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Abstract. Assume that ϕ1 and ϕ2 are automorphisms of the
non-commutative disc algebra An, n ≥ 2. We show that the semi-
crossed products An ×ϕ1 Z+ and An ×ϕ2 Z+ are isomorphic as
algebras if and only if ϕ1 and ϕ2 are conjugate via an automor-
phism of An. A similar result holds for semicrossed products of
the d-shift algebra Ad, d ≥ 2.

1. Introduction

In this paper, we study crossed products of the non-commutative disk
algebra An and the commutative analogue, the d-shift algebra Ad of
multipliers on the Arveson–Drury space. The isometric automorphisms
of these algebras come from the natural action of the group Aut(Bn)
of conformal automorphisms of the unit ball Bn of Cn on the character
space Bn. We will show that the semi-crossed product that is formed
determines the automorphism up to analytic conjugacy.

There is an extensive body of work studying dynamical systems via
associated operator algebras going back to work of von Neumann. The
use of nonself-adjoint operator algebras in this area begins with seminal
work of Arveson [2] and Arveson–Josephson [4]. This was put into the
abstract setting of semi-crossed products by Peters [25]. See [11] for
an overview of some of the recent work in this area.
Here we will be concerned with analytic actions on operator algebras

which encode that analytic structure in some way. In [21] , Hoover,
Peters and Wogen initiated a study of semi-crossed products of the disk
algebra A(D) by the automorphisms induced by a Mobius map. It was
subsequently studied by Buske and Peters [6].

This problem was completed and extended in [9]. If K is the closure
of a finitely connected bounded domain Ω in C with nice boundary,
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then A(K) denotes the space of continuous functions on K which are
analytic on Ω. If γ ∈ A(K) maps K into itself, then it induces an endo-
morphism of A(K) sending f → f ◦γ. We showed that the semicrossed
products A(Ki)×γi Z+ are isomorphic if and only if γi are analytically
conjugate, except for one exceptional case.
Here we deal with a higher dimensional version. The algebras An

(resp. An) are the universal norm-closed operator algebras for a (com-
muting) n-tuple of operators T1, . . . , Tn such that ‖[T1 . . . Tn]‖ ≤ 1.
This is in the sense that given any such n-tuple T , there is a unique
completely contractive homomorphism of An (or An) onto the algebra
A(T1, . . . , Tn) taking generators to generators. These algebras are more
tractable, in many ways, than the algebras of analytic functions.
An is the complete quotient of An by its commutator ideal. So the

two algebras are intimately linked. The character space in both cases is
homeomorphic to Bn and the Gelfand map carries them into the space
A(Bn) of analytic functions on Bn which extend to be continuous on
the closure. The group of isometric isomorphisms is just Aut(Bn), the
group of conformal automorphisms of Bn, and this action commutes
with the Gelfand map.
In [9], a lot of information is obtained from representations of the

algebra onto the upper triangular 2 × 2 matrices. In that case, the
underlying algebra A(K) has no such representations, and the restric-
tion to A(K) was similar to a diagonal representation. Here however,
there is a complicating factor because An has so many finite dimen-
sional representations. It will be necessary to use a much larger family
of nest representation to filter out the “noiseÔ caused by these other
representations.
The free semigroup F+

n consists of all words in an alphabet of n
letters. Consider the left regular representation λ of F+

n on Fock space,
`2(F+

n ). Let Si = λ(i). The non-commutative disc algebra An, for
n ≥ 2, is the nonself-adjoint unital algebra generated by S1, . . . , Sn.
It sits as a subalgebra of the Cuntz–Toeplitz C*-algebra. However
the quotient map onto the Cuntz algebra is completely isometric on
An. So An may be considered as a subalgebra of On. Moreover the
operator algebra generated by any n-tuple of isometries V1, . . . , Vn with
pairwise orthogonal ranges is completely isometrically isomorphic to
An. These algebras were introduced by Popescu [28] as a natural
multivariable generalization of disc algebra A(D). The Frahzo–Bunce
dilation Theorem [18, 5, 27] shows that any row contractive n-tuple
T = [T1, . . . , Tn] dilates to an n-tuple of isometries V = [V1, . . . , Vn]
with pairwise orthogonal ranges. Popescu used it to establish a natural
analogue of the von Neumann inequality for row contractive n-tuples.
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The (norm closed) d-shift algebraAd, d ≥ 2, plays the same role for a
row contractive d-tuple of commuting operators. It is the quotient of Ad

by the commutator ideal, and is represented by the operators ÝSi which
act on symmetric Fock space, Hd, obtained as the compression of Si

to this co-invariant subspace. Symmetric Fock space can be considered
as a space of functions on Bn. It is a reproducing kernel Hilbert space

on Bn with kernel k(x, y) =
1

1− 〈y, x〉
. The operators ÝSi are just the

multipliers by the coordinate functions zi. This algebra was introduced
by Arveson [3]. The corresponding dilation theorem due to Drury [17]
shows that any commuting row contractive d-tuple T is the range of
a completely contractive homomorphism of Ad taking generators to
generators.

2. Crossed Products

Definition 2.1. Let Aut(An) denote the isometric automorphisms of
An, and let ϕ ∈ Aut(An). The semicrossed product An ×ϕ Z+ is the
universal operator algebra containing An and a contraction U so that
AU = Uϕ(A) for all A ∈ An.

Specifically, for any completely contractive representation π of An

on a Hilbert space H and a contraction K ∈ B(H) satisfying π(A)K =
Kπ(ϕ(A)), for all A ∈ An, will produce a contractive representation
π ×K of An ×ϕ Z+ on H, which on polynomials is defined as follows

(π ×K)(
∑

n

UnAn) =
∑

n

Knπ(An).

There are several such representations of An×ϕ Z+, which, in one form
or another, have already appeared in the literature.

Example 2.2. Let ϕ ∈ AutAn. Voiculescu [32] has constructed a
unitary U acting on the Fock space Hn which implements the action
of ϕ on the Cuntz–Toeplitz C∗-algebra En by U∗AU = ϕ(A). This
provides a covariant pair (idEn , U) for (En, ϕ) and therefore it produces
a representation idEn × U of En ×ϕ Z. This provides a representation
(idAn , U) of An ×ϕ Z+ by restriction.

Similarly, by taking quotients with the compacts on Hn, we obtain
a covariant representation (πOn , ÝU) for (On, ϕ) and therefore represen-
tations for both On ×ϕ Z and An ×ϕ Z+, inside the Calkin algebra,

which we denote as πOn × ÝU . In the case where ϕ is aperiodic, both

representations πOn × ÝU and idEn × U of An ×ϕ Z+ are faithful [12].
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Example 2.3. Let π be any completely contractive representation of
An on a Hilbert space H. Define π̃ on H⊗ `2 by

π̃(a) =
∑

k≥0

⊕
πϕk(a) and U = I ⊗ S∗

where S is the unilateral shift. This is easily seen to yield a completely
contractive representation π̃ of An and a contraction U so that (π̃, U)
yields a representation of An ×ϕ Z+.

Example 2.4. Let ϕ ∈ AutAn. Consider the non-commutative disc
algebra An+1 acting on the Fock space Hn+1 and define an ideal

J =
〈

SiSn+1 − Sn+1ϕ(Si) : 1 ≤ i ≤ n
〉

.

Thewot-closure J of J is an ideal of Ln+1, and these ideals were studied
in [14, 15]. In particular, it is shown in [14] that J is determined by its
range, which is a subspace invariant for both Ln+1 and its commutant
Rn+1. Then in [15], it is shown that Ln+1/J is completely isometrically
isomorphic to the compression to Hϕ = Ran(J)⊥. Since

RanJ = span
{

A(SiSn+1 − Sn+1ϕ(Si))Hn+1 : i = 1, 2, . . . , n
}

is evidently orthogonal to ξ?, we see that Hϕ is non-empty. The com-
pression of An to Hϕ is a completely contractive homomorphism ρ, and
the compression B of Sn+1 is also a contraction. Therefore (ρ,B) is a
covariant representation of (An, ϕ), and thus determines a completely
contractive representation An ×ϕ Z+.

Example 2.5. Any representation of An produces a representation of
An ×ϕ Z+ by simply taking U = 0. In section 4, we will use repeatedly
that observation. In section 5 various finite dimensional representations
of An×ϕ Z+ will also be constructed that will allow us to classify them
as algebras.

Example 2.6. In the special case where ϕ is just a permutation, David-
son, Power and Yang [16] have studied a specific representation of
An ×ϕ Z+, whose image is the tensor algebra of a rank 2 graph.

Actually, this last example raises the question whether one can con-
struct concrete faithful representations of An ×ϕ Z+, for arbitrary ϕ.
The case n = 1 has been resolved in [6] and the general case is being
considered in [12].
One can also define the semicrossed product An×ϕ Z+ of the d-shift

algebra An by an automorphism ϕ ∈ Aut(An), as we did in Defini-
tion 2.1. The above examples, modified appropriately, will produce
representations for that semicrossed product as well.



SEMICROSSED PRODUCTS 5

3. The character space of An ×ϕ Z+.

The character space MAn of An is homeomorphic to Bn via the identi-
fication θ → θ(n)([S1 . . . Sn]). Indeed, every multiplicative linear func-
tional is unital and completely contractive. So θ(n)([S1 . . . Sn]) ∈ Bn.
The Frahzo–Bunce–Popescu dilation theory [18, 5, 27] for row con-
tractions shows that all of these points are possible for An and hence
for An. Since the polynomials are dense in An and in An, it follows
that θ is uniquely determined by this data. So we can write θz for the
character corresponding to z ∈ Bn. When ‖z‖ < 1, this functional is
given as a vector state on the left regular representation.
Any ϕ ∈ Aut(An) acts on the character space MAn by Ýϕ(θ) = θ ◦

ϕ. Note that Ýϕ is a homeomorphism, and so carries the interior Bn

onto itself. As in Davidson–Pitts [14] (the wot-continuous version),
it follow that Ýϕ is a conformal automorphism of Bn. See [29] for a
different proof by Popescu. It turns out that this assignment is one-
to-one and onto and therefore establishes a bicontinuous isomorphism
between Aut(An) and Aut(Bn).

Definition 3.1. If A is a Banach algebra, a subset O of MA is said
to be analytic if there exist a domain Ω ⊂ Ck and a homeomorphism
h : Ω → O such that Ýa ◦ h is analytic for every a ∈ A.

If C is the commutator ideal of the noncommutative disk algebra An,
then An ' An/C. Let q be the quotient map. If Ýϕ ∈ Aut(Bn), write ϕ
for the corresponding automorphism of An and Φ for the automorphism
of An. Then qϕ = Φq. This induces a quotient map of An ×ϕ Z+, onto
An ×Φ Z+. As C is contained in the commutator ideal of An ×ϕ Z+, we
see that An ×Φ Z+ has the same character space. It follows easily that
they have the same maximal analytic sets.

For ϕ ∈ Aut(An), we write

Fix( Ýϕ) = {θ ∈ MAn : Ýϕ(θ) = θ}.

This consists either of an affine subset of Bn, or one or two points
on the boundary (see Rudin [31]). Let F0(ϕ) = Fix(ϕ) ∩ Bn and let
F1(ϕ) = Fix(ϕ) ∩ ∂Bn. The next result characterizes the maximal
analytic subsets of MAn×ϕZ+ .

Lemma 3.2. MAn×ϕZ+ = (Bn × {0}) ∪ (Fix(ϕ) × D). The maximal
analytic sets in MAn×ϕZ+ are Bn × {0}, F0(ϕ) × D, F0(ϕ) × {λ} for
λ ∈ T, and {x} × D for x ∈ F1(ϕ).

Proof. A character θ is determined by its restriction to An, θ|An , and
the scalar λ = θ(U). There is a point z ∈ Bn so that θ|An = θz,
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and |λ| ≤ ‖U‖ = 1. As in Davidson–Katsoulis [9, §3], if θz is not a
fixed point of Ýϕ, then λ = 0. In that case, we write θ = θz,0. On
the other hand, if θz is a fixed point of Ýϕ, then the 1-dimensional
representation θz of An and any λ ∈ D satisfy the covariance relations.
Therefore there is a (completely contractive) representation θz,λ of the
semicrossed product An×ϕ Z+ on C with θz,λ|An = θz and θz,λ(U) = λ.
Clearly θz,λ is a character. Thus

MAn×θZ+ = (Bn × {0}) ∪ (Fix(ϕ)× D).

Evidently the sets Bn × {0}, F0(ϕ)× D, F0(ϕ)× {λ} for λ ∈ T, and
{x} × D for x ∈ F1(ϕ) are analytic sets. On the other hand, suppose
that Ω ⊂ Cm is a domain and h : Ω → MAn×ϕZ+ is an analytic map.

Either h(Ω) contains θx,0 for some x 6∈ Fix(ϕ), or h(Ω) ⊂ Fix(ϕ)× D.
In the first case, suppose that h(w0) = θx,0. Then there is a neigh-

bourhoodW of w0 so that h(w) = θh1(w),0 for w ∈ W. Hence h(w)(U) =

0 on W. By analyticity, it must vanish on all of Ω. So h(Ω) ⊂ Bn×{0}.
This function is not constant, so it cannot achieve its maximum mod-
ulus. So h(Ω) ⊂ Bn × {0}.
In the latter case, suppose that it contains point θx,λ for x ∈ F0(ϕ).

Then
g(w) = h(w)

(

[S1 . . . Sn]
)

for w ∈ Ω

takes values in Bn and takes a value in Bn at some point. This map
is analytic, and hence is either constant or fails to attain its maximal
modulus. In either case, it remains in Bn×D. Similarly, either h(w)(U)
takes values in D or it is a constant value of modulus 1. So it is
contained in F0(ϕ)× D or in F0(ϕ)× {λ} for some λ ∈ T.

Finally, suppose that it contains a point θx,λ for x ∈ F1(ϕ), say
x = (x1, . . . , xn) ∈ ∂Bn. Then S =

∑n
i=1 xiSi is a contraction such

that θx,λ(S) = 1. Since |θ(S)| ≤ 1 for all characters θ and h(w)(S) is
analytic, it follows that this map is constant. So h(Ω) is contained in
{x} × D. Again the maximum modulus theorem shows that h(Ω) is
contained in {x} × D.

The structure of the maximal analytic sets for An ×ϕ Z+ and for
An ×Φ Z+, n ≥ 2 is much richer than that of the case n = 1. In order
to handle this situation, we will use the theory of several complex
variables.

4. The ideal Jϕ

As in [9, 10] where we studied various semicrossed products, we will
make significant use of nest representations. These are representations
into Tk, the upper triangular k×k matrices, such that the only invariant
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subspaces of the image are those of Tk. However, in these earlier cases,
where the algebra was a semicrossed product of C(X) or of A(D), the
image of this subalgebra was abelian and in the case of C(X), the image
was diagonalizable. There is a considerable difference here because
there is a plethora of nest representations of An onto Tk for any k ≥ 1
[14, 8]. Consequently, some care is required to separate these from
the representations we require to determine the map ϕ. This section
provides the technical tool to accomplish that.

Definition 4.1. If ϕ is an automorphism of the non-commutative disc
algebra An, n ≥ 2, then Jϕ = U(An×ϕ Z+) will denote the closed ideal
of An ×ϕ Z+ generated by U .

The main result of this section shows that Jϕ is determined intrinsi-
cally within An ×ϕ Z+. To accomplish this, we require a construction
of nest representations which specify the diagonal in advance. We do
this by modifying an earlier construction of ours [8] regarding nest rep-
resentations of An. Then we compose these representations with the
canonical quotient π : An ×ϕ Z+/Jϕ ' An, which sends U to 0, and
obtain nest representations of An ×ϕ Z+.
Let repTk

An ×ϕ Z+ denote the collection of all representations of A
onto Tk, the upper triangular k × k matrices. To each nest represen-
tation π ∈ repTk

An ×ϕ Z+, we associate k characters θπ,1, θπ,2, . . . , θπ,k
which correspond to the diagonal entries. That is, if {ξ1, ξ2, . . . , ξk} is
the canonical basis of Ck which makes Tk upper triangular, then

θπ,i(A) ≡ 〈π(A)ξi, ξi〉, for A ∈ An ×ϕ Z+, i = 1, 2, . . . , k.

If Z = (z1, z2, . . . ) ∈ B∞
n , then NZ,k ⊆ repTk

An ×ϕ Z+ will denote
the family of k × k nest representations π such that θπ,i = θzi,0 for
1 ≤ i ≤ k. We set NZ =

⋃

k≥1NZ,k.

Lemma 4.2. Let Z ∈ B∞
n such that Z ∩ Ýϕ(Z) = ∅. If ρ is a k × k

nest representation of An ×ϕ Z+ in NZ,k, then ρ(U) = 0.

Proof. If ρ(U) 6= 0, then there is a non-zero matrix entry ρ(U)ij with
j − i minimal. Since Ýϕ(zj) 6= zi, there is an element A ∈ An such that
ÝA(zi) = 1 and ϕ̂(A)(zj) = ÝA( Ýϕ(zj)) = 0. Then using the fact that
ρ(U)ik = 0 = ρ(U)kj for i ≤ k < j, compute

0 = ρ(AU − Uϕ(A))ij = θzi,0(A)ρ(U)ij − ρ(U)ijθzj ,0(ϕ(A))

= ÝA(zi)ρ(U)ij − ρ(U)ij ÝA( Ýϕ(zj)) = ρ(U)ij.

Since Ýϕ is an analytic function, the property that Z ∩ Ýϕ(Z) = ∅
is generic for sequences Z ∈ B∞

n . We would like to show that in this
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case, that JZ :=
⋂

ρ∈NZ
ker ρ is equal to Jϕ. While this may be true,

we were not able to prove it. However, we show that if one allows the
diagonal entries to vary over small neighbourhoods, then this is the
case (generically).
Start with a sequence Z = (z1, z2, . . . ) ∈ B∞

n and a word w =
l1 . . . lk ∈ F+

n of length k ≥ 2. Fix 0 ≤ δ < 1 so that Zk+1 ≡
(z1, z2, . . . , zk+1) ∈ δBk+1

n and construct a representation ρZ,w in NZ,k+1

as follows. Write zi = (zi1, . . . , zin). Define ρZ,w(U) = 0 and

ρZ,w(Sj) = diag(zij)
k+1
i=1 + (1− δ)

∑

li=j

Ei,i+1 for 1 ≤ j ≤ n.

It is easy to see that
∥

∥

[

ρZ,w(S1) . . . ρZ,w(Sn)
]∥

∥ < 1.

So this determines a completely contractive representation.
Evidently, if we fix the word w, then the above construction not only

works for Z but also for any other (finite or infinite) sequence Z ′, as
long as Z ′

k+1 ∈ δBn. Therefore, whenever convenient, we will think of
Z in ρZ,w as a variable that ranges over all sequences whose first k + 1
entries belong to δBn.

Lemma 4.3. With the above notation, we have ρZ,w(Sw)1,k+1 = (1−δ)k

and ρZ,w(Sv)1,k+1 = 0 for all other words with |v| ≤ k. For each word v
with |v| > k, there is an analytic function Fv on δBk+1

n with F (0) = 0
so that

ρZ,w(Sv)1,k+1 = Fv(z1, . . . , zk+1).

Moreover, if the coordinates {zij : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n} are all
distinct, then the range of ρZ,w is all of Tk+1. So ρZ,w ∈ NZ,k+1.

Proof. Observe that ρZ,w(Sv)1,k+1 = 0 unless v has the form

v = v1l1v2l2 . . . lkvk+1 for vi ∈ F+
n .

Of course, for words of length greater than k + 1, there may be more
than one such factorization of v. Considering Z = (z1, z2, . . . , zk+1)
with zi contained in δBk+1

n , we see that the matrix coefficient ρZ,w(Sv)1,k+1

is the sum of terms of the form

(1− δ)k
∏

1≤i≤k+1

θzi(Svi)

Each term is a monomial of degree
∑

|vi| = |v| − k − 1. In particular,
ρZ,w(Sw)1,k+1 = (1 − δ)k. For |v| > k + 1, this is a homogeneous
polynomial Fv(z1, . . . , zk+1); so Fv(0) = 0.

Assume now that the coordinates {zij : 1 ≤ i ≤ k+1, 1 ≤ j ≤ n} are
all distinct. First we show that E1,1 is in the range. Take any j 6= l1.
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Pick a polynomial p so that p(z1j) = 1 and p(zij) = 0 for 2 ≤ i ≤ k+1.
This is possible since zij are distinct. Then ρZ,w(Sj) = diag(zij)

k+1
i=1 +X

where X is supported on the first superdiagonal, and since j 6= l1,
X1,2 = 0; so X = E⊥

1,1XE⊥
1,1. Therefore, ρZ,w(p(Sj)) = E1,1 + T where

T = E⊥
1,1TE

⊥
1,1 is strictly upper triangular. Hence ρZ,w(p(Sj)

k) = E11.
One can now similarly show that Ei,i lies in the range of ρZ,w by

induction. It follows easily that each Ei,i+1 lies in the range of ρZ,w.
Hence the range is all of Tk+1.

The next step is to show that for elements A 6= 0 in An, there are
enough representations which are non-zero on A.

Lemma 4.4. Let Z ∈ B∞
n . For any 0 6= A ∈ An and any εi > 0, there

is a word w of length k ≥ 2 and a sequence Z ′ ∈ Bk+1
n with coordinates

{z′ij : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n} all distinct satisfying ‖z′i − zi‖ < εi so
that ρZ′,w(A) 6= 0.

Proof. If A is not in the commutator ideal, then ÝA is a non-zero an-
alytic function on Bn. Thus it has only isolated zeros. Therefore one
can modify z1 by a sufficiently small perturbation to satisfy all of the
requirements and make ρZ′,w(A)1,1 6= 0 for arbitrary choice of w.
So suppose that A ∈ C. Then the Fourier series

∑

awSw of A has
no constant or linear terms. Let w be a word of minimal length such
that aw 6= 0. Then by the previous lemma, ρZ,w(Sw) = (1− δ)k, for an
appropriate 0 ≤ δ ≤ 1, and [ρZ,w(A)]1,k+1 = aw(1−δ)k+F (z1, . . . , zk+1),
where F is an analytic function, defined on δBk+1

n , with 0 constant
term. This matrix entry might vanish at (z1, . . . , zk+1), but will then
necessarily be non-constant. So it will be non-zero at most points
(z′1, . . . , z

′
k+1) arbitrarily near to (z1, . . . , zk+1). So one may choose Z ′

accordingly.

If Z = (z1, z2, . . . ) and Z ′ = (z′1, z
′
2, . . . , z

′
l) belong to B∞

n and Bl
n

respectively, then we write d(Z,Z ′) := sup{‖zi − z′i‖ : 1 ≤ i ≤ l}.
We come to the main result of this section, which shows that Jϕ is

intrinsically defined.

Theorem 4.5. If Z ∈ B∞
n , then the ideal

IZ :=
⋂

l≥2

⋃

ε>0

⋂

{ker ρ : ρ ∈ NZ′,l, Z ′ ∈ Bl
n, d(Z ′, Z) < ε }

equals Jϕ whenever Ýϕ(Z) ∩ Z = ∅; and it is always contained in Jϕ.
Therefore Jϕ =

⋃

JZ.

Proof. If Ýϕ(Z) ∩ Z = ∅, then for each fixed l and sufficiently small
ε > 0, one has Ýϕ({z′1, . . . , z′l}) ∩ ({z′1, . . . , z′l}) = ∅ when d(Z ′, Z) < ε.
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For all ρ ∈ NZ′,l, one has ρ(U) = 0 by Lemma 4.2. So ker ρ contains
Jϕ. Hence IZ contains Jϕ.
Conversely, if X 6∈ Jϕ, then q(X) = A 6= 0. Lemma 4.4 shows that

there is a k ≥ 2 and a word w of length k so that for any ε > 0,
there is a Z ′ in Bk+1

n with d(Z ′, Z) < ε and ρZ′,w ∈ NZ′,k+1 so that
ρZ′,w(X) 6= 0. Hence for l = k + 1, we have

X /∈
⋃

ε>0

⋂

{ker ρ : ρ ∈ NZ′,l, Z ′ ∈ Bl
n, d(Z ′, Z) < ε }

and therefore X /∈ IZ . So IZ = Jϕ.
Since IZ = Jϕ we obtain Jϕ ⊂

⋃

IZ . Even if Ýϕ(Z) ∩ Z 6= ∅,
for any l ≥ 1, there will always be Z ′ ∈ Z with d(Z ′, Z) < ε and
Ýϕ({z′1, . . . , z′l})∩ ({z′1, . . . , z′l} = ∅. So using Lemma 4.4 once again, we
see that if X 6∈ Jϕ, then X 6∈ IZ . So IZ is always a subset of Jϕ.

5. The main result.

If γ : B1 → B2 is an isomorphism between algebras B1 and B2,
then γ induces isomorphisms,

γc : MB1 → MB2 by γc(θ) = θ ◦ γ−1

γr : repT2
B1 → repT2

B2 by γr(π) = π ◦ γ−1

which are compatible in the sense that

γc(θπ,i) = θγr(π),i for i = 1, 2 and π ∈ repT2
B1.

Let ϕ1 and ϕ2 be isometric automorphisms of An and assume that
γ : An ×ϕ1 Z+ → An ×ϕ2 Z+ is an isomorphism. We can now define a
third map γs : Bn → Bn associated with γ, by the formula

γs(z) = (θz,0 ◦ γ−1)(n)[S1, S2, . . . Sn], z ∈ Bn.

An easy approximation argument shows that γs is a holomorphic map.

Lemma 5.1. Let ϕ1, ϕ2 be non-trivial isometric automorphisms of An.
Assume that there exists an isomorphism γ : An ×ϕ1 Z+ → An ×ϕ2 Z+.
If γs and γc are defined as above, then

γc(Bn × {0}) = Bn × {0}

Hence, γ−1
s = (γ−1)s and so γs is a biholomorphism. Furthermore, the

fixed point sets in the open ball, F0( Ýϕi), satisfy

γs((F0( Ýϕ1)) = F0( Ýϕ2).
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Proof. As ϕi 6= id, Lemma 3.2 shows that Bn × {0} is distinguished
from the other maximal analytic subsets of the maximal ideal space of
An×ϕi

Z+ as the only maximal analytic set of dimension n which is not
a product domain. A result by Ligocka [22, Theorem 2] states that
a biholomorphic map between products of domains with boundaries
of class C2 (which our sets clearly have) must preserve the number of
factors. Hence γc(Bn × {0}) = Bn × {0}. It follows that γ−1

s = (γ−1)s,
i.e., γs is a biholomorphism.
Now F0( Ýϕi) is determined as the intersection of Bn × {0} with the

union of all other maximal analytic sets. It follows that

γs((F0( Ýϕ1)) = F0( Ýϕ2).

We now show that Jϕ is invariant under isomorphisms.

Corollary 5.2. Assume that ϕ 6= id is an automorphism of Bn. Then
Jϕ = U(An ×ϕ Z+) is an algebraic invariant of An ×ϕ Z+ given by
Jϕ =

⋃

IZ.

Proof. The invariance of Bn × {0} shows that sequences in B∞
n are

intrinsically defined in the character space of An ×ϕ Z+. The proof
follows now from Theorem 4.5 and the uniform continuity of γc.

The above results allow us to focus on a special class of nest repre-
sentations. Let ϕ be an automorphism of the non-commutative disc al-
gebra An. We denote by s-repT2

An×ϕ Z+ the subset of repT2
An×ϕ Z+

consisting of all nest representations π ∈ repT2
An ×ϕ Z+ such that

θπ,1, θπ,2 ∈ Bn × {0}, θπ,2|An /∈ Fix( Ýϕ) and π(U) 6= 0. By Lemma 3.2
and Corollary 5.2, s-repT2

An ×ϕ Z+ is preserved by the dual action of
isomorphisms between semicrossed products of the non-commutative
disc algebra An.
Let π ∈ s-repT2

An×ϕ Z+ with π(U) = ( 0 c
0 0 ), c 6= 0. Applying π now

to the covariance relation

SiU = Uϕ(Si), 1 ≤ i ≤ n,

and comparing (1, 2) entries, we conclude that θπ,1 = Ýϕ(θπ,2). The
situation is parallel to the n = 1 case and the techniques of [9] are now
applicable.

Theorem 5.3. Let ϕ1 and ϕ2 be automorphisms of the non-commuta-
tive disc algebra An, n ≥ 2. Then the semicrossed products An ×ϕ1 Z+

and An ×ϕ2 Z+ are isomorphic as algebras if and only if ϕ1 and ϕ2 are
conjugate via an automorphism of An.
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Proof. Firstly, one can recognize ϕ = id from the fact that Bn × D
is the unique maximal analytic set of largest dimension. So we may
suppose that ϕi 6= id.
Assume that there exists an isometric isomorphism

γ : An ×ϕ1 Z+ −→ An ×ϕ2 Z+.

Then by Corollary 5.2, γ induces a map γ̃ of An ' An ×ϕ1 Z+/Jϕ1

onto An ' An ×ϕ2 Z+/Jϕ2 . This in turn determines a conformal auto-
morphism Ýγ of Bn. We will show that Ýγ ◦ ϕ1 = ϕ2 ◦ Ýγ by establishing
that

(1) θ ◦ γ−1 ◦ ϕ2 = θ ◦ γ−1 = θ ◦ ϕ1 ◦ γ−1 for all θ ∈ Bn.

If θ ∈ F0(ϕ1), then by Lemma 3.2, θ ◦ γ−1 ∈ F0(ϕ2). Hence,

θ ◦ γ−1 ◦ ϕ2 = θ ◦ γ−1 = θ ◦ ϕ1 ◦ γ−1,

and so (1) is valid in that case.
Assume that θ /∈ F0(ϕ1). A standard dilation argument (and the

universality of the semicrossed product) imply the existence of a rep-
resentation π ∈ s-repT2

An ×ϕ1 Z+ so that θπ,2 = θ. But then

π ◦ γ−1 ∈ s-repT2
An ×ϕ1 Z+.

Hence, by our earlier discussion

θπ◦γ−1,2 ◦ ϕ2 = θπ◦γ−1,1.

Since

θπ◦γ−1,2 = θπ,2 ◦ γ−1

and

θπ◦γ−1,1 = θπ,1 ◦ γ−1 = θπ,2 ◦ ϕ1 ◦ γ−1

we once again obtain (1) and the proof is complete.

6. Semicrossed products of Ad

A result similar to that of Theorem 5.3 also holds in the case of the
d-shift algebras.

Theorem 6.1. If ϕ1 and ϕ2 are automorphisms of the norm closed
d-shift algebra Ad, d ≥ 2, then the semicrossed products Ad ×ϕ1 Z+

and Ad ×ϕ2 Z+ are isomorphic as algebras if and only if ϕ1 and ϕ2 are
conjugate via an automorphism of Ad.

In order to prove Theorem 5.3 we showed that the ideal Jϕ is an
isomorphism invariant. We then defined as s-repT2

Ad ×ϕ Z+ to be the
class of 2×2 nest representations of Ad×ϕ1 Z+ which do not annihilate
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Jϕ. Theorem 5.3 implies then that s-repT2
Ad ×ϕ Z+ is invariant under

the dual actions of isomorphisms.
The proof of Theorem 6.1 requires much less. Since Ad is commuta-

tive, any 2 × 2 nest representation of Ad ×ϕ1 Z+ could not annihilate
the universal contraction U , for then it will not be surjective. Hence
repeating mutatis mutandis the arguments in the proof of Theorem
5.3, we get a proof for Theorem 6.1 as well. (Recall that the results of
Section 3 have been established for both An ×ϕ1 Z+ and Ad ×ϕ1 Z+.)
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