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Abstract. Let A be a unital operator algebra and let α be an
automorphism of A that extends to a ∗-automorphism of its C∗-
envelope C∗env(A). In this paper we introduce the isometric semi-
crossed product A ×is

α Z+ and we show that C∗env(A ×is
α Z+) '

C∗env(A)×αZ. In contrast, the C∗-envelope of the familiar contrac-
tive semicrossed product A ×α Z+ may not equal C∗env(A) ×α Z.
Our main tool for calculating C∗-envelopes for semicrossed prod-
ucts is the concept of a relative semicrossed product of an operator
algebra, which we explore in the more general context of injective
endomorphisms.

As an application, we extend the main result of [9] to tensor
algebras of C∗-correspondences. We show that if T +

X is the tensor
algebra of a C∗-correspondence (X ,A) and α a completely isomet-
ric automorphism of T +

X that fixes the diagonal elementwise, then

the contractive semicrossed product satisfies C∗env(T +
X ×α Z+) '

OX ×αZ, where OX denotes the Cuntz-Pimsner algebra of (X ,A).

1. Introduction and preliminaries

In this paper, we offer three choices for defining the semicrossed
product of an operator algebra A by a unital, completely contractive
endomorphism α of A (Definitions 1.1 and 1.2.) In all cases, the result-
ing algebras contain a completely isometric copy of A and a ”universal”
operator that implements the covariance relations. In the case where A
is a C∗-algebra and α preserves adjoints, all three choices produce the
same operator algebra, Peters’ semicrossed product of a C∗-algebra [25]
by an endomorphism. (Semicrossed products of C∗-algebras have been
under investigation by various authors [1, 2, 4, 6, 7, 8, 14, 22, 26],
starting with the work of Arveson [2] in the late sixties.) In the general
(non-selfadjoint) case however, the semicrossed products we introduce
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here may lead to non-isomorphic operator algebras. The main objec-
tive of this paper is to clarify the relation between the three semicrossed
products and calculate their C∗-envelope, whenever possible.

The present paper is a continuation of the recent work of Davidson
and the second named author in [9]. In the language of the present
paper, the main objective of [9] was to show that in the special case
where A is Popescu’s non-commutative disc algebra [27] and α a com-
pletely isometric automorphism of A, all three semicrossed products
coincide. One of the main results of this paper, Theorem 2.6, shows
that two of these semicrossed products, the isometric and the relative
one, coincide for any operator algebra A and any completely isometric
automorphism α of A. To prove this, we had to abandon the rather in-
tricate but ad-hoc arguments of the second half of [9] and instead adopt
an abstract approach. Theorem 2.6 focuses now any further research
on semicrossed products to the study of the other two, the isomet-
ric and the contractive semicrossed product. For these two, there are
examples to show that they do not coincide in general (Remark 2.8).
Nevertheless, with Theorem 2.6 in hand, we show that they do coin-
cide in the case of a tensor algebra of a C∗-correspondence and and a
completely isometric isomorphism of the algebra that fixes its diagonal
(Corollary 2.6). This not only generalizes the main result of [9] to a
broader context but also paves the way for additional results of this
kind to come in the future.

The various semicrossed products we define in this paper are actu-
ally closed images of the following universal semicrossed product under
concrete representations.

Definition 1.1. Let α be a unital, completely contractive endomor-
phism of an operator algebra A. A contractive (isometric) covariant
representation (π,K) of (A, α) is a completely contractive representa-
tion π of A on a Hilbert space H and a contraction (resp. isometry)
K ∈ B(H) so that

π(A)K = Kπ(α(A)) for allA ∈ A.
The contractive (resp. isometric) semicrossed product A×α Z+ (resp.
A×is

α Z+) for the system (A, α) is the universal operator algebra gen-
erated by a copy of A and a contraction (resp. isometry) V so that
AV = Vα(A), for all A ∈ A.

The contractive semicrossed product has, by definition, a rich repre-
sentation theory which unfortunately makes it very intractable. This
was first observed in [9] based on the famous example of Varopou-
los [28] regarding three commuting contractions that do not satisfy
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the usual von Neumann inequality. Nevertheless, there are significant
cases where the contractive semicrossed product has been completely
identified. These include the case where A is a C∗-algebra [17, 25] and
the case where A is the non-commutative disc algebra An and α is an
isometric automorphism [9].

The isometric semicrossed product is the (closed) image of A ×α
Z+ under the representation which restricts to the entries where the
contractions K are actually isometries. We believe that this is a more
tractable object and as we shall see, in the case where α is a completely
isometric automorphism, i.e., it extends to an automorphism of the
C∗-envelope C∗env(A) of A, we can identify the C∗-envelope of A×α Z+

as the crossed product C∗-algebra C∗env(A) ×α Z. The main tool for
establishing this result is the concept of a relative semicrossed product.

Recall that a C∗ algebra C is said to be a C∗-cover for a subalgebra
A ⊆ C provided that A generates C as a C∗-algebra, i.e., C = C∗(A).
If C is a C∗-cover for A, then JA will denote the Šilov ideal of A
in C. Therefore, C∗env(A) = C/JA and the restriction of the natural
projection q : C → C/JA on A is a completely isometric representation
of A. (Any ideal J ⊆ C, with the property that the restriction of the
natural projection C → C/J on A is a complete isometry, is called a
boundary ideal and JA is the largest such ideal.)

Definition 1.2. Let A be an operator algebra, C a C∗-cover of A
and let α be an ∗-endomorphism of C that leaves A invariant. The
subalgebra of Peters’ semicrossed product C ×α Z+, which is generated
by A ⊆ C ⊆ C ×α Z+ and the universal isometry V ∈ C ×α Z+, is
denoted by A×C,α Z+ and is said to be a relative semicrossed product
for the system (A, α).

Therefore, the relative semicrossed product A ×C ,α Z+ comes from
the representation of A×αZ+ that restricts to the entries where π and
α are ∗-extendable to C and the contraction K satisfies the covariance
relation with these extensions. It seems plausible that non-isomorphic
C∗-covers for A and varying extensions for the endomorphism α could
produce non-isomorphic relative semicrossed products. It turns out
that under a reasonable technical requirement, i.e., invariance of the
Shilov ideal, all such relative semicrossed products are completely iso-
metrically isomorphic (Proposition 2.3). In particular, this require-
ment is satisfied when α is a completely isometric automorphism of A;
in that case all relative semicrossed products for (A, α) are completely
isometrically isomorphic to each other.
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2. The relative semicrossed product and its C∗-envelope

We begin this section with some preliminary results. The first one is
a standard result that shows how to lift an injective ∗-endomorphism
of a C∗-algebra to an automorphism of a possibly larger C∗-algebra.

Proposition 2.1. If α is an injective endomorphism of a C*-algebra A,
then there is a unique triple (B, β, j) (up to isomorphism) where B is
a C*-algebra, β is an automorphism of B and j is a ∗-monomorphism
of A into B such that βj = jα and B =

⋃
k≥0 β

−kj(A).
To paraphrase, there is a unique minimal C*-algebra B containing

A with an automorphism β satisfying β|A = α.

Proof. Consider the inductive limit B of the system

A1
α1−−−→ A2

α2−−−→ A3
α3−−−→ A4

α4−−−→ · · · ,
where Ai = A and αi = α, for all i ∈ N. Let ji be the associ-
ated ∗-monomorphism from A = Ai to B. This map is defined as
ji(A) = (0, 0, . . . , 0, A, α(A), α2(A), . . . ), with the understanding that
the infinite tuple in the definition signifies the appropriate equivalence
class. Define j = j1.

The system

A1
α1−−−→ A2

α2−−−→ A3
α3−−−→ · · ·

α

y α

y α

y
A1

α1−−−→ A2
α2−−−→ A3

α3−−−→ · · ·
gives rise to an ∗-automorphism β of B defined as

β(A1, A2, A3, . . . ) = (α(A1), α(A2), α(A3), . . . ), Ai ∈ Ai, i ∈ N.
Clearly, βj = jα. The inverse of β on

⋃
k≥1 jk(Ak) satisfies

β−1(A1, A2, A3, . . . ) = (0, α(A1), α(A2), α(A3), . . . ), Ai ∈ Ai, i ∈ N.
and so, if A ∈ A, then

β−k(A, 0, 0, . . . ) = (0, 0, . . . , 0, A, α(A), α2(A), . . . ).

Therefore,
⋃
k≥0 β

−kj(A) is dense in B.

We now fix some notation and use the previous result to construct
a useful embedding of A×α Z+.

Let A be an operator algebra and let α be a completely contractive
endomorphism of A. If π is a completely contractive representation of
A on a Hilbert space H, we define

π̃ : A −→ B(H⊗ `2(Z+))
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so that

(1) π̃(A) ≡ (π(A), π(α(A)), π(α2(A)), . . . ), A ∈ A.
Let VH ≡ I ⊗ V , where V denotes the unilateral shift on `2(Z+). The
pair (π̃, VH) forms a contractive covariant representation of (A, α) and
the associated representation of A ×α Z+ is denoted as π̃ × VH. If α
happens to be a completely isometric automorphism of A, we also have
the representation π̂ : A → B(H ⊗ `2(Z)), such that

π̂(A) ≡ (. . . , π(α−1(A)), π(A), π(α(A)), π(α2(A)), . . . ), A ∈ A,
the unitary UH = I ⊗ U , where U is the bilateral shift on `2(Z) and
the associated representation π̂ × UH of A×α Z+.

Proposition 2.2. Let α is an injective endomorphism of a C*-algebra
A and let (B, β, j) be the triple of Proposition 2.1. Then A×α Z+ em-
beds completely isometrically in B×β Z. Furthermore, B×β Z becomes
a C∗-cover for A×α Z+.

Proof. Let π be a faithful representation of A on a Hilbert space H.
Since every representation of A is a direct sum of cyclic representations,
the GNS construction implies that there exists a representation πβ of
B on a Hilbert space Hβ ⊇ H so that H is reducing for πβ(j(A)) and
πβ(j(A)) |H= π(A) for all A ∈ A.

By gauge invariance, π̃×VH is a completely isometric representation
for A×αZ+; therefore the same is true for the representation π̂β j×UHβ

.

Now notice that the representation π̂β is faithful on
⋃
k≥0 β

−kj(A) and
so, by inductivity, on all of B. By gauge invariance, the representation
π̂β × UHβ

is also faithful on B ×β Z. The proposition now follows by
comparing the ranges of π̂β j × UHβ

and π̂β × UHβ
.

As we shall see in Theorem 2.5, B×β Z is actually the C∗-envelope
of A×α Z+.

Let A be an operator algebra and let C be a C∗-cover of A. Let α
be a ∗-endomorphism of C that leaves invariant both A and JA and
let α̇ : C/JA → C/JA be defined as α̇(X + JA) = α(X) + JA, X ∈ C.
In this context, there are two relative semicrossed products to be con-
sidered, A ×C,α Z+ and A/JA ×C/JA,α̇ Z+. The following proposition,
which clarifies the relation between these two semicrossed product, is
an application of two significant recent results in the theory of max-
imal dilations for completely contractive maps. First, Dritschel and
McCullough [11] have recently proven that every completely contrac-
tive map ϕ : A → B(H) admits a maximal dilation (Φ,K), i.e., a
dilation Φ : A → B(K) so that any further dilation of Φ has Φ as a
direct summand. Furthermore, Muhly and Solel [24] have shown that
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any such maximal dilation Φ extends (uniquely) to a ∗-representation
of any C∗-cover of A.

Proposition 2.3. Let A be an operator algebra, C be a C∗-cover of A
and let α be a ∗-endomorphism of C that leaves invariant both A and
JA. Then the relative semicrossed products A×C,αZ+ and A/JA×C/JA,α̇
Z+ are completely isometrically isomorphic.

Proof. Let F =
∑k

n=0 VnAn ∈ A ×C,α Z+ and F ′ =
∑k

n=0 Vn(An +
JA) ∈ A/JA ×C/JA,α̇ Z+. We have to show that the homomorphism
F 7→ F ′ is a completely isometric map.

Let π be a faithful representation of C on a Hilbert space H and let
(π̃, VH) be as in the beginning of the section (see (1)). Consider the
completely isometric map

ϕ : A/JA −→ B(H) : A+ JA 7−→ π(A), A ∈ A.
According to our earlier discussion, there is a maximal dilation (Φ,K)
of ϕ which extends uniquely to a representation of C/JA such that

PHΦ(A+ JA)|H = ϕ(A+ JA) = π(A),

for all A ∈ A. Since PH⊗`2(Z+) = PH ⊗ I, we have that

PH⊗`2(Z+)Φ̃(A+ JA))|H⊗`2(Z+) = π̃(A+ JA),

for all A ∈ A. Also, VK|H⊗`2(Z+) = VH and so

‖F‖ = ‖
k∑

n=0

V n
H π̃(An)‖

= ‖PH⊗`2(Z+)

(
k∑

n=0

V n
K Φ̃(An + JA)

)
|H⊗`2(Z+)‖

≤ ‖
k∑

n=0

V n
K Φ̃(An + JA)‖ ≤ ‖F ′‖.

The same is also true for all the matrix norms and so the map F ′ 7→ F
is well defined and completely contractive. By reversing the roles of A
andA/J (A) in the previous arguments, we can also prove that F 7→ F ′

is completely contractive, and the conclusion follows.

Now we wish to identify the C∗-envelope of A ×C,α Z+. From the
previous result we know that it coincides with the C∗-envelope of
A/JA×C/JA,α̇Z+. In the following we consider the case where α : C → C
is injective. This is easily seen to imply that α̇ : C/JA → C/JA is an
injective ∗-homomorphism. Indeed,
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Lemma 2.4. Let A be an operator algebra, C be a C∗-cover of A and
let α be an injective ∗-endomorphism of C that leaves invariant both A
and JA. Then α̇ : C/JA → C/JA is an injective ∗-homomorphism.

Proof. In that case, α is a completely isometric map. Therefore,

‖q(A) + ker α̇‖ = ‖α̇(A+ JA)‖ = ‖α(A) + JA‖ = ‖α(A)‖ = ‖A‖ ,
since JA is a boundary ideal and α(A) ⊆ A. The same argument
holds for all the matrix norms. Thus ker α̇ is a boundary ideal of
C/JA. However, C/JA is the C∗-envelope of A and so it contains no
non-trivial boundary ideals for A. Thus ker α̇ = (0).

The following is the main technical result of the section.

Theorem 2.5. Let A be an operator algebra, C be a C∗-cover of A
and let JA be the Šilov ideal of A in C. Let α be an injective ∗-
endomorphism of C that leaves invariant both A and JA. Then

C∗env(A×C,α Z+) ' B×β Z ,
where (B, β, j) is the unique triple of Proposition 2.1 associated with
the injective ∗-endomorphism α̇ of C/JA.

Proof. Proposition 2.3 shows that it suffices to identify the C∗-envelope
of A/JA ×C/JA,α̇ Z+.

If (B, β, j) is the unique triple of Proposition 2.1 associated with the
injective ∗-endomorphism α̇ of C/JA then Proposition 2.2 shows that
C/JA ×α̇ Z+, and therefore A/JA ×C/JA,α̇ Z+, embeds completely iso-
metrically in B×βZ. Moreover, B×βZ is a C∗-cover for A/JA×C/JA,α̇
Z+. Let J be the Šilov ideal of A/JA ×C/JA,α̇ Z+ in B×β Z. We are
to show that J = {0}.

Assume to the contrary that J 6= {0}. Since J is invariant by
automorphisms of the C∗-cover, it remains invariant by the natural
gauge action on B×β Z. Therefore it has non-trivial intersection with
the fixed point algebra of the natural gauge action, i.e., J ∩B 6= {0}.
However

B =
⋃
k≥0

β−kj(C/JA)

and therefore by inductivity there exists k ∈ N so that

J ∩ β−kj(C/JA) 6= {0}.
However, β acts by conjugating with a unitary in B×β Z. Since J is
an ideal of B×β Z, the above implies that

J ∩ j(C/JA) 6= {0}.
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But then j−1 (J ∩ j(C/JA)) is a non-zero boundary ideal for A in
C/JA, a contradiction.

In [9] Davidson and the second named author proved that

C∗env(An ×α Z+) = On ×α Z,
where An is Popescu’s non-commutative disc algebra [27], α a is a
(completely) isometric automorphism of An and On denotes the Cuntz
algebra generated by n isometries. A dilation result in the first half
of [9] reduces the problem of calculating the C∗-envelope of An ×α Z+

to essentially verifying that C∗env(An ×is
α Z+) = On ×α Z. It takes the

second half of [9] and intricate use of the representation theory for On
to verify that claim. The next result establishes the same claim for
arbitrary operator algebras using only abstract arguments.

Theorem 2.6. Let A be an operator algebra and α be an automorphism
of A that extends to a ∗-automorphism of C∗env(A). Then, any relative
semicrossed product for (A, α) is completely isometrically isomorphic
to A×is

α Z+. Hence,

C∗env(A×is
α Z+) ' C∗env(A)×α Z.

Proof. In light of Theorem 2.5, it suffices to show that A×is
αZ+ dilates

to a relative semicrossed product. This is done as follows.
Let V ∈ A×is

αZ+ be the universal isometry acting on a Hilbert space
H and let H be the direct limit Hilbert space of the inductive system

H
V−−−→ H

V−−−→ H
V−−−→ · · · .

For each A ∈ A, the commutative diagram

H
V−−−→ H

V−−−→ H
V−−−→ · · ·

A

y α−1(A)

y α−2(A)

y
H

V−−−→ H
V−−−→ H

V−−−→ · · ·
defines an operator π(A) ∈ B(H). It is easily seen that π defines
a completely isometric representation of A on H. Consider now the
unitary U ∈ B(H) defined as

U(h1, h2, h3, . . . ) = (h2, h3, . . . ), hi ∈ H, i ∈ N.
and notice that π(α(A)) = U∗π(A)U , A ∈ A. Therefore, the conjuga-
tion by U defines a ∗-automorphism of C ≡ C∗(π(A)), which extends
α and is denoted by the same symbol as well. Therefore,

A×is
α Z+ ' A×C,α Z+

and the conclusion follows from Theorem 2.5.
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Remark 2.7. In light of Theorem 2.6, we wonder whether one can
compute the C∗-envelope of A×is

αZ+ in the case where α is an endomor-
phism of A that extends to an injective ∗-endomorphism of C∗env(A).
To do this, one will have to prove an analogue of Theorem 2.5 in the
case where α may not preserve the Šilov ideal JA of A in C.

Remark 2.8. An observation from [9] shows that Theorem 2.6 fails for
the contractive semicrossed product, thus showing that the isometric
and the contractive semicrossed product are not completely isometri-
cally isomorphic in general.

Indeed, the bidisk algebra A(D2) sits inside C(T2), which is its C*-
envelope by Ando’s theorem. Consider the identity automorphism id.
Ando’s theorem also shows that the completely contractive representa-
tions of A(D2) are determined by an arbitrary pair T1, T2 of commuting
contractions. A covariant representation of (A(D2), id) is given by such
a pair and a third contraction T3 which commutes with T1 and T2. If it
were true that the C*-envelope of this system was C(T2)×idZ ' C(T3),
then it would be true that every commuting triple of contractions sat-
isfies the usual von Neumann inequality. This has been disproved by
Varopoulos [28].

3. An application to tensor algebras

In spite of Remark 2.8, there are special cases where the contrac-
tive and isometric semicrossed products coincide. The purpose of this
section is to verify this in the case where A is the tensor algebra of
a C∗-correspondence and α a completely isometric isomorphism of A
that fixes its diagonal elementwise (Corollary 2.6).

The tensor algebras for C∗-correspondences were introduced by Muhly
and Solel in [23]. This is a broad class of non-selfadjoint operator alge-
bras which includes as special cases Peters’ semicrossed products [26],
Popescu’s non-commutative disc algebras [27], the tensor algebras of
graphs (introduced in [23] and further studied in [19, 20]) and the
tensor algebras for multivariable dynamics [10], to mention but a few.

Let A be a C∗-algebra and X be a (right) Hilbert A-module, whose in-
ner product is denoted as 〈 . | . 〉. Let L(X ) be the adjointable operators
on X and let K(X ) be the norm closed subalgebra of L(X ) generated
by the operators θξ,η, ξ, η ∈ X , where θξ,η(ζ) = ξ〈η|ζ〉, ζ ∈ X .

A Hilbert A-module X is said to be a C∗-correspondence over A pro-
vided that there exists a ∗-homomorphism ϕX : A → L(X ). We refer
to ϕX as the left action of A on X . From a given C∗-correspondence
X over A, one can form new C∗-correspondences over A, such as the
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n-fold ampliation or direct sum X (n) ([21, page 5]) and the n-fold in-
terior tensor product X⊗n ≡ X ⊗ϕX X ⊗ϕX · · · ⊗ϕX X ([21, page 39],
n ∈ N, (X⊗0 ≡ A). These operation are defined within the category of
C∗-correspondences over A. (See [21] for more details.)

A representation (π, t) of a C∗-correspondence X over A on a C∗-
algebra B consists of a ∗-homomorphism π : A → B and a linear map
t : X → B so that

(i) t(ξ)∗t(η) = π(〈ξ| η〉), for ξ, η ∈ X ,
(ii) π(A)t(ξ) = t(ϕX (A)ξ), for A ∈ A, ξ ∈ X .

For a representation (π, t) of a C∗-correspondence X there exists a
∗-homomorphism ψt : K(X ) → B so that ψt(θξ,η) = t(ξ)t(η)∗, for
ξ, η ∈ X . Following Katsura [18], we say that the representation (π, t)
is covariant iff ψt(ϕX (A)) = π(A), for all A ∈ JX , where

JX ≡ ϕ−1X (K(X )) ∩ (kerϕX )⊥.

If (π, t) is a representation of X then the C∗-algebra (resp. norm closed
algebra) generated by the images of π and t is denoted as C∗(π, t) (resp.
Alg((π, t)). There is a universal representation (πA, tX ) for X and the
C∗-algebra C∗(πA, tX ) is the Toeplitz-Cuntz-Pimsner algebra TX . Sim-
ilarly, the Cuntz-Pimsner algebra OX is the C∗-algebra generated by
the image of the universal covariant representation (πA, tX ) for X .

A concrete presentation of both TX and OX can be given in terms of
the generalized Fock space FX which we now describe. The Fock space
FX over the correspondence X is defined to be the direct sum of the
X⊗n with the structure of a direct sum of C∗-correspondences over A,

FX = A⊕X ⊕ X⊗2 ⊕ . . . .

Given ξ ∈ X , the (left) creation operator t∞(ξ) ∈ L(FX ) is defined by
the formula

t∞(ξ)(A, ζ1, ζ2, . . . ) = (0, ξA, ξ ⊗ ζ1, ξ ⊗ ζ2, . . . ),

where ζn ∈ X⊗n, n ∈ N, and A ∈ A. Also, for A ∈ A, we define
π∞(A) ∈ L(FX ) to be the diagonal operator with ϕX (A)⊗ idn−1 at its
X⊗n-th entry. It is easy to verify that (π∞, t∞) is a representation of
X which is called the Fock representation of X . Fowler and Raeburn
[13] (resp. Katsura [18]) have shown that the C∗-algebra C∗(π∞, t∞)
(resp C∗(π∞, t∞)/K(FXJX )) is isomorphic to TX (resp. OX ).

Definition 3.1. The tensor algebra of a C∗-correspondence X over A
is the norm-closed algebra alg(πA, tX ) and is denoted as T +

X .
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According to [13, 18], the algebras T +
X ≡ alg(πA, tX ) and alg(π∞, t∞)

are completely isometrically isomorphic and we will therefore identify
them.

In order to prove the main results of this section, we follow the
strategy of the first half of [9]. However, the generality in which we are
working with, presents new difficulties and requires innovation. One
such innovation is the following.

Lemma 3.2. Let (X ,A) be a C∗-correspondence, let α be a completely
isometric automorphism of the associated tensor algebra T +

X and as-
sume that α(A) = A, for all A ∈ A. Let π : T +

X → B(H) be a
completely contractive representation of T +

X and let X ∈ B(H) be a
contraction satisfying,

π(L)X = Xπ(α(L)), for all L ∈ T +
X .

Then there exist isometric co-extensions π′ and (π ◦α)′, of π and π ◦α
respectively, and an isometric co-extension X ′ of X, all acting on some
Hilbert space H′ and satisfying

(2) π′(L)X ′ = X ′(π ◦ α)′(L), for all L ∈ T +
X ,

and

(3) π′(A) = (π ◦ α)′(A), for all A ∈ A.

Proof. First we construct isometric co-extensions π̂1 and π̂2, of π and

π ◦ α respectively, and an isometric co-extension X̂ of X, with the
property that

(4) π̂1(A) = π̂2(A)

and

(5) X̂π̂i(A) = π̂i(A)X̂, i = 1, 2,

for all A ∈ A.
To do this, notice that X commutes with π(A). co-extend X to its

Schaeffer dilation

SX '


K 0 0 0 . . .
DK 0 0 0 . . .
0 I 0 0 . . .
0 0 I 0 . . .
...

...
...

...
. . .

 ∈ B(H(∞)),

where DK = (I − K∗K)1/2. Let π(∞) be the infinite ampliation of π
and notice that SX commutes with π(∞)(A). Subsequently, using [23,
Theorem 3.3], we obtain some isometric co-extension π̂ of π(∞), on
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some Hilbert space K = H(∞) ⊕M, and let π̂1 = π̂, π̂2 = π̂ ◦ α and

X̂ = SX ⊕ IM. These π̂1, π̂2 and X̂ satisfy (4) and (5).

Since X̂ satisfies (5), the pairs (t̂i, π̂i|A), i = 1, 2, where,

t̂1(ξ) = π̂1(t∞(ξ))X̂,

t̂2(ξ) = X̂π̂2(t∞(ξ)), ξ ∈ X ,
define isometric representations of (X ,A) and so there exist
∗-representations ρi : TX → B(K) which integrate (t̂i, π̂i|A), i = 1, 2.
Since,

(6) PHρ1(L)|H = PHρ2(L)|H, for all L ∈ T +
X ,

the representations ρi co-extend the same contractive representation of
T +
X (appearing in (6)). By the uniqueness of the minimal isometric co-

extension [23, Proposition 3.2], there exist projections Qi commuting
with ρi(T +

X ), i = 1, 2, (hence commuting with π̂i(A), i = 1, 2) and a
unitary W : Q1(K)→ Q2(K), so that

(7) Wρ1(L)|Q1(K)W
∗ = ρ2(L)|Q2(K), for all L ∈ T +

X .

Furthermore, for each i = 1, 2,H ⊆ Qi(K) andW fixesH, because both
ρ1 and ρ2 co-extend the same completely contractive representation of
T +
X , which acts on H.
For i = 1, 2, let

π̃i(L) = π̂i(L)⊕
(
ρ1(L)|Q⊥1 (K)

)(∞)

⊕
(
ρ2(L)|Q⊥2 (K)

)(∞)

, L ∈ T +
X ,

and let
X̃ = X̂ ⊕ I(∞)

Q⊥1 (K) ⊕ I
(∞)

Q⊥2 (K),

all of them acting on

H′ = K ⊕Q⊥1 (K)(∞) ⊕Q⊥2 (K)(∞).

Because of (7), there exists a unitary U ∈ B(H′) which fixes H, com-
mutes with π̃1(A) = π̃2(A) and satisfies

Uπ̃1(L)X̃U∗ = X̃π̃2(L), for all L ∈ T +
X .

Consider the isometric representations (ti, π̃i|A) of (X ,A), where,

t1(ξ) = π̃1(t∞(ξ))U, and,

t2(ξ) = π̃2(t∞(ξ))U, ξ ∈ X ,
and let π′i, i = 1, 2, be the ∗-representations of TX which integrate

them. Let X ′ = U∗X̃ and notice that for any L ∈ T +
X we have

π′1(L)X ′ = π̂1(L)UU∗X̃ = π̂1(L)X̃
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while

X ′π′2(L) = U∗X̃π̂2(L)U = π̂1(L)X̃,

and the conclusion follows.

Remark 3.3. In the previous Lemma, one may take the isometric
co-extension X ′ to be the minimal isometric co-extension Xm of X.
In that case however, the co-extensions π′ and (π ◦ α)′ can only be
considered completely contractive and not necessarily isometric.

Indeed, using Lemma 3.2, we obtain isometric co-extensions π′, (π ◦
α)′ and X ′ on some Hilbert space H′ that satisfy (2) and (3). Let
Q be the reducing projection for X ′ so that QX ′|Q(H′) ' Xm. By
(3), the projection Q commutes with π′(A) and (π ◦ α)′(A) and so the
completely contractive representations of (X ,A), determined by the
representations π′ and (π ◦ α)′ of A and the mappings

X 3 ξ 7−→ Qπ′(t∞(ξ))|Q(H′)

X 3 ξ 7−→ Q(π ◦ α)′(t∞(ξ))|Q(H′),

can be integrated to the desired contractive representations of T +
X ,

satisfying the analogues of (2) and (3) with Xm instead of X ′.

If we take α = id in Lemma 3.2, then we obtain the commutant
lifting Theorem of Muhly and Solel [23], without using the ”one-step”
extension in the proof. (In [23, page 418] the authors ask for such a
proof.) Indeed

Corollary 3.4. Let (X ,A) be a C∗-correspondence, let π : T +
X → B(H)

be a completely contractive representation of T +
X and let X ∈ B(H) be

a contraction satisfying,

π(L)X = Xπ(L), for all L ∈ T +
X .

If πm is the minimal isometric co-extension of π, then there exists a
contraction X ′ co-extending X and satisfying

πm(L)X ′ = X ′πm(L), for all L ∈ T +
X .

Proof. Use Lemma 3.2 to obtain isometric co-extensions π′, X ′′ on
some Hilbert space H′ that do the job. (Note however that π′ may be
”larger” than the minimal isometric co-extension.) There exists now a
reducing subspace K ⊆ H′ for π′ so that π′|K ≡ πm. Letting X ′ be the
compression of X ′′ on K, the conclusion follows.

A familiar 2 × 2 matrix trick also establishes the intertwining form
of the commutant lifting theorem for minimal isometric co-extensions.
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Theorem 3.5. Let (X ,A) be a C∗-correspondence, let α be a com-
pletely isometric automorphism of the associated tensor algebra T +

X
and assume that α(A) = A, for all A ∈ A. Let π : T +

X → B(H)
be a completely contractive representation of T +

X and let X ∈ B(H) be
a contraction satisfying,

π(L)X = Xπ(α(L)), for all L ∈ T +
X .

Then there exist an isometric co-extension π1 of π and an isometric
co-extension Z of X, so that

π1(L)Z = Zπ1(α(L)), for all L ∈ T +
X .

Proof. Notice that if πm is the minimal isometric dilation of π, then
πm◦α is the minimal isometric dilation of π◦α. Therefore, by applying
commutant lifting to the covariance relations, we obtain a contraction
X1 on a Hilbert space H1, satisfying

πm(L)X1 = X1(πm ◦ α)(L), for all L ∈ T +
X .

Let X1,m be the minimal dilation of X1, i.e.,

(8) X1,m '


X1 0 0 0 . . .
DX1 0 0 0 . . .

0 I 0 0 . . .
0 0 I 0 . . .
...

...
...

...
. . .


where DX1 = (I − X∗1X1)

1/2. We apply now Remark 3.3 to obtain
completely contractive representations π̂m and π̂m ◦ α, which co-extend
πm and πm ◦ α, coincide on A, and satisfy

(9) π̂m(L)X1,m = X1,mπ̂m ◦ α(L) for L ∈ T +
X .

Assume that these dilations have the form

π̂m(L) =

[
πm(L) 0

Y (L) [Y
(L)
jk ]j,k≥1

]
and π̂m ◦ α(L) =

[
πm ◦ α(L) 0

Z(L) [Z
(L)
jk ]j,k≥1

]
with regards to the decomposition of the Hilbert space that corresponds
to the matricial form of X1,m in (8).

Claim: Y (L) = Z(L) = 0, for all L ∈ T +
X .

Indeed, the claim is true in the case where L = π∞(A), A ∈ A, since
the restrictions of π̂m and π̂m ◦ α on A are ∗-homomorphisms dilating
the ∗-homomorphisms πm and πm ◦ α respectively. Hence it suffices
to prove the claim in the case where L = t∞(ξ), ξ ∈ X . We show
that Y (ξ) = 0; a similar argument will show that Z(t∞(ξ)) = 0. By the
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Schwarz inequality for completely contractive maps on unital operator
algebras we have

π̂m (t∞(ξ))∗ π̂m(t∞(ξ)) ≤ π̂m
(
π∞(〈 ξ | ξ 〉)

)
.

By taking into account the matricial form of π̂m and comparing (1, 1)-
entries in the above inequality, we obtain

(10) πm (t∞(ξ))∗ πm(t∞(ξ)) + (Y (t∞(ξ)))∗Y (t∞(ξ)) ≤ πm
(
π∞(〈 ξ | ξ 〉)

)
.

However the map πm is an isometric representation and so

πm (t∞(ξ))∗ πm(t∞(ξ)) = πm
(
π∞(〈 ξ | ξ 〉)

)
.

and so (10) obtains

(Y (t∞(ξ)))∗Y (t∞(ξ)) ≤ 0,

which proves the claim.

By comparing (2, i)-entries, i = 2, 3, . . . , in the covariance relation
(9) we also obtain

Y
(L)
2,i = 0, for all i ≥ 2.

In addition, by comparing (i, 1)-entries i = 3, 4, . . . , in (9) we obtain

Y
(L)
i,2 DX1 = 0, for all i ≥ 3,

and so Y
(L)
i,2 = 0, for all i ≥ 3. This combined with the Claim implies

that the second row and column of π̂m(L), L ∈ T +
X , are equal to zero,

except perhaps from Y
(L)
2,2 . Therefore, the map

ρ : T +
G −→ B(DX1(H1)), L 7−→ Y

(L)
2,2

is a completely contractive representation of T +
X . By comparing (2, 1)-

entries in the covariance relation (9), we now obtain

(11) ρ(L)DX1 = DX1πm ◦ α(L), for L ∈ T +
X .

For any L ∈ T +
X , we now define

π′m(L) =


πm(L) 0 0 0 . . .

0 ρ(L) 0 0 . . .
0 0 ρ(α(L)) 0 . . .
0 0 0 ρ(α(2)(L)) . . .
...

...
...

...
. . .


By (11), this is a completely contractive representation π′m on a Hilbert
space H2 so that

π′m(L)X1,m = X1,mπ
′
m ◦ α(L) for L ∈ T +

X .
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Continuing in this fashion, we obtain a sequence

(π,X), (πm, X1), (π′m, X1,m), ((π′m)m, X2), (((π′m)m)′, X2,m) . . .

of pairs of operators and representations acting on Hilbert spaces H ⊆
H1 ⊆ H2 . . . , co-extending π and X and satisfying the covariance re-
lations. Let H =

∨
jHj, and consider these pairs as acting on H by

extending them to be zero on the complement. Let

Z = sot–limXj = sot–limXm,j

and define π1(L), L ∈ T +
X , as a strong limit in a similar fashion. These

limits evidently exist as in both cases the sequences consist of either
isometries or isometric representations that decompose as infinite di-
rect sums. Multiplication is sot-continuous on the ball, hence the
covariance relations hold in the limit.

Combining the Proposition above with Theorem 2.6 we obtain the
main result of the section,

Corollary 3.6. Let (X ,A) be a C∗-correspondence, let α be a com-
pletely isometric automorphism of the associated tensor algebra T +

X and
assume that α(A) = A, for all A ∈ A. Then T +

X ×α Z+ and T +
X ×is

α Z+

are completely isometrically isomorphic and

C∗env(T +
X ×α Z

+) ' OX ×α Z.

In particular, the above corollary recaptures the main result of [9]
with a different proof.
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