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Abstract. Motivated by the theory of tensor algebras and mul-
tivariable C∗-dynamics, we revisit two fundamental techniques in
the theory of C∗-correspondences, the “addition of a tail” to a non-
injective C∗-correspondence [21] and the dilation of an injective
C∗-correspondence to an essential Hilbert bimodule [26, 30]. We
provide a very broad scheme for “adding a tail” to a non-injective
C∗-correspondence; our scheme includes the “tail” of Muhly and
Tomforde as a special case. We illustrate the diversity and neces-
sity of our tails with several examples from the theory of multivari-
able C∗-dynamics. We also exhibit a transparent picture for the
dilation of an injective C∗-correspondence to an essential Hilbert
bimodule. As an application of our constructs, we prove two re-
sults in the theory of multivariable dynamics that extend results
from [6, 25, 4]. We also discuss the impact of our results on the
description of the C∗-envelope of a tensor algebra as the Cuntz-
Pimsner algebra of the associated C∗-correspondence [15, 19].

1. Introduction

Initial motivation for this paper came from a recent result of David-
son and Roydor [6]. Specifically, Davidson and Roydor prove that
the Cuntz-Pimsner algebra of a multivariable dynamical system for a
commutative C∗-algebra is Morita equivalent to a crossed product of
a C∗-algebra by an injective endomorphism, thus extending earlier re-
sults or claims by Peters [25] and Cuntz [4]. A key step in their proof
is a result of a particular interest to us: the Cuntz-Pimsner algebra
of a non-injective multivariable system for a commutative C∗-algebra
is Morita equivalent to the Cuntz-Pimsner algebra of an injective one.
The Cuntz-Pimsner algebras of multivariable dynamical systems in-
clude as special cases Cuntz’s twisted tensor products by On [4] and
therefore the result of Davidson and Roydor provides an alternative
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description for these algebras but only in the commutative case. Since
several important cases of twisted tensor products by On involve non-
commutative C∗-algebras, it is desirable to establish a similar result
in the non-commutative setting as well. This is accomplished for ar-
bitrary C∗-algebras in Theorem 4.2, Theorem 4.6 and Corollary 4.7 of
the present paper. But the paper contains much more than just these
generalizations.

Davidson and Roydor prove their results by making heavy use of
Gelfand theory. In order to extend their results to the non-commutative
setting, we must follow an alternate route that avoids both Gelfand
theory and an error in [6]. This route comes from the theory of C∗-
correspondences and in particular from a fundamental techniques in
that theory: the addition of a tail to a non-injective C∗-correspondence
(Muhly and Tomforde [21]. As it appears in the current literature, this
technique is insufficiently developed for our purposes. This shifts the
main focus of this paper from multivariable dynamics to the abstract
theory of C∗-correspondences. Consequently, the majority of this pa-
per is occupied with the enrichment and further development of the
“addition of a tail” to a non-injective C∗-correspondence.

Additional motivation for the further development of this techniques
comes from the abstract characterization of the C∗-envelope for a ten-
sor algebra of a C∗-correspondence. Building on earlier work of Muhly
and Solel [19] and Fowler, Muhly and Raeburn [9], Katsoulis and
Kribs [15] have shown that the C∗-envelope of a tensor algebra T +

X

of a C∗-correspondence (X,A, ϕX) is isomorphic to the Cuntz-Pimsner
algebra OX . In Theorem 5.1, by adding a tail to a non-injective corre-
spondence (X,A, ϕX) we obtain that C∗e(T +

X ) is a full corner of a Cuntz-
Pimsner algebra OY for of an essential Hilbert bimodule (Y,B, ϕY ).
Therefore it becomes important to fully develop and understand the
addition of a tail, as it leads to a variety of Morita-equivalent pictures
for C∗e(T +

X ) and therefore have an impact the classification theory for
tensor algebras. This result also motivates us to re-examine another
important technique in the theory of C∗-correspondences: the dila-
tion of an injective C∗-correspondence to an essential Hilbert bimodule
(Pimsner [26], Schweizer [30]). This is also done in this paper.

By “adding a tail” to a non-injective correspondence we mean that
the original correspondence is naturally embedded in an injective cor-
respondence so that the Cuntz-Pimsner algebras associated with both
correspondences are (strongly) Morita equivalent. This technique orig-
inated in the theory of graph algebras and it was extended to the the-
ory of C∗-correspondences by Muhly and Tomforde [21]. For each non-
injective C∗-correspondence, Muhly and Tomforde construct a (unique)
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tail associated with that correspondence. Even though their construc-
tion has had significant applications [15], it is not flexible enough for
our needs. To make the case, we show in Proposition 3.12 that by
adding the Muhly-Tomforde tail to the C∗-correspondence of a dynam-
ical system, we obtain a C∗-correspondence that lies outside the class
of correspondences associated with dynamical systems. In order to by-
pass this and other limitations, we upgrade the whole construction and
we build new types of tails. We can now associate to each C∗- corre-
spondence an uncountable family of tails, parameterized by graphs of
correspondences satisfying certain compatibility conditions (thus mak-
ing contact with the recent work of Deaconu et al. [7]). This is done
in Theorem 3.10 and, as the reader might suspect, the elaborate part
is verifying Morita equivalence. The end result is a very broad class of
tails for C∗-correspondences, whose variety and usefulness is illustrated
by several examples. In particular, in Theorem 4.2 we present a tail
very much different from that of Muhly and Tomforde or Davidson and
Roydor, which is used to show that the Cuntz-Pimsner C∗-algebra of
an arbitrary multivariable system is indeed Morita equivalent to the
Cuntz-Pimsner algebra of an injective one, thus resolving one of the
motivating questions for this paper.

By dilating an injective C∗-correspondence to an essential Hilbert
bimodule, we simply mean that we naturally embed the original cor-
respondence in an essential Hilbert bimodule, so that both correspon-
dences have the same Cuntz-Pimsner C∗-algebra associated with them.
This technique goes back to the seminal paper of Pimsner [26] but for-
mally it was introduced in a paper by Schweizer [30] regarding the
simplicity of the Cuntz-Pimsner algebras associated with arbitrary C∗-
correspondences. In spite of its importance, this construction, and in
particular the left action, is difficult to describe or explain its proper-
ties. In Section 6 we give a very simple and natural picture for the
dilation of an injective C∗-correspondence to an essential Hilbert bi-
module. We emphasize that we do not claim originality here for prov-
ing the existence of a dilation. What is new here is the picture that we
provide.

In Section 4 we include the applications of our theory to multivariable
C∗-dynamics. As we mentioned earlier, in Theorem 4.2 we show that
the Cuntz-Pimsner C∗-algebra of an arbitrary multivariable system is
Morita equivalent to the Cuntz-Pimsner algebra of an injective one. In
Theorem 4.6, we show that the Cuntz-Pimsner algebra of an injective
multivariable system is a crossed product B×β N of a C∗-algebra B by
an injective endomorphism β. Even though Theorem 4.6 is proved by
abstract means, we have good control on the algebra B. For instance,
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if A is an AF C∗-algebra then the same holds for B (and of course, if
A is commutative, then B is an AH C∗-algebra, as in [6]). We remark
that the version of a crossed product by an endomorphism that we use
in Theorem 4.6, even though closely related to that of Paschke [22],
seems to be new. This applies in particular in the case where the C∗-
algebra B in B ×β N is non-unital. Given the examples in this paper,
we believe that this crossed product is worthy of further investigation.
In general, we anticipate that there will be additional applications for
the results of this paper, that go beyond the theory of C∗-dynamics.
We plan to pursue this in a future paper.

2. Preliminaries

A C∗-correspondence (X,A, ϕX) consists of a C∗-algebra A, a Hilbert
A-module X and a (perhaps degenerate) ∗-homomorphism ϕX : A →
L(X).

A (Toeplitz) representation (π, t) of a C∗-correspondence into a C∗-
algebra B, is a pair of a ∗-homomorphism π : A→ B and a linear map
t : X → B, such that

(1) π(a)t(ξ) = t(ϕX(a)(ξ)),
(2) t(ξ)∗t(η) = π(〈ξ, η〉X),

for a ∈ A and ξ, η ∈ X. An easy application of the C∗-identity shows
that

(3) t(ξ)π(a) = t(ξc)

is also valid. A representation (π, t) is said to be injective iff π is
injective; in that case t is an isometry.

The C∗-algebra generated by a representation (π, t) equals the closed
linear span of tn(ξ̄)tm(η̄)∗, where for simplicity ξ̄ ≡ (ξ(1), . . . , ξ(n)) ∈ Xn

and tn(ξ̄) ≡ t(ξ1) . . . t(ξn). For any representation (π, t) there exists a
∗-homomorphism ψt : K(X)→ B, such that ψt(Θ

X
ξ,η) = t(ξ)t(η)∗.

Let J be an ideal in ϕ−1
X (K(X)); we say that a representation (π, t)

is J-coisometric if

ψt(ϕX(a)) = π(a), for any a ∈ J.

The representations (π, t) that are JX-coisometric, where

JX = kerϕ⊥X ∩ ϕ−1
X (K(X)),

are called covariant representations [17]. We define the Cuntz-Pimsner-
Toeplitz algebra TX as the universal C∗-algebra for all Toeplitz repre-
sentations of (X,A, ϕX). Similarly, the Cuntz-Pimsner algebra OX is
the universal C∗-algebra for all covariant representations of (X,A, ϕX).
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A concrete presentation of both TX and OX can be given in terms of
the generalized Fock space FX which we now describe. The Fock space
FX over the correspondence X is the direct sum of the X⊗n with the
structure of a direct sum of C∗-correspondences over A,

FX = A⊕X ⊕X⊗2 ⊕ . . . .
Given ξ ∈ X, the (left) creation operator t∞(ξ) ∈ L(FX) is defined as

t∞(ξ)(a, ζ1, ζ2, . . . ) = (0, ξa, ξ ⊗ ζ1, ξ ⊗ ζ2, . . . ),

where ζn ∈ X⊗n, n ≥ 0 and ζ0 = a ∈ A. (Here X⊗0 ≡ A, X⊗1 ≡ X
and X⊗n = X ⊗ X⊗n−1, for n ≥ 2, where ⊗ denotes the interior
tensor product with respect to ϕX .) For any a ∈ A, we define π∞(a) ∈
L(FX) to be the diagonal operator with ϕX(a) ⊗ idn−1 at its X⊗n-
th entry. It is easy to verify that (π∞, t∞) is a representation of X
which is called the Fock representation of X. Fowler and Raeburn [10]
(resp. Katsura [17]) have shown that the C∗-algebra C∗(π∞, t∞) (resp
C∗(π∞, t∞)/K(FX)JX) is ∗-isomorphic to TX (resp. OX).

Definition 2.1. The tensor algebra T +
X of a C∗-correspondence

(X,A, ϕX) is the norm-closed subalgebra of TX generated by all ele-
ments of the form π∞(a), tn∞(ξ̄), a ∈ A, ξ̄ ∈ X n, n ∈ N.

The tensor algebras for C∗-correspondences were pioneered by Muhly
and Solel in [19]. They form a broad class of non-selfadjoint operator
algebras which includes as special cases Peters’ semicrossed products
[24], Popescu’s non-commutative disc algebras [27], the tensor algebras
of graphs (introduced in [19] and further studied in [14] and the tensor
algebras for multivariable dynamics [5], to mention but a few.

There is an important connection between T +
X and OX given in the

following theorem of [15]. Recall that, for an operator algebra A and
a completely isometric representation ι : A→ A, where A = C∗(ι(A)),
the pair (A, ι) is called a C∗-cover for A. The C∗-envelope of the op-
erator algebra A is the universal C∗-cover (A, ι) such that, if (B, ι′) is
any other C∗-cover for A, then there exists a (unique) ∗-epimorphism
Φ : B → A, such that Φ(ι′(a)) = ι(a), for any a ∈ A . For the existence
of the C∗-envelope see [1, 8, 11].

Theorem 2.2. [15, Theorem 3.7]. The C∗-envelope of the tensor al-
gebra T +

X is OX .

One of the fundamental examples in the theory of C∗-correspondences
are the C∗-algebras of directed graphs, which we now describe. (For
more details see [28].)

Let G be a countable directed graph with vertex set G(0), edge set
G(1) and range and source maps r and s respectively. A family of
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partial isometries {Le}e∈G(1) and projections {Lp}p∈G(0) is said to obey
the Cuntz-Krieger relations associated with G if and only if they satisfy

(†)


(1) LpLp = 0 ∀ p, q ∈ G(0), p 6= q
(2) L∗eLf = 0 ∀ e, f ∈ G(1), e 6= f
(3) L∗eLe = Ls(e) ∀ e ∈ G(1)

(4) LeL
∗
e ≤ Lr(e) ∀ e ∈ G(1)

(5)
∑

r(e)=p LeL
∗
e = Lp ∀ p ∈ G(0) with |r−1(p)| 6= 0,∞

The relations (†) have been refined in a series of papers by the Aus-
tralian school and reached the above form in [2, 29]. All refinements
involved condition (5) and as it stands now, condition (5) gives the
equality requirement for projections Lp such that p is not a source and
receives finitely many edges. (Indeed, otherwise condition (5) would
not be a C∗-condition.)

It can been shown that there exists a universal C∗-algebra, denoted
as OG, associated with the relations (†). Indeed, one constructs a single
family of partial isometries and projections obeying (†). Then, OG is
the C∗-algebra generated by a ‘maximal’ direct sum of such families. It
turns out that there OG is the Cuntz-Pimsner algebra of a certain C∗-
correspondence [19]. The associated Cuntz-Pimsner -Toeplitz algebra
is the universal algebra for the first four relations in (†) and is denoted
as TG.

3. A family of tails for C∗-correspondences

In this section we offer new methods for ”adding a tail” 1 to a non-
injective C∗-correspondence. Previously the only such method available
in the literature was that of Muhly and Tomforde in [21]. It turns out
that their method, when applied to specific examples, produces injec-
tive correspondences that may not share the properties of the initial
(non-injective) correspondence. For instance, in Proposition 3.12 we
add the tail of [21] to a correspondence coming from a C∗-dynamical
system and we show that the resulting C∗-correspondence does not
come from any C∗-dynamical system. Additional motivation for study-
ing the technique of ”adding a tail” cames from the theory of tensor
algebras, as we have explained in the introduction.

Let G be a connected, directed graph with a distinguished sink p0 ∈
G(0) and no sources. We assume that G is contractible at p0. (See
Section 7 for the definition and properties of contractible graphs.) By

1Perhaps ”adding a graph of correspondences” would be a more accurate de-
scription here.
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Theorem 7.3, there exists a unique infinite path w0 = e1e2e3 . . . ending
at p0, i.e., r(w0) = p0. Let pn ≡ s(en), n ≥ 1.

Let (Ap)p∈G(0) be a family of C∗-algebras parameterized by the ver-

tices of G so that Ap0 = A. For each e ∈ G(1), we now consider a full,
right Hilbert As(e) - module Xe and a ∗-homomorphism

ϕe : Ar(e) −→ L(Xe)

satisfying the following requirements.
For e 6= e1, the homomorphism ϕe are required to be injective and

map onto K(Xe), i.e., ϕe(Ar(e)) = K(Xe). Therefore, each Xe, e 6= e1,
is an Ar(e) − As(e)-equivalence bimodule, in the language of Rieffel.

For e = e1, we require K(Xe1) ⊆ ϕe1(A) and

(1) JX ⊆ kerϕe1 ⊆ (kerϕX)⊥ .

In addition, there is also a linking condition

(2) ϕ−1
e1

(K(Xe1)) ⊆ ϕ−1
X (K(X))

required between the maps ϕX and ϕe1 .
Let T0 = c0( (Ap)p∈G(0)−

) denote the c0-sum of the family (Ap)p∈G(0)−
,

where G(0)
− ≡ G(0)\{p0}. Consider the set c00((Xe)e∈G(1)) ⊆ c0((Xe)e∈G(1)),

consisting of sequences which are zero everywhere but on a finite num-
ber of entries. Equip c00((Xe)e∈G(1)) with a T0-valued inner product
defined by

〈u, v〉 (p) =
∑
s(e)=p

u∗eve, p ∈ G(0)
− ,

for any u, v ∈ c00((Xe)e∈G(1)). Let T1 be the completion of c00((Xe)e∈G(1))
with respect to that inner product. Equip now T1 with a right T0 - ac-
tion, so that

(ux)e = uexs(e), e ∈ G(1),

for any x ∈ T0, so that the pair (T1, T0) becomes a right T0-Hilbert
module. The pair (T0, T1) is the tail for (X,A, ϕX).

To the C∗-correspondence (X,A, ϕX) and the data

τ ≡
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

we now associate

Aτ ≡ A⊕ T0

Xτ ≡ X ⊕ T1.
(3)

Using the above, we view Xτ as a Aτ -Hilbert module with the standard
right action and inner product for direct sums of Hilbert modules. We
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also define a left Aτ -action ϕτ : Aτ → L(Xτ ) on Xτ by setting

ϕτ (a, x )(ξ, u) = (ϕX(a)ξ, v),

where

ve =

{
ϕe1(a)(ue1), if e = e1

ϕe(xr(e))ue, otherwise

for a ∈ A, ξ ∈ X, x ∈ T0 and u ∈ T1.

Remark 3.1. We make the following two conventions regarding our
notation.

(i) The families Aen, Xen and ϕen, n ≥ 0, will be simply denoted
as An, Xn and ϕn respectively.

(ii) Elements of T0 will usually be denoted by such letter symbols as
x, y, z, while letter symbols like u, v will be reserved for elements
of T1. Furthermore, if e ∈ G(1) and ue ∈ Xe, then ueχe will
denote the element of T1 which is equal to ue on the e-entry
and 0 anywhere else. A similar convention holds for the symbol

aχp, a ∈ Ap, p ∈ G(0)
− .

Proposition 3.2. With the previous notation, ϕτ : Aτ → L(Xτ ) is a
well-defined injective map. Moreover, if ϕ is non-degenerate, then so
is ϕτ .

Proof. In order to show that ϕτ is well defined, we need to show that
ϕτ (a, x) defines a bounded operator on X ⊕ c00((Xe)e∈G(1)), for any
a ∈ A, x ∈ T0. However, this follows easily from [18, Proposition 1.2].

We now verify that ϕτ is injective. If (a, x) ∈ kerϕτ , then

ϕτ (a, x)(ξ, 0) = (ϕX(a)ξ, 0) = 0,

for any ξ ∈ X, and so a ∈ kerϕ. Hence,

ϕτ (a, x)(0, u1χe1) = (0, ϕ1(a)(u1)χe1) = 0,

for all u1 ∈ X1 and so a ∈ kerϕ1 ⊆ (kerϕX)⊥, by condition (1). This
implies that a = 0.

Similarly, for any p ∈ G(0)
− , let f ∈ G(1) with r(f) = p. Then

ϕτ (a, x)(0, ufχf ) = (0, ϕp(xp)(uf )χf ) = 0,

for all uf ∈ Xf . Since f 6= e1, ϕp is injective and so xp = 0, for all

p ∈ G(0)
− , i.e., (a, x) = 0 and so ϕτ is injective.

Now, assume that ϕX : A → L(X) is non-degenerate. Equivalently,
if (aµ)µ∈M is an approximate unit for A, then (ϕX(aµ))µ∈M is an ap-
proximate unit for L(X). Let (xλ)λ∈Λ be the approximate unit for T0
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such that (xp,λ)λ∈Λ is an approximate unit for Ap, for any p ∈ G(0)
− ;

then ((aµ, xλ))(µ,λ)∈M×Λ is an approximate unit for Aτ . Moreover,

lim
(µ,λ)

ϕτ (aµ, xλ)(ξ, u) = lim
(µ,λ)

(
ϕX(aµ)(ξ),

(
ϕe(xr(e),λ)(ue)

)
e∈G(1)

)
= (ξ, (ue)e∈G(1))

= (ξ, u)

since all ϕe, e ∈ G(1), are non-degenerate. Thus ϕτ (aµ, xλ) converges
strictly to 1L(Y ).

From now on, we fix an injective covariant representation (π, t) of
(Xτ , Aτ , ϕτ ) that admits a gauge action, say {βz}z∈T. We define A to
be the closed linear span of tn(ξ̄, 0)tm(η̄, 0)∗, n,m ≥ 0. This is exactly
the subalgebra C∗(π|A, t|X) of C∗(π, t); indeed,

π(a, 0)t(ξ, 0) = t(ϕτ (a, 0)(ξ, 0)) = t(ϕX(a)ξ, 0),

for any a ∈ A and ξ ∈ X.
Given any ξ, η ∈ X, we have that ψt(Θ(ξ,0),(η,0)) = t(ξ, 0)t(η, 0)∗ and

so ψt(k) ∈ A, for any k ∈ K(X) ⊆ K(Xτ ). Furthermore for any a ∈ A
satisfying ϕX(a) = limN

∑
n Θwn,ηn , we have

(ϕX(a), 0) = lim
N

∑
n

(Θwn,ηn , 0) =

= lim
N

∑
n

Θ(wn,0),(ηn,0),
(4)

and so (ϕX(a), 0) ∈ K(Xτ ).

Lemma 3.3. (ϕ−1
1 (K(X1)) + JX)⊕ 0 ⊆ JXτ .

Proof. Since ϕτ is injective we have that JXτ = ϕ−1
τ (K(Xτ )). If a ∈

JX , then (1) implies that ϕτ (a, 0) = (ϕ(a), 0). Since ϕ(a) ∈ K(X), we
have from (4) that ϕτ (a, 0) ∈ K(Xτ ) and so JX ⊕ 0 ⊆ JXτ .

Similarly, the linking condition (2), together with relation (4) implies
that ϕ−1

1 (K(X1))⊕ 0 ⊆ JXτ , and the conclusion follows.

We now need several technical results.

Lemma 3.4. Let (π, t) be a covariant representation of (Xτ , Aτ , ϕτ ),
let ξ ∈ X and let un, vn ∈ Xn, n ∈ N. Then,

(i) t(0, u1χe1)t
∗(0, v1χe1) ∈ C∗(π|A, t|X)

(ii) t(0, u1χe1)t
∗(0, vnχen) = 0, n ≥ 2

(iii) t(0, umχem)t∗(0, vnχen) = δm,nπ(0, an−1χpn−1), m, n ≥ 2

(iv) t(ξ, 0)t∗(0, vχen) = 0, n ≥ 1
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where an−1 ∈ An−1, n ≥ 2, and δm,n denotes the Kronecker delta.

Proof. Let a0 ∈ A with ϕ1(a0) = Θu1,v1 . By condition (2), we have
ϕX(a0) ∈ K(X) and so

ϕτ (a0, 0) = (ϕX(a0), 0) + Θ(0,u1χe1 ),(0,v1χe1 ) ∈ K(Xτ ).

Hence, (a0, 0) ∈ JXτ and so by covariance

π(a0, 0) = ψt((ϕX(a0), 0)) + t(0, u1χe1)t
∗(0, v1χe1)

However, (4) implies that ψt((ϕX(a0), 0)) ∈ C∗(π|A, t|X) and the proof
of (i) is complete.

Parts (ii), (iii) for m 6= n, and (iv) follow from the fact that

Θ(0,umχem ),(0,vnχen ) = Θ(ξ,0),(0,vnχen ) = 0.

Finally, if m = n ≥ 1, and an−1 ∈ An−1 with ϕn(an−1) = Θun,vn , then

ϕτ (0, an−1χpn−1) = Θ(0,unχen ,(0,vnχen ).

Hence, (0, an−1χpn−1 ∈ JXτ and so part (iii), for m = n, follows from
the covariance of (π, t).

Now, let (xλ)λ be an approximate unit for T0 such that (xp,λ)λ is an

approximate unit forAp, for all p ∈ G(0)
− . Then for any tn(ξ̄, ū)tm(η̄, v̄)∗ ∈

OXτ , we have that the limit

lim
λ
π(0, xλ)t

n(ξ̄, ū)tm(η̄, v̄)∗ =

lim
λ
π(0, xλ)t(ξ

(1), u(1)) . . . t(ξ(n), u(n))tm(η̄, v̄)∗ =

lim
λ
t
(
0, (0, {ϕe(xr(e),λ)(u(1)

e )}e6=e1)
)
t(ξ(2), u(2)) . . . t(ξ(n), u(n))tm(η̄, v̄)∗ =

t
(
0, (0, {u(1)

e }e6=e1)
)
t(ξ(2), u(2)) . . . t(ξ(n), u(n))tm(η̄, v̄)∗,

exists. Therefore we obtain a projection Q in the multiplier of OXτ
defined by (1−Q)F ≡ limλ π(0, xλ)F , F ∈ OXτ , and satisfying

(i) Qπ(a, x)Q = Qπ(a, x) = π(a, x)Q = π(a, 0)
(ii) Qt(ξ, u) = t(ξ, ue1χe1)
(iii) t(ξ, u)Q = t(ξ, 0)
(iv) Qt(ξ, 0) = t(ξ, 0)Q = t(ξ, 0)
(v) QC∗(π|A, t|X)Q = C∗(π|A, t|X),

(5)

for all a ∈ A, ξ ∈ X, x ∈ T0 and u ∈ T1. In the special case when A is
unital and ϕ(1A) = 1A we can replace Q by π(1A, 0) and get the same
results.
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Lemma 3.5. If (π, t) is a covariant representation of (Xτ , Aτ , ϕτ ),
then

t(0, unχen)t(ξ, v) = t(0, unχen)t(0, ven+1χen+1),

for all un ∈ Xn, ξ ∈ X and v ∈ T1.

Proof. If (aλ)λ∈Λ ia an approximate unit for An, then

t(0, unχen)t(ξ, v) = lim
λ
t(0, unχen)π(0, aλχpn)t(ξ, v)

= lim
λ
t(0, unχen)t(ϕτ (0, aλχpn)(ξ, v))

= lim
λ
t(0, unχen)t(0, ϕn(cλ)(ven+1)χen+1)

= t(0, unχen)t(0, ven+1χen+1)

as desired

Lemma 3.6. If (π, t) is a covariant representation of (Xτ , Aτ , ϕτ ) and
ξ̄ ∈ Xm, ū ∈ Tm1 , m ∈ N, then

Qtm(ξ̄, ū) =
∑
j

tmj(η̄j, 0)

lj∏
k=1

t(0, uk,jχek),

for appropriate mj, lj ∈ N, η̄j ∈ Xmj and uk,j ∈ Xk.

Proof. The proof follows by induction on m. If m = 1 then by part (ii)
of (5) we have

Qt(ξ, u) = t(ξ, ue1χe1)

= t(ξ, 0) + t(0, ue1χe1)

as desired.
Assume now that the result is true for all integers smaller or equal

to m. Once again, by part (ii) of (5) we have

Qt(ξ′, u′)tm(ξ̄, ū) = Qt(ξ′, 0)tm(ξ̄, ū) +Qt(0, u′e1χe1)t
m(ξ̄, ū)

However by part (iv) of (5) and the inductive hypothesis,

Qt(ξ′, 0)tm(ξ̄, ū) = Qt(ξ′, 0)Qtm(ξ̄, ū)

= Qt(ξ′, 0)
∑
j

tmj(η̄j, 0)

lj∏
k=1

t(0, uk,jχek)

=
∑
j

t(ξ′, 0)tmj(η̄j, 0)

lj∏
k=1

t(0, uk,jχek)

On the other hand, Lemma 3.5 shows that Qt(0, u′e1χe1)t
m(ξ̄, ū) also

has the desired form and the conclusion follows.
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Lemma 3.7. If (π, t) is a covariant representation of (Xτ , Aτ , ϕτ ),
then

Qtm(ξ̄, ū)tn(η̄, v̄)∗Q ∈ C∗(π|A, t|X),

for all ξ̄ ∈ Xm, η̄ ∈ Xn, ū ∈ Tm1 and v̄ ∈ T n! , m,n ∈ N.

Proof. In light of the previous Lemma, it is enough to show that any
product of the form

t(ξ, 0)

l1∏
k=1

t(0, ukχek)

(
t(η, 0)

l2∏
k=1

t(0, vkχek)

)∗
belongs to C∗(π|A, t|X). If the above product is not 0, then Lemma
3.4 implies that l1 = l2 ≡ l. If l = 1 then the conclusion follows from
Lemma 3.4 (i). If l ≥ 2, then Lemma 3.4 (iii) shows that

t(0, ulχel)t(0, vlχel)
∗ = π(0, al−1χpl−1

)

and so

t(0, ul−1χel−1
)t(0, ulχel)t(0, vlχel)

∗t(0, vl−1χel−1
)∗

= t(0, ul−1χel−1
)π(0, al−1χpl−1

)t(0, vl−1χel−1
)∗

= t(0, ul−1al−1χel−1
)t(0, vl−1χel−1

)∗.

Continuing in this fashion, the conclusion follows.

Corollary 3.8. If (π, t) is a covariant representation of (Xτ , Aτ , ϕτ ),
then QC∗(π, t)Q = C∗(π|A, t|X).

The previous corollary shows that C∗(π|A, t|X) is a corner of C∗(π, t).
The next Lemma will be used in the proof of the main result, Theorem
3.10, to show that this corner is actually full.

Lemma 3.9. Let (π, t) be a covariant representation of (Xτ , Aτ , ϕτ )
and let I be an ideal of C∗(π, t).

(i) If e ∈ G(1)\{e1} and either π(0, Ar(e)χr(e)) ⊆ I or π(0, As(e)χs(e)) ⊆
I, then

t(0, Xeχe) ⊆ I,
(ii) If e ∈ G(1) and t(0, Xeχe) ⊆ I, then π(0, As(e)) ⊆ I.

(iii) If p ∈ G(0)
− and

t(0, Xeχe) ⊆ I, for all e ∈ r−1(p),

then,

π(0, Apχp) ⊆ I
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Proof. (i). Let ue ∈ Xe. Notice that if (ae,λ)λ is an approximate unit
for As(e), then

t(0, ueχe) = lim
λ
t(0, ueae,λχe)

= lim
λ
t(0, ue)π(0, ae,λχs(e))

and the conclusion follows from the fact that π(0, ae,λχs(e)) ∈ I.
The proof of the other inclusion follows from the fact that ϕe is

non-degenerate.
(ii). If ue, u

′
e ∈ Xe, then,

t(0, ueχe)
∗t(0, u′eχe) = π(0, 〈ue, u′e〉χs(e))

and the conclusion follows from the fact that Xe is full.
(iii). Let ap ∈ Ap. For any ξ ∈ X and u ∈ T1, we have

ϕτ ((0, apχp))(ξ, u) =
(
0,

∑
e∈r−1(p)

ϕe(ap)(ue)χe
)
.

Since ϕe(ap) ∈ K(Xe), for all e ∈ r−1(p), we obtain (0, apχp) ∈ JXτ .
By covariance,

(6) π(0, apχp) ∈ span{t(0, ueχe)t(0, u′eχe)∗ | ue, u′e ∈ Xe, e ∈ r−1(p)}.
However, our assumptions imply that elements of the form t(0, ueχe),
e ∈ r−1(p), belong to I. Hence, by (6), we have π(0, apχp) ∈ I, as
desired.

We have arrived to the main result of this section.

Theorem 3.10. Let (X,A, ϕX) be a non-injective C*-correspondence
and let (Xτ , Aτ , ϕτ ) be the C∗-correspondence associated with the data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

as defined at the beginning of the section. Then (Xτ , Aτ , ϕτ ) is an
injective C∗-correspondence and the Cuntz-Pimsner algebra OX is a
full corner of OXτ .

Proof. Let (π, t) be the universal covariant representation of (Xτ , Aτ , ϕτ ).
It is easy to see that (π|A, t|X) is an injective representation of (X,A, ϕ)
that inherits a gauge action from (π, t). Furthermore, (π|A, t|X) is a
covariant representation of (X,A, ϕ).

Indeed, let a ∈ JX = kerϕ⊥X∩ϕ−1
X (K(X)) with ϕX(a) = limN

∑
n Θwn,ηn .

Since ϕτ (a, 0) = (ϕX(a), 0), we have

ϕτ (a, 0) = lim
N

∑
n

Θ(wn,0),(ηn,0).
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Therefore,

ψt|X (ϕX(a)) = ψt|X (lim
N

∑
n

Θ(wn,0),(ηn,0)) = ψt(lim
N

∑
n

Θ(wn,0),(ηn,0)) =

= ψt(ϕτ (a, 0)) = π(a, 0) = π|A(a).

and the covariance of (π|A, t|X) follows. Hence, by gauge invariance,
C∗(π|A, t|X) is isomorphic to OXτ .

We have seen in Corollary 3.8 that QC∗(π, t)Q = C∗(π|A, t|X), i.e.,
OX is a corner of OXτ . We now show OX is a full corner. Assume that
I is an ideal of C∗(π, t) containing C∗(π|A, t|X). We are to show that
I = C∗(π, t). We start by showing

(7) t(0, Xe1χe1) ⊆ I.
Let u1 ∈ X1. Since ϕ1 is non-degenerate, there exist a ∈ A and u′1 ∈ X1

so that ϕ1(a1)(u′1) = u1. Hence,

I 3 π(a1, 0)t(0, u′1χe1) = t(0, ϕ1(a1)(u′1)χe1)

= t(0, u1χe1)

and the validity of (7) follows.
Repeated applications of Lemma 3.9 show now that

π(0, Apχp) ⊆ I
for all p ∈

⋃
n∈N Sn, where Sn are as in Section 7. However, Theo-

rem 7.3 shows that
⋃
n∈N Sn = G(0) and the conclusion follows.

Lets see now how the work of Muhly and Tomforde fits in our theory.

Example 3.11 (The Muhly-Tomforde tail [21]). Given a (non-injective)
correspondence (X,A, ϕX), Muhly and Tomforde construct in [21] the
tail that results from the previous construction, with respect to data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
defined as follows. The graph G is illustrated in the figure below.

•p0 •p1e1
oo •p2e2

oo •p3e3
oo •oo . . .oo

Ap = Xe = kerϕX , for all p ∈ G(0)
− and e ∈ G(1). Finally,

ϕe(a)ue = aue,

for all e ∈ G(1), ue ∈ Xe and a ∈ Ar(e).
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The tail of Muhly and Tomforde has had significant applications
in the theory of C∗-correspondences, including a characterization for
the C∗-envelope of the tensor algebra of a non-injective correspon-
dence [15]. However, it also has its limitations, as we are about to
see.

Let (Xα, A) be the C∗-correspondence canonically associated with a
C∗-dynamical system (A,α), i.e., Xα = A and ϕXα(a1)(a2) = α(a1)a2,
for a1, a2 ∈ A; let O(A,α) be the associated Cuntz-Pimsner C∗-algebra.
If α is not injective, then by using the Muhly-Tomforde tail we obtain
an injective C∗-correspondence (Y,B, ϕY ) so that O(A,α) is a full corner
of OY . Remarkably, (Y,B, ϕY ) may not come from any C∗-dynamical
system, as the following result shows.

Proposition 3.12. Let (A,α) be a C∗-dynamical system with 1 ∈ A
and α(1) = 1. Assume that kerα ⊆ A is an essential ideal of A. Let
(Xα, A) the C∗-correspondence canonically associated with (A,α) as
described above. If (Y,B, ϕY ) denotes the C∗-correspondence resulting
by adding the Muhly-Tomforde tail to (Xα, A), then there exists no ∗-
homomorphism β on B so that

(8) ϕY (b)(b′) = β(b)b′

for all b, b′ ∈ B

Proof. For the correspondence (Xα, α) described above, the Muhly-
Tomforde tail produces an injective correspondence (Y,B, ϕY ) with

Y = A⊕ c0(kerα)

B = A⊕ c0(kerα)

and ϕY defined by

ϕY
(
a, (ci)i

)(
a′, (c′i)i

)
=
(
α(a)a′, α(a)c′1, c1c

′
2, c2c

′
3, . . .

)
,

where a, a′ ∈ A and (ci)i, (c
′
i)i ∈ c0(kerα).

If there was a ∗-homomorphism β satisfying (8), then by equating
second coordinates in the the equation

ϕY
(
1, (ci)i

)(
a′, (c′i)i

)
= β

(
1, (ci)i

)(
a′, (c′i)i

)
we would obtain,

c′1 = β
(
1, (ci)i

)
2
c′1,

for all c′1 ∈ kerα. Since kerα is an essential ideal, we have kerα 3
β
(
1, (ci)i

)
2

= 1, a contradiction.

Therefore, the Muhly-Tomforde tail produces an injective correspon-
dence but not necessarily an injective dynamical system. Nevertheless,
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there exists a tail that can be added to (Xα, A) and produce an injec-
tive correspondence that comes from a C∗-dynamical system. This is
done in Example 4.4.

We finish this section with a discussion regarding Theorem 3.10 and
the conditions imposed on the graph G and the maps (ϕe)e∈G(1) .

We ask that the graph G be contractible. We cannot weaken this
assumption to include more general graphs. Indeed, we want the tail
associated with the data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

to work with any possible Cuntz-Pimsner algebra OX that can be
“added on”. This should apply in particular to the Cuntz-Krieger alge-
bra OGp0 of the (trivial) graph Gp0 consisting only of one vertex p0. By
taking τ to be the “usual” tail associated with G, i.e., Xe = Ae = CLp0
and ϕe left multiplication for all e, we see that OGp0 is a full corner of
OXτ if and only if G is contractible at p0.

Conditions (1) and (2) are also necessary, as the following result
suggests.

Proposition 3.13. Let (X,A, ϕX) be a non-injective C*-correspondence
and let (Xτ , Aτ , ϕτ ) be the C∗-correspondence associated with the data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

as defined at the beginning of the section. If Xτ is injective,

(ϕ−1
1 (K(X1)) + JX)⊕ 0 ⊆ JXτ ,

and the covariant representations of Xτ restrict to covariant represen-
tations of ϕX , then

JX ⊆ kerϕ1 ⊆ (kerϕX)⊥ ,

and the linking condition

ϕ−1
1 (K(X1)) ⊆ ϕ−1

X (K(X))

holds.

Proof. If ϕτ is injective, then every ϕe is injective for e 6= e1. For
a ∈ kerϕe1 and c ∈ kerϕX , we have that

ϕτ (ac, 0)(ξ, u) = (ϕX(ac)ξ, ϕ1(ac)(ue1), 0) = 0,

so ac ∈ kerϕτ = (0). Thus kerϕ1 ⊆ (kerϕX)⊥.
Let a ∈ ϕ−1

1 (K(X1)). If (cλ)λ is an approximate identity for K(X1),
then the proof of Lemma 3.3 implies that,

ϕτ (a, 0) = (ϕX(a), 0) + lim
λ

Θ(0,θ(a)χe1 ),(0,cλχe1 ).
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Since ϕτ (a, 0) ∈ K(Xτ ), we have that (ϕX(a), 0) is an adjointable op-
erator in L(X) ∩ K(Xτ ). Thus ϕX(a) ∈ K(X).

Finally, the assumption that the covariant representations of Xτ re-
strict to covariant representations of ϕX , along with the hypothesis
that JX ⊆ JXτ is equivalent to ϕτ (a, 0) = (ϕX(a), 0), for all a ∈ JX .
This implies JX ⊆ kerϕ1 and we are done.

4. Cuntz-Pimsner algebras for multivariable C∗-dynamics

We now apply the theory of the previous section to multivariable
C∗-dynamics. Apart from their own merit, these applications will also
address the necessity of using more elaborate tails than that of Muhly
and Tomforde in the process of adding tails to C∗-correspondences.
This necessity has been already noted in Proposition 3.12.

A multivariable C∗-dynamical system is a pair (A,α) consisting of
a C∗-algebra A along with a tuple α = (α1, α2, . . . , αn), n ∈ N, of
∗-endomorphisms of A. The dynamical system is called injective iff
∩ni=1 kerαi = {0}.

To the multivariable system (A,α) we associate a C∗-correspondence
(Xα, A, ϕα) as follows. Let Xα = An = ⊕ni=1A be the usual right A-
module. That is

(1) (a1, . . . , an) · a = (a1a, . . . , ana),
(2) 〈(a1, . . . , an), (b1, . . . , bn)〉 =

∑n
i=1 〈ai, bi〉 =

∑n
i=1 a

∗
i bi.

Also, by defining the ∗-homomorphism

ϕα : A −→ L(Xα) : a 7−→ ⊕ni=1αi(a),

X becomes a C∗-correspondence over A, with kerϕα = ∩ni=1 kerαi and
ϕ(A) ⊆ K(Xα). It is easy to check that in the case where A and all αi
are unital, X is finitely generated as an A-module by the elements

e1 := (1, 0, . . . , 0), e2 := (0, 1, . . . , 0), . . . , en := (0, 0, . . . , 1),

where 1 ≡ 1A. In that case, (π, t) is a representation of this C∗-
correspondence if, and only if, the t(ξi)’s are isometries with pairwise
orthogonal ranges and

π(c)t(ξ) = t(ξ)π(αi(c)), i = 1, . . . , n.

Definition 4.1. The Cuntz-Pimsner algebra O(A,α) of a multivariable
C∗-dynamical system (A,α) is the Cuntz-Pimsner algebra of the C∗-
correspondence (Xα, A, ϕα) constructed as above

In the C∗-algebra literature, the algebras O(A,α) are denoted as
A×α On and go by the name ”twisted tensor products by On”. They
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were first introduced and studied by Cuntz [4] in 1981. In the non-
selfadjoint literature, there algebras are much more recent. In [5]
Davidson and the second named author introduced the tensor algebra
T(A,α) for a multivariable dynamical system (A,α). It turns out that
T(A,α) is completely isometrically isomorphic to the tensor algebra for
the C∗-correspondence (Xα, A, ϕα). As such, O(A,α) is the C∗-envelope
of T(A,α). Therefore, O(A,α) provides a very important invariant for the
study of isomorphisms between the tensor algebras T(A,α).

We now apply the construction of Section 3 to the C∗-correspondence
defined above. The graph G that we associate with (Xα, A, ϕα) has no
loop edges and a single sink p0. All vertices in G(0)\{p0} emit n edges,
i.e., as many as the maps involved in the multivariable system, and
receive exactly one. In the case where n = 2, the following figure
illustrates G.

•p3

•q3 •p2
. . .

•p1

•q1•p0

•

•q2
. . .

e3

((PPPPPPPPP

e2

((PPPPPPPPP

((PPPPPPPPP
e1

vvnnnnnnnnn

((PPPPPPPPPPP

vvnnnnnnnnnn

((PPPPPPPPPPP

vvnnnnnnnnn
vvnnnnnnnnn

vv nnnn ((PPP

vv nnnn ((PPP

vv nnnnn
((PPPPP

Clearly, G is p0-accessible. (In the case n = 2, S0 = {p0},

S1 = {p0, p1, p2, . . . } ∪ {q1, q2, . . . }

and so on.) There is also a unique infinite path w ending at p0 and so
the requirements of Theorem 7.3 are satisfied, i.e., G is contractible at
p0.

Let J ≡ ∩ni=1 kerαi and let M(J ) be the multiplier algebra of J .
Let θ : A −→ M(J ) the map that extends the natural inclusion J ⊆
M(J )). LetXe = As(e) = θ(A), for all e ∈ G(1), and consider (Xe, As(e))
with the natural structure that makes it into a right Hilbert module.
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For e ∈ G(1)\{e1} we define ϕe(a) as left multiplication by a. With
that left action, clearly Xe becomes an Ar(e)−As(e)-equivalence bimod-
ule. For e = e1, it is easy to see that

ϕe1(a)(θ(b)) ≡ θ(ab), a, b ∈ A
defines a left action on Xe1 = θ(A), which satisfies both (1) and (2).

For the C∗-correspondence (Xα, A, ϕα) and the data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

we now let ((Xα)τ , Aτ , (ϕα)τ ) be the C∗-correspondence constructed as
in the previous section. For notational simplicity ((Xα)τ , Aτ , (ϕα)τ )
will be denoted as (Xτ , Aτ , ϕτ ). Therefore

Aτ = A⊕ c0(G(0)
− , θ(A))

Xτ = An ⊕ c0(G(1), θ(A)).

Now label the n-edges of G emitting from each p ∈ G(0)
− as p(1), p(2), . . . , p(n),

with the convention that that if en, pn, n ≥ 0, are as in Section 3, then

en is labeled as p
(1)
n . It is easy to see now that the mapping

c0(G(1), θ(A)) 3 u 7−→ ⊕ni=1{u(p(i))}p∈G(0) ∈ ⊕ni=1 c0(G(0)
− , θ(A))

establishes a unitary equivalence

Xτ = An ⊕ c0(G(1), θ(A))

∼= ⊕ni=1

(
A⊕ c0(G(0)

− , θ(A)
)

between the Hilbert A-module Xτ and the n-fold direct sum of the C∗-
algebra A⊕ c0(G(0)

− , θ(A)), equipped with the usual A⊕ c0(G(0)
− , θ(A))-

right action and inner product.
It only remains to show that the left action on Xτ comes from an

n-tuple of ∗-endomorphisms of A ⊕ c0(G(0)
− , θ(A)). This is established

as follows.
For any i = 1, 2, . . . , n and (a, x) ∈ A⊕ c0(G(0)

− , θ(A)) we define

α̂i(a, x) = (αi(a), γi(a, x))

where γi(a, x) ∈ c0(G(0)
− , θ(A)) with

γi(a, x)(p) =

{
θ(a), if p(i) = e0,
x(r(p(i))), otherwise.

It is easy to see now that
(
A⊕ c0(G(0)

− , θ(A)), α̂1, . . . , α̂n

)
is a multi-

variable dynamical system, so that the C∗-correspondence associated
with it is unitarily equivalent to (Xτ , Aτ , ϕτ ).
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We have therefore proved

Theorem 4.2. If (A,α) is a non-injective multivariable C∗-dynamical
system, then there exists an injective multivariable C∗-dynamical sys-
tem (B, β) so that the associated Cuntz-Pimsner algebras O(A,α) is a
full corner of O(B,β). Moreover, if A belongs to a class C of C∗-algebras
which is invariant under quotients and c0-sums, then B ∈ C as well.
Furthermore, if (A,α) is non-degenerate, then so is (B, β).

Example 4.3. (The Muhly-Tomforde tail, revisited). Theorem 4.2
shows how to correct the situation in Example 3.11 in order to avoid
the pathology of Proposition 3.12.

If (Xα, A) is the C∗-correspondence canonically associated with a
C∗-dynamical system (A,α), i.e., Xα = A and ϕXα(a1)(a2) = α(a1)a2,
for a1, a2 ∈ A, then the appropriate tail for (Xα, A) comes from the
data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
where G is as in Example 3.11 but for any p ∈ G(0)

− and e ∈ G(1),

Ap = Xe = θ(A),

where θ : A −→M(kerα) is the map that extends the natural inclusion
kerα ⊆M(kerα)) in the multiplier algebra. Finally

ϕe(a)ue = aue,

for all e ∈ G(1), ue ∈ Xe and a ∈ Ar(e).
The reader familiar with the work of Davidson and Roydor may have

noticed that the the arguments in the proof of Theorem 4.2, when ap-
plied to multivariable systems over commutative C∗-algebras produce
a tail which is different from that of Davidson and Roydor in [6, The-
orem 4.1]. It turns out that the proof of [6, Theorem 4.1] contains
an error and the technique of Davidson and Roydor does not produce
a full corner, as claimed in [6]. We illustrate this by examining their
arguments in the following simple case.

Example 4.4. (The Davidson-Roydor tail [6]). Let X ≡ {u, v} and
consider the maps σi : X → X , i = 1, 2, with σi(u) = v and σi(v) = v.
Set σ ≡ (σ1, σ2) and letO(X,σ) be the Cuntz-Pimsner algebra associated
with the multivariable system (X , σ), which by [5] is the C∗-envelope
of the associate tensor algebra.

We now follow the arguments of [6]. In order to obtain O(X ,σ) as a
full corner of an injective Cuntz-Pimsner algebra, Davidson and Roydor
add a tail to the multivariable system. They define

T = {(u, k) | k < 0} and X T = X ∪ T.
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For each 1 ≤ i ≤ 2, they extend σi to a map σTi : X T → X T by

σT (u, k) = (u, k + 1) for k < −1 and σTi (u,−1) = u.

They then consider the new multivariable system (XT , σT ) and its as-
sociated Cuntz-Pimsner algebra O(XT , σT ).

It is easy to see that the Cuntz-Pimsner algebra O(X ,σ) for the mul-
tivariable system (X , σ) is the Cuntz-Krieger algebra OG of the graph
G illustrated below,

•v
��

DD •ujj
tt

while the Cuntz-Pimsner algebraO(XT , σT ) is isomorphic to the Cuntz-
Krieger algebra OGT of the following graph GT , where for simplicity we
write uk instead of (u, k), k < 0,
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In [6, page 344], it is claimed that the projection P associated with
the characteristic function of X ⊆ X T satisfies PO(XT ,σT )P = O(X ,σ)

and so O(X ,σ) is a corner of O(XT ,σT ). In our setting, this claim trans-
lates as follows: if P = Lu + Lv, then POGTP = OG. However this is
not true. For instance, P (LfL

∗
e)P = LfL

∗
e /∈ OG.

We now describe the Cuntz-Pimsner algebra of an injective multi-
variable system as a crossed product of a C∗-algebra B by an endomor-
phism β. We begin with the pertinent definitions.

Definition 4.5. Let B be a (not necessary unital) C∗-algebra and let β
be an injective endomorphism of B. A covariant representation (π, v)
of the dynamical system (B, β) consists of a (perhaps degenerate) ∗-
representation π of B and an isometry v satisfying

(i) π(β(b)) = vπ(b)v∗, ∀ b ∈ B, i.e., v implements β,
(ii) v∗π(B)v ⊆ π(B), i.e., v is normalizing for π(B),

(iii) vk(v∗)kπ(B) ⊆ π(B),∀ k ∈ N.

The crossed product B ×β N is the universal C∗-algebra associated
with this concept of a covariant representation for (B, β). Specifically,
B ×β N is generated by B and V B, where V is an isometry satisfying
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(i), (ii) and (iii) in Definition 4.5 with π = id. Furthermore, for any co-
variant representation (π, v) of (B, β), there exists a ∗-homomorphism
π̂ : B ×β N → B(H) extending π and satisfying π̂(bV ) = π(b)v, for all
b ∈ B.

In the case where B is unital and π non-degenerate, condition (iii) is
redundant and this version of a crossed product by an endomorphism
was introduced by Paschke [22]; in the generality presented here, it
is new. It has the advantage 2 that for any covariant representation
of (π, v) of (B, β) admitting a gauge action, the fixed point algebra of
(π, v) equals π(B). This allows us to claim a gauge invariance unique-
ness theorem for B×β N: if (π, v) is a faithful covariant representation
of (B, β) admitting a gauge action, then the C∗-algebra generated by
π(B) and π(B)v is isomorphic to B ×β N.

There is a related concept of a crossed product by an endomorphism
which we now discuss. For a C∗-algebra B and an injective endo-
morphism β, Stacey [31] imposes on a covariant representation (π, v)
of (B, β) only condition (i) from Definition 4.5. He then defines the
crossed product Boβ N to be the universal C∗-algebra associated with
his concept of a covariant representation for (B, β). Muhly and Solel
have shown [20] that in the case where B is unital, Stacey’s crossed
product is the Cuntz-Pimsner algebra of a certain correspondence. Us-
ing a gauge invariance uniqueness theorem one can prove that if the
isometry V in B oβ N satisfies condition (ii) in Definition 4.5, then
B oβ N ' B ×β N.

In the case where A is a commutative C∗ algebra, the following result
was proven in [6] by using Gelfand theory to construct a new multi-
variable dynamical system. It turns out that the concept of a faithful
covariant representation suffices to prove the result for arbitrary C∗-
algebras.

Theorem 4.6. If (A,α) is an injective multivariable system, then there
exists a C∗-algebra B and an injective endomorphism β of B so that
O(A,α) is isomorphic to the crossed product algebra B ×β N. Further-
more, if A belongs to a class C which is invariant under direct limits
and tensoring by Mk(C), k ∈ N, then B also belongs to C.

Proof. Consider the unitizations

A′ = A+ C1 ⊇ A

X ′ = ⊕ni=1 A
′ ⊇ X

2One here needs to observe that conditions (i), (ii) and (iii) in Definition 4.5
imply that π̂ (B ×β N) is generated by polynomials of the form π(b0)+

∑
k π(bk)vk+∑

l (v
∗)lπ(b′l), b0, bk, bl ∈ B.
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and

α′i : A1 −→ A1; a+ λ1 7−→ αi(a) + λ1.

(Here we understand A′ to be the unique unital C∗-algebra that con-
tains A as and ideal and has the property that A′/A ' C.)

Let (π, t) be a faithful covariant representation of (Xα′ , A
′, ϕα′). No-

tice that the restriction of (π, t) on (Xα, A, ϕα) is a (faithful) covariant
representation admitting a gauge action and so the C∗-algebra gener-
ated by it is O(A,α).

Let ei = (0, . . . , 1, . . . , 0), where the 1 appears in the ith- position,
and consider the subalgebras

Bm ≡ span
{
tm(ξ̄)tm(η̄)∗ | ξ̄.η̄ ∈ Xm

α

}
= span

{(
m∏
k=1

t(eik)

)
π(a)

(
m∏
l=1

t(eil)

)∗
| a ∈ A

}
'Mnm(A).

Since ϕα′ acts on Xα′ by rank-one operators, the covariance of (π, t)
implies that

π(A) ⊆ B1 ⊆ · · · ⊆ Bk ⊆ Bk+1 ⊆ . . .

Let

B ≡
∞⋃
m=1

Bm

and set

v =
1√
n

n∑
i=1

t(ei).

The isometry v leaves invariant B and therefore it defines an injective
endomorphism

β : B −→ B : x −→ vxv∗.

Let C∗(B,Bv) be the C∗-algebra generated byB andBv. Then C∗(B,Bv)
inherits from (π, t) its natural gauge action that leaves invariant B and
twists v. Since v satisfies (ii) and (iii) in Definition 4.5, we have by
gauge invariance

C∗(B,Bv) ' B ×β N.
On the other hand, for a ∈ A and each i = 1, 2, . . . , n, we have

t(ei)π(a) =
√
nt(ei)π(a)t(ei)

∗v ∈ Bv

since t(ei)π(a)t(ei)
∗ ∈ B2. But elements of the form

t(ei)π(a) = t(0, . . . , 0, a, 0, . . . , 0), a ∈ A, i = 1, 2, . . . , n
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span t(Xα) and so
C∗(B,Bv) = O(A,α).

Hence B ×β N ' O(A,α), as desired.

Even in the case where A is unital but α is degenerate, we still need
to pass to the unitization A′ in the above proof in order to ensure that
B is a directed limit of matrix algebras over A. Notice however that
A may not contain the unit operator 1 of the Hilbert space on which
(π, t) acts. Nevertheless, when both A and α are unital, we do not need
to pass to the unitization. In that case B contains the unit operator 1
and so by the earlier discussion on Stacey’s crossed product, we have
O(A,α) ' B oβ N.

Combining Theorem 4.6 with Theorem 4.2 we obtain

Corollary 4.7. If (A,α) is a multivariable system, then there exists
a C∗-algebra B and an injective endomorphism β of B so that O(A,α)

is isomorphic to a full corner of the crossed product algebra B ×β N.
Furthermore, if A belongs to a class C which is invariant under direct
limits, quotients and tensoring by Mk(C), k ∈ N, then B also belongs
to C.

Finally, let us give a quick application of Theorem 4.6, that readily
follows from Paschke’s result [22] on the simplicity of B ×β N.

Corollary 4.8. Let A be a UHF C∗-algebra and let α = (α1, . . . , αn) be
a multivariable system with n ≥ 2. If αi(1) = 1, for all i = 1, 2, . . . , n,
then O(A,α) is simple.

5. The C∗-envelope of a tensor algebra

Motivation for the study in this paper comes from the fact that the
Cuntz-Pimsner algebra OX of a C∗-correspondence (X,A, ϕX) is the
C∗-envelope of the associated tensor algebra T +

X , as we remarked in
Theorem 2.2. We may paraphrase Theorem 2.2 as follows.

Theorem 5.1. If (X,A, ϕX) is a C∗-correspondence over A, then the
C∗-envelope of the tensor algebra T +

X can identified as a full corner
of a Cuntz-Pimsner algebra OY for of an essential Hilbert bimodule
(Y,B, ϕY ). Moreover, if (X,A, ϕX) is injective, then C∗e(T +

X ) is ∗-
isomorphis to OY .

Proof. If (X,A, ϕX) is injective, then this follows by Theorem 6.6. If
(X,A, ϕX) is not injective, then by choosing any ”tail” in Theorem
3.10 (there is at least one such tail, as shown by Muhly and Tomforde
[21]), C∗e(T +

X ) = OX is a full corner of a Cuntz-Pimsner algebra of an
injective C∗-correspondence, and the conclusion follows
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Theorem 4.7 raises a host of relevant questions and directions for
further investigation. By adding various tails to a non-injective C∗-
correspondence (X,A, ϕX), we obtain a family of Morita-equivalent
pictures for C∗e(T +

X ). For instance, we can do this with the tensor
algebras for non-injective multivariable systems. Can this be used in
the classification program for such algebras? In particular, we wonder
if there is a familiar description for the Cuntz-Pimsner algebra OY of
Proposition 3.12, that results from adding the Muhly-Tomforde tail to
the C∗-correspondence of a non-injective dynamical system (A,α).

6. Appendix: Dilations of C∗-correspondences

The concept of dilating an injective C∗-correspondence to an essential
Hilbert bimodule was formally introduced by Schweizer [30] with the
purpose of studying the simplicity of Cuntz-Pimsner algebras. How-
ever, most of the elements of his construction already appear in the
seminal paper of Pimsner [26]. In this section we give an overview of
their theory with the purpose of establishing notation and providing a
very transparent picture for the dilation of an injective correspondence
to an essential Hilbert bimodule. Therefore we do not claim originality
for the statements of the results included here; only for their proofs
and the picture that they provide.

In the C∗-literature, the term “Hilbert bimodule” has several inter-
pretations. For us, it will be used as follows.

Definition 6.1. A Hilbert A-bimodule (X,A, ϕX) is a C∗-correspondence
(X,A, ϕX) together with a left inner product [·, ·] : X×X → A, which
satisfy:

(1) [ϕX(a)ξ, η] = a [ξ, η], [ξ, η] = [η, ξ]∗, [ξ, ξ] ≥ 0,
(2) ϕX([ξ, η])ζ = ξ 〈ξ, ζ〉

for ξ, η, ζ ∈ X, and a ∈ A.

The last equation implies that ϕX([ξ, η]) = ΘX
ξ,η. It is clear that

Hilbert bimodules are a special case of C∗-correspondences. Let IX be
the ideal,

IX = span{[ξ, η] : ξ, η ∈ X},
in A. Using the very definitions, one can prove that a ∈ kerϕX , if and
only if a ∈ I⊥X . Hence, ϕX is ∗-injective, if and only if, the Hilbert
A-bimodule X is essential, i.e. when the ideal IX is essential in A.
The ideal IX is associated to the covariant representations of the C∗-
correspondence (X,A, ϕX) in the following fundamental way.

Lemma 6.2. ([16]) If a Hilbert A-bimodule (X,A, ϕX) is considered
as a C∗-correspondence over A, then JX = IX .
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Hence, for ξ, η ∈ X, the element [ξ, η] ∈ A is identified with the
unique element a ∈ JX such that ϕX(a) = ΘX

ξ,η. This is the big advan-
tage (and a characterizing property [17]) of Hilbert bimodules, i.e., JX
is ∗-isomorphic to K(X).

Definition 6.3. A correspondence (Y,B, ϕY ) is said to be a dilation
of the correspondence (X,A, ϕX) iff (X,A, ϕX) sits naturally inside
(Y,B, ϕY ), i.e., (X,A, ϕX) is unitarily equivalent to a sub-correspondence
of (Y,B, ϕY ), and the associated Cuntz-Pimsner algebras OX and OY

are ∗-isomorphic.

In order to describe the dilation of the correspondence (X,A, ϕX) to
an essential Hilbert bimodule, consider the directed system

A
ρ0−→ L(X)

ρ1−→ L(X⊗2)
ρ2−→ · · · ,

where

ρ0 = ϕX : A = L(A) −→ L(X),

ρn : L(X⊗n) −→ L(X⊗n+1) : r 7−→ r ⊗ id1, n ≥ 1,

and let B ≡ lim−→(L(X⊗n), ρn).
Consider also the directed system of Banach spaces

L(A,X)
σ0−→ L(X,X⊗2)

σ1−→ · · · ,
where

σn : L(X⊗n, X⊗n+1)→ L(X⊗n+1, X⊗n+2) : s 7→ s⊗ id1, n ≥ 1,

and let Y ≡ lim−→(L(X⊗n, X⊗n+1), σn). Note that the map

∂ : X −→ L(A,X) : ξ 7−→ ∂ξ,

where ∂ξ(a) = ξa, ξ ∈ X, maps a copy of X isometrically into
K(A,X) ⊆ Y .

If r ∈ L(X⊗n), s ∈ L(X⊗n, X⊗n+1) and [r], [s] their equivalence
classes in B and Y respectively, then we define [s] · [r] := [sr]. From
this, it is easy to define a right B-action on Y . Similarly, we may define
a B-valued right inner product on Y by setting

〈[s′], [s]〉Y ≡ [(s′)∗s] ∈ B.

for s, s′ ∈ L(X⊗n, X⊗n+1), n ∈ N, and then extending to Y ×Y . Finally
we define a ∗-homomorphism ϕY : B → L(Y ) by setting

ϕY ([r])([s]) ≡ [rs], r ∈ L(X⊗n), s ∈ L(X⊗n−1, X⊗n), n ≥ 0

and extending to all of B by continuity. We therefore have a left B-
action on Y and thus (Y,B, ϕY ) becomes a C∗-correspondence.
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The following diagrams depicts the above construction in a heuristic
way: the right action is ”defined” through the diagram

B

·
���
�
� A

ϕX≡ρ0 //

·
���
�
� L(X)

ρ2 //

·
���
�
�

L(X⊗2)
ρ3 //

·
���
�
�

. . .

·

���
�
�
�

Y L(A,X)
σ0 // L(X,X⊗2)

σ1 // L(X⊗2, X⊗3)
σ3 // . . .

while the left action is ”defined” through the diagram

B

ϕY

���
�
� A

ϕX≡ρ0 // L(X)
ρ2 //

id

xxq q q q q q
L(X⊗2)

ρ3 //

id

wwn n n n n n
. . .

id

yys
s

s
s

s
s

Y L(A,X)
σ0 // L(X,X⊗2)

σ1 // L(X⊗2, X⊗3) // . . .

Proposition 6.4. Let (X,A, ϕX) be a faithful C∗-correspondence and
let (Y,B, ϕY ) be as above. Then (Y,B, ϕY ) can be equipped with a left
B-valued inner product so that it becomes an essential Hilbert bimodule.

Proof. It is easy to see that the mapping

[[s], [r]] ≡ [sr∗] ∈ B,

where s, r ∈ L(X⊗n, X⊗n+1), defines a left inner product in Y ×Y , such
that ξ 〈η, ζ〉 = [ξ, η] ζ, for any ξ, η, ζ ∈ Y . Thus (Y,B, ϕY ) becomes a
Hilbert B-bimodule.

In order to show that (Y,B, ϕY ) is faithful, it suffices to prove that
ϕY is injective on every L(X⊗n), n ≥ 0. Let ϕn denote the restriction
of ϕY on L(X⊗n) and ∂m := ∂ ⊗ idm ∈ L(X⊗m, X⊗m+1), for m ≥ 0.

For n = 0, let a ∈ kerϕ0. Therefore a ∈ A and

0 = ϕ0(a)(∂ξ) = ∂ϕX(a)ξ,

for any ξ ∈ X. Thus a ∈ kerϕX , i.e., the class of a in B is the zero
class.

For an arbitrary n ≥ 1, let r ∈ kerϕn. Then ϕn(r)(∂n(ξ)) = 0, for
any ξ ∈ X, and so

ϕn(r)(∂n(ξ))(η1 ⊗ · · · ηn−1) = r ◦ ∂n(ξ)(η1 ⊗ · · · ηn−1)

= r(ξ ⊗ η1 ⊗ · · · ηn),

for any ξ, η1, . . . , ηn−1 ∈ X. Thus, r = 0 in that case as well and ϕY is
injective.

The bimodule (Y,B, ϕY ) is too big for a dilation of (X,A, ϕX) and so
we need to restrict to a smaller bimodule in order to obtain isomorphism
of the associated Cuntz-Pimsner algebras.
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Let A∞ ⊆ B be the C∗-algebra that is generated by all the copies
of K(X⊗n), n ≥ 0, inside B and let X∞ ⊆ Y be the closed subspace
generated by all copies of K(X⊗n, X⊗n+1), n ≥ 0, in Y . We now show
that triple (X∞, A∞, ϕ∞) is the right dilation for (X,A, ϕX), where ϕ∞
denotes the restriction of ϕY on A∞. First we need a lemma.

Lemma 6.5. Let (X,A, ϕX) be a faithful C∗-correspondence and let
(X∞, A∞, ϕ∞) be as above. Then the Hilbert bimodule (X∞, A∞, ϕ∞)
is essential.

Proof. We will show that J∞ = [X∞, X∞] is essential in A∞; let c ∈
J⊥∞. Since

A∞ = span{[a], [r] | a ∈ A, r ∈ K(X⊗n), n ≥ 1}

and

J∞ = span{[r] | r ∈ K(X⊗n), n ≥ 1},
Corollary 1.5.8 in [23] implies that A∞ = A + J∞. Hence there exist
a ∈ A and a d ∈ J∞ such that

(9) c = [a]− d.

If (uλ)λ be an approximate identity in K(X), then

0 = c[uλ] = a[uλ]− d[uλ]

= [ϕX(a)uλ]− d[uλ].

Since ([uλ])λ ⊆ J∞ is an approximate unit,
(
[ϕX(a)uλ]

)
λ
, and so by

injectivity
(
ϕX(a)uλ

)
λ
, is a Cauchy sequence, converging to some k ∈

K(X). On the other hand, limλ uλξ = ξ, for all ξ ∈ X . Hence ϕX(a) =
k ∈ K(X) and so [a] ∈ J∞. Therefore (9) implies that c ∈ J∞ ∩ J⊥∞ =
{0} and we are done.

Theorem 6.6. Let (X,A, ϕX) be an injective C∗-correspondence and
let (X∞, A∞, ϕ∞) be as above. Then (X∞, A∞, ϕ∞) is an essential
Hilbert bimodule and its Cuntz-Pimsner algebra OX∞ is isomorphic to
OX .

Proof. Since ϕX is injective, we have that JX ⊆ ϕ−1
X (K(X)), hence JX

is contained in J∞. Thus if (π, t) is a an injective covariant represen-
tation that admits a gauge action of (X∞, A∞, ϕX∞), then (π|A, t|X) is
also an injective covariant representation of (X,A, ϕX) that admits a
gauge action. So OX embeds in OX∞ . It suffices then to prove that
OX is exactly OX∞ . But this is true since the fixed point algebra of

OX is π(A∞) and t(X∞) = t(X)π(A∞).
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7. Appendix: Contractible graphs

In this section we verify the properties of contractible graphs needed
in Section 3.

Definition 7.1. Let G be a connected, directed graph G with a distin-
guished vertex p0 ∈ G(0) and no sources. The graph G is said to be
contractible at p0 if the subalgebra CLp0 ⊆ OG is a full corner of the
Cuntz-Krieger algebra OG.

Therefore the C∗-algebra of a contractible graph is Morita equivalent
to the compact operators in a very strong sense. In this section we give
an algorithmic way of describing contractible graphs which will allow
us to complete the proof of Theorem 3.10.

If G is a directed graph with no sources and S ⊆ G(0), then we define

Ps(S) = S ∪ {p ∈ G(0) | ∃w ∈ G(∞) with r(w) ∈ S, s(w) = p}
E(S) = {e ∈ G(1) | s(e) ∈ Ps(S)}
Pr(S) = {p ∈ G(0) | r−1(p) ⊆ E(S)},

where G(∞) denotes the collection of all finite paths in G.
Given any connected, directed graph G with a distinguished vertex

p0 ∈ G(0) and no sources, we set

S0 = {p0}
Sn = Pr(Sn−1), for n ≥ 1.

Definition 7.2. Let G be a connected. directed graph with a distin-
guished vertex p0 ∈ G(0) and no sources. A vertex p ∈ G(0) is said to be
p0-accessible (or simply, accessible) if

p ∈
⋃
n∈N

Sn =
⋃
n∈N

Pr(Sn)

Similarly, an edge e ∈ G(1) is said to be p0-accessible iff e ∈
⋃
n∈N E(Sn).

The graph G is said to be p0-accessible iff every element of G(0) is ac-
cessible.

We can state now the desired characterization of contractible graphs.

Theorem 7.3. Let G be a connected directed graph with a distinguished
vertex p0 ∈ G(0) and no sources. Then CLp0 ⊆ OG is a full corner iff
the following two conditions are satisfied:

(i) The graph G is p0-accessible.
(ii) There exists exactly one infinite path w with r(w) = p0.



30 E. KAKARIADIS AND E.G. KATSOULIS

Proof. It is easy to see that if G satisfies conditions (i) and (ii), then
Lp0 ⊆ OG is a full corner.

Assume now that CLp0 is a full corner of OG. We start by verifying
the following two claims.

Claim 1. The graph G is acyclic.

Proof of Claim 1. By way of contradiction, assume that G has a cycle
w. Since OG⊗K(H) ' K(H), the algebra OG⊗P , where P ∈ K(H) is
a projection, is a C∗-algebra consisting of compact operators. However,
it is easy to see that the spectrum of Lw ⊗ P contains the unit circle,
a contradiction.

Claim 2. For any pair of vertices p, q ∈ G(0), there are finitely many
paths w with s(w) = p and r(w) = q.

Proof of Claim 2. Indeed, if not then we would have a C∗-algebra of
compact operators containing an infinite projection, which is absurd.

At this point, we could observe that G is a row-finite graph that
satisfies condition (K) and therefore appeal to [28, Theorem 4.9], in
order to prove that G is p0-accessible. We find the following elementary
argument illuminating, as well as making the proof self-contained.

Since Lp0 is a full projection, there exist finitely many vertices p1, p2, . . . pn
and paths w1, w2, . . . , wn and v1, v2, . . . , vn so that

s(wi) = pi r(wi) = q

s(vi) = pi r(vi) = p0, i = 1, 2, . . . , n,

and the final spaces of LwiL
∗
vi

, i = 1, 2, . . . , n, span Lp0 . By Claim 2,
there is no loss of generality assuming that the collection {wi | i =
1, 2, . . . , n} contains all paths starting at one of the vertices pi, i =
1, . . . , n, and ending at q.

If all the vertices involved in the paths w1, w2, . . . , wn are accessible,
then q is accessible and there is nothing to prove. Otherwise, let qi be
the first vertex in each path wi, which is not accessible. Therefore each
qi receives an edge ei which is not accessible and an edge e′i (the one
from wi) which is accessible. Since there exists a path w′i so that w′iei
ends at q, there exists an 1 ≤ ji ≤ n so that L∗wji

Lw′iei 6= 0. Therefore

either

(i) w′iei is a sub-path of wi, or,
(ii) wi is a sub-path of w′iei.

However, if (ii) was valid, then qi would be accessible because pi = s(wi)
is. But this contrary to the way the q1, . . . , qn were chosen. Hence, each
w′iei is a sub-path of some wji .
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Since w′1e1 is a sub-path of wj1 , there exists a path from qj1 ending at
q1. Since qj1 is not accessible, by repeating the same argument, we now
obtain a path ending at qj1 and starting from some qj2 , and so on. The
pigeonhole principle implies that eventually one of the qj’s will repeat
itself, thus obtaining a cycle in G. This contradicts Claim 2. Hence the
arbitrary q ∈ G(0) is accessible and so G is accessible as well.

It remains to show (ii). By way of contradiction assume that there
exist a a path w ∈ G(∞) ending at p0 and distinct edges e1, e2 satisfying
r(e1) = r(e2) = s(w). Then,

Lp0
(
Lwe1L

∗
we1

)
Lp0 = Lwe1L

∗
we1

= Lw
(
Le1L

∗
e1

)
L∗w 6= Lp0

since Le1L
∗
e1

is a proper subspace of Ls(w). Hence Lp0OGLp0 is not a
corner of OG, a contradiction.
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