Heavy and light flavor jet quenching at RHIC and the LHC

Guang-You Qin

秦广友

Central China Normal University (CCNU) 华中师范大学

Workshop on AMPT for Relativistic Heavy Ion Collisions (AMPT2017) Chendu, July 24-27, 2017

S. Cao, T. Luo, GYQ, X.N. Wang, PRC 2016; arXiv:1703.00822

Outline

- Introduction
- A Linear Boltzmann Transport (LBT) approach for heavy and light flavor jet quenching
- Some numerical results
- Summary

Jet quenching in heavy-ion collisions

Jet quenching in quark-gluon plasma

Large transverse momentum hadrons

 If A+A collisions are just simple combination of many N+N collisions, then R_{AA}=1

- Large p_T hadron: R_{AA}<1 (due to final state jetmedium interaction and parton energy loss in QGP)
- Jet quenching is mainly a final state effect

Heavy flavor hadrons

Strong nuclear modification (*R*_{AA}**) for heavy flavor mesons comparable to light flavors** Different models vary in a few aspects: Radiative & collisional energy loss of HQ in QGP; Full Boltzmann & Fokker-Planck (Langevin) transport approaches for HQ evolution; Fragmentation & recombination for HQ hadronization; Partonic & hadronic interactions for heavy flavors; Shadowing; ...

Jet-related dihadron & γ -hadron correlations Au+Au data o p+p data + flow (↓ 1.6 STAR ↓ 1.4 ↓ 1.4 ↓ ND 1.2 ↓ 0.8 ↓ 0.8 $B(1+2v_2^2\cos(2\Delta\phi))$ 10-20% Away-Side Au+Au 200 GeV (0-12%) 1.4 0.6 •••• Qin[γ_{dir} -h[±]] 30-40° ∎γ_{dir}-h[±] - ZOWW[γ_{dir} -h[±]] • π^{0} -h[±] 1.2 0.4 - ZOWW $[\pi^0-h^{\pm}]$ 0.2 60-80% $12 < p_{\tau}^{trig} < 20 \text{ GeV/c} \otimes p_{\tau}^{assoc} > 1.2 \text{ GeV/c}$ **₹** 0.8 $\frac{1}{T} D(z_T = \frac{p_{T,a}}{p_{T,t}} | p_{T,t}) = p_{T,t} \frac{dN_{t,a}(p_{T,t}, p_{T,a})}{dN_t(p_{T,t})} \frac{dp_{T,a}dp_{T,t}}{dp_{T,t}}$ 0 0.6 2 ∆¢ (radians) 0.4 0.2 The away-side per-trigger yield at large z_{τ} is suppressed due to parton energy loss 0.2 0.3 0.5 0.6 0.7 0.8 0.4 0.9 0 ZT The shape of the away-side angular correlation is also changed due to transverse momentum broadening

Dijet asymmetry and correlations

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$
$$\Delta \phi = |\phi_{1} - \phi_{2}|$$

Strong modification of momentum imbalance distribution => Significant energy loss experienced by the subleading jets Largely-unchanged angular distribution

=> medium-induced broadening is quite modest

Jet internal structure

The enhancement at large r is consistent with jet broadening (& medium-induced radiation) The enhancement at low z is expected from medium-induced radiation The soft outer part of the jet is easier to modify, while changing the inner hard cone is more difficult

Groomed jet splitting

The momentum sharing z_g distribution for soft-drop groomed jets provides an opportunity to probe the medium-modified splitting function

CMS: more imbalanced splitting (branching) in more central PbPb collisions.

Jet-medium interaction

Majumder, 2013...

HT: Wang-Guo-Majumder Caron-Huot, Gale 2010; Djordjevic, Heinz, 2008; Djordjevic, Djordjevic, 2012; Majumder 2012...

A Linearized Boltzmann Transport (LBT) approach for heavy & light flavor jet quenching

 p_1

 \mathbf{p}_2

 p_3

p₄

- Boltzmann equation: $p_1 \cdot \partial f_1(x_1, p_1) = E_1 C[f_1]$
- The collision term is the sum of gain and loss contributions

$$C[f_1] \equiv \int d^3k \; \left[w(\vec{p}_1 + \vec{k}, \vec{k}) f_1(\vec{p}_1 + \vec{k}) - w(\vec{p}_1, \vec{k}) f_1(\vec{p}_1) \right]$$

• For *elastic* (1+2->3+4) process, the transition rate is related to the cross section as:

$$w(\vec{p}_1, \vec{k}) = \gamma_2 \int \frac{d^3 p_2}{(2\pi)^3} f_2(\vec{p}_2) \left[1 \pm f_3(\vec{p}_1 - \vec{k}) \right] \\ \times \left[1 \pm f_4(\vec{p}_2 + \vec{k}) \right] v_{\rm rel} d\sigma(\vec{p}_1, \vec{p}_2 \to \vec{p}_1 - \vec{k}, \vec{p}_2 + \vec{k})$$

The *elastic* scattering rate for (1+2->3+4) process:

$$\Gamma_{12\to34}(\vec{p}_1) = \int d^3k w(\vec{p}_1, \vec{k})$$

Cao, Luo, GYQ, Wang, PRC 2016 ; arXiv:1703.00822, etc.

A Linearized Boltzmann Transport (LBT) approach for heavy & light flavor jet quenching

• Boltzmann equation: $p_1 \cdot \partial f_1(x_1, p_1) = E_1 C[f_1]$

Cao, Luo, GYQ, Wang, PRC 2016 ; arXiv:1703.00822; etc.

A Linearized Boltzmann Transport (LBT) approach for heavy & light flavor jet quenching

• Elastic:

- Use total scattering rate to determine the probability of elastic scattering $P_{el}=1-e^{-\Gamma el\Delta t}$
- Use branching ratios Γ_i/Γ to determine the scattering channel
- Use the differential rate to sample the momenta of two outgoing partons

• Inelastic:

- Calculate $\langle N_g \rangle = \Gamma_{inel} \Delta t$ and $P_{inel} = 1 e^{-\langle Ng \rangle}$
- Sample *n* gluons from Poisson distribution $P(n) = \langle N_g \rangle^{-n}/n! e^{-\langle Ng \rangle}$
- Sample E and p of gluons using the differential radiation spectrum

• Elastic + Inelastic:

- Pure elastic: P_{el}(1-P_{inel}), Inelastic: P_{inel}, total: P_{tot}=P_{el}+P_{inel}-P_{el}P_{inel}
- Use P_{tot} to determine whether jet parton interacts with thermal medium
- If an interaction happens, then determine whether it is pure elastic P_{el}(1-P_{inel}) or inelastic P_{inel}
- Simulate pure elastic (2->2) or inelastic (2->2+n) processes

LBT model validation

Cao, Luo, GYQ, Wang, PRC 2016; arXiv:1703.00822

Realistic simulation in LBT: parton energy loss

Cao, Luo, GYQ, Wang, PRC 2016; arXiv:1703.00822

Realistic simulation in LBT: nuclear modification of hadrons

• Initial condition

- Glauber model for *space* distribution
- LO pQCD for *momentum* distribution
- QGP background
 - Relativistic hydrodynamic simulation provides the space-time evolution profiles of the QGP (the local temperature and flow of the medium that jet traverse)

• Hadronization:

- High momentum light flavor hadrons (fragmentation via PYTHIA)
- Heavy flavor mesons (low & high momentum):
 - Most high momentum heavy quarks fragment into heavy mesons (via PYTHIA)
 - Most low momentum heavy quarks hadronize to heavy mesons via heavy-light quark coalescence mechanism

Heavy and light flavor jet quenching at RHIC

Cao, Luo, GYQ, Wang, PRC 2016; arXiv:1703.00822

Heavy and light flavor jet quenching at the LHC

2.76TeV

5.02TeV

Cao, Luo, GYQ, Wang, PRC 2016; arXiv:1703.00822

Flavor dependence of jet quenching

 $R_{AA}(g) < R_{AA}(u,d,s) < R_{AA}(c)$

The rising of R_{AA} at the LHC due to harder initial parton spectra

 $R_{AA}(\pi/u,d,s) \sim R_{AA}(D)$ at the LHC due to deeper FF for light flavors (=> the same p_T hadrons probe higher energy partons)

From RHIC to the LHC, the gluon contribution to light hadrons at the same p_T is increasing => the splitting of π and D meson R_{AA} at high p_T is larger

Cao, Luo, GYQ, Wang, PRC 2016; arXiv:1703.00822

Extract \hat{q} from parton energy loss (by LBT)

Cao, Luo, GYQ, Wang, PRC 2016; arXiv:1703.00822

Linear-Boltzmann Transport approach: $p^{\mu}\partial_{\mu}f(\vec{x}, \vec{p}, t) = E(C_{col}[f] + C_{rad}[f])$

Summary

- A linear Boltzmann transport (LBT) model: Heavy and light flavor jet quenching on the same footing
- Both initial parton spectra and fragmentation functions are important for understanding the detailed difference between the nuclear modifications of light and heavy flavor hadrons
- Future: heavy flavor jets, heavy-light correlations, medium response, hadronization, ...

D-hadron correlations

- Single hadron observables only probe parton energy loss
- D-hadron correlations can tell how the lost energy is redistributed, thus probe both parton energy loss and medium-induced broadening
- pp baseline: PYTHIA
- Include all charged hadrons from heavy and light parton shower and the recoiled partons from back reaction to the medium
- The background from thermal hadrons emitted by QGP are removed
- dN/dφ is increased at all φ due to parton shower in Au-Au
- dE/dφ is enhanced at 0 due to c energy loss in Au-Au, and broadened at π due to parton shower and scattering in QGP

γ -hadron correlations from CoLBT-Hydro

Chen, Cao, Luo, Pang, Wang, arXiv:1704.03648

Thank you!

Jet shape from a jet-fluid model

The contribution from the hydro part is quite flat and finally dominates over the shower part in the region with r > 0.5.

Jet shape function for subleading jets is broader than leading jets due to more jetmedium interaction

Y. Tachibana, N. B. Chang, GYQ, PRC 2017

Elastic collisions

$$\Gamma_{12\to34} = \frac{\gamma_2}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \int \frac{d^3 p_3}{(2\pi)^3 2E_3} \int \frac{d^3 p_4}{(2\pi)^3 2E_4} \\ \times f_2(\vec{p}_2) \left[1 \pm f_3(\vec{p}_1 - \vec{k}) \right] \left[1 \pm f_4(\vec{p}_2 + \vec{k}) \right] S_2(s, t, u) \\ \times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) |\mathcal{M}_{12\to34}|^2 \\ S_2(s, t, u) = \theta(s \ge 2\mu_{\rm D}^2) \theta(-s + \mu_{\rm D}^2 \le t \le -\mu_{\rm D}^2)$$

$$\begin{split} \Gamma_{12\to 34}(\vec{p}_1,T) &= \frac{\gamma_2}{16E_1(2\pi)^4} \int dE_2 d\theta_2 d\theta_4 d\phi_4 & \vec{p}_1 \text{ in the } +z \text{ direction} \\ &\times f_2(E_2,T) \left[1 \pm f_4(E_4,T) \right] S_2(s,t,u) |\mathcal{M}_{12\to 34}|^2 & \vec{p}_2 \text{ in the } x-z \text{ plane.} \\ &\times \frac{E_2 E_4 \sin \theta_2 \sin \theta_4}{E_1 - |\vec{p}_1| \cos \theta_4 + E_2 - E_2 \cos \theta_{24}} \end{split}$$

$$\hat{q} = \langle \langle (\vec{p}_3 - \hat{p}_1 \cdot \vec{p}_3)^2 \rangle \rangle$$

$$\hat{e} = \langle \langle (E_1 - E_3) \rangle \rangle$$

$$\cos \theta_{24} = \sin \theta_2 \sin \theta_4 \cos \phi_4 + \cos \theta_2 \cos \theta_4$$

$$E_4 = \frac{E_1 E_2 - p_1 E_2 \cos \theta_2}{E_1 - p_1 \cos \theta_4 + E_2 - E_2 \cos \theta_{24}}$$

Inelastic radiation

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{2\alpha_s C_A P(x)}{\pi k_{\perp}^4} \hat{q} \left(\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2}\right)^4 \sin^2\left(\frac{t - t_i}{2\tau_f}\right)$$
$$\tilde{\tau}_f = 2Ex(1 - x)/(k_{\perp}^2 + x^2 M^2)$$
$$\langle N_g \rangle (E, T, t, \Delta t) = \Delta t \int dx dk_{\perp}^2 \frac{dN_g}{dx dk_{\perp}^2 dt}$$

Heavy quark hadronization

- Most high momentum heavy quarks fragment into heavy mesons
 Use PYTHIA 6.4 "independent fragmentation model"
- Most low momentum heavy quarks hadronize to heavy mesons via recombination (coalescence) mechanism
 - use sudden recombination model based on Y. Oh, et al., PRC 79, 044905 (2009)

$$\begin{aligned} \frac{dN_M}{d^3p_M} &= \int d^3p_1 d^3p_2 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} f_M^W(\vec{p}_1, \vec{p}_2) \delta(\vec{p}_M - \vec{p}_1 - \vec{p}_2) \\ \frac{dN_B}{d^3p_B} &= \int d^3p_1 d^3p_2 d^3p_3 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} \frac{dN_3}{d^3p_3} f_B^W(\vec{p}_1, \vec{p}_2, \vec{p}_3) \delta(\vec{p}_M - \vec{p}_1 - \vec{p}_2 - \vec{p}_3) \end{aligned}$$

- Inputs: heavy quark/anti-quark distribution after evolution, light quark/ antiquark distribution from QGP, and Wigner function f^w
- f^w is obtained from hadron wave functions (approximated by S.H.O.)

$$f_M^W(\vec{r}, \vec{q}) \equiv N g_M \int d^3 r' e^{-i\vec{q}\cdot\vec{r'}} \phi_M(\vec{r} + \frac{\vec{r'}}{2}) \phi_M^*(\vec{r} - \frac{\vec{r'}}{2})$$

The Sudden Recombination Model

Two-particle recombination:

$$\begin{aligned} \frac{dN_M}{d^3p_M} &= \int d^3p_1 d^3p_2 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} f_M^W(\vec{p_1},\vec{p_2}) \delta(\vec{p_M}-\vec{p_1}-\vec{p_2}) \\ \frac{dN_i}{d^3p_i} \end{aligned}$$
 Distribution of the *i* th kind of particle

Light quark: FD distribution in the LRF of the hydro cell Heavy quark: the distribution at T_c after in-medium evolution

 $f_M^W(\vec{p_1}, \vec{p_2})$ Probability for two particles to recombine

$$f_M^W(\vec{r},\vec{q}) \equiv g_M \int d^3r' e^{-i\vec{q}\cdot\vec{r}'} \phi_M(\vec{r}+\frac{\vec{r}'}{2})\phi_M^*(\vec{r}-\frac{\vec{r}'}{2})$$

$$\vec{r} = \vec{r}'_1 - \vec{r}'_2$$

$$\vec{q} = \frac{1}{E'_1 + E'_2} (E'_2 \vec{p}'_1 - E'_1 \vec{p}'_2)$$

Variables on the R.H.S. are defined in the CM frame of the two-particle system.

The Sudden Recombination Model

$$f_M^W(\vec{r},\vec{q}) \equiv g_M \int d^3r' e^{-i\vec{q}\cdot\vec{r}'} \phi_M(\vec{r}+\frac{\vec{r}'}{2}) \phi_M^*(\vec{r}-\frac{\vec{r}'}{2}) \phi_M^*($$

 \mathbf{g}_{M} : statistics factor

D ground state: 1/(2*3*2*3)=1/36 – spin and color

D*: 3/(2*3*2*3)=1/12 – spin of D* is 1

 Φ_{M} : meson wave function–approximated by ground state of QM SHO

$$\phi_M(\vec{r}) = \left(\frac{1}{\pi\sigma^2}\right)^{3/4} e^{-r^2/(2\sigma^2)} \qquad \sigma = 1/\sqrt{\mu\omega}$$

μ: reduced mass of the 2-particle system (m_q=300MeV, m_s=475MeV) ω: SHO frequency – calculated by meson radius:

0.33GeV for c/b meson, 0.43GeV for c baryon, 0.41GeV for b baryon Integrating over the position space:

$$f_M^W(q^2) = g_M \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-q^2\sigma^2}$$
$$f_B^W(q_1^2, q_2^2) = g_B \frac{(2\sqrt{\pi})^6 (\sigma_1 \sigma_2)^3}{V^2} e^{-q_1^2\sigma_1^2 - q_2^2\sigma_2^2}.$$

Heavy quark hadronization

- 10^{0} 10^{-1} 10^{-1} 10^{-1} 10^{-2} 10^{-2} 10^{-3} 10^{-4} Pb-Pb @ 2.76 TeV Centrality: 0-7.5% 10^{-5} 2 4 $p_{T} (GeV)$ 10^{-1} $10^$
- Use Wigner function f^{W} to calculate the rec. probability $P_{\text{coal.}}(p_{\text{HQ}})$ for all meson & baryon channels: D/B, $\Lambda_{Q'} \Sigma_{Q'} \Xi_{Q'} \Omega_{Q}$
- For each HQ, determine the channel: frag. or recomb.? recomb. to *D*/*B* or a baryon?
- b quark recomb. probability is smaller than c quark at p=0, but decreases slower with increasing p

- Fragmentation dominates D/B meson production at high $\ensuremath{p_{\text{T}}}$
- Recombination greatly increases D/B yield at intermediate p_T
- At same p_T, bottom quarks have larger recomb. probability than charm to produce heavy flavor hadrons due to larger masses (not shown)