

My involvements with AMPT

Jiangyong Jia, BNL and Stony Brook University

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

July 25-27, 2017

Dipolar flow from EbyE fluctuation of ε_1

A study of the anisotropy associated with dipole asymmetry in heavy ion collisions 1203.3410

Jiangyong Jia^{1,2}, Sooraj Radhakrishnan¹ and Soumya Mohapatra¹

Even component: ~boost invariant in n Odd component: vanish at $\eta=0$ Pb-Pb at \star = 2.76 Te\ TPC 0.14 V0s corrected 0.12 uncorrected 0.1 0.08 0.06 'n 0.04 0.02 -0.02 Luzum et.al pseudorapidity, r -0.04 2 2.5 0 0.5 1.5 p_t[GeV/c] $v_{1,1}(p_{\rm T}^{\rm a}, p_{\rm T}^{\rm b}) pprox v_1(p_{\rm T}^{\rm a})v_1(p_{\rm T}^{\rm b}) - rac{p_{\rm T}^{\rm a}p_{\rm T}^{\rm b}}{M\langle p_{\rm T}^2
angle}$ Momentum conservation **Dipolar flow**

Dipolar flow from AMPT

Event plane correlations: How are $(\varepsilon_n, \Phi_n^*)$ transferred to (v_n, Φ_n) ?

• EP correlation probes into the initial ε_n correlation and final state mode-mixing

PHYSICAL REVIEW C 90, 024905 (2014)

Measurement of event-plane correlations in $\sqrt{s_{NN}} = 2.76$ TeV lead-lead collisions with the ATLAS detector

Three types of longitudinal correlations

Fluctuation of sources in two nuclei \rightarrow fluc. of size and transverse-shape

Event shape engineering with AMPT

PHYSICAL REVIEW C 90, 034905 (2014)

Method for studying the rapidity fluctuation and de-correlation of harmonic flow in heavy-ion collisions

Jiangyong Jia^{1,2,*} and Peng Huo¹

PHYSICAL REVIEW C 90, 024910 (2014)

Elucidating the event-by-event flow fluctuations in heavy-ion collisions via the event-shape selection technique

Peng Huo (霍鹏),¹ Jiangyong Jia (贾江涌),^{1,2,*} and Soumya Mohapatra^{1,†}

PHYSICAL REVIEW C 90, 034915 (2014)

Forward-backward eccentricity and participant-plane angle fluctuations and their influences on longitudinal dynamics of collective flow

Jiangyong Jia^{1,2,*} and Peng Huo¹

Event shape engineering with AMPT

Longitudinal multiplicity fluctuations

PHYSICAL REVIEW C 93, 044905 (2016)

Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

Jiangyong Jia,^{1,2,*} Sooraj Radhakrishnan,¹ and Mingliang Zhou^{1,†}

$$C_{N}(\eta_{1},\eta_{2}) = \frac{\left\langle N(\eta_{1})N(\eta_{2})\right\rangle}{\left\langle N(\eta_{1})\right\rangle \left\langle N(\eta_{2})\right\rangle}$$

Longitudinal multiplicity fluctuations from AMPT⁹

 $C_{N}(\eta_{1},\eta_{2}) = \frac{\langle N(\eta_{1})N(\eta_{2})\rangle}{\langle N(\eta_{1})\rangle\langle N(\eta_{2})\rangle}$

PHYSICAL REVIEW C 93, 044905 (2016)

Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

Jiangyong Jia,^{1,2,*} Sooraj Radhakrishnan,¹ and Mingliang Zhou^{1,†}

Peculiar dip in around $\eta_1 \sim \eta_2$ due to coalesce effects?

PID dependence from AMPT

- Baryons show a strong depletion in the short range region.
- Long-range correlations are consistent.

Coalesce mechanism?

Some thoughts on AMPT

- AMPT model has wrong short-wave length physics, but still appears to be a good effective long-wave length model.
 - Elastic scattering only, in principle not different from, e.g. cold atom system once the coupling is tuned.
- Details of the transport mechanism must be reflected by the non-equilibrium corrections via transport properties.
- It would be good to find out observables that are sensitive to these non-equilibrium corrections.
 - Higher p_T production and correlation, heavy quark diffusion?
 - Flow factorization breaking in p_T
 - Longitudinal flow and multiplicity dynamics.

"Long-range collectivity" in small systems

• What is collectivity?

• How to distinguish initial and final state effects?

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

July 25–27, 2017

Long-range collectivity in different systems

Long-range correlation in momentum space comes

- directly from early time t~0 (CGC)
- or it is a final state response to spatial fluctuation at t=0 (hydro).
 What is the timescale for emergence of collectivity?

Examples of initial vs final state scenarios

CGC

Domain of color fields of size $1/Q_s$, each produce multi-particles correlated across full η . Uncorr. between domains, strong fluct. in Q_s More domains, smaller v_n , more Q_s fluct, stronger v_n

Well motivated model framework, lack systematic treatment

Hydro

Hot spots (domains) in transverse plane e.g IPplasma, boost-invariant geometry shape

Expansion and interaction of hot spots generate collectivity

 v_n depends on distribution of hot spots (ϵ_n) and transport properties.

Ongoing debate whether hydro is applicable in small systems

Features of collectivity in HM pPb

Features of collectivity in HM pp

Non-flow can generate long-range (away-jet) or multi-particle correlation (fragmentation) but not both

Collectivity must mean both

Azimuthal correlation from collectivity

Original dijet

Azimuthal correlation from collectivity

They give the same flow coefficient c_n {4} and v_n {4}, although clearly the first case is non-flow and the second case would be classified as flow

Azimuthal correlation from collectivity

They give the same flow coefficient c_n {4} and v_n {4}, although clearly the first case is non-flow and the second case would be classified as flow

Azumuthal corr. alone can't distinguish flow & non-flow.

Long-range collectivity via subevent cumulants

19

pPb: methods consistent for N_{ch} >100, but split below that pp: Only subevent method gives reliable negative c_2 {4} in broad range of N_{ch}

Sign-change of c_2 {4}

• Most positive $c_2{4}$ in standard cumulants are jets and dijets.

• Remaining positive $c_2{4}$ in 3-subevent due to residual dijets.

Glasma diagram contribution is small?

\sqrt{s} dependence of $c_2{4}$ at RHIC

- Surprising features: v_2 {4} larger at lower \sqrt{s} , reaching v_2 {2}.
- Difficult to describe in both CGC and hydro
- Important to understand non-flow in standard cumulant method

Does collectivity turn off at low N_{ch}?

peripheral subtraction including peripheral pedestal (assuming the peripheral also has flow) →so called template fit peripheral subtraction not including peripheral pedestal (assuming the peripheral has no flow) \rightarrow so call peripheral sub.

Does collectivity turn off at low N_{ch}?

v₂{4} from 3-subevent show no dependence on N_{ch}.
 Why v₂{2} _{peri. sub} ≈ v₂{4} in pp? surprising because:
 v_n{2}⁴ - v_n{4}⁴ = ⟨v_n⁴⟩ - ⟨v_n²⟩² = ⟨(v_n² - ⟨v_n²⟩)²⟩ ≥ 0

v₂{4} also shows No hint of collectivity turning-off at low N_{ch}! Challenge both CGC and standard hydro?

Role of initial geometry is very different

From Schenke, Schlichting, Venugopalan,

The orientation of collectivity is unrelated to initial eccentricity →Very different from hydrodynamics

Role of initial geometry is very different

From Schenke, Schlichting, Venugopalan,

The orientation of collectivity is unrelated to initial eccentricity →Very different from hydrodynamics Expect contribution diminish as system size is increased

Presence of both initial and final state scenarios?

27

Phases of collectivity from CGC and hydro are unrelated \rightarrow a minimum of total v_n at certain system size?

System size dependence

Clear dependence on collision systems but ~no dependence on \sqrt{s} v_2^{pp} (high-mul) $\leq v_2^{pPb}$ (low-mul)!

CGC Unclear if the pp/pPb hierarchy is expected.

HydroInterplay between viscous damping and initial ε_nPb: may seen an average geometry effectpp: geometry maybe poorly correlated with N_{ch}.

Kevin Welsh, Jordan Singer, and Ulrich Heinz 1605.09418

Geometry scan at RHIC

 $v_2^{pAu} < v_2^{dAu} \le v_2^{HeAu}$ $v_3^{dAu} < v_3^{HeAu}$

Hierarchy compatible with initial geometry + final state effects Look forward to the CGC predictions

Summary of collectivity in small system

• Collectivity associated with ridge must involve many particles in multiple η ranges \rightarrow subevent methods

Challenge for both initial & final state scenarios?

- LHC v_2 associated with ridge does not turn off at low N_{ch} .
- RHIC v_2 {4} increases and approaches v_2 {2} at lower \sqrt{s}

Challenge for initial state only scenarios?

- LHC $v_2^{pp} < v_2^{pPb}$ in all N_{ch} and all \sqrt{s} .
- LHC $c_2{4} < 0$ down to very low N_{ch} and more negative at higher p_T .
- RHIC geometry scan suggest ordering of v_n follows that of ε_n .

Coexistence of initial state & final state scenarios?

Key issue: How to constrain timescales for emergence of collectivity? the role of CGC, preflow and hydro?