Studying the CME with the AMPT model

Guo-Liang Ma (马国亮)

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

The Workshop on AMPT for Relativistic Heavy Ion Collisions, July 24-27, 2017, Chengdu

Guo-Liang Ma马国亮/(SINAP) 1

Outline

- Introduction
- AMPT results on CME at RHIC
- AMPT results on CME at LHC
- AMPT simulations on Isobar exp.
- Summary

(I)AMPT results on CME

[1] G.-L. Ma and B. Zhang, PLB 700 (2011) 39 [arXiv: 1101.1701].
[2] Q. -Y. Shou, G.-L. Ma and Y. -G. Ma, PRC 90 (2014) 047901 [arXiv: 1405.2668].

Chiral Magnetic Effect=> dipole charge separation

•RHIC data are consistent with the CME expectation that charges could be distributed asymmetrically w.r.t reaction plane, i.e. dipole charge separation.

Can CME signal survive from final state interactions?

The lifetime of B field is short. →The CME is an initial effect.
Final state interaction effects on the CME could be important.

The AMPT model with dipole charge separation

•We include initial dipole charge separation mechanism into AMPT model.

We switch the p_y values of a percentage of the downward moving u quarks with those of the upward moving u-bar quarks, and likewise for d-bar and d quarks, where the percentage is a relative ratio with respect to the total number of quarks.

•We focus on final state effects on the charge separation, including parton cascade, hadronization, resonance decays after \vec{B} and \vec{E} vanish quickly.

•Resonance decays only are employed to ensure charge conservation, without hadron rescatterings.

AMPT results on $<\cos(\varphi_{\alpha}+\varphi_{\beta})>$

- •Original AMPT (0%) underestimates exp. data.
- •10% initial charge separation can describe same-charge data.
- •But 10% only can describe opposite-charge data for 60-70%.

Original AMPT=Background?

- Opp-charge and same-charge are consistent with zero initially.
- They become negative through parton cascae due to flow/TMC.
- Coalesce enhances same-charge and reduce opp-charge.
- Resonance decays reduce signal magnitude.

Final state effects on charge separation

Parton cascade reduces charge separation significantly; Coalescence recovers some charge separation in part; Resonance decays reduce charge separation.
10% in the beginning →1-2% percentage at the end.

CME vs trans. mom. conservation

• The original AMPT result is very close to the expectation of trans. mom. conservation [dashed: $<\cos(\varphi_{\alpha}+\varphi_{\beta})>=-v_2/N$].

• TMC can partly account for data, and an initial 10% dipole charge separation is needed.

AMPT results about $<\cos(\varphi_{\alpha}-\varphi_{\beta})>$

TABLE I. Estimated contributions to azimuthal correlations from various effects and comparison with data. The DATA are from the STARmeasurement for AuAu 200-GeV collisions at $\sim 50\%$ -60% centrality.Bzdak et. al., PRC 83, 014905 (2011)

$\hat{O} \times 10^3$	$\langle \cos(\phi_1 + \phi_2) \rangle_{++}$	$\langle \cos(\phi_1 + \phi_2) \rangle_{+-}$	$\langle \cos(\phi_1 - \phi_2) \rangle_{++}$	$\langle \cos(\phi_1 - \phi_2) \rangle_{+-}$
CME	-(0.1 - 1)	+(0.01 - 0.1)	+(0.1 - 1)	-(0.01 - 0.1)
LCC	~ 0	+(0.1-1)	~ 0	+(1-10)
TMC	~ -0.1	~ -0.1	~ -1	~ -1
DATA	-0.45	+0.06	-0.38	+1.97

(II) AMPT results on the CME in Pb+Pb @LHC

Ling Huang, Chun-Wang Ma, Guo-Liang Ma, in preparation

AMPT results on the CME in p+Pb @LHC

See Xinli Zhao's next talk

Centrality-dependent charge sepe. percentage

AMPT results on $<\cos(\varphi_{\alpha}+\varphi_{\beta})>$

•AMPT w/o CME can not match experiment data, gives ~60-70% magnitude.

•Both Nf=2 and Nf=3 can match data.

hadron-hadron correlation (h-h)

AMPT w/o CME can not reproduce opp-charge and same-charge data.
AMPT with CME can improve the description to the data. But neither Nf=2 nor Nf=3 can describe opposite-charge and same-charge data simultaneously.

Kaon-hadron correlation (k-h)

•AMPT w/o CME can not reproduce exp. data.

- •Nf=2 can describe opp-charged data, but overestimate same-charged data.
- •Nf=3 can describe opp-charged and same-charged data simultaneously.

(III) AMPT results on CME in isobar exp.

Deng, Huang, Wang and Guo-Liang Ma, in preparation

⁹⁶₄₀Zirconium vs ⁹⁶₄₄Ruthenium

Glauber parameters for Zr96 and Ru 96

setting 1	R0	a(d)	Radius ^[4,5,6] (fm) β2	& Deformation β4
Ru96	5.0845	0.567	0.1579	0.00
Zr96	5.0212	0.574	0.08	0.00

setting 2	R0	a(d)	β2 ^{EIMagn}	β4
Ru96	5.0845	0.567	0.053	0.009
Zr96	5.0212	0.574	0.217	0.01

- Two opposite settings of Glauber parameters for Ru96 and Zr96 (<u>http://nrv.jinr.ru/nrv/webnrv/map/</u>).
- Which is more ellipsoidal? Ru96 or Zr96? We tried both, show setting 2 only.

b-dependent Magnetic field

- We use Lienard-Wiechert potential to calculate b-dependent <By>.
- $\langle B_y \rangle$ (Ru+Ru) is larger than $\langle B_y \rangle$ (Zr+Zr) by 10% at large b.

b-dependent initial charge sep. percent

 $f^{0}/_{0} = (N^{+}_{upward} - N^{+}_{downward})/(N^{+}_{upward} + N^{+}_{downward}) \sim J\pi R^{2}/N_{mult} \sim A^{-4/3}B_{y}$

• We fit Au+Au and Cu+Cu exp. data. \rightarrow An empirical initial charge separation percentage: f%=1146.1A^{-4/3}B_y.

b-dependent initial charge sep. percent

• We apply $f\%=1146.1A^{-4/3}B_y(b)$ to introduce the initial charge separation into Ru+Ru and Zr+Zr.

AMPT (CME) results on $\langle \cos(\phi a + \phi \beta - 2\psi 2) \rangle$

We see a reasonable magnitude ordering of | <cos(φa+φβ-2ψ2)> |,
 i.e., Au+Au < Zr+Zr < Ru+Ru < Cu+Cu.

$<\cos(\phi a + \phi \beta - 2\psi 2)$ in Ru+Ru and Zr+Zr

• Final state interactions reduce the $\langle \cos(\phi a + \phi \beta - 2\psi 2) \rangle$ difference between Ru+Ru and Zr+Zr.

CME effect on $\langle \cos(\phi a + \phi \beta - 2\psi_2) \rangle$ in isobar collisions

- If w/o CME(solid symbol), the signals are almost same between Ru+Ru and Zr+Zr from the regular AMPT model.
- If with CME (open symbol), the magnitudes of signals increase, the difference between Ru+Ru and Zr+Zr appears.

Final interaction effect on charge separation ratio

- Final state interactions reduce imported charge separations.
- The relative ratio of charge separation percentage is kept, same as $\langle B_y \rangle$ ratio.
- Ones could observe the CME signal difference even after strong final state interactions, if with enough statistics.

Because final state interactions largely reduce the CME signal=> The percentage of initial dipole charge separation due to CME should reach~10%.

• PID-triggered charge correlation can help us to understand the N_f of CME and explore the QCD deconfinement.

• The CME difference between Ru+Ru and Zr+Zr collisions could survive from final state interactions, hopefully can be observed with enough statistics in the future experiment.

Thanks for your attention!