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Abstract. Let ϕ be an isometric automorphism of the non-comm-
utative disc algebra An for n ≥ 2. We show that every contrac-
tive covariant representation of (An, ϕ) dilates to a unitary co-
variant representation of (On, ϕ). Hence the C*-envelope of the
semicrossed product An ×ϕ Z+ is On ×ϕ Z.

1. Introduction

In this paper, we continue our study of the crossed product An×ϕZ+

of the non-commutative disk algebra An by an isometric automorphism
ϕ. These semicrossed products were introduced in [7] as universal al-
gebras for the contractive covariant representations of (An, ϕ), where
we showed there that the isomorphic class of An ×ϕ Z+ is determined
by the analytic conjugacy class of ϕ. Recall that the isometric auto-
morphisms of An come from the natural action of the group Aut(Bn)
of conformal automorphisms of the unit ball Bn of Cn on the character
space Bn of An.
The universality of An ×ϕ Z+ allows for a rich representation theory

and this was a key component for classifying these algebras. On the
other hand, it is the universality of An×ϕZ+ that raises the problem of
finding concrete faithful representations. This is the main theme of this
paper. As we shall see, the C*-envelope of An×ϕ Z+ is On×ϕ Z, where
On denotes the Cuntz algebra, with generators going to generators.
Using the theory of gauge invariant uniqueness for C*-crossed product
C*-algebras, we obtain a concrete faithful representation for An×ϕ Z+.
The proof of this fact relies on a dilation theorem. We show first that

every completely contractive representation of An ×ϕ Z+ dilates to a
unitary system in which the image of the row of generators [L1 . . . Ln]
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of An is a row isometry and the intertwining operator implementing
the automorphism is unitary. This is not sufficient for our purposes,
because the C*-algebra generated by a row isometry is either On or
the Cuntz-Toeplitz algebra En. We need to further dilate the latter
representations to unitary dilations of Cuntz type. We thereby show
that these are the only maximal representations of the semicrossed
product. So using the Dritschel–McCullough approach [13] to the C*-
envelope, we are able to obtain the desired conclusion.
Using a result of Kishimoto [19], we show that in the case where ϕ is

aperiodic, the C*-algebra On ×ϕ Z is simple. In this case, the quotient
C∗(En, Uϕ)/K, where Uϕ is the Voiculescu unitary implementing ϕ on
En, is ∗-isomorphic to On ×ϕ Z.
There is an extensive body of work studying dynamical systems via

an associated operator algebras going back to work of von Neumann.
The use of nonself-adjoint operator algebras in this area begins with
seminal work of Arveson [1] and Arveson–Josephson [4]. This was put
into the abstract setting of semi-crossed products by Peters [24]. See
[6] for an overview of some of the recent work in this area.
There is also a large literature on dilation theory for various nonself-

adjoint operator algebras going back to seminal work of Sz.Nagy. Arve-
son [2] established dilation theory as an essential tool for studying
nonself-adjoint operator algebras. Work on abstract semicrossed prod-
ucts began with work of Peters [24]. He concentrated on the action
of an endomorphism on a C*-algebra, and here the theory works well.
Specifically one can define a family of natural orbit representations
and show that these produce a faithful (completely isometric) repre-
sentation of the semicrossed product. This can be used to find explicit
information about the C*-envelope. See Peters [25] for the one variable
case and [12] for the C*-envelope a multivariable dynamical system.
Muhly and Solel developed an extensive theory of certain nonself-

adjoint operator algebras called tensor algebras of a C*-correspondences
[20, 21, 22]. They showed, under certain hypotheses, that the C*-
envelope of the tensor algebra is the Cuntz–Pimsner C*-algebra built
from the correspondence. This result was extended by Fowler, Muhly
and Raeburn [16] to the case when the left action is faithful and strict.
Finally the second author and Kribs [18] removed those restrictions.
The semicrossed product of An has a lot in common with these tensor

algebras. However, since the semicrossed product is defined as the
universal operator algebra for a family of covariant representations, one
needs to prove a dilation theorem in order to decide whether or not this
algebra sits inside a Cuntz–Pimsner algebra completely isometrically.
This is, in fact, where all of the difficulty lies.
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It is perhaps worth mentioning that classical counterexamples in
dilation theory point to the difficulties that might arise in general.
The bidisk algebra A(D2) sits inside C(T2), which is its C*-envelope
by Ando’s theorem. Consider the identity automorphism id. Ando’s
theorem also shows that the completely contractive representations of
A(D2) are determined by an arbitrary pair T1, T2 of commuting con-
tractions. A covariant representation of (A(D2), id) is given by such a
pair and a third contraction T3 which commutes with T1 and T2. If it
were true that the C*-envelope of this system was C(T2)×idZ ' C(T3),
then it would be true that every commuting triple of contractions has a
unitary dilation. This was disproven in a famous paper by Varopolous.
See Paulsen’s book [23, Chapter 5] for a treatment of these topics.
Thus when such unitary dilations are possible, we must see this as an
important but special phenomenon.

2. Preliminaries

Consider the left regular representation λ of the free semigroup F+
n

acting on Fock space, `2(F+
n ). Let Li = λ(i). The non-commutative

disc algebra An, for n ≥ 2, is the nonself-adjoint unital operator algebra
generated by L1, . . . , Ln. It sits as a subalgebra of the Cuntz–Toeplitz
C*-algebra En = C∗({L1, . . . , Ln}). However the quotient map onto the
Cuntz algebra On is completely isometric on An. So An may be con-
sidered as the subalgebra of On generated by the standard generators
s1, . . . , sn. Moreover the operator algebra generated by any n-tuple
of isometries S1, . . . , Sn with pairwise orthogonal ranges is completely
isometrically isomorphic to An. These algebras were introduced by
Popesu [27] as a natural multivariable generalization of disc algebra
A(D). The Frahzo–Bunce dilation Theorem [14, 5, 26] shows that any
row contractive n-tuple T = [T1, . . . , Tn] dilates to an n-tuple of isome-
tries S = [S1, . . . , Sn] with pairwise orthogonal range. Hence given
any such n-tuple T , there is a unique completely contractive homo-
morphism of An onto the algebra A(T1, . . . , Tn) taking generators to
generators. Popescu [27] used this to establish a natural analogue of
the von Neumann inequality for row contractive n-tuples.
If ϕ is an automorphism for an operator algebraA, then a contractive

(resp. isometric or unitary) covariant representation for (A, ϕ) consists
of a completely contractive (resp. completely isometric) representation
π : A → B(H) and a contraction (resp. isometry or unitary) U ∈ B(H)
so that π(A)U = Uπ(ϕ(A)). If A happens to be a C∗-algebra, then
completely contractive maps are ∗-homomorphisms.
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Each elementA ∈ An determines a function ÝA on the character space,
and this is a bounded holomorphic function on Bn which extends to
a continuous function on Bn. An automorphism ϕ of An induce an

automorphism Ýϕ of the character space Bn via ÝA( Ýϕ(z)) = ϕ̂(A)(z).
The map Ýϕ is biholomorphic, and thus is a conformal automorphism
[8]. These maps are given by fractional linear transformations (c.f.
Rudin [30]).
Each of these conformal maps is induced by a unitarily implemented

automorphism of En which fixes the subalgebra An. Indeed, Voiculescu
[32] constructs a unitary representation of the Lie group U(n, 1) which
contains the scalar unitaries, and U(n, 1)/T ' Aut(Bn), such that adU
implements the corresponding automorphism. In [9], the first author
and Pitts study the automorphism of the weak operator closed algebra
Ln = A

wot

n . The case of An is similar but more elementary. See Popescu
[28] for another proof.

Definition 2.1. Let Aut(An) denote the group of completely isometric
automorphisms of An, and let ϕ ∈ Aut(An). A covariant representation
(π,K) of (An, ϕ) is a completely contractive representation π of An on
a Hilbert space H and a contraction K ∈ B(H) so that

π(A)K = Kπ(ϕ(A)) for all A ∈ An.

The semicrossed product An ×ϕ Z+ is the universal operator algebra
generated by a copy of An and a contraction u so that Au = uϕ(A) for
all A ∈ An.

In other words, An ×ϕ Z+ is the operator algebra generated by a
(completely isometric) copy of An and a contraction u with the prop-
erty that every covariant representation of (An, ϕ) induces a completely
contractive representation π×K of An ×ϕ Z+ on H, which on polyno-
mials is defined as

(π ×K)
(
∑

unAn

)

=
∑

Knπ(An).

The norm may be defined by as the supremum over all covariant rep-
resentations:

∥

∥

∑

unAn

∥

∥ = sup
(π,K)

∥

∥(π ×K)
(
∑

unAn

)∥

∥.

A completely contractive representation of An sends the generators
L = [L1 . . . Ln] to a row contraction A = [A1 . . . An]. Conversely, the
Frahzo–Bunce dilation theorem [14, 5] shows that any row contraction
dilates to a row isometry. Thus by Popescu’s von Neumann inequality
[27], there is a completely contractive representation π of An with
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π(Li) = Ai for 1 ≤ i ≤ n. If we take π = idAn and U = 0, we see that
the imbedding of An into An ×ϕ Z+ is completely isometric.

In [7], we identified several such representations which are worth
repeating.

Example 2.2. For any ϕ ∈ Aut(An), consider the unitary Uϕ con-
structed by Voiculescu [32] on the Fock space `2(F+

n ) which implements
the action of ϕ on the Cuntz–Toeplitz C∗-algebra En by U∗

ϕAUϕ = ϕ(A),
and fixes An. For any λ ∈ T, this provides a covariant pair (idEn , λUϕ)
for (En, ϕ). Therefore it produces a representation idEn×λUϕ of En×ϕZ.
Since An is invariant for adUϕ, this provides a covariant representation

(id, λUϕ) of (An, ϕ) by restriction. This yields a representation id×λ ÝUϕ

of An ×ϕ Z+ which is completely isometric on An and λUϕ is unitary.
Similarly, by taking a quotient by K(`2(F+

n )), the compact operators

on `2(F+
n ), we obtain a covariant representation (πOn , λ ÝUϕ) for (On, ϕ)

and therefore representations for both On ×ϕ Z and An ×ϕ Z+, inside

the Calkin algebra, which we denote as πOn × λ ÝUϕ.

Example 2.3. Let π be any completely contractive representation of
An on a Hilbert space H. Define π̃ on H⊗ `2 by

π̃(a) =
∑

k≥0

⊕
πϕk(a) and U = IH ⊗ S

where S is the unilateral shift. This is easily seen to yield a completely
contractive representation π̃ of An and a contraction U so that π̃×ϕ U
yields a representation of An ×ϕ Z+.
These are called orbit representations. When A is a C*-algebra,

Peters [24] showed that the direct sum of all orbit representations
π̃ ×ϕ U , as π runs over the ∗-representations of A, yields a completely
isometric representation of A ×ϕ Z+. For general operator algebras,
this is not the case.

Example 2.4. Let ϕ ∈ AutAn. Consider the non-commutative disc
algebra An+1 acting on the Fock space `2(F+

n+1) and define an ideal

J =
〈

LiLn+1 − Ln+1ϕ(Li) : 1 ≤ i ≤ n
〉

.

Thewot-closure J of J is an ideal of Ln+1, and these ideals were studied
in [9, 10]. In particular, it is shown in [9] that J is determined by its
range, which is a subspace invariant for both Ln+1 and its commutant
Rn+1. Then in [10], it is shown that Ln+1/J is completely isometrically
isomorphic to the compression to Mϕ = Ran(J)⊥. Since

RanJ = span
{

A(LiLn+1 − Ln+1ϕ(Li))`
2(F+

n+1) : i = 1, 2, . . . , n
}
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is evidently orthogonal to ξ?, we see that Mϕ is non-empty. The
compression of An to Mϕ is a completely contractive homomorphism
ρ, and the compression B of Ln+1 is also a contraction. Therefore
(ρ,B) is a covariant representation of (An, ϕ), and thus determines a
completely contractive representation An ×ϕ Z+.

Example 2.5. Any representation of An produces a representation of
An ×ϕ Z+ by simply taking U = 0. In [7], we contructed various finite
dimensional representations of An ×ϕ Z+ which allowed us to classify
them as algebras.

3. Unitary Covariant Representations

The purpose of this section is to show that contractive representation
of our covariant system always dilate to a unitary covariant system.
The proof requires a number of known dilation theorems.
We call a representation π of an algebra A on a Hilbert space K ⊃ H

an extension of a representation σ of A on H if H is invariant for π(A)

and π(A)|H = σ(A) for A ∈ A; i.e., π(A) '
[

σ(A) ∗
0 ∗

]

. Likewise, π is

a co-extension of σ if H is co-invariant for π(A) and PHπ(A)|H = σ(A)

for A ∈ A; i.e., π(A) '
[

∗ ∗
0 σ(A)

]

. Finally, we say that π is a dilation

of σ if PHπ(A)|H = σ(A) for A ∈ A. By a result of Sarason [31], H is

semi-invariant and so π(A) '





∗ ∗ ∗
0 σ(A) ∗
0 0 ∗



.

The main result of this section will be established by a sequence of
lemmas.

Theorem 3.1. Let ϕ be an isometric automorphism of the non-comm-
utative disc algebra An, n ≥ 2. Then, any contractive covariant rep-
resentation of (An, ϕ) dilates to a unitary covariant representation of
(En, ϕ), where En denotes the Cuntz-Toeplitz C∗-algebra.

According to the commutant lifting Theorem of Frazho [15] and
Popescu [26], if S, T are row contractions and K another contraction
intertwining them, i.e., S(i)K = KT (i) for all 1 ≤ i ≤ n, then K
co-extends to a contraction K ′ that intertwines the minimal isometric
dilations VS and VT of S and T respectively. A dual result can be
obtained from a recent dilation of Solel [29]. (See also [11].) Solel’s
result says that if S and T are as above, then we can co-extend the
contractions S, T and K to isometries WS,WT and WK , which still

satisfy W
(i)
S WK = WKW

(i)
T . This leads to the following.
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Lemma 3.2. Assume that S = [S(1), . . . , S(n)], T = [T (1), . . . , T (n)] are
row contractions and K is a contraction on H so that

S(i)K = KT (i), 1 ≤ i ≤ n.

Let V be an isometric dilation of K, acting on a Hilbert space H′. Then
there exist row contractions S ′ = [S ′(1), . . . , S′(n)], T ′ = [T ′(1), . . . , T ′(n)]
on H′, which co-extend S and T respectively, and satisfy

S ′(i)V = V T ′(i), 1 ≤ i ≤ n.

Proof. Let VK be the minimal isometric dilation of K. Then we can
decompose V ' VK ⊕ V ′. So if we can dilate S and T to S ′ and T ′

intertwining VK , then we can extend further to all of H′ by adding zero
summands to S ′ and T ′.

By Solel’s result, S, T and K co-extend to intertwining isometries
WS,WT and WK , acting on a Hilbert space H′′. Let H′ =

∨

j≥0W
j
KH

be the smallest invariant subspace of WK containing H. Clearly, H′ is
reducing forWK and the restriction ofWK onH′ is (unitarily equivalent
to) the minimal dilation VK . The result now follows by setting

S ′(i) = PH′S(i) |H′ and T ′(i) = PH′T (i) |H′ for 1 ≤ i ≤ n.

Lemma 3.3. Let ϕ ∈ Aut(An) and let A = [A(1), . . . A(n)] and K be
contractions satisfying the covariance relations A(i)K = Kϕ(A)(i) for

1 ≤ i ≤ n. Then there exist isometries TA = [T
(1)
A . . . T

(n)
A ] and TK,

dilating A and K respectively, so that

T
(i)
A TK = TKϕ(TA)

(i) for 1 ≤ i ≤ n.

Proof. Notice that if VA is the minimal isometric dilation of A, then
ϕ(VA) is the minimal isometric dilation of ϕ(A) = [ϕ(A)(1) . . . ϕ(A)(n)].
Therefore, by applying commutant lifting to the covariance relations,
we obtain a contraction K1 on a Hilbert space H1, satisfying

V
(i)
A K1 = K1ϕ(VA)

(i)

Let SK1 be the Schaeffer dilation of K1 on H(∞)
1 by

SK1 '













K1 0 0 0 . . .
DK1 0 0 0 . . .
0 I 0 0 . . .
0 0 I 0 . . .
...

...
...

...
. . .













where DK1 = (I − K∗
1K1)

1/2. We apply Lemma 3.2, with S = VA,
T = ϕ(VA), K = K1 and its isometric dilation SK1 to obtain row
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contractions ÝA1 and ÝB1, which co-extend VA and ϕ(VA), and satisfy

ÝA
(i)
1 SK1 = SK1

ÝB
(i)
1 for 1 ≤ i ≤ n.

Because V
(i)
a are already isometries, these dilations have the form

ÝA
(i)
1 =

[

V
(i)
A 0

0 [X
(i)
jk ]j,k≥1

]

and ÝB
(i)
1 =

[

ϕ(V
(i)
A ) 0

0 [Y
(i)
jk ]j,k≥1

]

By comparing (2, 1)-entries in the covariance relation, we obtain

X
(i)
11DK1 = DK1ϕ(V

(i)
A ) for 1 ≤ i ≤ n.

For simplicity, write Xi = X
(i)
11 . Note that X = [X1 . . . , Xn] is a

row contraction, and so ϕ(X) is meaningful. For 1 ≤ i ≤ n, we now
define

A
(i)
1 =















V
(i)
A 0 0 0 . . .
0 Xi 0 0 . . .
0 0 ϕ(X)(i) 0 . . .
0 0 0 (ϕ ◦ ϕ)(X)(i) . . .
...

...
...

...
. . .















We obtain a row contraction A1 = [A
(1)
1 . . . A

(n)
1 ] on a Hilbert space

H2 so that

A
(i)
1 SK1 = SK1ϕ(A1)

(i) for 1 ≤ i ≤ n.

Continuing in this fashion, we obtain a sequence

(A,K), (VA, K1), (A1, SK1), (VA1 , K2), (A2, SK2) . . .

of pairs of operators acting on Hilbert spaces H ⊆ H1 ⊆ H2 . . . ,
co-extending A and K and satisfying the covariance relations. Let
H =

∨

j Hj, and consider these pairs of operators as acting on H by
extending them to be zero on the complement. Let

TA = sot–limAj = sot–limVAj

and

TK = sot–limSKj
= sot–limKj.

These limits evidently exist as in each case, one of the sequences con-
sists of isometries which decompose as infinite direct sums. In partic-
ular, TA is a row isometry and TK is an isometry. Multiplication is
sot-continuous on the ball, hence the covariance relations hold in the
limit.

We now extend this to a unitary representation. The proof uses the
“one step extensionÔ technique.
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Lemma 3.4. Let ϕ ∈ Aut(An) and let S = [S(1), . . . S(n)] be a row
isometry and let V be an isometry acting on a Hilbert space H and
satisfying the covariance relations

S(i)V = V ϕ(S)(i) for 1 ≤ i ≤ n.

Then there exist a row isometry S̃ = [S̃(1) . . . S̃(n)] and an isometry
Ṽ , acting on a Hilbert space H̃ ⊃ H, extending S and V respectively
and satisfying

(i) S̃(i)Ṽ = Ṽ ϕ(S̃)(i) for 1 ≤ i ≤ n
(ii) Ṽ (H̃) = H.

Proof. Let K = (I − V V ∗)H and set H′ = H ⊕ K. Define a unitary
operator U ∈ B(H⊕K,H) by

U(x, y) = V x+ y for x ∈ H and y ∈ K.

Set

Ṽ = U∗V U and S̃(i) = U∗ϕ−1(S)(i)U for i = 1, . . . , n.

Notice that U∗(x) = (V x , (I − V V ∗)x) and so

Ṽ (x, y) = (V x+ y, 0) for x ∈ H and y ∈ K.

Therefore Ṽ extends V and maps H′ onto H.
To show that S̃ extends S, note that the covariance relations imply

that
ϕ−1(S)(i)V = V S(i) for 1 ≤ i ≤ n.

Hence, for any x ∈ H we have for x ∈ H,

ϕ−1(S)(i)U(x, 0) = ϕ−1(S)(i)V x = V S(i)x = U(S(i)x, 0).

Hence S̃(i)|H = S(i). Finally, this same calculation shows that

S̃(i)Ṽ = U∗ϕ−1(S)(i)V U = U∗V S(i)U = Ṽ ϕ(S̃)(i).

We can now complete the proof of the main result.

Proof of Theorem 3.1. Let A = [A(1), . . . A(n)] and K be contrac-
tions on a Hilbert space H satisfying

A(i)K = Kϕ(A)(i), 1 ≤ i ≤ n.

Using Lemma 3.3, we dilate A and K to isometries S and V satisfying
S(i)U = Uϕ(S)(i) for 1 ≤ i ≤ n. Making repeated use of Lemma 3.4,
we now produce a sequence {(Sj, Vj)}∞j=1 of extensions consisting of
a row isometry Sj extending Sj−1 and an isometry Vj extending Vj−1,
acting on an increasing sequence of Hilbert spacesHj, which satisfy the
covariance relations and have VjHj = Hj−1. If we set S = sot–limSj

and U = sot–limVj, then condition (ii) in Lemma 3.4 implies that
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U is a unitary while (i) shows that S and U satisfy the covariance
relations.

4. Maximal Covariant Representations and the
C∗-envelope of An ×ϕ Z+.

There is a question left open in Theorem 3.1, which is whether the
row isometry in the unitary dilation generates the Cuntz algebra or the
Cuntz–Toeplitz algebra. It is not hard to see that in the former case,
there is no sensible way to dilate further. But in the Cuntz–Toeplitz
case, there is a gap, since

∑n
i=1 SiS

∗
i < I, that may allow a proper

dilation. In fact this occurs, and in this section we will deal with this
issue.

The Dritschel–McCullough proof [13] of Hamana’s Theorem [17]
proving the existence of Arveson’s C*-envelope [2] is based on the
notion of a maximal representation. This is a completely contractive
representation ρ of an operator algebra with the property that the only
(completely contractive) dilations have the form ρ⊕ σ. They establish
that every representation dilates to a maximal one, and that maximal
representations extend to ∗-representations of the C*-envelope. In this
manner, they were able to establish the existence of the C*-envelope
without taking Hamana’s route via the injective envelope. The upshot
for dilation theory is to focus attention on maximal dilations.
In our case, Theorem 3.1 shows that the maximal dilations must

send the generators of An to a row isometry S and the operator im-
plementing the automorphism must be unitary. In the case when this
representation is of Cuntz type, meaning that SS∗ = I, it is evident
that this representation is maximal. So we are left to deal with the
other case.
We first show that the Wold decomposition of S decomposes U as

well. Recall that the Wold decomposition uniquely splits the Hilbert

space into H = H0 ⊕H1 so that Si|H0 ' L
(α)
i is pure, and Ti := Si|H1

has Cuntz type.

Lemma 4.1. Suppose S = [S1 . . . Sn] is a row isometry and U is a
unitary on a Hilbert space H satisfying the covariance relations SiU =
Uϕ(Si) for 1 ≤ i ≤ n. Then the Wold decomposition reduces U , thereby
decomposing the representation of An ×ϕ Z+ into a pure part and a
Cuntz part.

Proof. Let σ be the representation of An ×ϕ Z+ with σ(Li) = Si and
σ(u) = U . Let M = Ran(I − SS∗) = Ran(I −

∑n
i=1 SiS

∗
i ). Then

H0 = σ(An)M . Now [ϕ(S1) . . . ϕ(Sn)] is also a row isometry, and
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we let N = Ran(I −
∑n

i=1 ϕ(Si)ϕ(Si)
∗). Since Si ' L

(α)
i ⊕ Ti, we see

that ϕ(Si) = ϕ(Li)
(α) ⊕ ϕ(Ti). Thus the Wold decomposition of ϕ(S)

decomposes H in the same way as S. Therefore σ(An)N = H0.
Now we use the fact that U implements ϕ to see that N = UM and

so

UH0 = Uσ(An)M = σ(An)UM = σ(An)N = H0.

Therefore H0 reduces U as claimed.

Next we show how ϕ is implemented on H0.

Lemma 4.2. Let ϕ ∈ Aut(An) and let Uϕ be the Voiculescu unitary

on `2(F+
n ) which implements ϕ. Then the only unitaries on B(`2(F+

n )
(α)

which implement ϕ on A
(α)
n have the form Uϕ ⊗W .

Proof. Clearly Uϕ ⊗ Iα implements ϕ. If V is another unitary imple-

menting ϕ on A
(α)
n , then (U∗

ϕ⊗Iα)V commutes with A
(α)
n . By Fuglede’s

Theorem, it commutes with C∗(A
(α)
n )′′ = B(`2(F+

n )) ⊗ CIα. There-

fore it lies in C∗(A
(α)
n )′ = CI`2(F+

n ) ⊗ B(H) where dimH = α, say

(U∗
ϕ ⊗ Iα)V = I ⊗W .

Now W is unitary, and so has a spectral resolution. So essentially
every pure representation (id(α), U) of the covariance relations is a di-
rect integral of the representations (id, λUϕ) as λ runs over the unit
circle T. Thus it suffices to show how to dilate (id, Uϕ) to a Cuntz type
unitary dilation.
To accomplish this, we need to consider the map Ýϕ in Aut(Bn). We

refer to [30, Chapter 2] for details. We distinguish two cases. In
the first case, Ýϕ has a fixed point inside Bn. Because Aut(Bn) acts
transitively on Bn, Ýϕ is biholomorphically conjugate to a map which
fixes 0. Such an equivalence yields a completely isometric isomorphism
of the semi-crossed products. So we may assume that Ýϕ(0) = 0 without
loss of generality. But then Ýϕ is a unitary matrix U0 ∈ U(n), ϕ is the
gauge automorphism it induces, and

Uϕ =
∑ ⊕

i≥0
U⊗i
0 .

In the second case, Ýϕ fixes one or two points on the unit sphere.
Again Aut(Bn) acts transitively on the sphere, so we may suppose
that e1 = (1, 0, . . . , 0) is a fixed point. We will deal with these two
cases separately.
In both cases, we will dilate to atomic representations of the Cuntz al-

gebra. These are ∗-representations in which the generators permute an
orthonormal basis up to scalar multiples. These representations were
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defined and classified in [8]. In the first case, we use representations
of inductive type. Beginning with an infinite tail, i.e., an infinite word
x = i1i2 . . . in the alphabet {1, . . . , n}, define a sequence of Hilbert
spaces Hk, for k ≥ 0, as follows. Each Hk naturally identified with
Fock space `2(F+

n ), and this determines the action of F+
n on Hk by the

left regular representation, which extends to a ∗-representation λk of
the Cuntz–Toeplitz algebra En. Imbed Hk−1 into Hk by the isometry
Vkξ

k−1
w = ξkwik

, where with basis {ξkw : w ∈ F+
n } is the standard basis

for Hk. Effectively, Vk is unitarily equivalent to Rik , the right multi-
plication operator by the symbol ik. Since this lies in the commutant
of the left regular representation, it is evident that Vk intertwines λk−1

and λk. The inductive limit of these representations, denoted λx, on
the Hilbert space Hx = limHk, is a ∗-representation of En onto the
Cuntz algebra because in the limit, the sum of the ranges of λx(si) for
1 ≤ i ≤ n is the whole space.

Theorem 4.3. Let ϕ ∈ Aut(An) such that Ýϕ has a fixed point in Bn.
Then (id, Uϕ) has a unitary dilation of Cuntz type.

Proof. As noted before the proof, ϕ is biholomorphically conjugate
to an automorphism which fixes the origin, and hence is a gauge au-
tomorphism. So we start by assuming that ϕ has this form; so ϕ is
determined by the unitary Ýϕ = U0 on span{ξi : 1 ≤ i ≤ n}.

Since unitary matrices are diagonalizable, the map Ýϕ is biholomor-
phically conjugate to a diagonal unitary. Thus it suffices to assume
that U0 is diagonal, say U0ξi = µiξi for scalars µi ∈ T. Let us write
µ = (µ1, . . . , µn) ∈ Tn. It is easy to verify that Uϕ is the diagonal
operator Uϕξw = w(µ)ξw.
Now let x = i1i2 . . . be any infinite tail, and consider the construction

indicated before this proof. Set xk = i1i2 . . . ik for k ≥ 1. Define
unitaries Vk on Hk by Vkξ

k
w = xk(µ)w(µ)ξ

k
w. It is easy to see that

since this is a scalar multiple of Uϕ, conjugation by Vk implements ϕ

on λk(En). Moreover the scalar xk(µ) is chosen so that Vk|Hk−1
= Vk−1

for k ≥ 1. Thus the inductive limit yields the representation σx and a
unitary operator V on Hx implementing ϕ. Thus (σx, V ) is the desired
dilation.
Note that the discussion prior to the theorem implies now that any

representation of An×ϕZ+ dilates to a Cuntz-type representation, pro-
vided that ϕ is a gauge automorphism.
In case of an arbitrary ϕ, we want to prove the existence of a Cuntz-

type dilation for (id, Uϕ). As in the discussion prior to the theorem,
there exists a biholomorphic automorphism α and a gauge automor-
phism ϕ′ so that ϕ′ ◦ α = α ◦ ϕ. By the previous paragraph, (id, ϕ′)
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has a unitary Cuntz dilation (σx, V ). We claim that (σxα, V ) provides
a unitary Cuntz dilation of (id, ϕ). It suffices to verify the covariance
relations:

σxα(A)W = Wσx(ϕ
′(α(A))) = Wσxα(ϕ(A)).

For the second case, we use a special case of the ring representations
[8]. Let Hj = `2(F+

n ) with basis {ξjw : w ∈ F+
n } for 2 ≤ j ≤ n. Let

H = Cζ ⊕
∑n

j=2 ⊕Hj. Let σ1 denote the representation determined by

σ1(L1)ζ = ζ, σ1(Lj)ζ = ξj? for 2 ≤ j ≤ n,

σ1(Li)ξ
j
w = ξjiw for 1 ≤ i ≤ n, 2 ≤ j ≤ n, w ∈ F+

n .

This is evidently a Cuntz representation. Moreover, Cζ is coinvariant
and thus the compression to Cζ is a multiplicative functional ψ such
that

ψ(A) = 〈σ1,µ(Li)ζ, ζ〉 = δi1 = ÝLi(e1).

Hence 〈σ1(A)ζ, ζ〉 = ÝA(e1) for all A ∈ An.

Theorem 4.4. Let ϕ ∈ Aut(An) such that Ýϕ has a fixed point on the
boundary of Bn. Then (id, Uϕ) has a unitary dilation of Cuntz type.

Proof. As in the previous proof, we may suppose that Ýϕ has e1 as a
fixed point.
First we show that ϕ is unitarily implemented on (σ1,H). Let

ψ(A) = 〈σ1(A)ζ, ζ〉 = ÝA(e1). Define a unitary W = 1 ⊕ U
(n−1)
ϕ , and

consider Si = W ∗σ1(Li)W . Then

Si|(Cζ)⊥ = ϕ(Li)
(n−1) for 1 ≤ i ≤ n.

Also

〈Siζ, ζ〉 = ψ(Li) = δi1 = ÝLi(e1) = ÝLi Ýϕ(e1) = ϕ̂(Li)(e1).

In particular,
〈S1ζ, ζ〉 = 1 = 〈σ1(ϕ(L1))ζ, ζ〉.

Since both S1 and σ1(ϕ(L1)) = ϕ(σ1(L1)) are isometries, we conclude
that S1ζ = ζ = σ1(ϕ(L1))ζ. Both agree with ϕ(L1)

(n−1) on (Cζ)⊥, and
therefore

S1 = 1⊕ ϕ(L1)
(n−1) = σ1(ϕ(L1)).

On the other hand, Sjζ is orthogonal to ζ for 2 ≤ j ≤ n. Be-
cause these are isometries with pairwise orthogonal ranges, Sjζ is also
orthogonal to

(
n

∑

i=1

ϕ(Li)`
2(F+

n )
)(n−1)

=
(

U∗
ϕ

n
∑

i=1

LiUϕ`
2(F+

n )
)(n−1)

=
(

(Cν)⊥
)(n−1)
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where ν = U∗
ϕξ?. Observe that exactly the same is true for the isome-

tries σ1(ϕ(Lj)) because σ1(ϕ(Lj))|(Cζ)⊥ = ϕ(Li)
(n−1) also. Therefore

there is a unitary V on (Cν)(n−1) so that

V Sjζ = σ1(ϕ(Lj))ζ for 2 ≤ j ≤ n.

Considering V as an operator on Cn−1, we define V ′ = I`2(F+
n ) ⊗ V in

the commutant of A
(n−1)
n extending V to all of (Cζ)⊥. Define W ′ =

(1⊕ V ′)∗W . Then

W ′∗σ1(Li)W
′ = σ1(ϕ(Li)) for 1 ≤ i ≤ n.

Pick a unit eigenvector y ∈ Cn−1 for the unitary matrix V , say
V y = βy. Then H = `2(F+

n ) ⊗ Cy is an invariant subspace for σ1(An)
which is also invariant for W ′, and W ′|H = βUϕ. Thus it is clear that

(σ1,W
′) is a unitary dilation of (λ, βUϕ). Thus (σ1, βW

′) is a unitary
dilation of (λ, Uϕ).

Remark 4.5. Arveson [2] defines a boundary representation of an
operator algebra A to be an irreducible ∗-representation π of C∗(A) so
that π|A has a unique completely positive extension to C∗(A). These
are just the maximal representations of A which are irreducible [3].
So it is of interest to know when we can obtain irreducible dilations.
In Theorem 4.3, the representation λx is already irreducible provided
that x is not eventually periodic, and the representation σ1 is also
irreducible [8]. So we obtain boundary representations.

An immediate consequence of these dilation theorems, Theorem 3.1
together with Theorems 4.3 and 4.4, are the following crucial facts.

Corollary 4.6. Let ϕ ∈ Aut(An). Then every row contractive covari-
ant representation has a unitary dilation of Cuntz type. Conversely,
every covariant pair (σ, U), where σ is a ∗-extendible representation of
An such that σ(L1), . . . , σ(Ln) generate a copy of On and U is a unitary
satisfying the covariance relations σ(A)U = Uσ(ϕ(A)) for all A ∈ An

determines a maximal representation of An ×ϕ Z+.

Corollary 4.7. C∗
env(An ×ϕ Z+) = On ×ϕ Z.

5. Concrete representations for An ×ϕ Z+.

One of the motivations for the present paper was to provide concrete
faithful representations for An×ϕ Z+. Corollary 4.7 essentially reduces
this to the (selfadjoint) problem of finding faithful representations for
On ×ϕ Z. We know one construction of a representation of On ×ϕ Z.
Just take the canonical map onto C∗(En, Uϕ)/K. When On ×ϕ Z is



DILATIONS 15

simple, this is an isomorphism. We show that this is the case when ϕ
is aperiodic.

Theorem 5.1. The only unitaries in On which conjugate An into itself
are scalars.

Proof. Suppose that U is a unitary in On such that UAnU
∗ = An.

Consider the atomic representation σi on H = Cζ ⊕ `2(F+
n )

(n−1)
,

where the `2(F+
n )

(n−1)
=

⊕

{Hk : 1 ≤ k 6= i ≤ n} and Hk has standard
basis ξkw for w ∈ F+

n . We define

σi(sj)ζ =

{

ζ if j = i

ξj? if j 6= i

and
σi(sj)ξ

k
w = ξkjw for k 6= i, w ∈ F+

n .

The significance of this representation is that Cζ is the unique minimal
invariant subspace for σi(A

∗
n). Hence it must be fixed by σi(U). It

follows that σi(UsiU
∗)ζ = ζ. But it is immediately apparent that the

only elements of An which take ζ to itself are of the form hi(σi(si))
where hi ∈ A(D) and hi(1) = 1. Thus UsiU

∗ = hi(si).
Likewise there are representations σij with a unique minimal minimal

invariant subspace for σi(A
∗
n) which is one dimensional Cζ satisfying

σij((si + sj)/
√
2)ζ = ζ. The same argument shows that there is an

hij ∈ A(D) so that U
(

(si + sj)/
√
2
)

U∗ = hij

(

(si + sj)/
√
2
)

. Therefore

hi(si) + hj(sj) =
√
2hij

(

(si + sj)/
√
2
)

.

It is easy to see from this that hi = hj = hij = λz. Since hi(1) = 1,
we see that λ = 1. Therefore U lies in the centre of On; whence U is
scalar.

Corollary 5.2. The non-trivial Voiculescu automorphisms of On are
outer.

Kishimoto [19, Theorem 3.1] showed that if A is a simple C*-algebra
and α ∈ Aut(A) such that α is aperiodic, i.e., αn is outer for all n 6= 0,
then A ×α Z is simple. Thus we obtain:

Corollary 5.3. If ϕ ∈ Aut(An) is aperiodic, then On ×ϕ Z is simple,
and thus is isomorphic to C∗(En, Uϕ)/K. Therefore the representation

πOn × ÝUϕ of Example 2.2 is a faithful representation of An ×ϕ Z.
We will now observe that the other representation of Example 2.2,

i.e., id × Uϕ is also faithful for An ×ϕ Z, provided that ϕ is aperiodic.
This is of course a feature of the non-selfadjoint theory, since id× Uϕ

comes from a representation of En ×ϕ Z.
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Corollary 5.4. If ϕ ∈ Aut(An) is aperiodic, then the representation
id× Uϕ of Example 2.2 is a faithful representation of An ×ϕ Z.

Proof. Consider the diagram

An ×ϕ Z+ id×Uϕ−−−→ B(`2(F+
n ))

q−−−→ B(`2(F+
n ))/K(`2(F+

n )),

where q denotes the Calkin map. By Corollary 5.3, the composition
q ◦ (id×Uϕ) = πOn × ÝUϕ is isometric, and therefore id×Uϕ is isometric
as well.

When ϕ is periodic, it may be necessary to use a family of rep-
resentations. A natural choice are (id, λUϕ) for λ ∈ T. Form H =

`2(F+
n ) ⊗ L2(T). Consider (id(∞), Uϕ ⊗ Mz) where id(∞)(A) = A ⊗ I

and Mz is multiplication by z on L2(T). Clearly this is a covariant
representation. Let Rµ denote the operator of rotation by µ ∈ T on

L2(T). Then ad I⊗Rµ fixes id(∞)(En) and conjugatesMz to µMz. Con-
sequently integration with respect to µ yields a faithful expectation of
B = C∗(id(∞)(En), Uϕ ⊗ Mz) onto the copy id(∞)(En) of En. A stan-
dard gauge invariant uniqueness argument shows that B ' En ×ϕ Z.
Modding out by the ideal J generated by id(∞)(K) yields a covariant
representation of On ×ϕ Z which has a faithful expectation onto On.
Thus this also yields a faithful representation of the crossed product.
To summarize, we have established that:

Proposition 5.5. The crossed product On×ϕ Z is isomorphic to B/J,

where B = C∗(id(∞)(En), Uϕ ⊗ Mz) and J is the ideal generated by

id(∞)(K).
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