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Abstract. Based on a Wold decomposition for families of partial
isometries and projections of Cuntz-Krieger-Toeplitz-type, we ex-
tend several fundamental theorems from the case of single vertex
graphs to the general case of countable directed graphs with no
sinks. We prove a Szego-type factorization theorem for CKT fam-
ilies, which leads to information on the structure of the unit ball
in free semigroupoid algebras, and show that joint similarity im-
plies joint unitary equivalence for such families. For each graph we
prove a generalization of von Neumann’s inequality which applies
to row contractions of operators on Hilbert space which are related
to the graph in a natural way. This yields a functional calculus de-
termined by quiver algebras and free semigroupoid algebras. We
establish a generalization of Coburn’s theorem for the C∗-algebra
of a CKT family, and prove a universality theorem for C∗-algebras
generated by these families. In both cases, the C∗-algebras gener-
ated by quiver algebras play the universal role.

1. Introduction

In [20], the second author and Jury derived aWold decomposition for
families of partial isometries which satisfy the ‘Cuntz-Krieger-Toeplitz’
directed graph relations, what we call the (†) relations. This theo-
rem may also be obtained as a special case of the Wold decomposi-
tion recently established by Muhly and Solel [29] for the more general
setting of induced representations of tensor algebras. In [20] it was
used to investigate the internal structure of free semigroupoid algebras
[18, 20, 21, 25, 26] and a dilation theory was built around it in [19].
In this paper, we apply this Wold decomposition to establish extensions
of a number of fundamental theorems to the case of general countable
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directed graphs with no sinks, whereby the extended results can be
regarded as occurring for single vertex graphs.

The next section (§2) contains background information. In §3 we
include an expanded discussion of the Wold decomposition and extend
a folklore result for isometries on Hilbert space: We prove that CKT
families {Se, Px} of partial isometries and projections are jointly similar
precisely when they are jointly unitarily equivalent. We also establish
a Szego-type factorization theorem [36, 34] for CKT families. In §4
we use the Szego theorem to obtain detailed information [11] on the
unit ball of semigroupoid algebras which are partly free [25, 26].
Given a countable directed graph G with no sinks, in §5 we show

there is a von Neumann inequality for the set of row contractions
T = (T1, . . . , Tn) of operators on Hilbert space such that the joint
actions of the Ti are related to G in a natural way. In the case of
single vertex graphs, we recover the original form of the von Neumann
inequality [41, 38] (when n = 1) and Popescu’s version [33] (when
2 ≤ n ≤ ∞). If n ≥ 2, the estimates obtained are sharper than the es-
timates of [33] in general. In fact, we show these estimates respect the
partial ordering on directed graphs induced by graph deformations. An
immediate consequence of the von Neumann inequality is the existence
of functional calculus (§6) for row contractions based on quiver algebras
[21, 25, 26, 28, 29, 30] and free semigroupoid algebras. There is a
long history of both positive and negative results associated with von
Neumann inequalities for the multivariable setting, and this work fits
in with such efforts. See [1, 2, 3, 6, 9, 12, 17, 30, 33] for some of the
different perspectives. In connection with the current work, see [30]
where a more general form of the von Neumann inequality is obtained.
In the final section, we apply the Wold decomposition to obtain a pair

of universality theorems for directed graph C∗-algebras. In particular,
a generalization of Coburn’s theorem [8, 32] for isometries on Hilbert
space is established: The C∗-algebra generated by any CKT family
which satisfies a natural non-unitary condition is isomorphic to the
C∗-algebra generated by the corresponding quiver algebra. Further,
we prove that the C∗-algebras generated by quiver algebras are the
universal C∗-algebras for the CKT relations.

2. Preliminaries

Let G be a countable directed graph with directed edges E(G) and
vertices V(G). Given a finite path w in G, we write w = ywx when the
source vertex of w is s(w) = x and the range vertex of w is r(w) = y.
(For vertices x ∈ V(G) put r(x) = x = s(x).) Say that G has a source
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at x ∈ V(G) if there are no edges which finish at x; that is, r(e) 6= x for
e ∈ E(G). Similarly, G has a sink at x ∈ V(G) if s(e) 6= x for e ∈ E(G).
Define the free semigroupoid F+(G) to be the set of all vertices V(G)
and all finite paths in G, written in reduced form, with the natural
operations of concatenation of paths allowed by the graph structure.
A path w = ek · · · e1 ∈ F+(G) is said to be a loop if s(w) = r(w).
If in addition, r(ei) 6= r(ej), for i 6= j, then w is said to be vertex-
simple. A vertex-simple loop w = ek · · · e1, ei ∈ E(G), has an entrance
if there exists an edge f ∈ E(G) such that r(f) = r(ei), for some i, but
f 6= ei. Finally, let P+

G be the path algebra generated by G; this is the
set of polynomials with complex coefficients and monomials belonging
to F+(G).
Given a family of non-zero partial isometries {Se : e ∈ E(G)} and

projections {Px : x ∈ V(G)} which act on a common Hilbert space,
consider the following relations:

(†)















(i) PxPy = 0 for all x, y ∈ V(G), x 6= y
(ii) S∗

eSf = 0 for all e, f ∈ E(G), e 6= f
(iii) S∗

eSe = Ps(e) for all e ∈ E(G)
(iv)

∑

r(e)=x SeS
∗
e ≤ Px for all x ∈ V(G)

If equality is achieved in (iv) for all x ∈ V(G), then we refer to the
relations as (‡). Observe that (‡) can only occur for G with no sources.
We mention that the operator algebras generated by families {Se, Px}
which satisfy (†) have been the focus of intense recent interest. They
include so-called Cuntz-Krieger directed graph C∗-algebras, free semi-
groupoid algebras, quiver algebras, etc. (The references [4, 10, 18,
20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 37, 39] give a starting point
for the interested reader.) Let us mention at this point the existence
of the universal C∗-algebra C∗(G) [22, 23, 24] for the relations (‡) for
a given directed graph G. From these operator algebra motivations,
we refer to (‡) as the Cuntz-Krieger (CK) relations, and (†) as the
Cuntz-Krieger-Toeplitz relations (CKT).
We next describe the prototypical ‘pure model’ [19, 20] in the Wold

decomposition used here. (More details are given in the next section.)
LetG be a countable directed graph (with no sinks) and defineHG to be
the Hilbert space with orthonormal basis given by {ξw : w ∈ F+(G)}.
This generalized ‘Fock space’ associated with a directed graph was
introduced by Muhly [28]. For e ∈ E(G) define partial isometries Le

on HG by

Leξw =

{

ξew if r(w) = s(e)
0 otherwise

(1)
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Observe that L∗
eLe = Ps(e) is the projection onto span{ξw : r(w) =

s(e)}, and that the family {Le, Px} satisfies (†). For x ∈ V(G), we
define the ‘tree component’ subspace Hx = span{ξw : w = wx}. Notice
that these subspaces are reducing for the Le. In fact, the subspaces
{Hx : x ∈ V(G)} form the unique family of minimal non-zero joint
reducing subspaces for the Le [25].
Given a directed graph G, the associated quiver algebra AG is the

norm-closed algebra generated by {Le, Px : e ∈ E(G), x ∈ V(G)}, where
the Px here are the vertex projections associated with the pure model
(1). The associated free semigroupoid algebra LG is the weak operator
topology closure of AG. The commutant of LG coincides with L′

G =
RG [25], the wot-closed algebra generated by partial isometries Re,
defined on HG (as in (1)) by Reξw = ξwe, together with their initial
projections which we denote by Qx, x ∈ V(G). The projections Qx are
precisely the projections onto the tree component subspaces Hx.
We mention that the graph G was proved to be a complete invariant

for AG (and LG) up to unitary equivalence by Kribs and Power [25].
More recently, Solel [37] proved G is an invariant for isometric isomor-
phism and, independently, the authors [21] proved that G is a banach
algebra isomorphism invariant for AG. (In fact, when G has no sources
or no sinks it was proved in [21] that G is an algebraic isomorphism
invariant for AG.) This is a true departure from the C∗-algebra case,
where, for instance, it is not hard to see that G is not a ∗-isomorphism
invariant for C∗(G). (e.g. For many non-isomorphic graphs, C∗(G) is
∗-isomorphic to the set of compact operators.)

3. Wold Decomposition

The Wold decomposition from [20] (which assumed G had no sinks)
asserts that every set of partial isometries {Se : e ∈ E(G)} which
satisfies (†) on a Hilbert space H is jointly unitarily equivalent to a
direct sum

Se ' Ve ⊕
(

∑

x∈V (G)

⊕L(αx)
e

∣

∣

∣

H(αx)
x

)

for e ∈ E(G),(2)

where V = (Ve)e∈E(G) satisfies (‡), and hence determines a representa-
tion of a Cuntz-Krieger directed graph C∗-algebra. As indicated above,
this result can be derived from a special case of the Wold decomposition
from [29]. The restricted ampliations of the Le in this decomposition
are said to form the pure part of the dilation. (Notice that the pure
model (1) is captured with Ve ≡ 0 and αx ≡ 1.) The αx are called the
vertex multiplicities in the dilation and are computed from {Se, Px} via



WOLD DECOMPOSITION 5

the equations

αx = rank
(

Px

(

I −
∑

e

SeS
∗
e

)

)

for x ∈ V(G).(3)

More specifically, the joint unitary equivalence (2) arises from the
spatial decomposition H = Hc ⊕ Hp where Hc = H⊥

p and Hp =
∑

w∈F+(G)⊕w(S)W are joint reducing subspaces for the Se, with W
the wandering subspace for S given by

W = Ran
(

I −
∑

e

SeS
∗
e

)

=
⋂

e

kerS∗
e .

Observe for x ∈ V(G) that PxW = Ran
(

Px −
∑

r(e)=x SeS
∗
e

)

is a sub-
space of W. The subspaces Hc and Hp have the alternate descriptions

Hp =
{

ξ ∈ H : lim
d→∞

∑

w∈F+(G)d

||w(S)∗ξ||2 = 0
}

Hc =
⋂

d≥1

{

ξ ∈ H :
∑

w∈F+(G)d

w(S)w(S)∗ξ = ξ
}

,(4)

where F+(G)d is the set of paths inside F+(G) of length d.
As a direct consequence of the Wold decomposition, we prove a gen-

eralization of the well-known fact that similar isometries are unitarily
equivalent. This result also generalizes Popescu’s theorem [32] for the
case of n-tuples of isometries with orthogonal ranges, which occurs
below when G is a single vertex graph with n ≥ 2 edges.

Theorem 3.1. Let G be a countable directed graph with no sinks. If
{Se, Px} and {S ′

e, P
′
x} both satisfy (†) for G and are jointly similar, then

they are jointly unitarily equivalent. That is, if there is an invertible
operator A with

ASeA
−1 = S ′

e for e ∈ E(G)

APxA
−1 = P ′

x for x ∈ V(G),

then there is a unitary operator U such that

USeU
∗ = S ′

e for e ∈ E(G)

UPxU
∗ = P ′

x for x ∈ V(G).

Proof. Without loss of generality assume both families of operators
act on H. Let H = Hc ⊕ Hp = H′

c ⊕ H′
p be the spatial decomposi-

tions associated with the Wold decompositions (2) for the Se and S ′
e

respectively.
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For e ∈ E(G) let

Se|Hc ≡ Ve, Se|Hp ≡ We, S ′
e|H′

c
≡ V ′

e , S ′
e|H′

p
≡ W ′

e.

By hypothesis, for e ∈ E(G) we have

kerS∗
e = ker(A∗S ′∗

e (A
∗)−1) = A∗( ker(S ′∗

e )
)

.

Let W and W ′ be the wandering subspaces for S and S ′ respectively.
Then

A∗(W ′) = A∗
(
⋂

e

kerS ′∗
e

)

=
⋂

e

kerS∗
e = W.

In particular, dimW = dimW ′. But more is true. Recall that the
vertex multiplicities in the pure parts of the Wold decompositions for S
and S ′ are given by αx = dimPxW and α′

x = dimPxW ′. By hypothesis
and the previous identity we have

PxW = PxA
∗W ′ = A∗P ′

xW ′ for x ∈ V(G),

and hence the invertibility of A yields αx = α′
x for x ∈ V(G).

Thus, it is easily seen from the Wold decomposition that there is a
unitary U1 : Hp → H′

p which intertwines the pure parts of S and S ′;

U1WeU
∗
1 = W ′

e for e ∈ E(G).(5)

Since G has no sinks, every vertex projection Px is the initial projection
for some Se. Further, recall that Hp (respectively H′

p) is a reducing
subspace for the Se (respectively S ′

e). It follows that the restricted
vertex projections Px|Hp and P ′

x|H′
p
are also intertwined by U1.

We now show that the restrictions to Hc,H′
c may be spatially in-

tertwined as well. As ASe = S ′
eA and SeA

−1 = A−1S ′
e for e ∈ E(G),

equation (4) applied for the Se and the S ′
e implies that AHc = H′

c. Let
A0 = A|Hc : Hc → H′

c and observe that A0 is invertible. Then we have

A0Ve = V ′
eA0 for e ∈ E(G).

In particular, equation (4) gives

A0 = A0(IHc) = A0

(
∑

e

VeV
∗
e

)

=
∑

e

V ′
eA0V

∗
e .

Thus the (†) relations and the hypothesis implies that for e ∈ E(G),

V ′∗
e A0 = V ′∗

e V ′
eA0V

∗
e = P ′

s(e)A0V
∗
e = A0Ps(e)V

∗
e = A0V

∗
e .

It follows from the adjoint of this identity that

VeA
∗
0A0 = A∗

0V
′
eA0 = A∗

0A0Ve for e ∈ E(G).(6)
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Consider the polar decomposition of A0 = U2B, where U2 : Hc → H′
c

is unitary and B = (A∗
0A0)

1/2 is an invertible operator on Hc. By (6)
we have

VeB = BVe for e ∈ E(G),

and it follows that

V ′
eU2 = V ′

eU2BB−1 = V ′
eA0B

−1

= A0VeB
−1 = U2BVeB

−1 = U2Ve.

Thus

U2Ve = V ′
eU2 for e ∈ E(G).(7)

Therefore, we may define a unitary U = U1 ⊕ U2 on H so that (5)
and (7) imply

USe = S ′
eU

∗ for e ∈ E(G).

As G has no sinks, it follows that the projections Px and P ′
x are also

intertwined by the unitary U . ¤

We now present another application of the Wold decomposition that
allows us to prove a Szego-type factorization theorem. This theorem
generalizes earlier results of Rosenblum and Rovnyak [36, Theorem
3.4] and Popescu [34].

Theorem 3.2. Let G be a countable directed graph with no sinks and let
{Px}x∈V(G) and {Se}e∈E(G) be sets of projections and partial isometries
which satisfy (†). Assume that {Se}e∈E(G) is pure. If Y ∈ B(H) is a
positive invertible operator then the following assertions are equivalent:

(i) Y = A∗A for some A ∈ B(H) which commutes with {Px}x∈V(G)

and {Se}e∈E(G).
(ii) S∗

eY Sf = Y S∗
eSf = S∗

eSfY for all e, f ∈ E(G).

Proof. We need to prove that (ii) implies (i). Let Tu ≡ Y 1/2SuY
−1/2 for

u ∈ F+(G). We will show that the family {Te}e∈E(G) is jointly unitarily
equivalent to {Se}e∈E(G). Towards this end notice that T ∗

e Te = Ps(e)

and TeT
∗
e ≤ Pr(e). Indeed,

T ∗
e Te = Y −1/2S∗

eY SeY
−1/2

= Y −1/2Y Y −1/2Ps(e) = Ps(e) = S∗
eSe,

and a similar calculation shows the claimed inequality. Therefore, the
collections {Px}x∈V(G) and {Te}e∈E(G) satisfy the requirements of the
Wold Decomposition; i.e., the relations (†), and therefore the earlier
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discussion applies. First, we determine that the Cuntz-Krieger part of
{Te}e∈E(G) is trivial. Indeed,

Hc =
∧

k∈N

∨

|u|=k

Tu(HG)

=
∧

k∈N

∨

|u|=k

Y 1/2Su(H)

= Y 1/2
(
∧

k∈N

∨

|u|=k

Su(H)
)

= {0}.

Thus {Te}e∈E(G) is pure. Let ˜W be its wandering subspace and let
˜Wx ≡ Px

˜W ⊆ ˜W. Then by the Wold decomposition there exists a
unitary operator

V : H −→
∑

x∈V(G)

⊕(QxHG)
(βx)

such that for any e ∈ E(G),

V TeV
∗ =

∑

x∈V(G)

⊕L(βx)
e

∣

∣

∣

(QxHG)(βx)
,

where, βx = dim ˜Wx, x ∈ V(G). Similarly, there exists a unitary

U : H −→
∑

x∈V(G)

⊕(QxHG)
(αx)

such that for any e ∈ E(G),

USeU
∗ =

∑

x∈V(G)

⊕L(αx)
e

∣

∣

∣

(QxHG)(αx)
.

In order to establish the joint unitary equivalence between the families
{Te}e∈E(G) and {Se}e∈E(G), we will prove that V TeV

∗ = U∗SeU , e ∈
E(G). From what we have proved so far, it follows that we need only to

to verify βx = αx, for all x ∈ V(G). Fix an x ∈ V(G) and let ξ ∈ ˜Wx.
Then for all e ∈ E(G) and ζ ∈ HG, we have

(Y 1/2ξ , Seζ) = (ξ , Y 1/2Seζ) = (ξ , TeY
1/2ζ) = 0.

Thus by the invertibility of Y we have Y 1/2
˜W = W. But Y 1/2T ∗

e Te =
S∗
eSeY

1/2 for e ∈ E(G) since the same is true for Y . Hence, as G has
no sinks, every Px is equal to some initial projection S∗

eSe = T ∗
e Te and

it follows that Y 1/2
˜Wx = Wx for x ∈ V(G) since Y 1/2 is invertible.

Therefore, the identity βx = αx holds for all x ∈ V(G), as required.
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We have shown that V TeV
∗ = USeU

∗ for e ∈ E(G). In particular,
this implies that U∗V Y 1/2Se = SeU

∗V Y 1/2, for all e ∈ E(G), and the
operator U∗V Y 1/2 commutes with {Se}e∈E(G). Moreover, notice that
for e ∈ E(G),

S∗
eSeU

∗V Y 1/2 = S∗
eU

∗V TeV
∗V Y 1/2

= U∗V T ∗
e V

∗V TeY
1/2 = U∗V Y 1/2T ∗

e Te,

and it follows that U∗V Y 1/2 commutes with {Px}x∈V(G) as well. The

desired operator for (i) is A = U∗V Y 1/2. ¤

Using the fact that R′
G = LG we obtain the following.

Corollary 3.3. Let G be a countable directed graph with no sinks. If
Y ∈ B(H) is a positive invertible operator then the following assertions
are equivalent:

(i) Y = A∗A for some A ∈ LG.
(ii) R∗

eY Rf = Y R∗
eRf = R∗

eRfY for all e, f ∈ E(G).

4. An Application To The Geometry Of The Unit Ball

In [11], Davidson, Pitts and the first author proved that every oper-
ator in the open unit ball of a w*-closed operator algebra generated by
n isometries with orthogonal ranges, is the average of isometries. This
result applies in particular to the noncommutative Toeplitz algebra Ln,
thus extending a classical result of Marshall [27] from function theory
to the noncommutative setting. Using the Szego type factorization the-
orem we proved earlier, we extend the result of [11] to a broad class of
free semigroupoid algebras.
The techniques of [11] yield a more general result than the one

quoted in the introduction. In order to state it, we need the following.

Definition 4.1. An operator algebraA satisfies the factorization prop-
erty if for any A ∈ A with ‖A‖ < 1, the equation X∗X = I −A∗A has
a solution in X ∈ A.

It is clear from Corollary 3.3 that any free semigroupoid algebra for
a graph with no sinks satisfies the factorization property.

Theorem 4.2. [11] Let A be a norm closed operator algebra satisfying
the following two properties:

(i) A satisfies the factorization property.
(ii) A contains two isometries with orthogonal ranges.

If ‖A‖ < 1− 1
k
, A ∈ A, k ∈ N, then A is the average of 6k isometries.
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Remark 4.3. The above result is not explicitly stated as a theorem
in [11] but its validity is ascertained on [11, page 118].

On the other hand, in [26] Power and the second author identified
a property for a directed graph G that is equivalent to the existence of
two isometries in LG with orthogonal ranges.

Definition 4.4. A countable directed graph satisfies the uniform ape-
riodic path property if the saturation of each vertex x ∈ V(G) either
contains two distinct loops or an infinite proper path.

Theorem 4.5. [26] Let G be a countable directed graph. Then G
satisfies the uniform aperiodic path property if and only if LG contains
a pair of isometries with orthogonal ranges.

In light of Theorems 4.2 and 3.3, the previous result provides the
last step for establishing the main result of this section.

Theorem 4.6. Let G be a countable directed graph which satisfies the
uniform aperiodic path property and let A ∈ LG. If ‖A‖ < 1− 1

k
, k ∈ N,

then A is the average of 6k isometries.

Remark 4.7. What about other free semigroupoid algebras? Clearly,
H∞ fails the aperiodic path property and yet the convex combinations
of the isometries cover the open unit ball. On the other hand, not
all free semigroupoid algebras satisfy that property. Indeed, if G is a
graph with two vertices x, y and an edge e = xey, then LG is the direct
sum of the 2× 2 upper triangular matrices with C. The convex hull of
the isometries in this algebra consists of the diagonal matrices.

5. Von Neumann Inequality

Given a row contraction T = (T1, . . . , Tn) of (non-zero) operators
acting on a Hilbert space H, consider a family of mutually orthogonal
projections P = {Px}x∈J on H which sum to the identity operator and
stabilize T in the following sense:

TiPx, PxTi ∈ {Ti, 0} for 1 ≤ i ≤ n and x ∈ J .(8)

Observe that these relations determine a directed graph G with vertex
set V(G) ≡ J and n directed edges e1, . . . en, where r(ei) and s(ei) are
the unique vertices with Pr(ei)TiPs(ei) = Ti. When there is no confusion,
we shall write T = (Te)e∈E(G) if an ordering of the Ti has been induced
by a fixed projection set P.
Let T = (Te)e∈E(G) and P = {Px}x∈V(G) satisfy (8) on H for a graph

G with no sinks. Then it was shown in [19] (and previously in a more
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abstract form [30] for the general setting of tensor algebras over C∗-
correspondences) that there are partial isometries {Se : e ∈ E(G)} on
a space K ⊇ H such that

(a) S = (Se)e∈E(G) satisfy (†).
(b) H reduces each S∗

eSe, e ∈ E(G), and {S∗
eSe|H} = P.

(c) H is invariant for each S∗
e with S∗

e |H = T ∗
e , e ∈ E(G).

(d) K =
∨

w∈F+(G)w(S)H.

Such a minimal partially isometric dilation of T is unique up to a
unitary equivalence which fixes H. The vertex multiplicities αx in such
a dilation are determined by (3) and, in fact, it was shown in [19] that
they may be computed from T,P by

αx = rank
(

Px

(

IH −
∑

e

TeT
∗
e

)

)

for x ∈ V(G).(9)

For a fixed directed graph G we shall define the supremum norm
||p||∞ of a polynomial p ∈ P+

G by ||p||∞ ≡ ||p(LG)||, where LG =
(Le)e∈E(G) is the canonical pure model (1) for G. This definition is in
line with other settings, where the norm ||p||∞ is determined by the
pure model in this manner. As the simplest example, recall that the
norm of a polynomial p on the unit complex disk satisfies ||p||∞ =
||p(U+)||, where U+ is the unilateral forward shift [38].

Theorem 5.1. Let G be a countable directed graph with no sinks. Let
T = (Te)e∈E(G) be a row contraction on a Hilbert space H which satisfies
(8) for {Px : x ∈ V(G)}. Then

||p(T )|| ≤ ||p||∞ for all p ∈ P+
G .(10)

Proof. Let S = (Se)e∈E(G) be the minimal partially isometric dilation
of T associated with the projections {Px}. Let p belong to P+

G . Then
p(T ) = PH p(V )|H by virtue of (a), (b) and (c) above, and hence the
Wold decomposition implies that

||p(T )|| ≤ ||p(S)|| = max{||p(V )||, ||p(W )||},
where V = (Ve)e∈E(G) satisfies (‡) and W = (We)e∈E(G) is pure and
satisfies (†).
The decomposition (2) of the pure part W of the minimal dilation

S clearly implies that

||p(W )|| ≤ ||p(LG)|| ≡ ||p||∞.

Thus, we shall finish the proof by showing that ||p(S)|| ≤ ||p(LG)|| for
every row contraction S = (Se)e∈E(G) which satisfies (‡) for G.
To see this, let S = (Se)e∈E(G) satisfy (‡) and let 0 < r < 1. Then

rS = (rSe)e∈E(G) is a pure row contraction, and hence the minimal
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partially isometric dilation of rS with respect to {S∗
eSe : e ∈ E(G)} is

given by the form (2) with Ve ≡ 0. We claim that the vertex multiplic-
ities for this pure dilation S ′ = (S ′

e)e∈E(G) satisfy αx ≥ 1 for x ∈ V(G).
Indeed, from (9) these multiplicities are determined by

αx = rank
(

Px −
∑

e=xe

(rSe)(rSe)
∗
)

for x ∈ V(G).

Thus if αx = 0, then the (‡) relations give
∑

e=xe

SeS
∗
e = Px = r2

∑

e=xe

SeS
∗
e ,

which is clearly a contradiction since the Px are assumed to be non-zero
in the (†) relations.
As αx ≥ 1 for x ∈ V(G), we have

||p(rS)|| ≤ ||p(S ′)|| = ||p(LG)||.

Since 0 < r < 1 was arbitrary, it follows that ||p(S)|| ≤ ||p(LG)||, as
required. ¤

Remark 5.2. In the case of single vertex graphs with n edges, the
above theorem recovers the classical von Neumann inequality [41, 38]
(when n = 1) and Popescu’s version [6, 33] (when 2 ≤ n ≤ ∞). We
also mention that the conclusion of Theorem 5.1 can be proved through
an application of Theorem 3.10 from [30]. However, we note that our
direct proof via the Wold decomposition is novel and provides a new
perspective on the problem.

5.1. Partially Ordered Sets of Directed Graphs. An alternative
perspective on Theorem 5.1 is the following: Given a countable directed
graph G with no sinks, the theorem shows there is a corresponding
von Neumann inequality with estimate given by (for this discussion)
||p||G,∞ ≡ ||p(LG)|| for p ∈ P+

G , recalling that LG = (Le)e∈E(G). On
the other hand, every directed graph determines a partially ordered set
of directed graphs through its deformations. A directed graph G2 is
a deformation of G1 if G2 is obtained from G1 by identifying certain
vertices in G1. The partial order is defined by: G1 ≤ G2 if and only
if G2 is a deformation of G1. (This perspective was also discussed in
[19] in the context of dilation theory, where it was shown that every
row contraction T generates such a partially ordered set of directed
graphs through its family of minimal partially isometric dilations.) We
observe below that the von Neumann inequality estimates respect the
ordering in such a partially ordered set of directed graphs.



WOLD DECOMPOSITION 13

Let Cn be the directed graph with a single vertex and n directed loop
edges. The Sz.-Nagy and Popescu estimates are given by ||p(LCn)||,
where p is allowed to be any polynomial in n noncommuting variables
when n ≥ 2. Let G be a countable directed graph with n edges. Then
LG = (Le)e∈E(G) is a pure row contraction (in the n-tuple sense [35])
and hence its (unique) minimal isometric dilation [7, 15, 35] is given by
a multiple of LCn = (L1, . . . , Ln), where the Li are the creation isome-
tries on the full n-variable Fock space. Thus, given LG = (Le)e∈E(G)

and such a polynomial p, we shall write p(LG) for the evaluation of p at
the Le which arises from the ordering of the Le induced by the minimal
isometric dilation of LG.

Corollary 5.3. If G1 ≤ G2 are directed graphs with no sinks and n
directed edges, then for every polynomial p in n noncommuting variables

||p||G1,∞ ≤ ||p||G2,∞ ≤ ||p||Cn,∞.

Proof. The relation G1 ≤ G2 can be seen to induce a G2-ordering on
LG1 , where the corresponding projections which stabilize LG1 are given
by the sums of the initial projections for Le, e ∈ E(G1), which are
naturally induced by the deformation. Hence the first inequality is a
consequence of Theorem 5.1. The last inequality follows from Popescu’s
von Neumann inequality since LG1 and LG2 are both row contractions
and n-tuples. ¤

It is not hard to see that ||p||G,∞ gives a sharper estimate than
||p(LCn)|| in general when n ≥ 2. Consider the following simple il-
lustration of this fact.

Example 5.4. Let T1, T2 be contractions on a Hilbert space H and
define operators on H(2) by

V1 =

(

0 0
T1 0

)

and V2 =

(

0 T2

0 0

)

.

Then V = (V1, V2) is a row contraction which is stabilized by P =
{P1, P2} where Pi ≡ PH are the projections of H(2) onto its coordinate
spaces. Let G be the graph with two vertices x, y and edges e = yex,
f = xfy. Then LG = (Le, Lf ) in this case. Observe that C2 is a
deformation (the only one) of G. Let LC2 = (L1, L2), where L1, L2 are
the creation isometries on the full 2-variable Fock space. Then Le+Lf

is an isometry and L1 + L2 =
√
2L where L is an isometry, and hence

||V1 + V2|| ≤ ||Le + Lf || = 1 <
√
2 = ||L1 + L2||.

Further, the Le + Lf estimate is best possible in this example since
||V1 + V2|| = 1 if ||Ti|| = 1 for i = 1 or 2.
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6. Functional Calculus

The von Neumann inequality leads to a natural functional calculus
determined by quiver algebras and, in the case of pure row contractions,
by free semigroupoid algebras. Observe that when T = (Te)e∈E(G) is
a row contraction with G-ordering induced by projections P = {Px}
which satisfy (8) for T , we may consider all polynomials {p(T ) : p ∈
P+

G} in the generators Te, Px. The following result is an immediate
consequence of Theorem 5.1 and may also be obtained as a special case
of Theorem 3.10 of [30].

Theorem 6.1. Let G be a countable directed graph with no sinks. Let
T = (Te)e∈E(G) be a row contraction on H which satisfies (8) for {P ′

x :
x ∈ V(G)}. Then there is a contractive homomorphism

Ψ : AG −→ B(H)

defined by Ψ(Le) = Te and Ψ(Px) = P ′
x for e ∈ E(G) and x ∈ V(G).

When the row contraction satisfies an extra condition, the functional
calculus can be extended to LG.

Theorem 6.2. Let G be a countable directed graph with no sinks. Let
T = (Te)e∈E(G) be a row contraction on H which satisfies (8) for {P ′

x :
x ∈ V(G)}, and suppose that

lim
d→∞

(
∑

w∈F+(G)d

||w(T )∗ξ||
)

= 0 for ξ ∈ H.(11)

Then there is a contractive homomorphism

Ψ : LG −→ B(H)

defined by Ψ(Le) = Te and Ψ(Px) = P ′
x for e ∈ E(G) and x ∈ V(G).

Proof. Condition (11) means precisely that the minimal partially iso-
metric dilation V = (Ve)e∈E(G) of T with respect to {P ′

x} is pure
[19]. By the Wold decomposition for V , we may define operators
f(V ) for all f ∈ LG, where f(V ) = wot− limk pk(V ) for some se-
quence pk ∈ P+

G . From the properties of the minimal dilation we
have pk(T ) = PH pk(V )|H. Thus, pk(T ) converges to an operator
f(T ) ≡ wot− limk pk(T ) ∈ B(H). Finally, by the von Neumann in-
equality and a standard approximation argument we have ||f(T )|| ≤
||f(V )|| ≤ ||f(L)||, and the result follows. ¤

Remark 6.3. It should be possible to prove an LG functional calculus
for more general row contractions. For instance, as in [38, 5, 32] this
could be accomplished by first identifying ‘characteristic functions’ for
an appropriate notion of completely non-unitary row contractions here.
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7. A Generalization of Coburn’s Theorem

In [8] Coburn showed that the C∗-algebra generated by a non-unitary
isometry V is isomorphic to the Toeplitz C∗-algebra, via a map that
sends V to the forward shift. This result was generalized by Popescu
to Cuntz-Toeplitz C∗-algebras [32]. In this section we consider the
generalization of Coburn’s Theorem to C∗-algebras generated by partial
isometries associated with more general directed graphs.

The proof of Coburn’s theorem depends on the universality of the
algebra of continuous functions on the circle as the C∗-algebra of a
graph G consisting of one vertex and one loop-edge. The following
result of Szymanski [39] generalizes this fact to arbitrary graph C∗-
algebras.

Theorem 7.1. [39] Let G be a countable directed graph with no sources
and ρ : C∗(G) −→ A be a ∗-homomorphism into a C∗-algebra A. Then
ρ is injective if and only if the following two conditions are satisfied:

(i) ρ(Px) 6= 0 for each vertex x ∈ V(G).
(ii) For each vertex simple loop w ∈ F+(G) without entrances, we

have T ⊆ σ(ρ(Sw)).

Corollary 7.2. Let G be a countable directed graph with no sources
and no sinks. Let C∗(AG) be the C∗-algebra generated by the quiver
algebra AG, let K denote the set of compact operators on HG and let
C∗(AG)/K denote the image of C∗(AG) under the Calkin map. Then
there exists a ∗-isomorphism

ρ : C∗(G) → C∗(AG)/K

such that ρ(Se) = Le +K, for all e ∈ E(G).

Proof. Since G has no sources, the projections Lx, x ∈ V(G), are
infinite dimensional and thus Lx +K 6= 0. Furthermore,

∑

r(e)=x

LeL
∗
e = Lx − ξx ⊗ ξx

and so the collections {Lx + K}x∈V(G) and {Le + K}e∈E(G) satisfy the
relations (‡). Hence there exists a ∗-homomorphism ρ : C∗(G) −→
C∗(AG)/K with ρ(Px) = Lx +K and ρ(Se) = Le +K for all x ∈ V(G)
and e ∈ E(G). We now use Szymanski’s result to show that ρ is
injective.
Towards this end, notice that we have already verified condition (i)

in Theorem 7.1. To verify the other condition let w ∈ F+(G) be any
loop. Consider the direct sum decompositionHG = Lx(HG)⊕Lx(HG)

⊥
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and notice that with respect to this decomposition, Lw admits the 2×2
matrix form

(

L 0
0 0

)

,

with L unitarily equivalent to some ampliation S(α) of the forward shift
S. It is well known that if λ ∈ T, then the range of S−λI is not closed.
Therefore the same is true for S(α)−λI and so λ belongs to the essential
spectrum of S(α); i.e., λ ∈ σ(ρ(Sw)), as desired. ¤

With a standard ‘diagram chasing’ argument, Corollary 7.2 can be
used to show the essential norm coincides with the operator norm for
any element of AG. However, we can prove this directly for a larger
algebra, the free semigroupoid algebra LG, hence we include a proof of
this fact.

Proposition 7.3. The following assertions are equivalent for a count-
able directed graph G:

(i) G has no sources.
(ii) ‖A‖ = ‖A‖e for all A ∈ LG.

Proof. If x is a source vertex in G, then Px is a rank one projection
inside AG (and LG). Conversely, suppose G has no sources. Let d ≥ 1
be a positive integer. For all x ∈ V(G) we may choose a path wx ∈
F+(G) of length d such that r(wx) = x. As the wx are distinct paths of
the same length, notice that the partial isometries Rwx , x ∈ V(G), have
pairwise orthogonal ranges. Thus, we may define an isometry R(d) =
∑

x∈V(G)Rwx in the commutant L′
G = RG (where the sum converges

wot in the infinite vertex case);

(R(d))∗R(d) =
∑

x,y

R∗
wx
Rwy =

∑

x

R∗
wx
Rwx =

∑

x

Qx = I.

Hence, if A belongs to LG we have

||AR(d)ξ|| = ||R(d)Aξ|| = ||Aξ|| for ξ ∈ HG and d ≥ 1.

On the other hand, {R(d)ξ}d≥1 converges weakly to zero for any choice
of vector ξ ∈ HG, and thus ||A|| = ||A||e as claimed. ¤

Corollary 7.4. If G be a directed graph with no sources, then the
compact perturbations LG +K are norm closed.

The next result shows that C∗(AG) is the universal C
∗-algebra for the

relations (†) and it is known to the specialists (compare with [31, 16]).
Nevertheless, we feel that the short proof presented here is new and we
therefore include it.
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Theorem 7.5. Let G be a countable directed graph with no sources and
no sinks. Let {P ′

x}x∈V(G) and {S ′
e}e∈E(G) be families of projections and

partial isometries acting on a Hilbert space H which satisfy (†). Then
there exists a ∗-epimorphism

τ : C∗(AG) −→ C∗({S ′
e}e∈E(G))

such that τ(Le) = S ′
e, for all e ∈ E(G).

Proof. From the discussion in Section 3, it is clear that the Wold
decomposition (which was proved for G with no sinks) implies the
existence of C∗-homomorphisms

φ1 : C
∗(G) −→ B(H1)

and

φ2 : C
∗(AG) −→ B(H2)

such that H = H1 ⊕H2 and

S ′
u ' (φ1 ⊕ φ2)(Su ⊕ Lu) for u ∈ F+(G).

Consider the diagram

C∗(AG)
π−−−→ C∗(AG)/K

ρ−−−→ C∗(G),

where ρ is the ∗-isomorphism identified by Corollary 7.2. If ψ ≡ ρ ◦ π,
then the desired map here is

τ = (φ1 ⊕ φ2) ◦ (ψ ⊕ id) : C∗(AG) −→ C∗({S ′
e}e∈E(G)).

Tracing the definitions of these maps shows that τ(Lu) = S ′
u for all

u ∈ F+(G). ¤

The previous theorem leads to a natural C∗-algebra extension of the
von Neumann inequality Theorem 5.1 (see also [32] for the case of
isometries with orthogonal ranges). Though note that the proof of this
result relies on Szymanski’s Theorem, whereas our proof of Theorem 5.1
is direct. Let P0

G be the set of polynomials generated by all indetermi-
nant monomials of the form vw with v, w ∈ F+(G) and where x = x
for x ∈ V(G). Given T = (Te)e∈E(G) and p ∈ P0

G, we write p(T, T ∗) for
the polynomial p evaluated at the generators Te (for e ∈ P0

G) and T ∗
e

(for e ∈ P0
G) and Px (for x = x ∈ P0

G ∩ V(G)).

Corollary 7.6. Let G be a countable directed graph with no sources
and no sinks. Let T = (Te)e∈E(G) be a row contraction on H stabilized
as in (8) by a given family of projections. Then

||p(T, T ∗)|| ≤ ||p(LG, L
∗
G)|| for p ∈ P0

G.(12)
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Proof. Let S = (Se)e∈E(G) be the minimal partially isometric dila-
tion of T with respect to the given projection family. From the basic
properties of the minimal dilation, it follows that

p(T, T ∗) = PH p(S, S∗)|H for p ∈ P0
G.

Thus, Theorem 7.5 gives ||p(T, T ∗)|| ≤ ||p(S, S∗)|| ≤ ||p(LG, L
∗
G)|| for

all p ∈ P0
G. ¤

The next theorem is the promised generalization of Coburn’s Theo-
rem. Given a collection {S ′

e}e∈E(G) of isometries, we isolate a condition
which is the appropriate extension of an isometry being non-unitary
here (condition (13) below). We show that any collection of partial
isometries satisfying this condition generates a C∗-algebra isomorphic
to C∗(AG).

Theorem 7.7. Let G be a countable directed graph with no sources
and no sinks and let C∗(AG) be the C∗-algebra generated by the quiver
algebra AG. Let {P ′

x}x∈V(G) and {S ′
e}e∈E(G) be families of projections

and partial isometries respectively, acting on a Hilbert space H and
satisfying (†). If,

(13)
∑

r(e)=x

S ′
e(S

′
e)

∗ 6= P ′
x for x ∈ V(G),

then there exists an injective ∗-homorphism φ : C∗(AG) → B(H) such
that φ(Le) = S ′

e for all e ∈ E(G).
In particular, the C∗-algebra C∗({S ′

e}e∈E(G)), generated by the collec-
tion {S ′

e}e∈E(G), is isomorphic to C∗(AG).

Proof. We utilize the Wold decomposition for the collection {S ′
e}e∈E(G).

Recall the existence of reducing subspaces Hc and Hp for {S ′
e}e∈E(G)

such that H = Hp ⊕ Hc and the restriction of {S ′
e}e∈E(G) on Hp (re-

spectively Hc) is pure (respectively fully coisometric). Moreover, if

W ≡ Ran
(

I −
∑

e

S ′
e(S

′
e)

∗
)

then W is wandering for {S ′
e}e∈E(G) and the smallest invariant subspace

for {S ′
e}e∈E(G) containing W equals Hp. In addition, the restrictions

S ′
e|Hp , e ∈ E(G), are jointly unitarily equivalent to

S ′
e|Hp '

∑

x∈V(G)

⊕L(αx)
e | (QxHG)(αx) ,
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where,

αx = rank



P
′

x −
∑

r(e)=x

S ′
e(S

′
e)

∗



 .

Let Wx = P ′
xW 6= 0 and let ζx ∈ Wx be a unit vector. Notice that

the subspaces
Mx ≡ span{Swζx : w ∈ F+(G)}

are reducing for {S ′
e}e∈E(G) and the restrictions S ′

e|Mx , e ∈ E(G), are
jointly unitarily equivalent to Le|Qx , e ∈ E(G), respectively. Therefore,
the subspace M =

∑

⊕x∈V(G)Mx is reducing for {S ′
e}e∈E(G) and the

restrictions S ′
e|Mx , e ∈ E(G), are jointly unitarily equivalent to Le, e ∈

E(G). We have therefore established the existence of an epimorphism

ψ : C∗({S ′
e}e∈E(G)) −→ C∗(AG)

mapping generators to generators. It remains to show that ψ is injec-
tive.
Consider the diagram

C∗(AG)
π−−−→ C∗(AG)/K

ρ−−−→ C∗(G)
τ−−−→ C∗({S ′

e|Hc}e∈E(G)),

where π is the natural quotient map, ρ is as in Lemma 7.2 and τ exists
because C∗(G) is universal. Let

φ1 ≡ τ ◦ ρ ◦ π : C∗(AG) −→ C∗({S ′
e|Hc}e∈E(G))

and note that φ1(Le) = S
′
e|Hc , for all e ∈ E(G). Consider now the map

φ : C∗(AG) −→ C∗({S ′
e}e∈E(G)), defined as

p(Le, L
∗
e) 7−→ p(S ′

e, (S
′
e)

∗)|Hp ⊕ φ1(p(Le, L
∗
e)),

for any non-commutative polynomial p. TheWold decomposition shows
that φ is a ∗-homomorphism and the earlier discussion shows that
φ(Le) = S ′

e, for all e ∈ E(G). Therefore, φ ◦ ψ = id and so ψ is
injective, which proves the theorem. ¤

Remark 7.8. It was pointed to us by the referee that Theorem 7.7
has been previously obtained by Fowler and Raeburn [13, Theorem
4.1]. Their approach is quite different from ours since they make an
extensive use of Hilbert C∗-modules as well as their own methods [14]
for analysing semigroup crossed products. Our proof is shorter and
elementary; we only require Szymanski’s result, whose proof in [39] is
essentially self-contained.
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