THE HYPERRIGIDITY OF TENSOR ALGEBRAS OF
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ABSTRACT. Given a C*-correspondence X, we give necessary and suf-
ficient conditions for the tensor algebra 7';' to be hyperrigid. In the
case where X is coming from a topological graph we obtain a complete
characterization.

1. INTRODUCTION

A not necessarily unital operator algebra A is said to be hyperrigid if
given any non-degenerate x-homomorphism

7: CL(A) — B(H)

then 7 is the only completely positive, completely contractive extension of
the restricted map 7/4. Arveson coined the term hyperrigid in [1] but he
was not the only one considering properties similar to this at the time, e.g.
[4].

There are many examples of hyperrigid operator algebras such as those
which are Dirichlet but the situation was not very clear in the case of ten-
sor algebras of C*-correspondences. It was known that the tensor algebra
of a row-finite graph is hyperrigid [4], [5] and Dor-On and Salmomon [3]
showed that row-finiteness completely characterizes hyperrigidity for such
graph correspondences. These approaches, while successful, did not lend
themselves to a more general characterization.

The authors, in a previous work [11], developed a sufficient condition
for hyperrigidity in tensor algebras. In particular, if Katsura’s ideal acts
non-degenerately on the left then the tensor algebra is hyperrigid. The
motivation was to provide a large class of hyperrigid C*-correspondence
examples as crossed products of operator algebras behave in a very nice
manner when the operator algebra is hyperrigid. This theory was in turn
leveraged to provide a positive confirmation to the Hao-Ng isomorphism
problem in the case of graph correspondences and arbitrary groups. For
further reading on the subject please see [9, 10, 11].

In this paper, we provide a necessary condition for the hyperrigidity of a
tensor algebra, that a C*-correspondence cannot be o-degenerate, and show
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that this completely characterizes the situation where the C*-correspondence
is coming from a topological graph, which generalizes both the graph cor-
respondence case and the semicrossed product arising from a multivariable
dynamical system.

1.1. Regarding hyperrigidity. The reader familiar with the literature
recognizes that in our definition of hyperrigidity, we are essentially asking
that the restriction on A of any non-degenerate representation of C} . (.A)
possesses the wunique extension property (abbr. UEP). According to [3,
Proposition 2.4] a representation p : A — B(H), degenerate or not, has the
UEP if and only if p is a maximal representation of A, i.e., whenever 7 is a
representation of A dilating p, then m# = p @ 7’ for some representation 7’.
Our definition of hyperrigidity is in accordance with Arveson’s nomenclature
[1], our earlier work [7, 11] and the works of Dor-On and Salomon [3] and
Salomon [17], who systematized quite nicely the non-unital theory.

An alternative definition of hyperrigidity for A may ask that any repre-
sentation of C%_ (A), not just the non-degenerate ones, possesses the UEP
when restricted on A. It turns out that for operator algebras with a positive
contractive approximate unit', such a definition would be equivalent to ours
[17, Proposition 3.6 and Theorem 3.9] . However when one moves beyond
operator algebras with an approximate unit, there are examples to show
that the two definitions differ. One such example is the non-unital operator
algebra Ay generated by the unilateral forward shift V. It is easy to see
that Ay is hyperrigid according to our definition and yet the zero map, as
a representation on H = C, does not have the UEP. (See for instance [17,
Example 3.4].)

2. MAIN RESULTS

A C*-correspondence (X, C, ¢x) (often just (X, C)) consists of a C*-algebra
C, a Hilbert C-module (X, (, )) and a (non-degenerate) x-homomorphism
vx: C— L(X) into the C*-algebra of adjointable operators on X.

An isometric (Toeplitz) representation (p,t,H) of a C*-correspondence
(X,C) consists of a non-degenerate *-homomorphism p: C — B(#) and a
linear map t: X — B(#H), such that

ple)t(z) = t(epx(c)(x)), and

) t(a') = p((, ")),
for all ¢ € C and z,2' € X. These relations imply that the C*-algebra
generated by this isometric representation equals the closed linear span of

t(@r) - t(@n)t(y)™ - tym)"s iy € X,
Moreover, there exists a *-homomorphism v, : K(X) — B, such that

Pi(0ry) = H(2)t(y)",

Lwhich includes all operator algebras appearing in this paper
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where IC(X) C L(X) is the subalgebra generated by the operators 0, ,(z) =
x(y,z), x,y,z € X, which are called by analogy the compact operators.

The Cuntz-Pimsner-Toeplitz C*-algebra Tx is defined as the C*-algebra
generated by the image of (poo,too), the universal isometric representation.
This is universal in the sense that for any other isometric representation
there is a *-homomorphism of Tx onto the C*-algebra generated by this
representation in the most natural way.

The tensor algebra Ty of a C*-correspondence (X, C) is the norm-closed
subalgebra of Ty generated by ps(C) and ts(X). See [15] for more on
these constructions.

Consider Katsura’s ideal

Jx = ker px N oy (K(X).

An isometric representation (p,t) of (X,C,¢x) is said to be covariant (or
Cuntz-Pimsner) if and only if

Yir(px(c)) = ple),

for all ¢ € Jx. The Cuntz-Pimsner algebra Oy is the universal C*-algebra
for all isometric covariant representations of (X,C), see [13] for further de-
tails. Furthermore, the first author and Kribs [8, Lemma 3.5] showed that
Ox contains a completely isometric copy of Ty} and C%,,(7Ty) ~ Ox.

We turn now to the hyperrigidity of tensor algebras. In [11] a suffi-
cient condition for hyperrigidity was developed, Katsura’s ideal acting non-
degenerately on the left of X. To be clear, non-degeneracy here means that
vx(Jx)X = X which by Cohen’s factorization theorem implies that we
actually have px(Jx)X = X.

Theorem 2.1 (Theorem 3.1, [11]). Let (X,C) be a C*-correspondence. If
ox(JIx) acts non-degenerately on X, then 7’; 15 a hyperrigid operator al-
gebra.

The proof shows that if 7/: Ox — B(H) is a completely contractive
and completely positive map that agrees with a x-homomorphism of Ox on
’T)}L then the multiplicative domain of 7/ must be everything. This is ac-
complished through the multiplicative domain arguments of [2, Proposition
1.5.7] and the use of Kasparov’s Stabilization Theorem. In earlier versions of
[11], Theorem 2.1 was claimed for countably generated C*-correspondences
only but a slight modification of the earlier proof makes it work for arbitrary
C*-correspondences.

A C*-correspondence (X, C) is called regular if and only if C acts faithfully
on X by compact operators, i.e., Jx = C. We thus obtain the following
which also appeared in [11].

Corollary 2.2. The tensor algebra of a regular C*-correspondence is nec-
essarily hyperrigid.

We seek a converse to Theorem 2.1.
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Definition 2.3. Let (X,C) be a C*-correspondence and let Jx be Kat-
sura’s ideal. We say that px(Jx) acts o-degenerately on X if there exists
a representation o: C — B(H) so that

ox(Ix)X @s H# X @5 H.
Remark 2.4. In particular, if there exists n € N so that
(ox(Tx) @A) X" @, H # X" @, H.
then by considering the Hilbert space K := X®"~! @, H, we see that
ex(Ix)X ®,; K # X ®4 K.
and so ¢x(Jx) acts o-degenerately on X.

The following gives a quick example of a o-degenerate action. Note that
this is possibly stronger than having a not non-degenerate action.

Proposition 2.5. Let (X,C) be a C*-correspondence. If (ox(JTx)X)* #
{0}, then vx(Jx) acts o-degenerately on X.

Proof. Let 0 # f € (px(Jx)X)*t. Let o : C — B(H) be a *-representation
and h € H so that o ((f, f>1/2)h # 0. Then,

(f @¢ hy f @0 h) = (h,a((f, )R) = llo((f, £Y/?)R]| # 0.

A similar calculation shows that
0# f R h € (px(Tx)X @ H)"

and we are done. ]
We need the following
Lemma 2.6. Let (X,C) be a C*-correspondence and (p,t) an isometric

representation of (X,C) on H.

(i) If M C H is an invariant subspace for (p x t)(Ty), then the re-
striction (p|,,,t|,.) of (p;t) on M is an isometric representation.

(ii) If p(c)h = Yi(px(c)h, for all ¢ € Jx and h € [t(X)H]*, then

(p,t) is a Cuntz-Pimsner representation.

Proof. (i) If p is the orthogonal projection on M, then p commutes with
p(C) and so py,,(-) = pp(-)p is a *-representation of C.
Furthermore, for x,y € X, we have
b (2)70) 0 (y) = pt(z) " pt(y)p
= pt(z)"t(y)p
= po((z,y))p = p|,, ((z,9))

and the conclusion follows.
(ii) It is easy to see on rank-one operators and therefore by linearity and
continuity on all compact operators K € K(X) that

HEKx) = h(K)t(z), € X.
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Now if ¢ € Jx, then for any x € X and h € H we have

p(e)t(x)h = t(ox(c)z)h = i(px (c))t(z)h.
By assumption p(c)h = 1 (¢0x(c))h, for any h € [t(X)H]* and the conclu-
sion follows. [

Theorem 2.7. Let (X,C) be a C*-correspondence. If Katsura’s ideal Jx
acts o-degenerately on X then the tensor algebra T)}L is not hyperrigid.

Proof. Let 0: C — B(H) so that
ox(Ix)X @ H# X @5 H

and let Mg = (ox(Tx)X ®, H)*.
We claim that

(1) (px (Ix) @ I)Mo = {0}.
Indeed for any f € My and j € Jx we have
((ex() @D, (ex() @ 1) f) = {f, (ex (") @) f) =0

since f € (px(Jx)X ®, H)*. This proves the claim.
We also claim that

(2) (px(C) ® Mg = My.
Indeed this follows from the fact that
(px(C) @ D(px(TIx)X ®s H) = px(Ix)X @5 H,

which is easily verified.

Using the subspace M we produce a Cuntz-Pimsner representation (p, t)
of (X,C) as follows. Let (poo,too) be the universal representation of (X,C)
on the Fock space F(X) = @52 (X", X®0:=C. Let

po: C — B(F(X) ®s H);c— poo(c) ® 1
to: X — B(F(X) Q¢ H);x — too(z) @ 1.
Define
M:=00MoD (XMo@ (X%20Mp)D...
= (po ¥ t)(TH)0BMeB 0 0@ ...) C F(X)®, H,
with the second equality following from (2). Clearly, M is an invariant
subspace for (po » to)(Ty).

Let p := po|,, and ¢t := tg|,,. By Lemma 2.6(i), (p,?) is a representation
of (X,C). We claim that (p,t) is actually Cuntz-Pimsner.

Indeed by Lemma 2.6(ii) it suffices to examine whether ¢;(px(j))h =
p(7)h, for any h € M & t(X)M. Note that since

HXIM=0308 (X @ M) & (X?@ M) @ ...,

we have that
MOt(XIM=0DMpad000®....
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From this it follows that for any h € M & t(X)M we have
to(x)*he (CR;H)@0B0D ..., ze€X

and so in particular for any j € Jx we obtain

Yi(px ()R € to),, (X)(to, ) (X)"h = {0}.
On the other hand,
p(I)h €0® (px(Ix) @ HMo® 00 --- = {0},
because of (2). Hence (p,t) is Cuntz-Pimsner.
At this point by restricting on T; , we produce the representation pxt ‘T;

of 7’; coming from a *-representation of its C*-envelope Ox, which admits a
dilation, namely pg % to ‘T;' If we show now that pg X tg ‘T; is a non-trivial

dilation of pxt ‘T;’ i.e. My is not reducing for (pg xto)(7y ), then pxt ‘T;
is not a maximal representation of Ty . Proposition 2.4 [3] shows p x ‘T;
does not have the UEP and so 7’; is not hyperrigid, as desired.
Towards this end, note that
ML =Ca (px(Tx)X ®o H) & (X @ Mo)- & ...
and so

t(X)IM- =08 (XCRH) @0H0E--- ¢ M*

Therefore M= is not an invariant subspace for (po % #9)(7) and so M is
not a reducing subspace for (pg x to)(7y ). This completes the proof. ]

3. TOPOLOGICAL GRAPHS

A broad class of C*-correspondences arises naturally from the concept of
a topological graph. For us, a topological graph G = (G, G, , s) consists of
two o-locally compact spaces G°, G, a continuous proper map r : Gt — G
and a local homeomorphism s : G' — G°. The set GV is called the base
(vertex) space and G' the edge space. When G” and G! are both equipped
with the discrete topology, we have a discrete countable graph.

With a given topological graph G = (G° G',r,s) we associate a C*-
correspondence X over Co(GY). The right and left actions of Co(G°) on
C.(G') are given by

(fFg)(e) = f(r(e))F(e)g(s(e))

for F € C.(GY), f,g € Co(G®) and e € G!. The inner product is defined for
F, H € C.(G") by

(FIH)(v)= Y F(e)H(e)

e€s~1(v)
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for v € G°. Finally, X denotes the completion of C,.(G') with respect to
the norm
(3) IF|| = sup (F|F) ()"

veGO

When G° and G! are both equipped with the discrete topology, then
the tensor algebra 7 = T;G associated with G coincides with the quiver
algebra of Muhly and Solel [15]. See [16] for further reading.

Given a topological graph G = (G°,G',r,s), we can describe the ideal
JIx as follows. Let

G2, = {v € G" | v has a neighborhood V such that r—*(V) = ()}
G = {v € G° | v has a neighborhood V such that r~(V) is compact}

Both sets are easily seen to be open and in [12, Proposition 1.24] Katsura
shows that

kerpx, = CU(G(s)ce) and (p;(lc (K(XG)) = C(](ng)
From the above it is easy to see that Jx, = Co(G%,), where

reg
Gl = GG

reg * sce*

We need the following
Lemma 3.1. Let G = (G°, G, r, s) be a topological graph. Thenr~1 (GO

reg

G if and only if r : Gt — G is a proper map satisfying r(G') C (T(Gl))o.

~—

Proof. Notice that
rHGYg) =GR, NN GYL)"

reg sce

and so r~1 (G?eg) = G! is equivalent to 7~1(GY, ) = r~}(GY,) = G*

First we claim that Tﬁl(ng) = G' if and only if 7 is a proper map.
Indeed, assume that r~1(GY ) = G! and let K C r(G') compact in the
relative topology. For every x € K, let V, be a compact neighborhood of
x such that r=1(V}) is compact and so r~!(V, N K)) is also compact. By
compactness, there exist z1,x2,...,2, € K so that K = U} ;(V,, N K) and
S0

rTHEK) = Uy (Ve N K)
and so r~!(K) is compact.

Conversely, if 7 is proper then any compact neighborhood V of any point
in GY is inverted by r~! to a compact set and so r~1(GY ) = G

We now claim that r~1(G9,.) = 0 if and only r(G') C (r(G1))".

Indeed, e € r~1(GY.,) is equivalent to r(e) € (r(G1)<)° and so r~1(GY,) =
() is equivalent to

r(Gh) € ((E) = (r(EM)",

as desired. n
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If G = (G° G, r,s)is a topological graph and S C G', then N(S) denotes
the collection of continuous functions F' € X¢ with Fig = 0, i.e., vanishing
at S. The following appears as Lemma 4.3(ii) in [6].

Lemma 3.2. Let G = (G° G',r,s) be a topological graph. If S; C GY,
Sy C G closed, then

N(r~'(81) U S2) =span{(f or)F | fis, = 0, Fls, = 0}

Theorem 3.3. Let G = (G° G',r,5s) be a topological graph and let X the
C*-correspondence associated with G. Then the following are equivalent

(i) the tensor algebra T;G is hyperrigid
(ii) ¢(TIx.) acts non-degenerately on X
(iii) 7 : G' — G is a proper map satisfying r(G') C (T(Gl))o

Proof. If ¢(Jx,) acts non-degenerately on X, then Theorem 2.1 shows
that 75 is hyperrigid. Thus (ii) implies (i).

For the converse, assume that ¢(Jx,) acts degenerately on Xqg. If we
verify that ¢(Jx,,) acts o-degenerately on X¢, then Theorem 2.7 shows that
T;G is not hyperrigid and so (i) implies (ii).

Towards this end note that Jx., = Co(U) for some proper open set U C
GY. (Actually we know that & = GY,, but this is not really needed for this

part of the proof!) Hence i
@ (JIxg)Xa =span{(f or)F | fye = 0}
= N(r~'u)),

according to Lemma 3.2.

Since p(Jx,) acts degenerately on X, (4) shows that r=1(U)¢ # (. Let
e €r Y U)¢ and let F € C.(G') C X¢ with F(e) = 1 and F(€') = 0, for any
other ¢’ € G with s(e’) = s(e). Consider the one dimensional representation
o : Cp(Gy) — C coming from evaluation at s(e). We claim that

Indeed for any G € ¢(Jx,)Xa = N(r~1(U)°) we have
(F®s1,G @5 1) = (1,0((F,G)1) = (F,G)s(e)

= > FG(E)
s(e')=s(e)
= F(e)G(e) = 0.

Furthermore,
(F®,1,F®,1)s(e) =|F(e)] =1

and 50 0 # F ®, 1 € (pxs(Txs)Xa @, C)*. This establishes the claim and
finishes the proof of (i) implies (ii).
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Finally we need to show that (ii) is equivalent to (iii). Notice that (4)
implies that p(Jx,) acts degenerately on X if and only if

P U) =17 (Greg) = 0.
The conclusion now follows from Lemma 3.1. [

The statement of the previous Theorem takes its most pleasing form when
G is a compact space. In that case T; is hyperrigid if and only is G! is
compact and 7(G') C GY is clopen.

Remark 3.4. In a recent preprint [14], the author claims a different con-
dition than ours as equivalent to the hyperrigidity of the tenor algebra of
a topological graph, namely the density of G in G°. (See [14, Theorem
3.6].) Apparently this is false as it implies that any semicrossed product
on a compact Hausdorff space is hyperrigid. Examples to refute this have
already appeared in [11, Example 3.4 |
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