativistic Heavy Ion Collisions, July 24-27, 2017, Chengdu

Outline

Introduction

Modified AMPT model

Analysis method and results

- > Extraction of ϕ -meson spin alignment parameter ρ_{00}
- Hadronic scattering effect
- Acceptance effect: pseudorapidity coverage effect transverse momentum dependence

> Summary

Introduction

STAR Phys. Rev. C 77, 061902(R)(2008)

 $Mike\ Lisa.\ https://drupal.star.bnl.gov/STAR/system/files/UCLAvorticityWorkshopFeb2016v3.pdf$

- Non-central heavy ion collisions have large initial angular momentum.
- Due to spin-orbit coupling, this orbital angular momentum may result in net polarization of produced particles along the direction of the initial angular momentum (L) perpendicular to the reaction plane.

ϕ -meson spin alignment

Why ϕ meson spin alignment

 φ-mesons, which have small hadronic scattering cross sections, are expected to originate predominantly from primordial production.

Z. Liang and X. Wang, Phys. Lett. B 629,20-26(2005)

- ➤ The 00-component of φ-meson spin density matrix (ρ_{00}) can be measured by angular distribution of decay daughter $\phi \rightarrow K^+ + K^-$ using: $\frac{dN}{dcos\theta^*} \sim (1-\rho_{00}) + (3\rho_{00} 1) * cos^2 \theta^*$
- > A deviation of ρ_{00} from 1/3 indicates a spin alignment of ϕ -meson.

Coordinate System

> θ^* is the angle between the polarization direction and the momentum direction of $K^$ in the rest frame of ϕ -meson.

A Multi-Phase Transport Model

Four Main Parts:

- \succ The initial condition.
- Partonic interaction.
- Hadronization.
- Hadronic interaction.

Modified part :

- Added input ρ₀₀ and P_H parameters to specify the degree of spin alignment of φ (K*) mesons and Λ hyperons at decay.
- Angular momentum direction is calculated event-by-event.

Zi-Wei Lin, Ko, Li, Zhang and Pal, Phys. Rev. C 72, 064901 (2005)

Au+Au at $\sqrt{s_{NN}} = 200$ GeV with String Melting, partonic scattering cross section = 3 mb.

ρ_{00} extraction

- Background : Event Mixing technique.
- > Invariant mass distributions for 7 different $cos\theta^*$ bins.
- Fit $cos\theta^*$ distribution with:

 $\frac{dN}{d\cos\theta^*} = N_0 * [(1-\rho_{00}) + (3\rho_{00} - 1) * \cos^2\theta^*]$

Direction of angular momentum

Physical: the initial angular momentum of the overlap volume can be directly calculated in AMPT model.

Observed: experimentally the direction of angular momentum can be estimated by the normal of the reconstructed event plane.

Event plane method:

$$Q_{n,x} = \sum w_i \cos(n\phi_i)$$

$$Q_{n,y} = \sum w_i \sin(n\phi_i)$$

$$\psi_n = \frac{1}{n} \tan^{-1} \frac{Q_{n,y}}{Q_{n,x}}$$

Poskanzer and Voloshin Phys. Rev. C 58.1671(1998)

Hadronic scattering effect

- $\succ \rho_{00}^{phy}$: calculated with direction of angular momentum.
- > Hadronic scatterings (HS) after ϕ -meson decays are irrelevant for ϕ -meson ρ_{00}^{phy} .

Use ρ_{00}^{obs} to extract ρ_{00}^{phy}

- $\succ \rho_{00}^{obs}$: calculated with reconstructed event plane.
- $\succ \rho_{00}^{phy}$: calculated with direction of angular momentum.
- > ρ_{00}^{obs} and ρ_{00}^{phy} are found to be linearly correlated.
- In experiment only \(\rho_{00}^{obs}\) can be measured.
 However, \(\rho_{00}^{obs}\) needs to be corrected to extract \(\rho_{00}^{phy}\)

Effect of finite η coverage

- > The extracted ρ_{00} depends on the η cut of kaons.
- When the cut is below $|\eta| < 1$, a narrower η acceptance gives a significantly larger ρ_{00}^{phy} value than the input ρ_{00} .
- A narrow η cut on kaons tends to exclude kaons along beam directions, therefore exclude kaons from ϕ decays around $\theta^* \sim 90$ degrees.

Toy model simulation

- Sample p_T distribution with published ϕ -meson spectra
- > Sample azimuth distribution with published v_2 results
- Sample rapidity distribution with AMPT result
- > η cut on daughter particle creates a non-1/3 ρ_{00} value

Toy model simulation

- Similar as AMPT results (model independent)
- > η cut mostly affects the low p_T region

Effect of finite p_T^{ϕ} coverage

- > With the η coverage of $|\eta| < 1$, the extracted ρ_{00}^{phy} depends on transverse momentum.
- > Larger deviation from the input ρ_{00} value is observed in low p_T range.
- > Without η cut, p_T cut does not affect the extracted ρ_{00}^{phy} value (same as input ρ_{00}).

Summary

- > AMPT extended with an input ρ_{00} parameter specifies the degree of ϕ -meson spin alignment versus the direction of angular momentum when ϕ mesons decay.
- > Hadron scatterings after ϕ -meson decays are found to have no effect on the extraction of the ϕ -meson ρ_{00} parameter.
- A narrow η coverage strongly affects the extracted ϕ -meson ρ_{00} value.
- > This η -cut effect mainly comes from low- $p_T \phi$ mesons.

Backup

Experimental data

Effect of finite η coverage

