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Abstract. Given a C∗-correspondence X, we give necessary and suf-
ficient conditions for the tensor algebra T +

X to be hyperrigid. In the
case where X is coming from a topological graph we obtain a complete
characterization.

1. Introduction

A not necessarily unital operator algebra A is said to be hyperrigid if
given any non-degenerate ∗-homomorphism

τ : C∗env(A) −→ B(H)

then τ is the only completely positive, completely contractive extension of
the restricted map τ|A. Arveson coined the term hyperrigid in [1] but he
was not the only one considering properties similar to this at the time, e.g.
[4].

There are many examples of hyperrigid operator algebras such as those
which are Dirichlet but the situation was not very clear in the case of ten-
sor algebras of C∗-correspondences. It was known that the tensor algebra
of a row-finite graph is hyperrigid [4], [5] and Dor-On and Salmomon [3]
showed that row-finiteness completely characterizes hyperrigidity for such
graph correspondences. These approaches, while successful, did not lend
themselves to a more general characterization.

The authors, in a previous work [11], developed a sufficient condition
for hyperrigidity in tensor algebras. In particular, if Katsura’s ideal acts
non-degenerately on the left then the tensor algebra is hyperrigid. The
motivation was to provide a large class of hyperrigid C∗-correspondence
examples as crossed products of operator algebras behave in a very nice
manner when the operator algebra is hyperrigid. This theory was in turn
leveraged to provide a positive confirmation to the Hao-Ng isomorphism
problem in the case of graph correspondences and arbitrary groups. For
further reading on the subject please see [9, 10, 11].

In this paper, we provide a necessary condition for the hyperrigidity of a
tensor algebra, that a C∗-correspondence cannot be σ-degenerate, and show
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that this completely characterizes the situation where the C∗-correspondence
is coming from a topological graph, which generalizes both the graph cor-
respondence case and the semicrossed product arising from a multivariable
dynamical system.

1.1. Regarding hyperrigidity. The reader familiar with the literature
recognizes that in our definition of hyperrigidity, we are essentially asking
that the restriction on A of any non-degenerate representation of C∗env(A)
possesses the unique extension property (abbr. UEP). According to [3,
Proposition 2.4] a representation ρ : A → B(H), degenerate or not, has the
UEP if and only if ρ is a maximal representation of A, i.e., whenever π is a
representation of A dilating ρ, then π = ρ ⊕ π′ for some representation π′.
Our definition of hyperrigidity is in accordance with Arveson’s nomenclature
[1], our earlier work [7, 11] and the works of Dor-On and Salomon [3] and
Salomon [17], who systematized quite nicely the non-unital theory.

An alternative definition of hyperrigidity for A may ask that any repre-
sentation of C∗env(A), not just the non-degenerate ones, possesses the UEP
when restricted on A. It turns out that for operator algebras with a positive
contractive approximate unit1, such a definition would be equivalent to ours
[17, Proposition 3.6 and Theorem 3.9] . However when one moves beyond
operator algebras with an approximate unit, there are examples to show
that the two definitions differ. One such example is the non-unital operator
algebra AV generated by the unilateral forward shift V . It is easy to see
that AV is hyperrigid according to our definition and yet the zero map, as
a representation on H = C, does not have the UEP. (See for instance [17,
Example 3.4].)

2. Main results

A C∗-correspondence (X, C, ϕX) (often just (X, C)) consists of a C∗-algebra
C, a Hilbert C-module (X, 〈 , 〉) and a (non-degenerate) ∗-homomorphism
ϕX : C → L(X) into the C∗-algebra of adjointable operators on X.

An isometric (Toeplitz) representation (ρ, t,H) of a C∗-correspondence
(X, C) consists of a non-degenerate ∗-homomorphism ρ : C → B(H) and a
linear map t : X → B(H), such that

ρ(c)t(x) = t(ϕX(c)(x)), and

t(x)∗t(x′) = ρ(
〈
x, x′

〉
),

for all c ∈ C and x, x′ ∈ X. These relations imply that the C∗-algebra
generated by this isometric representation equals the closed linear span of

t(x1) · · · t(xn)t(y1)∗ · · · t(ym)∗, xi, yj ∈ X.
Moreover, there exists a ∗-homomorphism ψt : K(X)→ B, such that

ψt(θx,y) = t(x)t(y)∗,

1which includes all operator algebras appearing in this paper
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where K(X) ⊂ L(X) is the subalgebra generated by the operators θx,y(z) =
x〈y, z〉, x, y, x ∈ X, which are called by analogy the compact operators.

The Cuntz-Pimsner-Toeplitz C∗-algebra TX is defined as the C∗-algebra
generated by the image of (ρ∞, t∞), the universal isometric representation.
This is universal in the sense that for any other isometric representation
there is a ∗-homomorphism of TX onto the C∗-algebra generated by this
representation in the most natural way.

The tensor algebra T +
X of a C∗-correspondence (X, C) is the norm-closed

subalgebra of TX generated by ρ∞(C) and t∞(X). See [15] for more on
these constructions.

Consider Katsura’s ideal

JX ≡ kerϕ⊥X ∩ ϕ−1
X (K(X)).

An isometric representation (ρ, t) of (X, C, ϕX) is said to be covariant (or
Cuntz-Pimsner) if and only if

ψt(ϕX(c)) = ρ(c),

for all c ∈ JX . The Cuntz-Pimsner algebra OX is the universal C∗-algebra
for all isometric covariant representations of (X, C), see [13] for further de-
tails. Furthermore, the first author and Kribs [8, Lemma 3.5] showed that
OX contains a completely isometric copy of T +

X and C∗env(T +
X ) ' OX .

We turn now to the hyperrigidity of tensor algebras. In [11] a suffi-
cient condition for hyperrigidity was developed, Katsura’s ideal acting non-
degenerately on the left of X. To be clear, non-degeneracy here means that
ϕX(JX)X = X which by Cohen’s factorization theorem implies that we
actually have ϕX(JX)X = X.

Theorem 2.1 (Theorem 3.1, [11]). Let (X, C) be a C∗-correspondence. If
ϕX(JX) acts non-degenerately on X, then T +

X is a hyperrigid operator al-
gebra.

The proof shows that if τ ′ : OX −→ B(H) is a completely contractive
and completely positive map that agrees with a ∗-homomorphism of OX on
T +
X then the multiplicative domain of τ ′ must be everything. This is ac-

complished through the multiplicative domain arguments of [2, Proposition
1.5.7] and the use of Kasparov’s Stabilization Theorem. In earlier versions of
[11], Theorem 2.1 was claimed for countably generated C∗-correspondences
only but a slight modification of the earlier proof makes it work for arbitrary
C∗-correspondences.

A C∗-correspondence (X, C) is called regular if and only if C acts faithfully
on X by compact operators, i.e., JX = C. We thus obtain the following
which also appeared in [11].

Corollary 2.2. The tensor algebra of a regular C∗-correspondence is nec-
essarily hyperrigid.

We seek a converse to Theorem 2.1.
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Definition 2.3. Let (X, C) be a C∗-correspondence and let JX be Kat-
sura’s ideal. We say that ϕX(JX) acts σ-degenerately on X if there exists
a representation σ : C → B(H) so that

ϕX(JX)X ⊗σ H 6= X ⊗σ H.

Remark 2.4. In particular, if there exists n ∈ N so that

(ϕX(JX)⊗ id)X⊗n ⊗σ H 6= X⊗n ⊗σ H.
then by considering the Hilbert space K := X⊗n−1 ⊗σ H, we see that

ϕX(JX)X ⊗σ K 6= X ⊗σ K.
and so ϕX(JX) acts σ-degenerately on X.

The following gives a quick example of a σ-degenerate action. Note that
this is possibly stronger than having a not non-degenerate action.

Proposition 2.5. Let (X, C) be a C∗-correspondence. If (ϕX(JX)X)⊥ 6=
{0}, then ϕX(JX) acts σ-degenerately on X.

Proof. Let 0 6= f ∈ (ϕX(JX)X)⊥. Let σ : C → B(H) be a ∗-representation

and h ∈ H so that σ
(
〈f, f〉1/2

)
h 6= 0. Then,

〈f ⊗σ h, f ⊗σ h〉 = 〈h, σ((〈f, f〉)h〉 = ‖σ
(
〈f, f〉1/2

)
h‖ 6= 0.

A similar calculation shows that

0 6= f ⊗σ h ∈ (ϕX(JX)X ⊗σ H)⊥

and we are done.

We need the following

Lemma 2.6. Let (X, C) be a C∗-correspondence and (ρ, t) an isometric
representation of (X, C) on H.

(i) If M ⊆ H is an invariant subspace for (ρ o t)(T +
X ), then the re-

striction (ρ|M , t|M) of (ρ, t) onM is an isometric representation.

(ii) If ρ(c)h = ψt(ϕX(c))h, for all c ∈ JX and h ∈ [t(X)H]⊥, then
(ρ, t) is a Cuntz-Pimsner representation.

Proof. (i) If p is the orthogonal projection on M, then p commutes with
ρ(C) and so ρ|M(·) = pρ(·)p is a ∗-representation of C.

Furthermore, for x, y ∈ X, we have

t|M(x)∗t|M(y) = pt(x)∗pt(y)p

= pt(x)∗t(y)p

= pρ(〈x, y〉)p = ρ|M(〈x, y〉)
and the conclusion follows.

(ii) It is easy to see on rank-one operators and therefore by linearity and
continuity on all compact operators K ∈ K(X) that

t(Kx) = ψt(K)t(x), x ∈ X.
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Now if c ∈ JX , then for any x ∈ X and h ∈ H we have

ρ(c)t(x)h = t(ϕX(c)x)h = ψt(ϕX(c))t(x)h.

By assumption ρ(c)h = ψt(ϕX(c))h, for any h ∈ [t(X)H]⊥ and the conclu-
sion follows.

Theorem 2.7. Let (X, C) be a C∗-correspondence. If Katsura’s ideal JX
acts σ-degenerately on X then the tensor algebra T +

X is not hyperrigid.

Proof. Let σ : C → B(H) so that

ϕX(JX)X ⊗σ H 6= X ⊗σ H
and let M0 := (ϕX(JX)X ⊗σ H)⊥.

We claim that

(1) (ϕX(JX)⊗ I)M0 = {0}.
Indeed for any f ∈M0 and j ∈ JX we have〈

(ϕX(j)⊗ I)f , (ϕX(j)⊗ I)f
〉

= 〈f, (ϕX(j∗j)⊗ I)f〉 = 0

since f ∈ (ϕX(JX)X ⊗σ H)⊥. This proves the claim.
We also claim that

(2) (ϕX(C)⊗ I)M0 =M0.

Indeed this follows from the fact that

(ϕX(C)⊗ I)(ϕX(JX)X ⊗σ H) = ϕX(JX)X ⊗σ H,
which is easily verified.

Using the subspaceM0 we produce a Cuntz-Pimsner representation (ρ, t)
of (X, C) as follows. Let (ρ∞, t∞) be the universal representation of (X, C)
on the Fock space F(X) = ⊕∞n=0X

⊗n, X⊗0 := C. Let

ρ0 : C −→ B(F(X)⊗σ H); c 7−→ ρ∞(c)⊗ I
t0 : X −→ B(F(X)⊗σ H);x 7−→ t∞(x)⊗ I.

Define

M : = 0⊕M0 ⊕ (X ⊗M0)⊕ (X⊗2 ⊗M0)⊕ . . .
= (ρ0 o t0)(T +

X )(0⊕M0 ⊕ 0⊕ 0⊕ . . . ) ⊆ F(X)⊗σ H,
with the second equality following from (2). Clearly, M is an invariant
subspace for (ρ0 o t0)(T +

X ).
Let ρ := ρ0|M and t := t0|M . By Lemma 2.6(i), (ρ, t) is a representation

of (X, C). We claim that (ρ, t) is actually Cuntz-Pimsner.
Indeed by Lemma 2.6(ii) it suffices to examine whether ψt(ϕX(j))h =

ρ(j)h, for any h ∈M	 t(X)M. Note that since

t(X)M = 0⊕ 0⊕ (X ⊗M0)⊕ (X⊗2 ⊗M0)⊕ ...,
we have that

M	 t(X)M = 0⊕M0 ⊕ 0⊕ 0⊕ . . . .
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From this it follows that for any h ∈M	 t(X)M we have

t0(x)∗h ∈ (C ⊗σ H)⊕ 0⊕ 0⊕ ..., x ∈ X

and so in particular for any j ∈ JX we obtain

ψt(ϕX(j))h ∈ t0|M(X)(t0|M)(X)∗h = {0}.

On the other hand,

ρ(j)h ∈ 0⊕ (ϕX(JX)⊗ I)M0 ⊕ 0⊕ 0⊕ · · · = {0},

because of (2). Hence (ρ, t) is Cuntz-Pimsner.
At this point by restricting on T +

X , we produce the representation ρot |T +
X

of T +
X coming from a ∗-representation of its C∗-envelope OX , which admits a

dilation, namely ρ0 o t0 |T +
X

. If we show now that ρ0 o t0 |T +
X

is a non-trivial

dilation of ρo t |T +
X

, i.e. M0 is not reducing for (ρ0o t0)(T +
X ), then ρo t |T +

X

is not a maximal representation of T +
X . Proposition 2.4 [3] shows ρo t |T +

X

does not have the UEP and so T +
X is not hyperrigid, as desired.

Towards this end, note that

M⊥ = C ⊕ (ϕX(JX)X ⊗σ H)⊕ (X ⊗M0)⊥ ⊕ . . .

and so

t0(X)M⊥ = 0⊕ (XC ⊗σ H)⊕ 0⊕ 0⊕ · · · *M⊥

Therefore M⊥ is not an invariant subspace for (ρ0 o t0)(T +
X ) and so M is

not a reducing subspace for (ρ0 o t0)(T +
X ). This completes the proof.

3. Topological graphs

A broad class of C∗-correspondences arises naturally from the concept of
a topological graph. For us, a topological graph G = (G0, G1, r, s) consists of
two σ-locally compact spaces G0, G1, a continuous proper map r : G1 → G0

and a local homeomorphism s : G1 → G0. The set G0 is called the base
(vertex) space and G1 the edge space. When G0 and G1 are both equipped
with the discrete topology, we have a discrete countable graph.

With a given topological graph G = (G0, G1, r, s) we associate a C∗-
correspondence XG over C0(G0). The right and left actions of C0(G0) on
Cc(G

1) are given by

(fFg)(e) = f(r(e))F (e)g(s(e))

for F ∈ Cc(G1), f, g ∈ C0(G0) and e ∈ G1. The inner product is defined for
F,H ∈ Cc(G1) by

〈F |H〉 (v) =
∑

e∈s−1(v)

F (e)H(e)
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for v ∈ G0. Finally, XG denotes the completion of Cc(G
1) with respect to

the norm

(3) ‖F‖ = sup
v∈G0

〈F |F 〉 (v)1/2.

When G0 and G1 are both equipped with the discrete topology, then
the tensor algebra T +

G ≡ T
+
XG

associated with G coincides with the quiver

algebra of Muhly and Solel [15]. See [16] for further reading.
Given a topological graph G = (G0, G1, r, s), we can describe the ideal

JXG
as follows. Let

G0
sce = {v ∈ G0 | v has a neighborhood V such that r−1(V ) = ∅}

G0
fin = {v ∈ G0 | v has a neighborhood V such that r−1(V ) is compact}

Both sets are easily seen to be open and in [12, Proposition 1.24] Katsura
shows that

kerϕXG
= C0(G0

sce) and ϕ−1
XG

(K(XG)) = C0(G0
fin).

From the above it is easy to see that JXG
= C0(G0

reg), where

G0
reg := G0

fin\G0
sce.

We need the following

Lemma 3.1. Let G = (G0, G1, r, s) be a topological graph. Then r−1
(
G0

reg

)
=

G1 if and only if r : G1 → G0 is a proper map satisfying r(G1) ⊆
(
r(G1)

)◦
.

Proof. Notice that

r−1(G0
reg) = r−1(G0

fin) ∩ r−1(G0
sce)

c

and so r−1
(
G0

reg

)
= G1 is equivalent to r−1(G0

fin) = r−1(G0
sce) = G1

First we claim that r−1(G0
fin) = G1 if and only if r is a proper map.

Indeed, assume that r−1(G0
fin) = G1 and let K ⊆ r(G1) compact in the

relative topology. For every x ∈ K, let Vx be a compact neighborhood of
x such that r−1(Vx) is compact and so r−1(Vx ∩ K)) is also compact. By
compactness, there exist x1, x2, . . . , xn ∈ K so that K = ∪ni=1(Vxi ∩K) and
so

r−1(K) = ∪ni=1r
−1(Vxi ∩K)

and so r−1(K) is compact.
Conversely, if r is proper then any compact neighborhood V of any point

in G0 is inverted by r−1 to a compact set and so r−1(G0
fin) = G1.

We now claim that r−1(G0
sce) = ∅ if and only r(G1) ⊆

(
r(G1)

)◦
.

Indeed, e ∈ r−1(G0
sce) is equivalent to r(e) ∈ (r(G1)c)◦ and so r−1(G0

sce) =
∅ is equivalent to

r(G1) ⊆
(

(r(G1)c)◦
)c

=
(
r(G1)

)◦
,

as desired.
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If G = (G0, G1, r, s) is a topological graph and S ⊆ G1, then N(S) denotes
the collection of continuous functions F ∈ XG with F|S = 0, i.e., vanishing
at S. The following appears as Lemma 4.3(ii) in [6].

Lemma 3.2. Let G = (G0, G1, r, s) be a topological graph. If S1 ⊆ G0,
S2 ⊆ G1 closed, then

N(r−1(S1) ∪ S2) = span{(f ◦ r)F | f|S1
= 0, F|S2

= 0}

Theorem 3.3. Let G = (G0, G1, r, s) be a topological graph and let XG the
C∗-correspondence associated with G. Then the following are equivalent

(i) the tensor algebra T +
XG

is hyperrigid

(ii) ϕ(JXG
) acts non-degenerately on XG

(iii) r : G1 → G0 is a proper map satisfying r(G1) ⊆
(
r(G1)

)◦
Proof. If ϕ(JXG

) acts non-degenerately on XG, then Theorem 2.1 shows
that T +

XG
is hyperrigid. Thus (ii) implies (i).

For the converse, assume that ϕ(JXG
) acts degenerately on XG. If we

verify that ϕ(JXG
) acts σ-degenerately on XG, then Theorem 2.7 shows that

T +
XG

is not hyperrigid and so (i) implies (ii).

Towards this end note that JXG
= C0(U) for some proper open set U ⊆

G0. (Actually we know that U = G0
reg but this is not really needed for this

part of the proof!) Hence

ϕ(JXG
)XG = span{(f ◦ r)F | f|Uc = 0}

= N(r−1(U)c),
(4)

according to Lemma 3.2.
Since ϕ(JXG

) acts degenerately on XG, (4) shows that r−1(U)c 6= ∅. Let
e ∈ r−1(U)c and let F ∈ Cc(G1) ⊆ XG with F (e) = 1 and F (e′) = 0, for any
other e′ ∈ G1 with s(e′) = s(e). Consider the one dimensional representation
σ : C0(G0)→ C coming from evaluation at s(e). We claim that

ϕXG
(JXG

)XG ⊗σ C 6= XG ⊗σ C.

Indeed for any G ∈ ϕ(JXG
)XG = N(r−1(U)c) we have

〈F ⊗σ 1, G⊗σ 1〉 = 〈1, σ(〈F,G〉1) = 〈F,G〉s(e)

=
∑

s(e′)=s(e)

F (e′)G(e′)

= F (e)G(e) = 0.

Furthermore,

〈F ⊗σ 1, F ⊗σ 1〉s(e) = |F (e)|2 = 1

and so 0 6= F ⊗σ 1 ∈ (ϕXG
(JXG

)XG⊗σ C)⊥. This establishes the claim and
finishes the proof of (i) implies (ii).
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Finally we need to show that (ii) is equivalent to (iii). Notice that (4)
implies that ϕ(JXG

) acts degenerately on XG if and only if

r−1(U)c = r−1(G0
reg)c = ∅.

The conclusion now follows from Lemma 3.1.

The statement of the previous Theorem takes its most pleasing form when
G0 is a compact space. In that case T +

X is hyperrigid if and only is G1 is
compact and r(G1) ⊆ G0 is clopen.

Remark 3.4. In a recent preprint [14], the author claims a different con-
dition than ours as equivalent to the hyperrigidity of the tenor algebra of
a topological graph, namely the density of G0

fin in G0. (See [14, Theorem
3.6].) Apparently this is false as it implies that any semicrossed product
on a compact Hausdorff space is hyperrigid. Examples to refute this have
already appeared in [11, Example 3.4 ]
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