THE HYPERRIGIDITY OF TENSOR ALGEBRAS OF C*-CORRESPONDENCES

ELIAS G. KATSOULIS AND CHRISTOPHER RAMSEY

Abstract

Given a C^{*}-correspondence X, we give necessary and sufficient conditions for the tensor algebra \mathcal{T}_{X}^{+}to be hyperrigid. In the case where X is coming from a topological graph we obtain a complete characterization.

1. Introduction

A not necessarily unital operator algebra \mathcal{A} is said to be hyperrigid if given any non-degenerate $*$-homomorphism

$$
\tau: \mathrm{C}_{\mathrm{env}}^{*}(\mathcal{A}) \longrightarrow B(\mathcal{H})
$$

then τ is the only completely positive, completely contractive extension of the restricted map $\tau_{\mid \mathcal{A}}$. Arveson coined the term hyperrigid in [1] but he was not the only one considering properties similar to this at the time, e.g. [4].

There are many examples of hyperrigid operator algebras such as those which are Dirichlet but the situation was not very clear in the case of tensor algebras of C^{*}-correspondences. It was known that the tensor algebra of a row-finite graph is hyperrigid [4], [5] and Dor-On and Salmomon [3] showed that row-finiteness completely characterizes hyperrigidity for such graph correspondences. These approaches, while successful, did not lend themselves to a more general characterization.

The authors, in a previous work [11], developed a sufficient condition for hyperrigidity in tensor algebras. In particular, if Katsura's ideal acts non-degenerately on the left then the tensor algebra is hyperrigid. The motivation was to provide a large class of hyperrigid C^{*}-correspondence examples as crossed products of operator algebras behave in a very nice manner when the operator algebra is hyperrigid. This theory was in turn leveraged to provide a positive confirmation to the Hao-Ng isomorphism problem in the case of graph correspondences and arbitrary groups. For further reading on the subject please see $[\mathbf{9}, \mathbf{1 0}, \mathbf{1 1}]$.

In this paper, we provide a necessary condition for the hyperrigidity of a tensor algebra, that a C^{*}-correspondence cannot be σ-degenerate, and show

[^0]that this completely characterizes the situation where the C^{*}-correspondence is coming from a topological graph, which generalizes both the graph correspondence case and the semicrossed product arising from a multivariable dynamical system.
1.1. Regarding hyperrigidity. The reader familiar with the literature recognizes that in our definition of hyperrigidity, we are essentially asking that the restriction on \mathcal{A} of any non-degenerate representation of $\mathrm{C}_{\text {env }}^{*}(\mathcal{A})$ possesses the unique extension property (abbr. UEP). According to [3, Proposition 2.4] a representation $\rho: \mathcal{A} \rightarrow B(\mathcal{H})$, degenerate or not, has the UEP if and only if ρ is a maximal representation of \mathcal{A}, i.e., whenever π is a representation of \mathcal{A} dilating ρ, then $\pi=\rho \oplus \pi^{\prime}$ for some representation π^{\prime}. Our definition of hyperrigidity is in accordance with Arveson's nomenclature [1], our earlier work $[\mathbf{7}, \mathbf{1 1}]$ and the works of Dor-On and Salomon [3] and Salomon [17], who systematized quite nicely the non-unital theory.

An alternative definition of hyperrigidity for \mathcal{A} may ask that any representation of $\mathrm{C}_{\text {env }}^{*}(\mathcal{A})$, not just the non-degenerate ones, possesses the UEP when restricted on \mathcal{A}. It turns out that for operator algebras with a positive contractive approximate unit ${ }^{1}$, such a definition would be equivalent to ours [17, Proposition 3.6 and Theorem 3.9] . However when one moves beyond operator algebras with an approximate unit, there are examples to show that the two definitions differ. One such example is the non-unital operator algebra \mathcal{A}_{V} generated by the unilateral forward shift V. It is easy to see that \mathcal{A}_{V} is hyperrigid according to our definition and yet the zero map, as a representation on $\mathcal{H}=\mathbb{C}$, does not have the UEP. (See for instance [17, Example 3.4].)

2. Main Results

A C ${ }^{*}$-correspondence $\left(X, \mathcal{C}, \varphi_{X}\right)$ (often just $\left.(X, \mathcal{C})\right)$ consists of a C^{*}-algebra \mathcal{C}, a Hilbert \mathcal{C}-module $(X,\langle\rangle$,$) and a (non-degenerate) *$-homomorphism $\varphi_{X}: \mathcal{C} \rightarrow \mathcal{L}(X)$ into the C^{*}-algebra of adjointable operators on X.

An isometric (Toeplitz) representation (ρ, t, \mathcal{H}) of a C^{*}-correspondence (X, \mathcal{C}) consists of a non-degenerate $*$-homomorphism $\rho: \mathcal{C} \rightarrow B(\mathcal{H})$ and a linear map $t: X \rightarrow B(\mathcal{H})$, such that

$$
\begin{gathered}
\rho(c) t(x)=t\left(\varphi_{X}(c)(x)\right), \quad \text { and } \\
t(x)^{*} t\left(x^{\prime}\right)=\rho\left(\left\langle x, x^{\prime}\right\rangle\right),
\end{gathered}
$$

for all $c \in \mathcal{C}$ and $x, x^{\prime} \in X$. These relations imply that the C^{*}-algebra generated by this isometric representation equals the closed linear span of

$$
t\left(x_{1}\right) \cdots t\left(x_{n}\right) t\left(y_{1}\right)^{*} \cdots t\left(y_{m}\right)^{*}, \quad x_{i}, y_{j} \in X
$$

Moreover, there exists a $*$-homomorphism $\psi_{t}: \mathcal{K}(X) \rightarrow B$, such that

$$
\psi_{t}\left(\theta_{x, y}\right)=t(x) t(y)^{*}
$$

[^1]where $\mathcal{K}(X) \subset \mathcal{L}(X)$ is the subalgebra generated by the operators $\theta_{x, y}(z)=$ $x\langle y, z\rangle, x, y, x \in X$, which are called by analogy the compact operators.

The Cuntz-Pimsner-Toeplitz C^{*}-algebra \mathcal{T}_{X} is defined as the C^{*}-algebra generated by the image of $\left(\rho_{\infty}, t_{\infty}\right)$, the universal isometric representation. This is universal in the sense that for any other isometric representation there is a $*$-homomorphism of \mathcal{T}_{X} onto the C^{*}-algebra generated by this representation in the most natural way.

The tensor algebra \mathcal{T}_{X}^{+}of a C^{*}-correspondence (X, \mathcal{C}) is the norm-closed subalgebra of \mathcal{T}_{X} generated by $\rho_{\infty}(\mathcal{C})$ and $t_{\infty}(X)$. See [15] for more on these constructions.

Consider Katsura's ideal

$$
\mathcal{J}_{X} \equiv \operatorname{ker} \varphi_{X}^{\perp} \cap \varphi_{X}^{-1}(\mathcal{K}(X))
$$

An isometric representation (ρ, t) of $\left(X, \mathcal{C}, \varphi_{X}\right)$ is said to be covariant (or Cuntz-Pimsner) if and only if

$$
\psi_{t}\left(\varphi_{X}(c)\right)=\rho(c),
$$

for all $c \in \mathcal{J}_{X}$. The Cuntz-Pimsner algebra \mathcal{O}_{X} is the universal C*-algebra for all isometric covariant representations of (X, \mathcal{C}), see [13] for further details. Furthermore, the first author and Kribs [8, Lemma 3.5] showed that \mathcal{O}_{X} contains a completely isometric copy of \mathcal{T}_{X}^{+}and $\mathrm{C}_{\text {env }}^{*}\left(\mathcal{T}_{X}^{+}\right) \simeq \mathcal{O}_{X}$.

We turn now to the hyperrigidity of tensor algebras. In [11] a sufficient condition for hyperrigidity was developed, Katsura's ideal acting nondegenerately on the left of X. To be clear, non-degeneracy here means that $\overline{\varphi_{X}\left(\mathcal{J}_{X}\right) X}=X$ which by Cohen's factorization theorem implies that we actually have $\varphi_{X}\left(\mathcal{J}_{X}\right) X=X$.

Theorem 2.1 (Theorem 3.1, [11]). Let (X,C) be a C^{*}-correspondence. If $\varphi_{X}\left(\mathcal{J}_{X}\right)$ acts non-degenerately on X, then \mathcal{T}_{X}^{+}is a hyperrigid operator algebra.

The proof shows that if $\tau^{\prime}: \mathcal{O}_{X} \longrightarrow B(\mathcal{H})$ is a completely contractive and completely positive map that agrees with a $*$-homomorphism of \mathcal{O}_{X} on \mathcal{T}_{X}^{+}then the multiplicative domain of τ^{\prime} must be everything. This is accomplished through the multiplicative domain arguments of [2, Proposition 1.5.7] and the use of Kasparov's Stabilization Theorem. In earlier versions of [11], Theorem 2.1 was claimed for countably generated C^{*}-correspondences only but a slight modification of the earlier proof makes it work for arbitrary C^{*}-correspondences.

A C^{*}-correspondence (X, \mathcal{C}) is called regular if and only if \mathcal{C} acts faithfully on X by compact operators, i.e., $\mathcal{J}_{X}=\mathcal{C}$. We thus obtain the following which also appeared in [11].

Corollary 2.2. The tensor algebra of a regular C^{*}-correspondence is necessarily hyperrigid.

We seek a converse to Theorem 2.1.

Definition 2.3. Let (X, \mathcal{C}) be a C^{*}-correspondence and let \mathcal{J}_{X} be Katsura's ideal. We say that $\varphi_{X}\left(\mathcal{J}_{X}\right)$ acts σ-degenerately on X if there exists a representation $\sigma: \mathcal{C} \rightarrow B(\mathcal{H})$ so that

$$
\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{H} \neq X \otimes_{\sigma} \mathcal{H} .
$$

Remark 2.4. In particular, if there exists $n \in \mathbb{N}$ so that

$$
\left(\varphi_{X}\left(\mathcal{J}_{X}\right) \otimes \mathrm{id}\right) X^{\otimes n} \otimes_{\sigma} \mathcal{H} \neq X^{\otimes n} \otimes_{\sigma} \mathcal{H} .
$$

then by considering the Hilbert space $\mathcal{K}:=X^{\otimes n-1} \otimes_{\sigma} \mathcal{H}$, we see that

$$
\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{K} \neq X \otimes_{\sigma} \mathcal{K}
$$

and so $\varphi_{X}\left(\mathcal{J}_{X}\right)$ acts σ-degenerately on X.
The following gives a quick example of a σ-degenerate action. Note that this is possibly stronger than having a not non-degenerate action.
Proposition 2.5. Let (X, \mathcal{C}) be a C^{*}-correspondence. If $\left(\varphi_{X}\left(\mathcal{J}_{X}\right) X\right)^{\perp} \neq$ $\{0\}$, then $\varphi_{X}\left(\mathcal{J}_{X}\right)$ acts σ-degenerately on X.
Proof. Let $0 \neq f \in\left(\varphi_{X}\left(\mathcal{J}_{X}\right) X\right)^{\perp}$. Let $\sigma: \mathcal{C} \rightarrow B(\mathcal{H})$ be a $*$-representation and $h \in \mathcal{H}$ so that $\sigma\left(\langle f, f\rangle^{1 / 2}\right) h \neq 0$. Then,

$$
\left\langle f \otimes_{\sigma} h, f \otimes_{\sigma} h\right\rangle=\left\langle h, \sigma((\langle f, f\rangle) h\rangle=\left\|\sigma\left(\langle f, f\rangle^{1 / 2}\right) h\right\| \neq 0 .\right.
$$

A similar calculation shows that

$$
0 \neq f \otimes_{\sigma} h \in\left(\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{H}\right)^{\perp}
$$

and we are done.
We need the following
Lemma 2.6. Let (X, \mathcal{C}) be a C^{*}-correspondence and (ρ, t) an isometric representation of (X, \mathcal{C}) on \mathcal{H}.
(i) If $\mathcal{M} \subseteq \mathcal{H}$ is an invariant subspace for $(\rho \rtimes t)\left(\mathcal{T}_{X}^{+}\right)$, then the restriction $\left(\rho_{\left.\right|_{\mathcal{M}}}, t_{\left.\right|_{\mathcal{M}}}\right)$ of (ρ, t) on \mathcal{M} is an isometric representation.
(ii) If $\rho(c) h=\psi_{t}\left(\varphi_{X}(c)\right) h$, for all $c \in \mathcal{J}_{X}$ and $h \in[t(X) \mathcal{H}]^{\perp}$, then (ρ, t) is a Cuntz-Pimsner representation.
Proof. (i) If p is the orthogonal projection on \mathcal{M}, then p commutes with $\rho(\mathcal{C})$ and so $\rho_{\left.\right|_{\mathcal{M}}}(\cdot)=p \rho(\cdot) p$ is a $*$-representation of \mathcal{C}.

Furthermore, for $x, y \in X$, we have

$$
\begin{aligned}
t_{\left.\right|_{\mathcal{M}}}(x)^{*} t_{\left.\right|_{\mathcal{M}}}(y) & =p t(x)^{*} p t(y) p \\
& =p t(x)^{*} t(y) p \\
& =p \rho(\langle x, y\rangle) p=\rho_{\left.\right|_{\mathcal{M}}}(\langle x, y\rangle)
\end{aligned}
$$

and the conclusion follows.
(ii) It is easy to see on rank-one operators and therefore by linearity and continuity on all compact operators $K \in \mathcal{K}(X)$ that

$$
t(K x)=\psi_{t}(K) t(x), \quad x \in X
$$

Now if $c \in \mathcal{J}_{X}$, then for any $x \in X$ and $h \in \mathcal{H}$ we have

$$
\rho(c) t(x) h=t\left(\varphi_{X}(c) x\right) h=\psi_{t}\left(\varphi_{X}(c)\right) t(x) h .
$$

By assumption $\rho(c) h=\psi_{t}\left(\varphi_{X}(c)\right) h$, for any $h \in[t(X) \mathcal{H}]^{\perp}$ and the conclusion follows.

Theorem 2.7. Let (X, \mathcal{C}) be a C^{*}-correspondence. If Katsura's ideal \mathcal{J}_{X} acts σ-degenerately on X then the tensor algebra \mathcal{T}_{X}^{+}is not hyperrigid.

Proof. Let $\sigma: \mathcal{C} \rightarrow B(\mathcal{H})$ so that

$$
\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{H} \neq X \otimes_{\sigma} \mathcal{H}
$$

and let $\mathcal{M}_{0}:=\left(\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{H}\right)^{\perp}$.
We claim that

$$
\begin{equation*}
\left(\varphi_{X}\left(\mathcal{J}_{X}\right) \otimes I\right) \mathcal{M}_{0}=\{0\} . \tag{1}
\end{equation*}
$$

Indeed for any $f \in \mathcal{M}_{0}$ and $j \in \mathcal{J}_{X}$ we have

$$
\left\langle\left(\varphi_{X}(j) \otimes I\right) f,\left(\varphi_{X}(j) \otimes I\right) f\right\rangle=\left\langle f,\left(\varphi_{X}\left(j^{*} j\right) \otimes I\right) f\right\rangle=0
$$

since $f \in\left(\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{H}\right)^{\perp}$. This proves the claim.
We also claim that

$$
\begin{equation*}
\left(\varphi_{X}(\mathcal{C}) \otimes I\right) \mathcal{M}_{0}=\mathcal{M}_{0} \tag{2}
\end{equation*}
$$

Indeed this follows from the fact that

$$
\left(\varphi_{X}(\mathcal{C}) \otimes I\right)\left(\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{H}\right)=\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} \mathcal{H}
$$

which is easily verified.
Using the subspace \mathcal{M}_{0} we produce a Cuntz-Pimsner representation (ρ, t) of (X, \mathcal{C}) as follows. Let $\left(\rho_{\infty}, t_{\infty}\right)$ be the universal representation of (X, \mathcal{C}) on the Fock space $\mathcal{F}(X)=\oplus_{n=0}^{\infty} X^{\otimes n}, X^{\otimes 0}:=\mathcal{C}$. Let

$$
\begin{gathered}
\rho_{0}: \mathcal{C} \longrightarrow B\left(\mathcal{F}(X) \otimes_{\sigma} \mathcal{H}\right) ; c \longmapsto \rho_{\infty}(c) \otimes I \\
t_{0}: X \longrightarrow B\left(\mathcal{F}(X) \otimes_{\sigma} \mathcal{H}\right) ; x \longmapsto t_{\infty}(x) \otimes I .
\end{gathered}
$$

Define

$$
\begin{aligned}
\mathcal{M}: & =0 \oplus \mathcal{M}_{0} \oplus\left(X \otimes \mathcal{M}_{0}\right) \oplus\left(X^{\otimes 2} \otimes \mathcal{M}_{0}\right) \oplus \ldots \\
& =\left(\rho_{0} \rtimes t_{0}\right)\left(\mathcal{T}_{X}^{+}\right)\left(0 \oplus \mathcal{M}_{0} \oplus 0 \oplus 0 \oplus \ldots\right) \subseteq \mathcal{F}(X) \otimes_{\sigma} \mathcal{H},
\end{aligned}
$$

with the second equality following from (2). Clearly, \mathcal{M} is an invariant subspace for $\left(\rho_{0} \rtimes t_{0}\right)\left(\mathcal{T}_{X}^{+}\right)$.

Let $\rho:=\rho_{\left.0\right|_{\mathcal{M}}}$ and $t:=t_{\left.0\right|_{\mathcal{M}}}$. By Lemma 2.6(i), (ρ, t) is a representation of (X, \mathcal{C}). We claim that (ρ, t) is actually Cuntz-Pimsner.

Indeed by Lemma 2.6(ii) it suffices to examine whether $\psi_{t}\left(\varphi_{X}(j)\right) h=$ $\rho(j) h$, for any $h \in \mathcal{M} \ominus t(X) \mathcal{M}$. Note that since

$$
t(X) \mathcal{M}=0 \oplus 0 \oplus\left(X \otimes \mathcal{M}_{0}\right) \oplus\left(X^{\otimes 2} \otimes \mathcal{M}_{0}\right) \oplus \ldots
$$

we have that

$$
\mathcal{M} \ominus t(X) \mathcal{M}=0 \oplus \mathcal{M}_{0} \oplus 0 \oplus 0 \oplus \ldots
$$

From this it follows that for any $h \in \mathcal{M} \ominus t(X) \mathcal{M}$ we have

$$
t_{0}(x)^{*} h \in\left(\mathcal{C} \otimes_{\sigma} \mathcal{H}\right) \oplus 0 \oplus 0 \oplus \ldots, \quad x \in X
$$

and so in particular for any $j \in \mathcal{J}_{X}$ we obtain

$$
\psi_{t}\left(\varphi_{X}(j)\right) h \in t_{\left.0\right|_{\mathcal{M}}}(X)\left(t_{\left.0\right|_{\mathcal{M}}}\right)(X)^{*} h=\{0\}
$$

On the other hand,

$$
\rho(j) h \in 0 \oplus\left(\varphi_{X}\left(\mathcal{J}_{X}\right) \otimes I\right) \mathcal{M}_{0} \oplus 0 \oplus 0 \oplus \cdots=\{0\}
$$

because of (2). Hence (ρ, t) is Cuntz-Pimsner.
At this point by restricting on \mathcal{T}_{X}^{+}, we produce the representation $\left.\rho \rtimes t\right|_{\mathcal{T}_{X}^{+}}$ of \mathcal{T}_{X}^{+}coming from a $*$-representation of its C^{*}-envelope \mathcal{O}_{X}, which admits a dilation, namely $\left.\rho_{0} \rtimes t_{0}\right|_{\mathcal{T}_{X}^{+}}$. If we show now that $\left.\rho_{0} \rtimes t_{0}\right|_{\mathcal{T}_{X}^{+}}$is a non-trivial dilation of $\left.\rho \rtimes t\right|_{\mathcal{T}_{X}^{+}}$, i.e. \mathcal{M}_{0} is not reducing for $\left(\rho_{0} \rtimes t_{0}\right)\left(\mathcal{T}_{X}^{+}\right)$, then $\left.\rho \rtimes t\right|_{\mathcal{T}_{X}^{+}}$ is not a maximal representation of \mathcal{T}_{X}^{+}. Proposition 2.4 [3] shows $\left.\rho \rtimes t\right|_{\mathcal{T}_{X}^{+}}$ does not have the UEP and so \mathcal{T}_{X}^{+}is not hyperrigid, as desired.

Towards this end, note that

$$
\mathcal{M}^{\perp}=\mathcal{C} \oplus\left(\varphi_{X}\left(\mathcal{J}_{X}\right) X \otimes_{\sigma} H\right) \oplus\left(X \otimes \mathcal{M}_{0}\right)^{\perp} \oplus \ldots
$$

and so

$$
t_{0}(X) \mathcal{M}^{\perp}=0 \oplus\left(X \mathcal{C} \otimes_{\sigma} \mathcal{H}\right) \oplus 0 \oplus 0 \oplus \cdots \nsubseteq \mathcal{M}^{\perp}
$$

Therefore \mathcal{M}^{\perp} is not an invariant subspace for $\left(\rho_{0} \rtimes t_{0}\right)\left(\mathcal{T}_{X}^{+}\right)$and so \mathcal{M} is not a reducing subspace for $\left(\rho_{0} \rtimes t_{0}\right)\left(\mathcal{T}_{X}^{+}\right)$. This completes the proof.

3. Topological graphs

A broad class of C^{*}-correspondences arises naturally from the concept of a topological graph. For us, a topological graph $G=\left(G^{0}, G^{1}, r, s\right)$ consists of two σ-locally compact spaces G^{0}, G^{1}, a continuous proper map $r: G^{1} \rightarrow G^{0}$ and a local homeomorphism $s: G^{1} \rightarrow G^{0}$. The set G^{0} is called the base (vertex) space and G^{1} the edge space. When G^{0} and G^{1} are both equipped with the discrete topology, we have a discrete countable graph.

With a given topological graph $G=\left(G^{0}, G^{1}, r, s\right)$ we associate a C^{*} correspondence X_{G} over $C_{0}\left(G^{0}\right)$. The right and left actions of $C_{0}\left(G^{0}\right)$ on $C_{c}\left(G^{1}\right)$ are given by

$$
(f F g)(e)=f(r(e)) F(e) g(s(e))
$$

for $F \in C_{c}\left(G^{1}\right), f, g \in C_{0}\left(G^{0}\right)$ and $e \in G^{1}$. The inner product is defined for $F, H \in C_{c}\left(G^{1}\right)$ by

$$
\langle F \mid H\rangle(v)=\sum_{e \in s^{-1}(v)} \overline{F(e)} H(e)
$$

for $v \in G^{0}$. Finally, X_{G} denotes the completion of $C_{c}\left(G^{1}\right)$ with respect to the norm

$$
\begin{equation*}
\|F\|=\sup _{v \in G^{0}}\langle F \mid F\rangle(v)^{1 / 2} \tag{3}
\end{equation*}
$$

When G^{0} and G^{1} are both equipped with the discrete topology, then the tensor algebra $\mathcal{T}_{G}^{+} \equiv \mathcal{T}_{X_{G}}^{+}$associated with G coincides with the quiver algebra of Muhly and Solel [15]. See [16] for further reading.

Given a topological graph $G=\left(G^{0}, G^{1}, r, s\right)$, we can describe the ideal $\mathcal{J}_{X_{G}}$ as follows. Let

$$
\begin{aligned}
G_{\text {sce }}^{0} & =\left\{v \in G^{0} \mid v \text { has a neighborhood } V \text { such that } r^{-1}(V)=\emptyset\right\} \\
G_{\text {fin }}^{0} & =\left\{v \in G^{0} \mid v \text { has a neighborhood } V \text { such that } r^{-1}(V) \text { is compact }\right\}
\end{aligned}
$$

Both sets are easily seen to be open and in [12, Proposition 1.24] Katsura shows that

$$
\operatorname{ker} \varphi_{X_{G}}=C_{0}\left(G_{\text {sce }}^{0}\right) \text { and } \varphi_{X_{G}}^{-1}\left(\mathcal{K}\left(X_{G}\right)\right)=C_{0}\left(G_{\text {fin }}^{0}\right)
$$

From the above it is easy to see that $\mathcal{J}_{X_{G}}=C_{0}\left(G_{\text {reg }}^{0}\right)$, where

$$
G_{\mathrm{reg}}^{0}:=G_{\mathrm{fin}}^{0} \backslash \overline{G_{\mathrm{sce}}^{0}} .
$$

We need the following
Lemma 3.1. Let $G=\left(G^{0}, G^{1}, r, s\right)$ be a topological graph. Then $r^{-1}\left(G_{\mathrm{reg}}^{0}\right)=$ G^{1} if and only if $r: G^{1} \rightarrow G^{0}$ is a proper map satisfying $r\left(G^{1}\right) \subseteq\left(\overline{r\left(G^{1}\right)}\right)^{\circ}$.
Proof. Notice that

$$
r^{-1}\left(G_{\mathrm{reg}}^{0}\right)=r^{-1}\left(G_{\mathrm{fin}}^{0}\right) \cap r^{-1}\left(\overline{G_{\mathrm{sce}}^{0}}\right)^{c}
$$

and so $r^{-1}\left(G_{\text {reg }}^{0}\right)=G^{1}$ is equivalent to $r^{-1}\left(G_{\text {fin }}^{0}\right)=r^{-1}\left(\overline{G_{\text {sce }}^{0}}\right)=G^{1}$
First we claim that $r^{-1}\left(G_{\text {fin }}^{0}\right)=G^{1}$ if and only if r is a proper map. Indeed, assume that $r^{-1}\left(G_{\text {fin }}^{0}\right)=G^{1}$ and let $K \subseteq r\left(G^{1}\right)$ compact in the relative topology. For every $x \in K$, let V_{x} be a compact neighborhood of x such that $r^{-1}\left(V_{x}\right)$ is compact and so $\left.r^{-1}\left(V_{x} \cap K\right)\right)$ is also compact. By compactness, there exist $x_{1}, x_{2}, \ldots, x_{n} \in K$ so that $K=\cup_{i=1}^{n}\left(V_{x_{i}} \cap K\right)$ and so

$$
r^{-1}(K)=\cup_{i=1}^{n} r^{-1}\left(V_{x_{i}} \cap K\right)
$$

and so $r^{-1}(K)$ is compact.
Conversely, if r is proper then any compact neighborhood V of any point in G^{0} is inverted by r^{-1} to a compact set and so $r^{-1}\left(G_{\text {fin }}^{0}\right)=G^{1}$.

We now claim that $r^{-1}\left(\overline{G_{\text {sce }}^{0}}\right)=\emptyset$ if and only $r\left(G^{1}\right) \subseteq\left(\overline{r\left(G^{1}\right)}\right)^{\circ}$.
Indeed, $e \in r^{-1}\left(\overline{G_{\text {sce }}^{0}}\right)$ is equivalent to $r(e) \in \overline{\left(r\left(G^{1}\right)^{c}\right)^{\circ}}$ and so $r^{-1}\left(\overline{G_{\text {sce }}^{0}}\right)=$ \emptyset is equivalent to

$$
r\left(G^{1}\right) \subseteq\left(\overline{\left(r\left(G^{1}\right)^{c}\right)^{\circ}}\right)^{c}=\left(\overline{r\left(G^{1}\right)}\right)^{\circ}
$$

as desired.

If $G=\left(G^{0}, G^{1}, r, s\right)$ is a topological graph and $S \subseteq G^{1}$, then $N(S)$ denotes the collection of continuous functions $F \in X_{G}$ with $F_{\mid S}=0$, i.e., vanishing at S. The following appears as Lemma 4.3(ii) in [6].

Lemma 3.2. Let $G=\left(G^{0}, G^{1}, r, s\right)$ be a topological graph. If $S_{1} \subseteq G^{0}$, $S_{2} \subseteq G^{1}$ closed, then

$$
N\left(r^{-1}\left(S_{1}\right) \cup S_{2}\right)=\overline{\operatorname{span}}\left\{(f \circ r) F \mid f_{\mid S_{1}}=0, F_{\mid S_{2}}=0\right\}
$$

Theorem 3.3. Let $G=\left(G^{0}, G^{1}, r, s\right)$ be a topological graph and let X_{G} the C^{*}-correspondence associated with G. Then the following are equivalent
(i) the tensor algebra $\mathcal{T}_{X_{G}}^{+}$is hyperrigid
(ii) $\varphi\left(\mathcal{J}_{X_{G}}\right)$ acts non-degenerately on X_{G}
(iii) $r: G^{1} \rightarrow G^{0}$ is a proper map satisfying $r\left(G^{1}\right) \subseteq\left(\overline{r\left(G^{1}\right)}\right)^{\circ}$

Proof. If $\varphi\left(\mathcal{J}_{X_{G}}\right)$ acts non-degenerately on X_{G}, then Theorem 2.1 shows that $\mathcal{T}_{X_{G}}^{+}$is hyperrigid. Thus (ii) implies (i).

For the converse, assume that $\varphi\left(\mathcal{J}_{X_{G}}\right)$ acts degenerately on X_{G}. If we verify that $\varphi\left(\mathcal{J}_{X_{G}}\right)$ acts σ-degenerately on X_{G}, then Theorem 2.7 shows that $\mathcal{T}_{X_{G}}^{+}$is not hyperrigid and so (i) implies (ii).

Towards this end note that $\mathcal{J}_{X_{G}}=\mathcal{C}_{0}(\mathcal{U})$ for some proper open set $\mathcal{U} \subseteq$ G^{0}. (Actually we know that $\mathcal{U}=G_{\text {reg }}^{0}$ but this is not really needed for this part of the proof!) Hence

$$
\begin{align*}
\varphi\left(\mathcal{J}_{X_{G}}\right) X_{G} & =\overline{\operatorname{span}}\left\{(f \circ r) F \mid f_{\mid \mathcal{U c}}=0\right\} \\
& =N\left(r^{-1}(\mathcal{U})^{c}\right), \tag{4}
\end{align*}
$$

according to Lemma 3.2.
Since $\varphi\left(\mathcal{J}_{X_{G}}\right)$ acts degenerately on X_{G}, (4) shows that $r^{-1}(\mathcal{U})^{c} \neq \emptyset$. Let $e \in r^{-1}(\mathcal{U})^{c}$ and let $F \in C_{c}\left(G^{1}\right) \subseteq X_{G}$ with $F(e)=1$ and $F\left(e^{\prime}\right)=0$, for any other $e^{\prime} \in G^{1}$ with $s\left(e^{\prime}\right)=s(e)$. Consider the one dimensional representation $\sigma: C_{0}\left(G_{0}\right) \rightarrow \mathbb{C}$ coming from evaluation at $s(e)$. We claim that

$$
\varphi_{X_{G}}\left(\mathcal{J}_{X_{G}}\right) X_{G} \otimes_{\sigma} \mathbb{C} \neq X_{G} \otimes_{\sigma} \mathbb{C} .
$$

Indeed for any $G \in \varphi\left(\mathcal{J}_{X_{G}}\right) X_{G}=N\left(r^{-1}(\mathcal{U})^{c}\right)$ we have

$$
\begin{aligned}
\left\langle F \otimes_{\sigma} 1, G \otimes_{\sigma} 1\right\rangle & =\langle 1, \sigma(\langle F, G\rangle 1)=\langle F, G\rangle s(e) \\
& =\sum_{s\left(e^{\prime}\right)=s(e)} \overline{F\left(e^{\prime}\right)} G\left(e^{\prime}\right) \\
& =\overline{F(e)} G(e)=0 .
\end{aligned}
$$

Furthermore,

$$
\left\langle F \otimes_{\sigma} 1, F \otimes_{\sigma} 1\right\rangle s(e)=|F(e)|^{2}=1
$$

and so $0 \neq F \otimes_{\sigma} 1 \in\left(\varphi_{X_{G}}\left(\mathcal{J}_{X_{G}}\right) X_{G} \otimes_{\sigma} \mathbb{C}\right)^{\perp}$. This establishes the claim and finishes the proof of (i) implies (ii).

Finally we need to show that (ii) is equivalent to (iii). Notice that (4) implies that $\varphi\left(\mathcal{J}_{X_{G}}\right)$ acts degenerately on X_{G} if and only if

$$
r^{-1}(\mathcal{U})^{c}=r^{-1}\left(G_{\mathrm{reg}}^{0}\right)^{c}=\emptyset .
$$

The conclusion now follows from Lemma 3.1.
The statement of the previous Theorem takes its most pleasing form when G^{0} is a compact space. In that case \mathcal{T}_{X}^{+}is hyperrigid if and only is G^{1} is compact and $r\left(G^{1}\right) \subseteq G^{0}$ is clopen.
Remark 3.4. In a recent preprint [14], the author claims a different condition than ours as equivalent to the hyperrigidity of the tenor algebra of a topological graph, namely the density of $G_{\text {fin }}^{0}$ in G^{0}. (See [14, Theorem 3.6].) Apparently this is false as it implies that any semicrossed product on a compact Hausdorff space is hyperrigid. Examples to refute this have already appeared in [11, Example 3.4]

Acknowledgement. Both authors would like to thank MacEwan University for providing project funding to bring the first author out to Edmonton for a research visit. The first author received support for this project in the form of a Summer Research Award from the Thomas Harriott College of Arts Sciences at ECU. He also expresses his gratitude to Adam Dor-On and Guy Salomon for several discussions regarding their work on hyperrigidity. The second author was partially supported by an NSERC grant.

References

[1] W. Arveson, The noncommutative Choquet boundary II: hyperrigidity, Israel J. Math. 184 (2011), 349-385.
[2] N. Brown and N. Ozawa, C*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics 88, American Mathematical Society, Providence, RI, 2008. xvi+509 pp.
[3] A. Dor-On and G. Salomon, Full Cuntz-Krieger dilations via non-commutative boundaries, J. London Math. Soc. 98 (2018), 416-438.
[4] B. Duncan, Certain free products of graph operator algebras, J. Math. Anal. Appl. 364 (2010), 534-543.
[5] E.T.A. Kakariadis, The Dirichlet property for tensor algebras, Bull. Lond. Math. Soc. 45 (2013), 1119-1130.
[6] E. Katsoulis, Local maps and the representation theory of operator algebras, Trans. Amer. Math. Soc. 368 (2016), 5377-5397.
[7] E. Katsoulis, C^{*}-envelopes and the Hao-Ng isomorphism for discrete groups, Inter. Math. Res. Not. (2017), 5751-5768.
[8] E. Katsoulis and D. Kribs, Tensor algebras of C^{*}-correspondences and their C^{*} envelopes, J. Funct. Anal. 234 (2006), 226-233.
[9] E. Katsoulis and C. Ramsey, Crossed products of operator algebras, Mem. Amer. Math. Soc 258 (2019), no. 1240, vii+85 pp.
[10] E. Katsoulis and C. Ramsey, Crossed products of operator algebras: applications of Takai duality, J. Funct. Anal. 275 (2018), 1173-1207.
[11] E. Katsoulis and C. Ramsey, The non-selfadjoint approach to the Hao-Ng isomorphism problem, preprint arXiv:1807.11425.
[12] T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C*-algebras. I. Fundamental results, Trans. Amer. Math. Soc. 356 (2004), 4287-4322.
[13] T. Katsura, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217 (2004), 366-401.
[14] S. Kim, Hyperrigidity of C^{*}-correspondences, manuscript arXiv:1905.10473.
[15] P. Muhly and B. Solel, Tensor algebras over C^{*}-correspondences: representations, dilations, and C^{*}-envelopes, J. Funct. Anal. 158 (1998), 389-457.
[16] I. Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics 103, American Mathematical Society, Providence, RI, 2005.
[17] G. Salomon, Hyperrigid subsets of Cuntz-Krieger algebras and the property of rigidity at zero, J. Operator Theory 81 (2019), 61-79.

Department of Mathematics, East Carolina University, Greenville, NC 27858, USA

Email address: katsoulise@ecu.edu
Department of Mathematics and Statistics, MacEwan University, Edmonton, AB, Canada

Email address: ramseyc5@macewan.ca

[^0]: 2010 Mathematics Subject Classification. 46L07, 46L08, 46L55, 47B49, 47L40.
 Key words and phrases: C^{*}-correspondence, tensor algebra, hyperrigid, topological graph, operator algebra.

[^1]: ${ }^{1}$ which includes all operator algebras appearing in this paper

