
OPERATOR ALGEBRAS AND C*-CORRESPONDENCES: A

SURVEY

EVGENIOS T.A. KAKARIADIS AND ELIAS G. KATSOULIS

Abstract. This paper is a survey of our recent work on adding tails to
C∗-correspondences, the Shift Equivalence Problem and Hilbert bimod-
ules.

In this paper we survey our recent work on C∗-correspondences and their
associated operator algebras. Traditionally, the theory of C∗-correspondences
has been used to generalize concrete results either from the theory of Cuntz-
Krieger C∗-algebras or from the theory of crossed product C∗-algebras. Our
goal in this project has been to discover a path in the opposite direction:
to use the theory of C∗-correspondences in order to obtain results which
are new even for the Cuntz-Krieger or the crossed product C∗-algebras. For
instance in Theorem 2.1 we describe a general process for adding tail to a C∗-
correspondence that has lead to new results in the theory of crossed product
C∗-algebras and Cuntz’s twisted crossed products. In the same spirit, our
Theorem 3.9 on the concept of shift equivalence of C∗-correspondences leads
to a new result regarding the strong Morita equivalence of Cuntz-Krieger
C∗-algebras (Theorem 3.10(4)). Therefore, even though the next few pages
may seem rather abstract or encyclopedic, we believe that this abstraction
will benefit even the reader who is interested only in the special classes of
operator algebras mentioned above.

1. Preliminaries

Let A be a C∗-algebra. An inner-product right A-module is a linear space
X which is a right A-module together with a map

(·, ·) 7→ 〈·, ·〉X : X ×X → A

such that

〈ξ, λy + η〉X = λ 〈x, y〉X + 〈x, η〉X (ξ, y, η ∈ X,λ ∈ C),

〈ξ, ηa〉X = 〈ξ, η〉X a (ξ, η ∈ X, a ∈ A),

〈η, ξ〉X = 〈ξ, η〉∗X (ξ, η ∈ X),

〈ξ, ξ〉X ≥ 0; if 〈ξ, ξ〉X = 0 then ξ = 0.
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A compatibility relation for the scalar multiplication is required, that is
λ(ξa) = (λξ)a = ξ(λa), for all λ ∈ C, ξ ∈ X, a ∈ A. For ξ ∈ X we
write ‖ξ‖X := ‖〈ξ, ξ〉A‖A and one can deduce that ‖·‖X is actually a norm.
X equipped with that norm will be called right Hilbert A-module if it is
complete and will be denoted as XA.

For X,Y Hilbert A-modules we define the set L(X,Y ) of the adjointable
maps that consists of all maps s : X → Y for which there is a map s∗ : Y →
X such that

〈sξ, y〉Y = 〈ξ, s∗y〉Y , (x ∈ X, y ∈ Y ).

Every element of L(X,Y ) is automatically a bounded A-linear map. An
element u ∈ L(X,Y ) is called unitary if it is onto Y and 〈uξ, uζ〉Y = 〈ξ, ζ〉X ,
for all ξ, ζ ∈ X.

In particular, for ξ ∈ X and y ∈ Y we define Θy,ξ : X → Y such that
Θy,ξ(ζ) = y 〈ξ, ζ〉X , for all ζ ∈ X. It is easy to check that Θy,ξ ∈ L(X,Y )
with Θ∗y,ξ = Θξ,y. We denote by K(X,Y ) the closed linear space of L(X,Y )

spanned by {Θy,ξ : ξ ∈ X, y ∈ Y }. If X = Y then K(X,X) ≡ K(X) is a
closed ideal of the C∗-algebra L(X,X) ≡ L(X).

In a dual way we call X a left Hilbert A-module if it is complete with
respect to the norm induced by an inner-product left A-module [·, ·]X . The
term Hilbert module is reserved for the right Hilbert modules, whereas the
left case will be clearly stated.

Given a Hilbert A-module X over A, let X∗ = {ξ∗ ∈ L(X,A) : ξ∗(ζ) =
〈ξ, ζ〉X} be the dual left Hilbert A-module, with

a · ξ∗ = (ξa∗)∗, (ξ ∈ X, a ∈ A),

[ξ∗, ζ∗]X∗ = 〈ξ, ζ〉X , (ξ, ζ ∈ X).

A Hilbert A-module X is called self-dual when X∗ coincides with the set
of bounded A-linear mappings from X to A (not necessarily adjointable),
hence a Riesz-Fréchet Theorem is valid.

Example 1.1. A C∗-algebra A is a (trivial) Hilbert A-module, when it is
viewed as a Banach space with a · b := ab and 〈a, b〉A := a∗b for all a, b ∈ A.
It is a left Hilbert A-module when it is endowed with the left inner product
[a, b]A := ab∗, for all a, b ∈ A. Finally K(A) ' A and L(AA) ' M(A), i.e.
the multiplier algebra of A.

1.1. C∗-correspondences. Even though the class of C∗ - correspondences
has been thoroughly investigated for the last 25 years, the terminology still
differs from author to author. We therefore establish the terminology that
we will be using in this paper.

Definition 1.2. An A-B-correspondence X is a right Hilbert B-module
together with a ∗-homomorphism ϕX : A → L(X). We will denote this by

AXB. When A = B we will simply refer to X as C∗-correspondence over A.
A submodule Y of X is a subcorrespondence of AXB, if it is a C-D-

correspondence for some C∗-subalgebras C and D of A and B, respectively.
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A C∗-correspondence over A is called non-degenerate if the closed linear
span of ϕX(A)X is dense in X. Moreover, X is called full if 〈X,X〉X is
dense in A. Also, X is called regular if it is injective, i.e. ϕX is injective,
and ϕX(A) ⊆ K(X).

Two A-B-correspondences X and Y are called unitarily equivalent, if
there is a unitary u ∈ L(X,Y ) such that u(ϕX(a)ξb) = ϕY (a)(u(ξ))b, for all
a ∈ A, b ∈ B, ξ ∈ X. In that case we write X ≈ Y . We write X . Y when
X ≈ Y0 for a subcorrespondence Y0 of Y .

Example 1.3. Every Hilbert A-module X is a K(X)-A-correspondence
when endowed with the left multiplication ϕX ≡ idK(X) : K(X) → L(X).
A left inner product over K(X) can be defined by [ξ, η]X = Θξ,η, for all
ξ, η ∈ X. Also X∗ is an A-K(X)-correspondence, when endowed with the
following operations

〈ξ∗, η∗〉X∗ = [ξ, η]X = Θξ,η (ξ∗, η∗ ∈ X∗),
ξ∗ · k = (k∗ξ)∗ (ξ∗ ∈ X∗, k ∈ K(X)),

ϕX∗(a)ξ∗ = a · ξ∗ = (ξ · a∗)∗ (ξ∗ ∈ X∗, a ∈ A).

Example 1.4. For Hilbert A-modules X and Y , L(X,Y ) becomes L(Y )-
L(X)-correspondence by defining 〈s, t〉 := s∗t, t · a := ta and b · t := bt, for
every s, t ∈ L(X,Y ), a ∈ L(X) and b ∈ L(Y ).

Trivially, K(X,Y ) is a K(Y )-K(X)-correspondence of L(X,Y ). Note that,
when a c.a.i. in 〈X,X〉X is a right c.a.i. for Y , then K(Y ) acts faithfully on
K(X,Y ). When X = Y this is automatically true.

1.2. Interior Tensor Product. The interior tensor product of two Hilbert
modules plays the role of a generalized multiplication, stabilized by the
elements of a common C∗-algebra (see [38] for more details). Let the C∗-
correspondences AXB and BYC ; the interior or stabilized tensor product,
denoted by X ⊗B Y or simply by X ⊗ Y , is the quotient of the vector space
tensor product X ⊗alg Y by the subspace generated by the elements of the
form

ξa⊗ y − ξ ⊗ ϕ(a)y, for all ξ ∈ X, y ∈ Y, a ∈ A.
It becomes a Hilbert B-module when equipped with

(ξ ⊗ y)b := ξ ⊗ (yb), (ξ ∈ X, y ∈ Y, b ∈ B),

〈ξ1 ⊗ y1, ξ2 ⊗ y2〉X⊗Y := 〈y1, ϕ(〈ξ1, ξ2〉X)y2〉Y , (ξ1, ξ2 ∈ X, y1, y2 ∈ Y ).

For s ∈ L(X) we define s⊗ idY ∈ L(X⊗Y ) as the mapping ξ⊗y 7→ s(ξ)⊗y.
Clearly, (s⊗ idY )∗ = s∗⊗ idY ; hence X ⊗Y becomes a A-C-correspondence
by defining ϕX⊗Y (a) := ϕX(a) ⊗ idY . One can prove that the interior
tensor product is associative, that is if Z is a C-D-correspondence, then
(X ⊗B Y )⊗C Z = X ⊗B (Y ⊗C Z).

Example 1.5. When a Hilbert A-module X is considered as the K(X)-A-
correspondence, then X ⊗A X∗ ≈ K(X) as C∗-correspondences over K(X),
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via the mapping

u1 : X ⊗A X∗ → K(X) : ξ ⊗ ζ∗ 7→ Θξ,ζ ,

and X∗⊗K(X)X ≈ 〈X,X〉X , as C∗-correspondences over A via the mapping

u2 : X∗ ⊗K(X) X → 〈X,X〉X : ξ∗ ⊗ ζ 7→ 〈ξ, ζ〉

In particular X∗ ⊗K(X) X ≈ A, when X is full.

1.3. Hilbert Bimodules. There are AXB C∗-correspondences that are
both left and right Hilbert modules. If a compatibility relation is satisfied
between the two inner products then it is called Hilbert bimodule.

Definition 1.6. A Hilbert A-B-bimodule AXB is a C∗-correspondence X
together with a left inner product [·, ·]X : X ×X → A, which satisfy:

[ϕX(a)ξ, η]X = a [ξ, η]X , (ξ, η ∈ X, a ∈ A),

[ξ, η]X = [η, ξ]∗X , (ξ, η ∈ X)

[ξ, ξ]X ≥ 0; if [ξ, ξ]X = 0 then ξ = 0,

ϕX([ξ, η]X)ζ = ξ 〈η, ζ〉X , (ξ, η, ζ ∈ X).

The last equation implies that ϕX([ξ, η]X) = ΘX
ξ,η. It is clear that Hilbert

bimodules are a special case of C∗-correspondences. Let IX be the ideal,

IX = span{[ξ, η]X : ξ, η ∈ X},

in A. Using the very definitions, one can prove that a ∈ kerϕX , if and only
if a ∈ I⊥X . Hence, ϕX is ∗-injective, if and only if, the Hilbert A-bimodule
X is essential, i.e. when the ideal IX is essential in A.

Definition 1.7. An A-B-imprimitivity bimodule or equivalence bimodule
is an A-B-bimodule M which is simultaneously a full left and a full right
Hilbert A-module. That is [M,M ]M is dense in A and 〈M,M〉M is dense in
B.

It is easy to see that when X is an A-B-imprimitivity bimodule then A 'ϕ
K(M). Thus imprimitivity bimodules are automatically non-degenerate and
regular.

1.4. Matrix C∗-correspondences. There is a number of ways of consid-
ering a direct sum of C∗-correspondences. They are contained (as subcorre-
spondences) in the notion of the matrix C∗-correspondence that is presented
below. For the C∗-correspondences AEA, BFB, ARB and BSA the matrix

C∗-correspondence X =

[
E R
S F

]
over A⊕B is the Hilbert (A⊕B)-module

of the linear space of the matrices

[
e r
s f

]
, e ∈ E, r ∈ R, s ∈ S, f ∈ F ,
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with[
e r
s f

]
· (a, b) =

[
ea rb
sa fb

]
,〈[

e1 r1
s1 f1

]
,

[
e1 r1
s1 f1

]〉
X

=
(
〈e1, e2〉E + 〈s1, s2〉S , 〈r1, r2〉R + 〈f1, f2〉F

)
,

such that the *-homomorphism ϕ : A ⊕ B → L
([

E R
S F

])
is defined as

follows

ϕ(a, b)

[
e r
s f

]
=

[
ϕE(a)e ϕR(a)r
ϕS(b)s ϕF (b)f

]
.

The careful reader can see that this is exactly the exterior direct sum C∗-
correspondence of the two interior direct sum C∗-correspondences A⊕B(E+

S)A and A⊕B(R + F )B. Hence, the linear space of the matrices

[
e r
s f

]
,

with e ∈ E, r ∈ R, s ∈ S, f ∈ F , is complete with respect to the induced
norm, thus a Hilbert (A⊕B)-module. Moreover E,F,R, S imbed naturally

as subcorrespondences in

[
E R
S F

]
. The following lemma reasons the ter-

minology matrix C∗-correspondence, as tensorizing comes by “multiplying”
the matrices.

Lemma 1.8. Let E,F,R, S be C∗-correspondences as above. Then[
E R
S F

]
⊗A⊕B

[
E R
S F

]
≈

≈
[

(E ⊗A E) + (R⊗B S) (E ⊗A R) + (R⊗B F )
(S ⊗A E) + (F ⊗B S) (S ⊗A R) + (F ⊗B F )

]
,

(unitary equivalent) as C∗-correspondences.

1.5. Representations of C∗-correspondences. Let us make a brief pre-
sentation on the representation theory of C∗-correspondences. Let X be a
C∗-correspondence over A. A (Toeplitz) representation (π, t) of X into a
C∗-algebra B, is a pair of a ∗-homomorphism π : A → B and a linear map
t : X → B, such that

(1) π(a)t(ξ) = t(ϕX(a)(ξ)),
(2) t(ξ)∗t(η) = π(〈ξ, η〉X),

for a ∈ A and ξ, η ∈ X. An easy application of the C∗-identity shows that
t(ξ)π(a) = t(ξa) is also valid. A representation (π, t) is said to be injective
iff π is injective; in that case t is an isometry.

The C∗-algebra generated by a representation (π, t) equals the closed lin-
ear span of tn(ξ̄)tm(η̄)∗, where for simplicity we used the notation ξ̄ ≡ ξ1 ⊗
· · ·⊗ξn ∈ X⊗n and tn(ξ̄) ≡ t(ξ1) . . . t(ξn). For any representation (π, t) there
exists a ∗-homomorphism ψt : K(X)→ B, such that ψt(Θ

X
ξ,η) = t(ξ)t(η)∗.
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Let J be an ideal in ϕ−1X (K(X)); we say that a representation (π, t) is
J-coisometric if

ψt(ϕX(a)) = π(a), for any a ∈ J.
The representations (π, t) that are JX -coisometric, where

JX = kerϕ⊥X ∩ ϕ−1X (K(X)),

are called covariant representations [33]. The ideal JX is the largest ideal
on which the restriction of ϕX is injective.

We define the Toeplitz-Cuntz-Pimsner algebra TX as the universal C∗-
algebra for all Toeplitz representations of X. Similarly, the Cuntz-Pimsner
algebra OX is the universal C∗-algebra for all covariant representations of
X.

A concrete presentation of both TX and OX can be given in terms of
the generalized Fock space FX which we now describe. The Fock space FX
over the correspondence X is the interior direct sum of the X⊗n with the
structure of a direct sum of C∗-correspondences over A,

FX = A⊕X ⊕X⊗2 ⊕ . . . .
Given ξ ∈ X, the (left) creation operator t∞(ξ) ∈ L(FX) is defined as

t∞(ξ)(ζ0, ζ1, ζ2, . . . ) = (0, ξζ0, ξ ⊗ ζ1, ξ ⊗ ζ2, . . . ),
where ζn ∈ X⊗n, n ≥ 0 and ζ0 ∈ A. (Here X⊗0 ≡ A, X⊗1 ≡ X and
X⊗n = X ⊗X⊗n−1, for n ≥ 2.) For any a ∈ A, we define π∞(a) ∈ L(FX)
to be the diagonal operator with ϕX(c) ⊗ idn−1 at its X⊗n-th entry. It is
easy to verify that (π∞, t∞) is a representation of X which is called the
Fock representation of X. Fowler and Raeburn [20] (resp. Katsura [33])
have shown that the C∗-algebra C∗(π∞, t∞) (resp C∗(π∞, t∞)/K(FX)JX) is
∗-isomorphic to TX (resp. OX).

Definition 1.9. The tensor algebra T +
X of a C∗-correspondence AXA is

the norm-closed subalgebra of TX generated by all elements of the form
π∞(a), tn∞(ξ̄), a ∈ A, ξ̄ ∈ X n, n ∈ N.

The tensor algebras for C∗-correspondences were pioneered by Muhly and
Solel in [41]. They form a broad class of non-selfadjoint operator algebras
which includes as special cases Peters’ semicrossed products [46], Popescu’s
non-commutative disc algebras [48], the tensor algebras of graphs (intro-
duced in [41] and further studied in [30]) and the tensor algebras for mul-
tivariable dynamics [13], to mention but a few.

There is an important connection between T +
X and OX given in the fol-

lowing Theorem of Katsoulis and Kribs [31]. Recall that, for an opera-
tor algebra A and a completely isometric representation ι : A → A, where
A = C∗(ι(A)), the pair (A, ι) is called a C∗-cover for A. The C∗-envelope
of the operator algebra A is the universal C∗-cover (A, ι) such that, if (B, ι′)
is any other C∗-cover for A, then there exists a (unique) ∗-epimorphism
Φ : B → A, such that Φ(ι′(a)) = ι(a), for any a ∈ A . For the existence of
the C∗-envelope see [2, 17, 21, 6, 25] .
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Theorem 1.10. [31, Theorem 3.7] The C∗-envelope of the tensor algebra
T +
X is OX .

As a consequence the Toeplitz-Cuntz-Pimsner algebra is the extension of
the Cuntz-Pimsner algebra by the Šilov ideal. (Any ideal J ⊆ C, for a C*-
cover (C, ι) of an operator algebra A, with the property that the restriction
of the natural projection C → C/J on A is a complete isometry, is called a
boundary ideal and the Šilov ideal is the largest such ideal.)

Now, let us see how we can generalize the previous facts in the case of arbi-
trary C∗-correspondences by using the notion of matrix C∗-correspondences.
A representation of an A-B-correspondence X should be a triplet (πA, πB, t)
such that πA and πB are *-homomorphisms, t is a linear mapping of X and

(1) πA(a)t(ξ)πB(b) = t(ϕX(a)(ξ)b),
(2) t(ξ)∗t(η) = πB(〈ξ, η〉X),

for all ξ ∈ X, a ∈ A, b ∈ B. If that is the case then one could define

t̂ : X → B(H(2)) such that t̂(ξ) =

[
0 t(ξ)
0 0

]
. Then (πA ⊕ πB, t̂) de-

fines a representation of the (A⊕B)-correspondence

[
0 X
0 0

]
. Conversely,

if (π, t) is a representation of

[
0 X
0 0

]
, then (π|A, π|B, t) defines a rep-

resentation of X. Hence, we can identify X with

[
0 X
0 0

]
and define

the Toeplitz-Cuntz-Pimsner, the Cuntz-Pimsner and the tensor algebra of
the A-B-correspondence X as the corresponding algebras of the (A ⊕ B)-

correspondence

[
0 X
0 0

]
. However, note that most of the results known

for C∗-correspondences over the same C∗-algebra must be verified, basically
because X⊗n is absurd for all n ≥ 2.

Remark 1.11. We already gave a brief description of X∗ of the Hilbert
A-module X. When X is a correspondence over A this can be simplified.
Let (πu, tu) be the universal representation of AXA; then X∗ is the closed
linear span of t(ξ)∗, ξ ∈ X with the left multiplication and inner product
inherited by the trivial correspondence C∗(πu, tu). Via this identification
one can produce a theory for the left analogue of C∗-correspondences (that
means also, to start with left Hilbert modules), but in most of the cases it
can be recovered.

1.6. Examples. One of the fundamental examples in the theory of C∗-
correspondences are the C∗-algebras of directed graphs. (For more details
see [49].)

Let G be a countable directed graph with vertex set G(0), edge set G(1)
and range and source maps r and s respectively. A family of partial isome-
tries {Le}e∈G(1) and projections {Lp}p∈G(0) is said to obey the Cuntz-Krieger
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relations associated with G if and only if they satisfy

(†)



(1) LpLq = 0 ∀ p, q ∈ G(0), p 6= q

(2) L∗eLf = 0 ∀ e, f ∈ G(1), e 6= f

(3) L∗eLe = Ls(e) ∀ e ∈ G(1)
(4) LeL

∗
e ≤ Lr(e) ∀ e ∈ G(1)

(5)
∑

r(e)=p LeL
∗
e = Lp ∀ p ∈ G(0) with |r−1(p)| 6= 0,∞

The relations (†) have been refined in a series of papers by the Australian
school and reached the above form in [5, 50]. All refinements involved con-
dition (5) and as it stands now, condition (5) gives the equality requirement
for projections Lp such that p is not a source and receives finitely many
edges. (Indeed, otherwise condition (5) would not be a C∗-condition.)

It can been shown that there exists a universal C∗-algebra, denoted as OG ,
associated with the relations (†). Indeed, one constructs a single family of
partial isometries and projections obeying (†). Then, OG is the C∗-algebra
generated by a ‘maximal’ direct sum of such families. It turns out that there
OG is the Cuntz-Pimsner algebra of a certain C∗-correspondence [41]. The
associated Cuntz-Pimsner -Toeplitz algebra is the universal algebra for the
first four relations in (†) and is denoted as TG .

Example 1.12. Let G,G′ be two graphs with adjacent matrices AG and
AG′ . If XG and XG′ are the corresponding C∗-correspondences, then XG ⊗
XG′ is unitarily equivalent to the C∗-correspondence that comes from the
adjacent matrix AG ·AG′ .

Let X be an imprimitivity bimodule that comes from a graph G =
(G(0),G(1), r, s) (we follow the notation in [49]); then G is either a cycle
or a double infinite path. Pick your favorite completely isometric represen-
tation of T +

X ; for us it is a Cuntz-Krieger family {Pv, Se : v ∈ G(0), e ∈ G(1)}
(because of [30]). Apart from the usual relations, due to the form of the

graph we have the simplified relation SeS
∗
e = Pr(e), for all e ∈ G(1). There-

fore {Pv, S∗e : v ∈ G(0), e ∈ G(1)} defines a Cuntz-Krieger family of the graph

G∗ = (G(0),G(1), r∗, s∗) where the arrows are reversed, ie. r∗ = s and s∗ = r,
thus X∗ is the C∗-correspondence coming from this graph G∗.

A second example comes from the class of unital dynamical systems. Let
β : A→ B be a *-homomorphism of C∗-algebras. The trivial Hilbert module
BB becomes a A-B-correspondence, denoted by (Xβ, A), when endowed with
the left action ϕB such that ϕB(a)b = β(a)b for all a ∈ A and b ∈ B.

Example 1.13. If (Xα, C) is a C-A-correspondence via a *-homomorphism
α : C → A, and (Xβ, A) is a A-B-correspondence via a *-homomorphism
β : A→ B, then A⊗A B is unitarily equivalent to the C-B-correspondence
(Xβ◦α, C) associated to the *-homomorphism β ◦ α : C → B.

Moreover, (Xβ, A) is an imprimitivity bimodule iff β is a *-isomorphism.
In this case (Xβ, A)∗ ≈ (Xα−1 , B). In particular, when A = B, then OXβ is
the usual crossed product B oβ Z.
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2. Adding Tails

In [27] the authors developed a method of “adding tails” that extends
the one developed by Muhly and Tomforde in [44].

Let G be a connected, directed graph with a distinguished sink p0 ∈ G(0)
and no sources. We assume that G is contractible at p0. So there exists
a unique infinite path w0 = e1e2e3 . . . ending at p0, i.e. r(w0) = p0. Let
pn ≡ s(en), n ≥ 1.

Let (Ap)p∈G(0) be a family of C∗-algebras parameterized by the vertices of

G so that Ap0 = A. For each e ∈ G(1), we now consider a full, right Hilbert
As(e) - module Xe and a ∗-homomorphism

ϕe : Ar(e) −→ L(Xe)

satisfying the following requirements.
For e 6= e1, the homomorphism ϕe are required to be injective and map

onto K(Xe), i.e. ϕe(Ar(e)) = K(Xe). Therefore, each Xe, e 6= e1, is an
Ar(e)-As(e)-equivalence bimodule, in the language of Rieffel.

For e = e1, we require K(Xe1) ⊆ ϕe1(A) and

(1) JX ⊆ kerϕe1 ⊆ (kerϕX)⊥ .

In addition, there is also a linking condition

(2) ϕ−1e1 (K(Xe1)) ⊆ ϕ−1X (K(X))

required between the maps ϕX and ϕe1 .
Let T0 = c0( (Ap)p∈G(0)−

) denote the c0-sum of the family (Ap)p∈G(0)−
, where

G(0)− ≡ G(0)\{p0}. Consider the set c00((Xe)e∈G(1)) ⊆ c0((Xe)e∈G(1)), consist-
ing of sequences which are zero everywhere but on a finite number of entries.
Equip c00((Xe)e∈G(1)) with a T0-valued inner product defined by

〈u, v〉 (p) =
∑
s(e)=p

u∗eve, p ∈ G(0)− ,

for any u, v ∈ c00((Xe)e∈G(1)). Let T1 be the completion of c00((Xe)e∈G(1))
with respect to that inner product. Equip now T1 with a right T0 - action,
so that

(ux)e = uexs(e), e ∈ G(1),
for any x ∈ T0, so that the pair (T1, T0) becomes a right T0-Hilbert module.
The pair (T0, T1) is the tail for AXA.

To the C∗-correspondence AXA and the data

τ ≡
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

we now associate

Aτ ≡ A⊕ T0
Xτ ≡ X ⊕ T1.

(3)
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Using the above, we view Xτ as a Aτ -Hilbert module with the standard
right action and inner product for direct sums of Hilbert modules. We also
define a left Aτ -action ϕτ : Aτ → L(Xτ ) on Xτ by setting

ϕτ (a, x )(ξ, u) = (ϕX(a)ξ, v),

where

ve =

{
ϕe1(a)(ue1), if e = e1
ϕe(xr(e))ue, otherwise

for a ∈ A, ξ ∈ X, x ∈ T0 and u ∈ T1.

Theorem 2.1. [27, Theorem 3.10] Let AXA be a non-injective C*- corre-
spondence and let Xτ be the graph C∗-correspondence over Aτ defined above.
Then Xτ is an injective C∗-correspondence and the Cuntz-Pimsner algebra
OX is a full corner of OXτ .

Regarding Theorem 2.1 and the conditions imposed on the graph G and
the maps (ϕe)e∈G(1) , we have asked that the graph G be contractible. We
cannot weaken this assumption to include more general graphs. Indeed, we
want the tail associated with the data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

to work with any possible Cuntz-Pimsner algebra OX that can be “added
on”. This should apply in particular to the Cuntz-Krieger algebra OGp0
of the (trivial) graph Gp0 consisting only of one vertex p0. By taking τ to
be the “usual” tail associated with G, i.e. Xe = Ae = CLp0 and ϕe left
multiplication for all e, we see that OGp0 is a full corner of OXτ if and only
if G is contractible at p0.

Conditions (1) and (2) are also necessary, as the following result suggests.

Proposition 2.2. Let AXA be a non-injective C*-correspondence and let
Xτ be the C∗-correspondence over Aτ associated with the data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
,

as defined at the beginning of the section. If Xτ is injective,

(ϕ−11 (K(X1)) + JX)⊕ 0 ⊆ JXτ ,

and the covariant representations of Xτ restrict to covariant representations
of ϕX , then

JX ⊆ kerϕ1 ⊆ (kerϕX)⊥ ,

and the linking condition

ϕ−11 (K(X1)) ⊆ ϕ−1X (K(X))

holds.

Lets see now how the work of Muhly and Tomforde fits in our theory.
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Example 2.3 (The Muhly-Tomforde tail [44]). Given a (non-injective) cor-
respondence (X,A,ϕX), Muhly and Tomforde construct in [44] the tail that
results from the previous construction, with respect to data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
defined as follows. The graph G is illustrated in the figure below.

•p0 •p1e1
oo •p2e2

oo •p3e3
oo •oo . . .oo

Ap = Xe = kerϕX , for all p ∈ G(0)− and e ∈ G(1). Finally,

ϕe(a)ue = aue,

for all e ∈ G(1), ue ∈ Xe and a ∈ Ar(e).

2.1. Applications.

2.1.1. Semicrossed Products. The tail of Muhly and Tomforde has had sig-
nificant applications in the theory of C∗-correspondences, including a char-
acterization for the C∗-envelope of the tensor algebra of a non-injective cor-
respondence [31]. However, it also has its limitations, as we are about to
see.

Example 2.4. Let (Xα, A) be the C∗-correspondence canonically associated
with a C∗-dynamical system (A,α) and let O(A,α) be the associated Cuntz-
Pimsner C∗-algebra. If α is not injective, then by using the Muhly-Tomforde
tail we obtain an injective C∗-correspondence (Y,B, ϕY ) so that O(A,α) is
a full corner of OY . Remarkably, (Y,B, ϕY ) may not come from any C∗-
dynamical system in general. Assume that kerα ⊆ A is an essential ideal
of A; then the Muhly-Tomforde tail produces an injective correspondence
(Y,B, ϕY ) with

Y = A⊕ c0(kerα), B = A⊕ c0(kerα)

and ϕY defined by

ϕY
(
a, (ci)i

)(
a′, (c′i)i

)
=
(
α(a)a′, α(a)c′1, c1c

′
2, c2c

′
3, . . .

)
,

where a, a′ ∈ A and (ci)i, (c
′
i)i ∈ c0(kerα).

If there was a ∗-homomorphism β satisfying

(4) ϕY (b)(b′) = β(b)b′,

then by equating second coordinates in the equation

ϕY
(
1, (ci)i

)(
a′, (c′i)i

)
= β

(
1, (ci)i

)(
a′, (c′i)i

)
we would obtain,

c′1 = β
(
1, (ci)i

)
2
c′1,
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for all c′1 ∈ kerα. Since kerα is an essential ideal, we have kerα 3 β
(
1, (ci)i

)
2

=
1, a contradiction.

Therefore, the Muhly-Tomforde tail produces an injective correspondence
but not necessarily an injective dynamical system. Nevertheless, there exists
a tail that can be added to (Xα, A) and produce an injective correspondence
that comes from a C∗-dynamical system.

Example 2.5. If (Xα, A) is the C∗-correspondence canonically associated
with a C∗-dynamical system (A,α), then the appropriate tail for (Xα, A)
comes from the data

τ =
(
G, (Xe)e∈G(1) , (Ap)p∈G(0) , (ϕe)e∈G(1)

)
where G is as in Example 2.4 but for any p ∈ G(0)− and e ∈ G(1),

Ap = Xe = θ(A),

where θ : A −→ M(kerα) is the map that extends the natural inclusion
kerα ⊆M(kerα)) in the multiplier algebra. Finally

ϕe(a)ue = aue,

for all e ∈ G(1), ue ∈ Xe and a ∈ Ar(e). Then the correspondence Xτ is
canonically associated to the dynamical system (B, β), where

B = A⊕ c0(θ(A) and β(a, (ci)i) = (α(a), θ(a), (ci)i).

2.1.2. Multivariable Dynamical Systems. We now apply the method of adding
tails to C∗-dynamics. Apart from their own merit, these application will also
address the necessity of using more elaborate tails than that of Muhly and
Tomforde in the process of adding tails to C∗-correspondences. This neces-
sity has been already noted in the one-variable case.

A multivariable C∗-dynamical system is a pair (A,α) consisting of a C∗-
algebra A along with a tuple α = (α1, α2, . . . , αn), n ∈ N, of ∗- endomor-
phisms of A. The dynamical system is called injective iff ∩ni=1 kerαi = {0}.

In the C∗-algebra literature, the algebras O(A,α) are denoted as A×α On
and go by the name ”twisted tensor products by On”. They were first in-
troduced and studied by Cuntz [8] in 1981. In the non-selfadjoint algebra
literature, these algebras are much more recent. In [13] Davidson and the
second named author introduced the tensor algebra T(A,α) for a multivariable
dynamical system (A,α). It turns out that T(A,α) is completely isometrically
isomorphic to the tensor algebra for the C∗-correspondence (Xα, A, ϕα). As
such, O(A,α) is the C∗-envelope of T(A,α). Therefore, O(A,α) provides a very
important invariant for the study of isomorphisms between the tensor alge-
bras T(A,α).

To the multivariable system (A,α) we associate a C∗-correspondence
(Xα, A, ϕα) as follows. Let Xα = An = ⊕ni=1A be the usual right A-module.
That is

(1) (a1, . . . , an) · a = (a1a, . . . , ana),
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(2) 〈(a1, . . . , an), (b1, . . . , bn)〉 =
∑n

i=1 〈ai, bi〉 =
∑n

i=1 a
∗
i bi.

Also, by defining the ∗-homomorphism

ϕα : A −→ L(Xα) : a 7−→ ⊕ni=1αi(a),

Xα becomes a C∗-correspondence over A, with kerϕα = ∩ni=1 kerαi and
ϕ(A) ⊆ K(Xα). It is easy to check that in the case where A and all αi are
unital, Xα is finitely generated as an A-module by the elements

e1 := (1, 0, . . . , 0), e2 := (0, 1, . . . , 0), . . . , en := (0, 0, . . . , 1),

where 1 ≡ 1A. In that case, (π, t) is a representation of this C∗-correspondence
if, and only if, the t(ξi)’s are isometries with pairwise orthogonal ranges and

π(c)t(ξ) = t(ξ)π(αi(c)), i = 1, . . . , n.

Definition 2.6. The Cuntz-Pimsner algebra O(A,α) of a multivariable C∗-
dynamical system (A,α) is the Cuntz-Pimsner algebra of the C∗- correspon-
dence (Xα, A, ϕα) constructed as above.

The graph G that we associate with (Xα, A, ϕα) has no loop edges and a

single sink p0. All vertices in G(0)\{p0} emit n edges, i.e. as many as the
maps involved in the multivariable system, and receive exactly one. In the
case where n = 2, the following figure illustrates G.

•p3

•q3 •p2
. . .

•p1

•q1•p0

•

•q2
. . .

e3

((PPPPPPPPP

e2

((PPPPPPPPP

((PPPPPPPPP
e1

vvnnnnnnnnn

((PPPPPPPPPPP

vvnnnnnnnnnn

((PPPPPPPPPPP

vvnnnnnnnnn
vvnnnnnnnnn

vv nnnn ((PPP

vv nnnn ((PPP

vv nnnnn
((PPPPP

Clearly, G is p0-accessible. There is also a unique infinite path w ending at
p0 and so G is contractible at p0.

Let J ≡ ∩ni=1 kerαi and let M(J ) be the multiplier algebra of J . Let
θ : A −→ M(J ) the map that extends the natural inclusion J ⊆ M(J )).

Let Xe = As(e) = θ(A), for all e ∈ G(1), and consider (Xe, As(e)) with the
natural structure that makes it into a right Hilbert module.

For e ∈ G(1)\{e1} we define ϕe(a) as left multiplication by a. With that
left action, clearly Xe becomes an Ar(e)-As(e)-equivalence bimodule. For
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e = e1, it is easy to see that

ϕe1(a)(θ(b)) ≡ θ(ab), a, b ∈ A
defines a left action on Xe1 = θ(A), which satisfies both (1) and (2).

Theorem 2.7. [27, Theorem 4.2] If (A,α) is a non-injective multivari-
able C∗-dynamical system, then there exists an injective multivariable C∗-
dynamical system (B, β) so that the associated Cuntz-Pimsner algebras O(A,α)

is a full corner of O(B,β). Moreover, if A belongs to a class C of C∗-algebras
which is invariant under quotients and c0-sums, then B ∈ C as well. Fur-
thermore, if (A,α) is non-degenerate, then so is (B, β).

The reader familiar with the work of Davidson and Roydor may have
noticed that the arguments in the proof of Theorem 2.7, when applied to
multivariable systems over commutative C∗-algebras produce a tail which is
different from that of Davidson and Roydor in [14, Theorem 4.1]. It turns
out that the proof of [14, Theorem 4.1] contains an error and the technique
of Davidson and Roydor does not produce a full corner, as claimed in [14].
Nevertheless, [14, Theorem 4.1] is valid as Theorem 2.7 demonstrates (a
fact also mentioned in [14, Corrigendum]). We illustrate this by examining
their arguments in the following simple case.

Example 2.8. (The Davidson-Roydor tail [14]). Let X ≡ {u, v} and
consider the maps σi : X → X , i = 1, 2, with σi(u) = v and σi(v) = v. Set
σ ≡ (σ1, σ2) and let O(X,σ) be the Cuntz-Pimsner algebra associated with
the multivariable system (X , σ), which by [13] is the C∗-envelope of the
associate tensor algebra.

We now follow the arguments of [14]. In order to obtain O(X ,σ) as a full
corner of an injective Cuntz-Pimsner algebra, Davidson and Roydor add a
tail to the multivariable system. They define

T = {(u, k) | k < 0} and X T = X ∪ T.
For each 1 ≤ i ≤ 2, they extend σi to a map σTi : X T → X T by

σT (u, k) = (u, k + 1) for k < −1 and σTi (u,−1) = u.

They then consider the new multivariable system (XT , σT ) and its associated
Cuntz-Pimsner algebra O(XT , σT ).

It is easy to see that the Cuntz-Pimsner algebra O(X ,σ) for the multivari-
able system (X , σ) is the Cuntz-Krieger algebraOG of the graph G illustrated
below,

•v
��

CC •ujj
tt

while the Cuntz-Pimsner algebra O(XT , σT ) is isomorphic to the Cuntz-
Krieger algebra OGT of the following graph GT , where for simplicity we
write uk instead of (u, k), k < 0,
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•v
��

CC •ujj
tt

•u−1

f

jj
ett

•u−2ll
rr . . .ll

rr

In [14, page 344], it is claimed that the projection P associated with
the characteristic function of X ⊆ X T satisfies PO(XT ,σT )P = O(X ,σ) and
so O(X ,σ) is a corner of O(XT ,σT ). In our setting, this claim translates as
follows: if P = Lu + Lv, then POGTP = OG . However this is not true. For
instance, P (LfL

∗
e)P = LfL

∗
e /∈ OG .

2.1.3. Multivariable Dynamical Systems and Crossed Products by endomor-
phism. We can describe the Cuntz-Pimsner algebra of an injective and non-
degenerate multivariable system as a crossed product of a C∗-algebra B by
an endomorphism β. This idea appeared first in [14] for a different crossed
product than the one presented here. We begin with the pertinent defini-
tions.

Definition 2.9. Let B be a (not necessary unital) C∗-algebra and let β be
an injective endomorphism of B. A covariant representation (π, v) of the
dynamical system (B, β) consists of a non-degenerate ∗-representation π of
B and an isometry v satisfying

(i) π(β(b)) = vπ(b)v∗,∀ b ∈ B, i.e. v implements β,
(ii) v∗π(B)v ⊆ π(B), i.e. v is normalizing for π(B),
(iii) vk(v∗)kπ(B) ⊆ π(B), ∀ k ∈ N.

The crossed product B ×β N is the universal C∗-algebra associated with
this concept of a covariant representation for (B, β). Specifically, B ×β
N is generated by B and BV , where V is an isometry satisfying (i), (ii)
and (iii) in Definition 2.9 with π = id. Furthermore, for any covariant
representation (π, v) of (B, β), there exists a ∗-homomorphism π̂ : B×βN→
B(H) extending π and satisfying π̂(bV ) = π(b)v, for all b ∈ B.

In the case where B is unital, condition (iii) is redundant and this version
of a crossed product by an endomorphism was introduced by Paschke [45];
in the generality presented here, it is new. It has the advantage that for
any covariant representation of (π, v) of (B, β) admitting a gauge action,
the fixed point algebra of (π, v) equals π(B) (see Remark 2.10 below). This
allows us to claim a gauge invariance uniqueness theorem for B×βN: if (π, v)
is a faithful covariant representation of (B, β) admitting a gauge action, then
the C∗-algebra generated by π(B) and π(B)v is isomorphic to B ×β N.

Remark 2.10. Observe that conditions (i), (ii) and (iii) in Definition 2.9
imply that π̂ (B ×β N) is generated by polynomials of the form π(b0) +∑

k π(bk)v
k +

∑
l (v
∗)lπ(bl), b0, bk, bl ∈ B. Indeed, item (i) implies that

vπ(b) = π(β(b))v, thus π(b)v∗ = v∗π(β(b)), for all b ∈ B (since B is selfad-
joint). With this in hand and item (ii) of the definition we can see that the
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product (v∗)kπ(bk)π(bl)v
l can be written as a trigonometric polynomial of

the above form, for all k, l ≥ 0. Item (iii) is used to show the same thing
for the products π(bk)v

k(v∗)lπ(bl), when k ≥ l. Finally, for k < l we use the
fact that v is an isometry and item (iii) so that

π(bk)v
k(v∗)lπ(bl) = π(bk)(v

∗)l−kvl(v∗)lπ(bl)

= π(bk)(v
∗)l−kπ(b′) = (v∗)l−kπ(b′′),

which completes the argument.

There is a related concept of a crossed product by an endomorphism
which we now discuss. For a C∗-algebra B and an injective endomorphism
β, Stacey [51] imposes on a covariant representation (π, v) of (B, β) only
condition (i) from Definition 2.9. He then defines the crossed product BoβN
to be the universal C∗-algebra associated with his concept of a covariant
representation for (B, β). Muhly and Solel have shown [42] that in the case
where B is unital, Stacey’s crossed product is the Cuntz-Pimsner algebra
of a certain correspondence. Using a gauge invariance uniqueness theorem
one can prove that if the isometry V in B oβ N satisfies condition (ii) in
Definition 2.9, then B oβ N ' B ×β N.

Theorem 2.11. [28, Theorem 4.6] If (A,α) is an injective multivariable
system, then there exists a C∗-algebra B and an injective endomorphism β
of B so that O(A,α) is isomorphic to the crossed product algebra B ×β N.
Furthermore, if A belongs to a class C which is invariant under direct limits
and tensoring by Mk(C), k ∈ N, then B also belongs to C.

Combining Theorem 2.11 with Theorem 2.7 we obtain the following.

Corollary 2.12. If (A,α) is a multivariable system, then there exists a C∗-
algebra B and an injective endomorphism β of B so that O(A,α) is isomorphic
to a full corner of the crossed product algebra B ×β N. Furthermore, if A
belongs to a class C which is invariant under direct limits, quotients and
tensoring by Mk(C), k ∈ N, then B also belongs to C.

Finally, let us give a quick application of Theorem 2.11, that readily
follows from Paschke’s result [45] on the simplicity of B ×β N.

Corollary 2.13. Let A be a UHF C∗-algebra and let α = (α1, . . . , αn) be a
multivariable system with n ≥ 2. If αi(1) = 1, for all i = 1, 2, . . . , n, then
O(A,α) is simple.

2.2. Graph C∗-correspondences. Graph C∗-correspondences can be used
to summarize in a very delicate way properties and constructions of C∗-
correspondences.

Let G = (G(0),G(1), r, s) be a directed graph. Let (Ap)p∈G(0) be a family

of C∗-algebras parameterized by the vertices of G and for each e ∈ G(1), we
consider Xe be a Ar(e)-As(e)-correspondences Xe.



OPERATOR ALGEBRAS AND C*-CORRESPONDENCES: A SURVEY 17

Let AG = c0( (Ap)p∈G(0)) denote the c0-sum of the family (Ap)p∈G(0) . Also,

let Y0 = c00((Xe)e∈G(1)) which is equipped with a AG-valued inner product

〈u, v〉 (p) =
∑
s(e)=p

〈ue, ve〉Ap , p ∈ G(0),

If XG is the completion of Y0 with respect to the inner product, then XG is
a AG-Hilbert module when equipped with the right action

(ux)e = uexs(e), e ∈ G(1).

It becomes a C∗-correspondence, when equipped with the *-homomorphism
ϕG : AG → L(XG), such that

(ϕG(x)u)e = ϕe(xr(e))(ue), e ∈ G(1),

for x ∈ AG and u ∈ XG . The C∗-correspondence XG over AG is called the
graph C∗-correspondence with respect to the data{

G, {Ap}p∈G(0) , {Xe}e∈G(1)
}
.

In other words, a graph C∗-correspondence can be viewed as a graph G such
that on every vertex sits a C∗-algebra, on each edge sits a C∗-correspondence
and the actions and the inner product are defined via the information pro-
vided by the graph (they “remember” the form of the graph) as in the
following image

��

o
y

�

•Ar(e)

jj

9
E

O

vv _h
•Bs(e)

Xerr qq V_

Example 2.14. Every C∗-correspondecne X over A can be visualized in
the language of graph C∗-correspondences trivially as

•A
X

��

Moreover, every AXB C∗-correpondence can be visualized as

•A
X **
•B

The Fock space of a graph C∗-correspondence contains the path C∗-
correspondences Xµ, for some path µ. That is if µ = xen . . . e1y is a
path of the graph G then Xµ := Xen ⊗Ar(en) · · · ⊗Ar(e2) Xe1 is a Ax-Ay-

correspondence.

Definition 2.15. A graph C∗-correspondence is called commutative if for
any two paths µ = xen . . . e1y and ν = xfk . . . f1y, that have the same range
and source, the corresponding path C∗-correspondences Xen ⊗ · · ·⊗Xe1 and
Xfn ⊗ . . . Xf1 are unitarily equivalent.
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For example if E ≈ R⊗B S for some C∗-correspondences AEA,ARB and

BSA, then one can form the commutative graph C∗-correspondence

•A
E

,,

S

''

•A

•B

R

EE

Note that the graph C∗-correspondence that comes from this graph does not
contain AEA as a subcorrespondence, though. A graph C∗-correspondence
that has additionally that property is the following

•A
E

�� S **
•B

R

jj

Example 2.16. Let Xτ be the correspondence that occurs from the adding-
tail construction established in [27]. It can be visualized in the language of
graph C∗-correspondences as follows

. . . . . .

•Ap0

X
��

•A1

Xe1
qq

Xe2
kk

||

•A2

Xe3
rr

Xe4
kk

||

. . .
Xe5

ss

. . . . . .

where Ap0 ≡ A.

Example 2.17. (Muhly-Tomforde tail [44]) When X is visualized on a
cycle graph, then Muhly-Tomforde tail produces the following graph C∗-
correspondence

•A
X

��
•kerϕX

kerϕX
tt

•kerϕX
kerϕXqq

· · ·
kerϕXqq

Example 2.18. If (Xα, A) is the C∗-correspondence canonically associated
with a C∗-dynamical system (A,α), then the tail produced by Muhly and
Tomforde for (Xα, A) comes from the graph

•A
X

��
•kerα

kerα
tt

•kerα
kerαrr · · ·

kerαrr

Example 2.19. If (Xα, A) is the C∗-correspondence canonically associated
with a C∗-dynamical system (A,α), then the appropriate tail for (Xα, A)
comes from the graph

•A
X

��
•θ(A)

θ(A)
tt

•θ(A)
θ(A)

rr · · ·
θ(A)
rr
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where θ : A −→ M(kerα) is the map that extends the natural inclusion
kerα ⊆M(kerα)) in the multiplier algebra. Therefore, the C∗-correspondence
(Y, ϕY , B) is the C∗-correspondence canonically associated with a C∗-dynamical
system (B, β), where B = A⊕ c0(θ(A)) and β(a, (xn)) = (α(a), θ(a), (xn)).

Example 2.20. If (Xα, A) is the C∗-correspondence canonically associated
with a C∗-dynamical system (A,α1, α2), then the appropriate tail for (Xα, A)
comes from the graph

•A
X

��
•θ(A)

θ(A)
rr

θ(A)

||

•θ(A)
θ(A)

rr
θ(A)

{{

. . .
θ(A)

rr

. . . . . .

where J = kerα1 ∩ kerα2 and θ : A −→M(J ) is the map that extends the
natural inclusion J ⊆M(J ) in the multiplier algebra.

3. Shift Equivalence Problem

In his pioneering paper [53] Williams studied certain notions of relations
for the class of matrices with positive integer entries. We say that two such

matrices E and F are elementary strong shift equivalent, and write E
s∼ F ,

if there are two matrices R and S with positive entries such that E = RS
and F = SR. Whereas this relation is symmetric, it may not be transitive.
In [53, Example 2] Williams gives the following counterexample; let[

10 2
2 1

]
s∼
[

5 6
4 6

]
s∼
[

9 4
3 2

]
,

but

[
10 2
2 1

]
is not elementary strong shift equivalent to

[
9 4
3 2

]
. The

transitive closure
s∼, denoted by

SSE∼ , implies that E
SSE∼ F if there is a se-

quence of matrices Ti, i = 0, . . . , n, such that E = T0, F = Tn and Ti
SSE∼ Ti+1.

Williams also defined a third relation, which is proved to be transitive. We

say that E is shift equivalent to F , and write E
SE∼ F , if there are two matri-

ces R,S with positive entries such that En = RS, Fn = SR and ER = SF ,
FR = SE for some n ∈ N.

A purpose of [53] was to prove that the relations
SSE∼ and

SE∼ are equiva-
lent. Unfortunately, an error in [53] made invalid the proof of a key lemma,
and this task remained unsolved for over than 20 years, known as Williams’
Conjecture. The research interest in this area contributed to the growth of
symbolic dynamics and to the search of (complete) invariants for both the
equivalence relations. A major change was made by Kim and Roush in [35],
where they proved that Williams’ Conjecture was false for the class of non-
negative integral matrices. Their work suggests that Williams’ Conjecture
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can be renamed as Shift Equivalence Problem; i.e. is
SSE∼ equivalent to

SE∼
for a class S. This formulation is a little vague as one has to extend the
definition of the relations described above to a class S.

The concept of strong Morita equivalence for C∗-correspondences was
first developed and studied by Abadie, Eilers and Exel [1] and Muhly and
Solel [43], and plays the role of a generalized Conjugacy (see Example 3.2
below). Among others these authors show that if two C∗-correspondences
are strong Morita equivalent then the associated Cuntz-Pimsner algebrasOE
and OF are (strong) Morita equivalent as well. The notion of elementary
and strong shift equivalence for C∗-correspondences was first studied by
Muhly, Tomforde and Pask [40]. These authors also prove that strong
shift equivalence of C∗-correspondences implies the Morita equivalence of
the associated Cuntz-Pimsner algebras, thus extending classical results of
Cuntz and Krieger [9], Bates [4] and Drinen and Sieben [16] for graph
C∗-algebras. The concept of shift equivalence has been studied extensively
from both the dynamical and the ring theoretic viewpoint. (See [52] for a
comprehensive exposition.) In general, shift equivalence has been recognized
to be a more manageable invariant than strong shift equivalence, as it is
decidable over certain rings [34]. Unlike strong shift equivalence, the study
of shift equivalence, from the viewpoint of C∗-correspondences, has been
met with limited success [39]. (Other operator theoretic viewpoints however
have been quite successful [37].) Let us give the definitions.

Definition 3.1. Let the C∗-correspondences AEA and BFB. Then we say
that

(1) E is Morita equivalent to F , and we write E
SME∼ F , if there is an

imprimitivity bimodule AMB such that E ⊗AM = M ⊗B F .

(2) E is elementary strong shift equivalent to F , and we write E
s∼ F ,

if there are ARB and BSA such that E = R⊗A S and F = S ⊗B R,

(3) E is strong shift equivalent to F , and we write E
SSE∼ F , if there are

Ti, i = 0, . . . n, such that T0 = E, Tn = F and Ti
s∼ Ti+1,

(4) E is shift equivalent to F with lag m, and we write E
SE∼ F , if there

are ARB and BSB such that E⊗m = R ⊗B S, F⊗m = S ⊗A R and
E ⊗A R = R⊗B F , S ⊗A E = F ⊗B S.

Example 3.2. Let AEA and BFB be C∗-correspondences arising from two

unital dynamical systems (A,α) and (B, β) and assume that E
SME∼ F via

an imprimitivity bimodule M . If we wish M to arise in a similar way then it
should be the C∗-correspondence associated to a *-isomorphism γ : A→ B.
As showed in Example 1.13 E⊗AM is the C∗-correspondence associated to
γ◦α : A→ B and M⊗BB is the C∗-correspondence associated to β◦γ : A→
B. Therefore the unitary equivalence E⊗AM ≈M ⊗B B induces a unitary
u ∈ L(B) = B, such that a · u(1B) = u(a · 1B), for all a ∈ A; equivalently
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that β ◦ γ(a)u = uγ ◦ α(a), for all a ∈ A, hence that the systems (A,α) and
(B, β) are (outer) conjugate.

In [28] we studied these relation and the interaction between them. Note

that
SME∼ ,

SSE∼ and
SE∼ are equivalence relations for non-degenerate C∗- corre-

spondences. One of our main result is the following.

Theorem 3.3. [28] The Shift Equivalence Problem Problem is true for the

class of imprimitivity bimodules. In particular, the relations
SME∼ ,

s∼, SSE∼ ,
SE∼

coincide.

A weaker version of the previous theorem holds for non-degenerate C∗-
correspondences.

Theorem 3.4. [28] If AEA and BFB are non-degenerate C∗-correspondences,
then

E
SME∼ F

+3 E
s∼ F +3

E
SSE∼ F

+3
E

SE∼ F .

In [40] Muhly, Pask and Tomforde have provided a number of counterex-
amples showing that Morita equivalence of C∗-correspondences differs from
the elementary strong shift equivalence. The previous result shows that it
is in fact stronger.

One of the basic tools we use in [28] is Pimsner dilation of an injective
C∗-correspondence X to a Hilbert bimodule X∞. This construction was
first introduced by Pimsner in [47]. In [27, Appendix A] we revisited this
construction by using direct limits. Consider the directed system

A
ρ0−→ L(X)

ρ1−→ L(X⊗2)
ρ2−→ · · · ,

where

ρ0 = ϕX : A = L(A) −→ L(X),

ρn : L(X⊗n) −→ L(X⊗n+1) : r 7−→ r ⊗ idX , n ≥ 1,

and let A∞ be the C∗-subalgebra of B = lim−→(L(X⊗n), ρn) that is generated

by the copies of K(X⊗n), for n ∈ Z+. Consider also the directed system of
Banach spaces

L(A,X)
σ0−→ L(X,X⊗2)

σ1−→ · · · ,
where

σn : L(X⊗n, X⊗n+1)→ L(X⊗n+1, X⊗n+2) : s 7→ s⊗ idX , n ≥ 1,

and let X∞ be the Banach subalgebra of Y = lim−→(L(X⊗n, X⊗n+1), σn) gen-

erated by the copies of K(X⊗n, X⊗n+1), for n ∈ Z+. Note that the map

∂ : X −→ L(A,X) : ξ 7−→ ∂ξ,

where ∂ξ(a) = ξa, ξ ∈ X, maps a copy of X isometrically into K(A,X) ⊆
X∞. In particular, if ϕX(A) ⊆ K(X), then one can verify that X∞ =
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lim−→(K(X⊗n, X⊗n+1), σn) and A∞ = lim−→(K(X⊗n), ρn). Thus, in this case,
X∞ is a full left Hilbert bimodule.

If r ∈ L(X⊗n), s ∈ L(X⊗n, X⊗n+1) and [r], [s] are their equivalence
classes in B and Y respectively, then we define [s] · [r] := [sr]. From this, it
is easy to define a right B-action on Y . Similarly, we may define a B-valued
right inner product on Y by setting〈

[s′], [s]
〉
Y
≡ [(s′)∗s] ∈ B.

for s, s′ ∈ L(X⊗n, X⊗n+1), n ∈ N, and then extending to Y ×Y . Finally we
define a ∗-homomorphism ϕY : B → L(Y ) by setting

ϕY ([r])([s]) ≡ [rs], r ∈ L(X⊗n), s ∈ L(X⊗n−1, X⊗n), n ≥ 0

and extending to all of B by continuity. We therefore have a left B-action
on Y and thus Y becomes a C∗-correspondence over B.

The following diagrams depict the above construction in a heuristic way:
the right action is “defined” through the diagram

A
ϕX≡ρ0 //

·
���
�
� L(X)

ρ2 //

·
���
�
�

L(X⊗2)
ρ3 //

·
���
�
�

. . . //

·

���
�
�
� B

·
���
�
�

L(A,X)
σ0 // L(X,X⊗2)

σ1 // L(X⊗2, X⊗3)
σ3 // . . . // Y

while the left action is “defined” through the diagram

A
ϕX≡ρ0 // L(X)

ρ2 //

id·

xxq q q q q q
L(X⊗2)

ρ3 //

id·

wwn n n n n n
. . .

id·

yys s
s

s
s

s
// B

ϕY

���
�
�

L(A,X)
σ0 // L(X,X⊗2)

σ1 // L(X⊗2, X⊗3) // . . . // Y

For a proof of the following Theorem see [47, Theorem 2.5] or [27, The-
orem 6.6]. The main difference between the two approaches is that in [27]
we have represented X ⊗A A∞ as the direct limit X∞, thus having no con-
cern in checking the form of the tensor product. Moreover, it appears
that “tensoring” X with A∞ is equivalent to multiplying X with A∞ in
lim−→(L(X⊗n, X⊗n+1), σn).

Theorem 3.5. [47, Theorem 2.5] [27, Theorem 6.6] Let AXA be an injec-
tive C∗-correspondence and let X∞ be the A∞-correspondence defined above.
Then X∞ is an essential Hilbert bimodule and its Cuntz-Pimsner algebra
OX∞ is *-isomorphic to OX .

The idea of using direct limits for Pimsner dilation is in complete analogy
to the analogous process for dynamical systems (see [26]).

Example 3.6. Let (A,α) denote a dynamical system where α is a unital
*-injective endomorphism of A. We can define the direct limit dynamical
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system (A∞, α∞) by

A
α //

α

��

A
α //

α

��

A
α //

α

��

· · · // A∞

α∞
��

A
α // A

α // A
α // · · · // A∞

The limit map α∞ is an automorphism of A∞ and extends α (note that A
imbeds in A∞ since α is injective). Then the A∞-A∞-correspondence Xα∞ ,
is the Pimsner dilation of Xα.

The main question imposed in [28] was the following: is it true that

E∞ ∼ F∞ (where ∼ may be
SME∼ ,

s∼, SSE∼ ,
SE∼) if E ∼ F (in the same way)?

When E and F are non-degenerate and regular C∗-correspondences we get
the following result, by making use of the generalized notion of dilations.

Theorem 3.7. [28] Let AEA and BFB be non-degenerate and regular C∗-

correspondences. If E ∼ F (where ∼ may be
SME∼ ,

s∼, SSE∼ ,
SE∼), then E∞ ∼ F∞

(in the same way).

The converse of the previous Theorem doesn’t hold. Indeed, if E∞ ∼ F∞
implied E ∼ F then, in particular E

SE∼ E∞. The following counterexample
shows that this happens trivially, i.e. when E = E∞.

Counterexample 3.8. Let E be a full, non-degenerate and regular corre-
spondence such that E 6= E∞ (for example let E = [2]) and suppose that

E
SE∼ E∞. Hence there are a positive integer m and non-degenerate, regular

correspondences R,S such that E⊗m = R⊗S, (E∞)⊗m = (E⊗m)∞ = S⊗R,
and E ⊗R = R⊗ E∞, S ⊗ E = E∞ ⊗ S. Then

A =
〈
E⊗m, E⊗m

〉
= 〈R⊗ S,R⊗ S〉 = 〈S, 〈R,R〉S〉 ⊆ 〈S, S〉 ⊆ A,

since E⊗m is also full. Hence S is full. Now, let a k ∈ K(S); then k ⊗
idR ∈ K((E∞)⊗m), and since (E∞)⊗m is an imprimitivity bimodule, there
is an x ∈ A∞ such that k ⊗ idR = ϕ(E∞)⊗m(x) = ϕS(x) ⊗ idR. Thus
ϕS(x) = k; therefore A∞ ' K(S), hence S is an imprimitivity bimodule.

Going back to the definition of E
SE∼ E∞, we see that S⊗E ≈ E∞⊗S, hence

E ≈ S∗⊗E∞⊗S. The fact that S, S∗ and E∞ are imprimitivity bimodules
implies that E is also an imprimitivity bimodule, hence E = E∞, which is
a contradiction.

For full right, non-degenerate, regular C*-correspondences we have the
following.
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Theorem 3.9. [28] Let AEA and BFB be full right, non-degenerate, regular
C∗-correspondences. Then the above scheme holds

E
SME∼ F

��

+3 E
s∼ F

��

+3
E

SSE∼ F

��

+3
E

SE∼ F

��

E∞
SME∼ F∞

ks +3 E∞
s∼ F∞

ks +3
E∞

SSE∼ F∞
ks +3

E∞
SE∼ F∞

It would be interesting if we could prove the validity of the Shift Equiv-
alence Problem for this class of C∗-correspondences (as, after imprimitivity
bimodules, it is the next best thing). An obstacle that prevents the con-
struction of counterexamples that would give a negative answer to the Shift
Equivalence Problem for non-degenerate and regular correspondences is that
the theory of invariants of correspondences is rather poor. The best results
(to our opinion) obtained so far are those appearing in [43, 40] which we
state for sake of completeness. Note that the additional item (3) below is
an immediate consequence of item (2) and item (4) below is an immediate
consequence of Theorem 3.5 and Theorem 3.9.

Theorem 3.10. (1) [43, Theorem 3.2] Let AEA and BFB be non- degen-

erate, injective C∗-correspondences. If E
SME∼ F then the corresponding

Toeplitz-Cuntz-Pimsner, Cuntz-Pimsner and tensor algebras are strongly
Morita equivalent.

(2) [40, Theorem 3.14] Let AEA and BFB be non-degenerate, regular C∗-

correspondences. If E
s∼ F , then OE

SME∼ OF .
(3) [28] Let AEA and BFB be non-degenerate, regular C∗- correspon-

dences. If E
SSE∼ F , then OE

SME∼ OF .
(4) [28] Let AEA and BFB be full right, non-degenerate, regular C∗-

correspondences. If E
SE∼ F , then OE

SME∼ OF .

In particular we obtain the following result for Cuntz-Krieger C∗-algebras.

Corollary 3.11. Let G and G′ be finite graphs with no sinks or sources

and let AG and AG′ be their adjacent matrices. If AG
SE∼ AG′, in the sense of

Williams, then the Cuntz-Krieger C∗-algebras OG and OG′ are strong Morita
equivalent.

There is also a direct application to unital injective dynamical systems.

Corollary 3.12. Let (A,α) and (B, β) be unital injective dynamical sys-

tems. If Xα
SE∼ Xβ, then Xα∞

SE∼ Yβ∞ and the crossed products A∞ oα∞ Z
and B oβ∞ Z are strong Morita equivalent.

Theorem 3.10 shows that Cuntz-Pimsner algebras is a rather coarse in-
variant. After all, Cuntz-Pimsner algebras are not a complete invariant for

the relations
s∼,

SSE∼ ,
SE∼ or

SME∼ even for the subclass of dynamical systems.
Indeed, let (A,α) be the dynamical system constructed by Hoare and Parry
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in [22]. Then α is a *-isomorphism and α is not conjugate to its inverse.
If E is the C∗-correspondence of (A,α) and F is the C∗-correspondence of
(A,α−1), then there is not a C∗-correspondence M of a dynamical system
(B, β) such that E⊗M ≈M ⊗F , because then the two dynamical systems
would be conjugate. But OA = Aoα Z = Aoα−1 Z = OB.

On the other hand the tensor algebras of C∗-correspondences may be more

eligible. They were used in [40] to show that
s∼ does not imply

SME∼ and they
provide a complete invariant for the conjugacy problem for dynamical sys-
tems in various cases [11, 10]. Moreover, for aperiodic C∗-correspondences,

Muhly and Solel [43] prove that
SME∼ is equivalent to strong Morita equiv-

alence of the tensor algebras in the sense of [7]. Along with the further
investigation of tensor algebras, it is natural to suggest to work on the devel-
opment of other invariants such as periodicity, existence of cycles, saturated
and/or hereditary submodules etc.

4. Hilbert Bimodules

Recall that if X is a Hilbert bimodule then

IX = span{[ξ, η] : ξ, η ∈ X}.

If a Hilbert A-bimodule X is considered as a C∗-correspondence over A,
then JX = IX . Hence, for ξ, η ∈ X, the element [ξ, η] ∈ A is identified with
the unique element a ∈ JX such that ϕX(a) = ΘX

ξ,η. The converse is also
true.

The following result is well-known.

Proposition 4.1. Let X be a C*-correspondence over A. Then the following
are equivalent

(1) X is a bimodule,
(2) K(X) ⊆ ϕX(A) and ϕ−1X (K(X)) = kerϕX ⊕ JX ,
(3) the restriction of ϕX to JX is a *-isomorphism onto K(X).

In particular, if ϕX is injective then X is a Hilbert bimodule if and only if
K(X) ⊆ ϕX(A).

It turns out that the property of a C∗-correspondence being a Hilbert
bimodule has an important non-selfadjoint operator algebra manifestation.
We remind that an operator algebra A is called Dirichlet if A+A∗ is dense
(via a completely isometric homomorphism) in C∗env(A).

Theorem 4.2. [29] Let X be a C∗-correspondence over A. Then the fol-
lowing are equivalent:

(1) X is a Hilbert bimodule,
(2) ψt(K(X)) ⊆ π(A), for any injective covariant representation (π, t)

that admits a gauge action,
(3) the tensor algebra T +

X has the Dirichlet property.
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The above result allows us to correct a misconception regarding semi-
crossed products and Dirichlet algebras.

Corollary 4.3. Let (A,α) be a C∗-dynamical system. Then the semicrossed
product A×αZ+ has the Dirichlet property if and only if α is surjective and
kerα is orthocomplemented in A.

In particular, when α is injective we deduce that the semi-crossed product
has the Dirichlet property if and only if α is onto (thus a ∗-isomorphism).
Thus [18, Proposition 3] is false. Nevertheless the main results of [18] are
correct since they do not require that Proposition. It remains of interest
though to determine whether a semi-crossed product has the unique ex-
tension property, since this would allow us to extend Duncan’s results to
non-commutative dynamics.

Recall that an operator algebra A is said to have the the unique extension
property if the restriction of every faithful representation of C∗env(A) to A is
maximal, i.e. it has no non-trivial dilations.

Theorem 4.4. [29] Let (A,α) be a unital injective dynamical system of a
C∗-algebra. Then the semicrossed product A×αZ+ has the unique extension
property.

The unique extension property of an operator algebra (or in general an
operator space) implies the existence of the Choquet boundary in the sense
of [3], i.e. the existence of sufficiently many irreducible representations such
that their restriction is maximal. Indeed, let PS(C∗env(A)) be the set of the
pure states of C∗env(A), and let Π = ⊕τ∈PS(C∗env(A))πτ be the free atomic
representation of C∗env(A). Then Π is faithful on C∗env(A), hence by the
unique extension property its restriction to A is maximal. Moreover, every
πτ is maximal as a direct summand of a maximal representation. Hence,

‖[xij ]‖ = ‖[Π(xij)]‖ = sup{‖[πτ (xij)]‖ : τ ∈ PS(C∗env(A))},

for all [xij ] ∈Mν(A) and ν ∈ N.
The existence of the Choquet boundary for separable operator systems

(or operator spaces) was proved by Arveson in [3] and it is still an open
problem for the non-separable cases. Recently it was proved by Kleski in
[36] that the supremum above can be replaced by a maximum, at least
for the separable cases, where Arveson’s theorem applies. Note that the
semicrossed products can give examples of non-separable operator algebras
that have a Choquet boundary.

Finally, we have a result that relates our adding of a tail process to the
concept of a Hilbert bimodule.

Theorem 4.5. [29] Let X be a non-injective C∗-correspondence. Then the
graph C∗-correspondence Xτ , as defined in section 2, is an (essential) Hilbert
bimodule if and only if X is a Hilbert bimodule and |s−1(p)| = |r−1(p)| = 1
for every p 6= p0.
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