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Abstract. In this paper we investigate the relationship between
the facial structure of the unit ball of an operator algebra A and its
algebraic structure, including the hereditary subalgebras and the
socle ofA. Many questions about the facial structure ofA are stud-
ied with the aid of the representation theory. For that purpose we
establish the existence of reduced atomic type representations for
certain non-selfadjoint operator algebras. Our results are applica-
ble to C∗-algebras, strongly maximal TAF algebras, free semigroup
algebras and various semicrossed products.

The study of geometric problems in operator algebra theory goes
back to the beginnings of the subject. The theory of Gelfand -Naimark
and Segal identified the extreme points of the state space of a C∗-
algebra as functionals (pure states) which produce irreducible repre-
sentations under the GNS machinery. Kadison’s characterization of
the isometric linear maps between C∗-algebras [29] depended heavily
on the identification of the extreme points for the unit ball. Crucial
information about the algebraic structure of a C∗-algebra is encoded
in the geometry of its unit ball. The ideal structure of the algebra
coincides with the M-structure [4] and the density of the invertibles is
reflected in the richness of the convex hull of the unitary operators [45].
A subset F of a convex set K is said to be a face of K if it is convex

and has the property that, if an interior point of a line segment in K
belongs to F , then the entire line segment belongs to F . The extreme
points of a convex set, together with the empty set, form the trivial
faces of K. A face F is said to be finite dimensional iff the (real)
linear space generated by F is finite dimensional. If K is contained
in a normed linear space, then F is said to be compact if its norm
closure is a norm compact set. A comprehensive study of the facial
structure for the unit ball of a C∗-algebra was conducted by Akemann
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and Pedersen [2], following related work by Edwards and Ruttimann
[22, 23]. Beyond selfadjoint operator algebras, there has not been a
systematic work addressing the non-trivial faces of the unit ball.

In this paper we begin a study for the non-trivial compact faces of
the unit ball of an arbitrary operator algebra. (All operator algebras
are assumed to be norm closed and contain the identity operator.) The
existence of such faces has a significant impact on the structure of the
algebra. In Theorem 1.6 we show that if the unit ball of an operator
algebra A has a non-trivial compact face F , then S(F), and therefore
A, contains a non-scalar operator A whose spectrum has at most one
limit point. (Here S(F) denotes the unique real subspace of A that
is a translate of the affine hull of F .) For a finite dimensional face F
we can offer a more definitive result. Theorem 1.8 shows that S(F)
is a (real) finite dimensional hereditary subalgebra of A consisting of
multiples of elements with finite geometric rank. Moreover, if A hap-
pens to be semisimple then S(F) is contained in the socle of A; this
makes an important connection between the facial structure of the unit
ball and the general theory of Banach Algebras. As a consequence, if
the unit ball of a semisimple operator algebra A contains a non-trivial
finite dimensional face then A contains a minimal idempotent (Corol-
lary 1.10). We also relate the existence of non-trivial compact faces
with the concept of geometric compactness, which was first introduced
by Anoussis and the author in [5, 6]. Theorem 1.3 shows that the
existence of non-trivial compact faces imply the existence of geometri-
cally compact elements. Actually, we observe that just the presence of
non-zero geometrically compact elements suffices for the existence of
non-scalars with discrete spectrum.
The general results of the first section are complemented with sev-

eral applications. In the second section of the paper we investigate the
facial structure of various operator algebras with the aid of represen-
tation theory. Motivated by our earlier work in [5], we introduce the
class of operator semisimple algebras; these are algebras which can be
isometrically represented as a strongly dense subalgebra of the diag-
onal algebra

⊕

a∈A B(Ha). We prove that for an operator semisimple
algebra A the existence of non-trivial compact faces, the existence of
non-zero geometrically compact elements and the existence of atoms
are all equivalent conditions. Moreover, we relate the concept of geo-
metric compactness to the representation theory of A. In Theorem 2.4
we show that an element A ∈ A1 is geometrically compact if and only
if there exists an isometric representation ϕ of A so that ϕ(A) is a
compact operator. This generalizes our earlier selfadjoint work [5] to
the non-selfadjoint setting.
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The rest of the second section is occupied with identifying various
classes of operator semisimple algebras. Clearly, any operator algebra
containing the compacts acts irreducibly on the Hilbert space and hence
is operator semisimple. By an old result of Gardner, all C∗-algebras are
also operator semisimple. Therefore, the unit ball of a unital C∗-algebra
A has non-trivial compact faces if and only if it has finite dimensional
faces if and only if A has an atom. This result was implicit in [5].
It turns out that the concept of operator semisimplicity is also ap-

plicable to TAF algebras, a class of non-selfadjoint algebras which has
received a great deal of attention in recent years, cf. Power’s mono-
graph [44]. Here we use the representation theory of Davidson and
the author [13]. In [13] we characterized the operator primitive TAF
algebras as the semisimple ones whose enveloping C∗-algebra is primi-
tive. Here we add to this result and in Theorem 2.6 we show that all
semisimple TAF algebras are operator semisimple. As an immediate
corollary of our theory, the unit balls of the familiar standard, alter-
nation and A(Q, ν) algebras do not contain any non-trivial compact
faces.
The list of operator semisimple algebras also includes various func-

tion algebras. Indeed, in Theorem 2.9 we show that if the unitary
functions in a uniform algebra A separate the points, then A is op-
erator semisimple. In particular, H∞ and the disc algebra A(D) are
operator semisimple. The methods of the second section are also ap-
plicable to semicrossed products of the form C(T) ×α Z+, where α is
an irrational rotation of the circle T. Indeed, in [14] it is shown that
such algebras are operator primitive. Therefore, the unit ball of such
an algebra does not contain any non-trivial compact faces.
In the third section, we study the presence of compact faces in the

unit ball of a free semigroup algebra. In [15, Theorem 4.5] it is shown
that every operator in the open unit ball of a free semigroup algebra
A is a mean of isometries from A. This generalizes a classical result
of Marshall and shows that there is an abundance of extreme points
in the unit ball of these algebras. Theorem 3.1 shows now that, once
again, the unit ball of a free semigroup algebra A contains non-trivial
compact faces if and only if A has atoms. In particular, the unit ball of
the "non-commutative Toeplitz algebra" Ln has no non-trivial compact
faces, a result which seems to be new even for H∞. We note that the
representation techniques of the second section are not applicable here
since a free semigroup algebra may not be semisimple. Instead we
use the spectral properties of Ln together with the structure theorem
of Davidson, Katsoulis and Pitts [15]. Similar spectral considerations
also show that the unit ball of A(D)×αZ+ and H∞×αZ+ do not contain
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any non-trivial finite dimensional faces. These algebras were studied
in [27, 28].

The last section of the paper contains several remarks and observa-
tions, including a generalization of Kadison’s characterization for the
extreme points of the unit ball of a C∗-algebra.

Acknowledgements. The author has benefited from many dis-
cussions with Mihalis Anoussis. He also acknowledges the assistance of
Ken Davidson in the proof of Theorem 2.9.

1. Structure for the faces of the unit ball

If K ⊆ X is a convex subset of a complex normed space X , then [K]R
denotes the real subspace of X generated by K, i.e.,

[K]R ≡ {
n

∑

i=1

λixi | λi ∈ R, xi ∈ K, 1 ≤ i ≤ n, n ∈ N}.

(The complex subspace generated by K will be denoted as [K].) For
any x ∈ K, the subspace [x − K]R does not depend on the choice of
x ∈ K and is denoted as S(K). The translation of S(K) by any element
of K equals the affine hull of K.
If x and y belong to K, then the line segment joining x and y is

denoted by [x, y]. Thus,

[x, y] = {λx+ (1− λ)y | λ ∈ [0, 1] }

If x and y are in K and x 6= y, then an element v ∈ [x, y] is said to
be an internal point of [x, y] if v 6= x and v 6= y. Given v ∈ K, we
write F(K, v) for the union of all line segments in K that contain v
as an internal point, provided that v is not an extreme point of K.
Otherwise, F(K, v) = {v}. If K is the unit ball of X , then F(K, v) is
simply denoted as F(v). It is an important fact in elementary convexity
theory that for each v ∈ K, F(K, v) is a face of K which is minimal with
the property of containing v. (The proof of this fact is an entertaining
excercise in plane geometry; see however [1, Theorem 1.2] for a detailed
proof.)
If S is a non-empty subset of the unit ball of X , then the contractive

perturbations of S are defined as

cp(S) = {x ∈ X | ‖x± s‖ ≤ 1,∀s ∈ S } .

It is clear that if S1 ⊆ S2 then cp(S1) ⊇ cp(S2). Also notice that
an element of the unit ball of X is an extreme point if and only if
cp({x}) = {0}.
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The following result relates the contractive perturbations with the
facial structure of the unit ball

Lemma 1.1. Let F be a face of the unit ball of a normed space X . If
x ∈ F , then,

cp({x}) ⊆ 1

2
(F − F) .

Proof. Let m ∈ cp({x}). Then,

x =
(x+m) + (x−m)

2

and therefore x±m ∈ F . Hence

m =
x+m− (x−m)

2

which belongs to 1
2
(F − F) and proves the lemma. ¤

We now compute S (F(x)) in terms of the contractive perturbations
for x.

Lemma 1.2. Let X be a normed space and let x ∈ X1. Then,

[x−F(x)]R = [cp({x})]R.

Proof. Assume that x +m ∈ F(x). Then there exists λ > 0 so that
x ± λm ∈ F(x) and so λm ∈ cp({x}). Conversely, if m ∈ cp({x}),
then [x−m,x+m] ⊆ X1 and so by the definition of F(x) we have that
x±m ∈ F(x). ¤

One may define contractive perturbations of higher order by using
the recursive formula cp(n+1)(S) = cp

(

cp(n)(S)
)

, n ∈ N. These higher

order contractive perturbations satisfy the Galois duality cp(n+2)(S) =
cp(n)(S), n ∈ N. The second contractive perturbations were introduced
by Anoussis and the author in [5, 6]. In [5] we defined a contraction x
in a normed space space X to be geometrically compact iff cp(2)({x})
is norm compact. If cp(2)({x}) happens to span a finite dimensional
subspace of X , then x is said to have finite geometric rank. In [5,
Theorem 2.2] we proved that a non-zero element A of a C∗-algebra A
is geometrically compact (resp. has finite geometric rank) if and only if
there exists a faithful representation ϕ of A so that ϕ(A) is a compact
operator (resp. ϕ(A) is a finite rank operator).

Theorem 1.3. Let X be a normed space and assume that the unit ball
of X has a non-trivial compact face F . Then S(F) contains a non-zero
geometrically compact element.



6 E. KATSOULIS

Proof. Let x1, x2 be distinct elements of F and let x = (x1 + x2)/2.
Since x is not an extreme point, cp({x}) contains a non-zero element,
say m. Then {m} ⊆ cp({x}) and so

cp(2)({m}) ⊆ cp(3)({x}) = cp({x}).
By Lemma 1.1, cp(2)(m) is contained in 1

2
(F−F) which is a norm com-

pact set and so m is geometrically compact. Hence cp({x}) contains
non-zero geometrically compact elements and by Lemma 1.2 the same
is true for [x−F(x)]R ⊆ [x−F ]R. ¤

It is instructive to observe that some geometrically compact elements
may be located outside translates of affine hulls for compact faces.
Actually, there exists a Banach space X which contains elements with
finite geometric rank but its unit ball has no compact faces. Indeed,
by [5, Theorem 2.2], c0 contains an abundance of elements with finite
geometric rank. However, given any element x in the unit ball of c0,
it is easy to see that F(x) does not have a compact closure and so the
unit ball of c0 has no compact faces.
The following mild generalization of [5, Proposition 1.2] is necessary

for deriving Theorem 1.8. Also compare with [34, Theorem 3] and [46,
Theorem 2], where the calculations below originate.

Proposition 1.4. Let A be an operator algebra, let ∅ 6= S ⊆ A1

and assume that S1, S2 ∈ S. If X ∈ A satisfies ‖X‖ ≤ 1/2, then
S1XS2 ∈ cp(2)(S).
Proof. Let B ∈ cp(S). Since ‖Si ±B‖ ≤ 1 we have that

S∗
i Si +B∗B − S∗

i B −B∗Si ≤ I

S∗
i Si +B∗B + S∗

i B +B∗Si ≤ I

and so S∗
i Si ≤ I − B∗B. Douglas’ majorization theorem implies the

existence of a contraction Qi so that Si = Qi(I − B∗B)1/2. A similar
argument shows that Si = (I − BB∗)1/2Pi for some contraction Pi.
Hence,

(1)
S1XS2 = (I −BB∗)1/2P1XQ2(I −B∗B)1/2

= (I − |B∗|)1/2Y (I − |B|)1/2,

where Y = (I + |B∗|)1/2P1XQ2(I + |B|)1/2 and so ‖Y ‖ ≤ 1. The
Heinz-Kato inequality [32] now asserts that for any vectors e, f ∈ H
we have

(2) |〈Be , f〉| ≤ ‖|B|1/2e‖ ‖|B∗|1/2f‖.
Combining (1) and (2), we obtain ‖B ± S1XS2‖ ≤ 1 and so S1XS2 ∈
cp(2)(S), as desired. ¤
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Corollary 1.5. Let A be an operator algebra, A ∈ A1 and assume
that C1, C2 ∈ cp({A}). If X ∈ A satisfies ‖X‖ ≤ 1/2, then C1XC2 ∈
cp({A}).

Proof. Apply Proposition 1.4 with S = cp({A}). Then C1XC2 ∈
cp(3)({A}) = cp({A}). ¤

If a is an element of a Banach algebra A then σA(a) denotes the
spectrum of a as an element of A. The left multiplier La is defined
as Lab = ab, b ∈ A. The collection Ml(A) of all left multipliers on
A is isometrically isomorphic as an algebra to A. Therefore, the map
a −→ La is spectrum preserving, i.e., σA(a) = σMl(A)(La).

Theorem 1.6. Let A be an operator algebra, let F be a non-trivial face
of its unit ball and let S(F) be the unique real subspace of A that is a
translate of the affine hull of F . Then the following three conditions
are successively weaker:

(i) F is a compact face;
(ii) S(F) contains a non-zero geometrically compact element;
(iii) S(F) contains a non-scalar operator A whose spectrum has at

most one limit point.

If A is commutative and semisimple, then condition (ii) also implies

(iii)′ A contains a minimal idempotent, i.e., a non-zero idempotent
Q so that QAQ = CQ.

Proof. (i) ⇒ (ii): Theorem 1.3 shows that this is valid for any normed
space.
(ii)⇒ (iii): Assume that S(F) contains such an element A and so the

norm closure of cp(2)({A}) is a non-zero compact set. Proposition 1.4
shows that

AA1/2A ⊆ cp(2)({A})
and so the norm closure of AA1A is norm compact.

Consider the elementary operator LA2 acting on the operator algebra
A generated by the polynomials of A. Since the closure of AA1A is
norm compact, the norm closure of A2A1 is also compact and so the
operator LA2 is a compact operator on A. According to the Riesz theory
for compact operators, σB(A)(LA2) is a countable set with 0 as its only
limit point (see Theorem VII.7.1 in [11]). Clearly the same is true for
σB(A)(LA). Since Ml(A) ⊆ B(A), Theorem VII.5.4 in [11] shows that
σB(A)(LA) and σMl(A)(LA) differ only by holes and so they are equal.
Hence, σMl(A)(LA) is countable with one limit point. Our remarks
above show that the same is true for σA(A). Another application of
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[11, Theorem VII.5.4] for the Banach algebras A ⊆ B(H) shows that
σB(H)(A) has at most one limit point, as desired.

(ii) ⇒ (iii)′: Arguing as above let A ∈ A so that the closure of AA1A
is norm compact and so by commutativity, the norm closure of A2A1 is
a compact set. Therefore, the left multiplier LA2 is a compact operator
on A. Since A is semisimple, the left multiplier algebra Ml(A) is also
semisimple. Hence LA2 is a non quasinilpotent compact operator. Let
λ be a non-zero eigenvalue of LA and let E(λ) be the corresponding
Riesz idempotent (see VII.6.9 in [11]). Since LA ∈ Ml(A), we have
that E(λ) ∈ Ml(A) and so there exists idempotent Q ∈ A so that
E(λ) = LQ. By [11, Corollary VII.7.8] the idempotent E(λ) = LQ

has finite dimensional range, i.e., QA is finite dimensional. By [38,
Proposition 4.3.12], QA is semisimple and so by the Wedderburn-Artin
Theorem, QA is isomorphic to a direct sum of full matrix algebras. The
existence of the minimal idempotent in A now follows. ¤

Corollary 1.7. The unit ball of H∞ has no compact faces apart from
singletons.

A (real or complex) subalgebra B of an operator algebra A is said
to be hereditary if given any B1, B2 ∈ B we have B1AB2 ⊆ B. For
complex selfadjoint subalgebras of C∗-algebras this definition coincides
with the familiar definition of a hereditary subalgebra, as it appears in
[36, 40]. It is easy to see that if B is a real hereditary subalgebra of
A, then [B] is a complex hereditary subalgebra of A
Theorem 1.8. Let A be an operator algebra, let F be a finite dimen-
sional face of the unit ball of A and let S(F) be the unique real subspace
of A that is a translate of the affine hull of F . Then, S(F) is a finite
dimensional hereditary subalgebra of A consisting of multiples of ele-
ments with finite geometric rank. Moreover,

(3) F = (A+ S(F)) ∩ A1

for any A ∈ F .

Proof. If A,B ∈ F , then [A−F ]R = [B −F ]R and so

A+ [A−F ]R = B + (A−B) + [B −F ]R

= B + [B −F ]R.

Therefore it suffices to prove (3) for a specific A ∈ F . Note that since
F is a finite dimensional convex set, it has non-empty relative interior.
Therefore, there exists A ∈ F and ε > 0 so that given any B ∈ F , we
have

(4) [A− ε(B − A) , B] ⊆ F .
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We claim that F = F(A). Indeed, F(A) ⊆ F . Conversely, let
B ∈ F . The definition of F(A) and (4) imply that

[A− ε(B − A) , B] ⊆ F(A)

and so B ∈ F(A), which proves the claim.
Since F = F(A), Lemma 1.2 shows that

S(F) = [A−F ]R = [cp(A)]R.

By Corollary 1.5, S(F) is a finite dimensional hereditary subalgebra of
A.

Since cp({A}) is convex and cp({A}) = − cp({A}), a moments re-
flection shows that [cp({A})]R consists of multiples of cp({A}). Hence
S(F) consists of multiples of elements in cp({A}). However if X ∈
cp({A}), then

cp(2)({X}) ⊆ cp(3)({A}) = cp({A}).
Therefore X has finite geometric rank and so S(F) consists of multiples
of elements with finite geometric rank.

It remains to verify (3). Let B ∈ S(F) so that ‖A + B‖ = 1. Then
there exists λ > 0 so that λB ∈ cp(A) and so ‖A − λB‖ ≤ 1. Hence
[A − λB,A + B] ⊆ A1 and since A is contained in the interior of the
line segment, we conclude that A+B ∈ F , as desired. ¤

Recall that the socle of a semisimple Banach algebra A is defined
as the sum of all minimal left ideals of A. It coincides with the sum
of all minimal right ideals [38, Proposition 8.2.8] and therefore it is a
(not necessarily closed) two sided ideal of A. The study of the socle
has been a central theme in the theory of Banach algebras. Our next
result shows that the socle is also important for the geometry of the
unit ball.

Corollary 1.9. Let A be an operator algebra and let F be a finite
dimensional face of the unit ball of A. If A is semisimple then S(F) is
contained in the socle of A.

Proof. Let A ∈ S(F). By Theorem 1.8, S(F) is hereditary and so the
operator X −→ AXA, X ∈ A, has finite dimensional range. By [3,
Theorem 7.2], A belongs to the socle of A. ¤

Corollary 1.10. Let A be a semisimple operator algebra. If the unit
ball of A has a non-trivial finite dimensional face then A contains a
minimal idempotent.

Proof. The socle of a semisimple Banach algebra A is generated by
the set of minimal idempotents of A [38, Proposition 8.2.8]. ¤
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In particular, the unit ball of a simple operator algebra has no finite
dimensional faces apart from singletons.

2. Representation theorems for operator algebras

Recall that Theorem 1.8 asserts that if F is a finite dimensional face
of the unit ball of an operator algebra then S(F) consists of elements
with finite geometric rank. So far the elements with finite geometric
rank have been characterized for two classes of operator algebras: nest
algebras [6] and C∗-algebras [5]. Using representation theory, we now
characterize the elements with finite geometric rank and the geometri-
cally compact elements for a variety of non-selfadjoint algebras.
Our selfadjoint work in [5] suggests the following definition. (Also

compare with [47].)

Definition 2.1. An operator algebra A is said to be operator semisim-
ple iff there exists a family of Hilbert space representations (τa,Ha), a ∈
A, of A so that their direct sum τ = ⊕a∈A τa is an isometric isomor-
phism of A that maps the (1 + ε)-ball of A on a weakly dense subset
of ⊕a∈A B(Ha)1, for some ε > 0. The family (τa,Ha), a ∈ A is said to
implement the operator semisimplicity.

Notice that by Lemma 2.1 in [25], each one of the representations τa,
a ∈ A, is algebraically irreducible. Since τ = ⊕a∈A τa is faithful forA we
conclude that the intersection of all kernels of algebraically irreducible
representations for A equals zero, i.e., an operator semisimple algebra
is indeed semisimple.
The following provides additional information for the operator A

appearing in Theorem 1.6 (iii).

Lemma 2.2. Let A be an operator semisimple algebra A and let (τa,Ha),
a ∈ A, be the family of representations of A implementing the operator
semisimplicity. If A is a geometrically compact element of A then τ(A)
is a compact operator.

Proof. Proposition 1.4 shows that the norm closure of AA1/2A is con-

tained in cp(2)({A}), which is a norm compact set. Therefore, the norm
closure of τ(A)τ(A1+ε)τ(A) is also compact. However, the weak closure
of τ(A1+ε) contains B(H)1 and so the norm closure of

τ(A)B(H)1τ(A)

is norm compact.
We now prove that for any a ∈ A, τa(A) is a compact operator. Let

e ∈ Ha so that τa(A)
∗e 6= 0 and let {fk}∞k=1 be an arbitrary sequence



GEOMETRY OF THE UNIT BALL 11

of unit vectors from Ha. By the previous paragraph, the sequence
{τa(A)(e⊗ fk)τa(A)}∞k=1 has a convergent subsequence. However,

τa(A) (e⊗ fk) τa(A) = (τa(A)
∗e)⊗ (τa(A)fk)

and so the sequence {τa(A)fk}∞k=1 has a norm convergent subsequence.
This proves that τa(A) is a compact operator.

It remains to show that τ(A) is a compact operator. Let B be the
collection of all finite subsets of A. For each b ∈ B, let Tb be the diagonal
operator which satisfies Tb |Ha= τa(A), for all a ∈ b, and Tb |Ha= 0
otherwise. The previous paragraph shows that for any b ∈ B, Tb is a
compact operator. It suffices to show that the net {Tb}b∈B converges
in norm to τ(A).
By way of contradiction assume that the net {Tb}b∈B does not con-

verge in norm to τ(A). This is easily seen to imply the existence of an
ε > 0 and a sequence {an}n∈N ⊆ A so that ‖τan(A)‖ ≥ ε, for all n ∈ N.
Therefore there exist unit vectors fn ∈ Han so that ‖τan(A)fn‖ ≥ ε, for
all n ∈ N. However, the sequence {fn}n∈N converges weakly to zero and
so an argument similar to that of the second paragraph of the proof
shows that the sequence ‖τan(A)fn‖ converges to zero, a contradiction.
¤

Lemma 2.3. Let A be an operator semisimple algebra A, let (τa,Ha),
a ∈ A, be the family of representations of A implementing the operator
semisimplicity and let τ = ⊕a∈Aτa. Then the set of compact operators
in τ(A) forms a C∗-algebra.

Proof. Let T = ⊕a∈ATa be a compact operator in τ(A). Fix an a0 ∈ A
and let {Ai}i∈I be a bounded net in τ(A) converging strongly to the
operator which equals T ?

a0
onHa0 and 0 everywhere else. Then {AiT}i∈I

converges in norm to a positive compact operator supported on Ha0 .
An application of the Spectral Theorem shows now that τ(A) contains
a finite rank projection P supported on Ha0 .

We claim that τ(A) contains all rank one operators supported on
Ha0 . (This will imply that τ(A) contains all compact operators sup-
ported onHa0 and in particular T ∗

a0
.) Indeed, fix a unit vector g ∈ P (H)

and let e⊗f be any rank one operator supported onHa0 . Since τ imple-
ments an operator semisimplicity, there exists a bounded net {Bi}i∈I in
τ(A) converging strongly to g⊗ f . Hence, the net {BiP}i∈I converges
in norm to (g ⊗ f)P = g ⊗ f and so g ⊗ f ∈ τ(A). Similarly, there
exists a bounded net {Ci}i∈I in τ(A) converging strongly to e⊗ g and
so {C∗

i }i∈I converges weakly to g ⊗ e. By [11, Corollary IX.5.2], there
exists a net {Dj}j∈J ⊆ τ(A), consisting of convex combinations from
{Ci}i∈I , so that {D∗

j}j∈J converges strongly to g ⊗ e. Hence, the net
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{D∗
jP}j∈J converges in norm to (g⊗e)P = g⊗e and so g⊗e ∈ (τ(A))∗.

Hence, e⊗ g ∈ τ(A) and so

e⊗ f = (g ⊗ f)(e⊗ g) ∈ τ(A)

as desired.
Finally, an approximation argument similar to that of the last para-

graphs of the proof of Lemma 2.1, combined with the above claim,
shows that T ∗ ∈ τ(A). ¤

The next result clarifies the nature of the geometrically compact ele-
ments in operator semisimple algebras and generalizes the main result
in [5].

Theorem 2.4. Let A be an operator semisimple algebra and let A ∈ A.
Then, A is geometrically compact if and only if there exists an isometric
representation ϕ of A so that ϕ(A) is a compact operator.

Proof. If A is geometrically compact then Lemma 2.2 shows that τ(A)
is a compact operator.
Conversely, assume that there exists an isometric representation ϕ

of A so that ϕ(A) is a compact operator. Then ϕ(A)ϕ(A1)ϕ(A) is a
compact set and so τ(A)τ(A1)τ(A) is a compact set contained in a
C∗-algebra consisting of compact operators (Lemma 2.3). The rest of
the proof now follows from our selfadjoint arguments in [5, Theorem
2.2]. ¤

Corollary 2.5. The geometrically compact elements of an operator
semisimple algebra A form a C∗-algebra.

Proof. In light of Lemma 2.3 and Theorem 2.4, it suffices to show
that τ−1 is a ∗-homomorphism, when restricted on the set of compact
operators in τ(A). However, τ−1 is an isometry and therefore it pre-
serves selfadjoint projections. By the spectral theorem it preserves all
selfadjoint compact operators and the conclusion follows. ¤

Note that the a minor modification of Lemma 2.2 shows that the
socle of an operator semisimple algebra coincides with the set of all
operators that can be isometrically represented as finite rank operators.
Therefore Theorem 2.4 identifies the socle of such an algebra as the set
of all elements with finite geometric rank.
We are in position now to give a criterion of when the unit ball of an

operator semisimple algebra contains non-zero geometrically compact
elements.

Theorem 2.6. If A is an operator semisimple algebra, then the fol-
lowing are equivalent:
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(i) the unit ball of A has non-trivial compact faces;
(ii) the unit ball of A has non-trivial finite dimensional faces;
(iii) A contains non-zero geometrically compact elements;
(iv) A contains a non-zero atom P , i.e., a non-zero selfadjoint

projection P ∈ A so that dimPAP < ∞.

Proof. (ii) ⇒ (i): Trivial.
(i) ⇒ (iii): This follows from Theorem 1.3.
(iii) ⇒ (iv): Assume that A contains a non-zero geometrically com-

pact element A. By Corollary 2.5 the geometrically compact elements
form a C∗-subalgebra J ⊆ A consisting of compact operators. Hence
J contains an atom and since J ⊆ A is an ideal, so does A.

(iv) ⇒ (ii): We claim that

F(I − P ) = { (I − P ) +X | X = PXP ∈ A1 }

is a face. By a standard argument, it suffices to show that if F(I −P )
contains the midpoint of a line segment in the unit ball of A, then the
endpoints of the line segment also lie in F(I − P ). So, let A,B ∈ A
with A = (I − P ) +X, X = PXP and assume that ‖A±B‖ ≤ 1. We
need to show that A±B ∈ F(I − P ).
Indeed, arguing as in the proof of Proposition 1.4, we produce bounded

operators S and T such that

B = S(I − A∗A)
1
2 = (I − AA∗)

1
2T.

However, A∗A = (I − P ) + PX∗XP and so

I − A∗A = P − PX∗XP = (I − A∗A)P.

Therefore, (I − A∗A)
1
2 = (I − A∗A)

1
2P and so

BP = S(I − A∗A)
1
2P = B.

A similar argument shows that (I − AA∗)
1
2 = P (I − AA∗)

1
2 and so

B = PB. Hence B = PBP , as desired. ¤

Every operator algebra that contains the compact operators acts
irreducibly and is therefore operator semisimple. The existence of finite
dimensional faces is not an issue here since any such algebra contains
atoms. Note that the later result Theorem 4.3 is relevant.
By the reduced atomic representation of a C∗-algebra A we mean

a representation τ = ⊕a∈A τa, where {τa}a∈A is a maximal family of
pairwise inequivalent irreducible representations of A. It is an old
result in C∗-algebra theory (see Proposition 13.10.13 in [30]) that the
reduced atomic representation satisfies the properties of Definition 2.1.
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Therefore all C∗-algebras are operator semisimple and so Theorem 2.6
applies here. (This was implicit in our earlier work in [5].)

A norm closed subalgebra A of an AF C∗-algebra is a (strongly
maximal) TAF algebra if and only if it is the limit lim−→(Ai, ϕi) of a
directed system

(5) A1
ϕ1−−−→ A2

ϕ2−−−→ A3
ϕ3−−−→ A4

ϕ4−−−→ · · ·
where for each i ≥ 1, Ai satisfy

(i) Ai is a direct sum of upper triangular matrix algebras ,
(ii) ϕi extends to a ∗-monomorphism from C∗(Ai) ≡ Ai +A∗

i into
C∗(Ai+1), and

(iii) the extension of ϕi maps matrix units to sums of matrix units.

We call (5) a presentation for the algebra; clearly it is not unique. The
TAF algebras have received a great deal of attention in recent years.
A good reference for these and more general limit algebras is Power’s
monograph [44].
Two well-known examples of TAF algebras are the standard and

refinement algebras. Define the standard embedding, σk by

σk(A) = A⊕ A⊕ · · · ⊕A

and the refinement embedding ρk by

ρk([as,t]) = [as,tIk]

where Ik is the k × k identity matrix. If all the embeddings ϕi in the
direct limit A = lim−→(Ai, ϕi) are standard embeddings then A is said to
be a standard algebra. If all the ϕi are refinement embeddings, then
A is said to be a refinement algebra. An alternation algebra is a TAF
algebra A = lim−→(Ai, ϕi), where the ϕi alternate between the standard
and the refinement embeddings.

The embeddings ϕi are said to be mixing iff for every matrix unit e
(i)
s,t

we have ϕi(e
(i)
s,t)Ai+1ϕi(e

(i)
s,t) 6= 0. The property of an embedding being

mixing was introduced by Donsig in his study of semisimplicity [19]
and was further exploited in [13]. It turns out that a TAF algebra A
is semisimple iff it admits a presentation A = lim−→(Ai, ϕi), where all the
embeddings ϕi are mixing. Notice that all standard embeddings are
mixing and so the standard and alternation algebras are semisimple.
Let A = lim−→(Ai, ϕi) be an AF C∗-algebra and assume that each Ai

decomposes as a direct sum Ai = ⊕j Ai j of finite dimensional full ma-
trix algebras Ai j. A path Γ for A = lim−→(Ai, ϕi) is a sequence {Ai ji}∞i=1

so that for each pair of nodes ((i, ji), (i+ 1, ji+1)) there exist an arrow
in the Bratteli diagram for A = lim−→(Ai, ϕi) which joins them.
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For each path Γ consider a subsystem of the directed limit lim−→(Ai, ϕi)
consisting of all the summands of A which are never mapped into some
Ai ji ∈ Γ. Evidently this system is hereditary and directed upwards;
therefore it determines an ideal JΓ of A. The quotient A/JΓ is the AF
algebra corresponding to the remaining summands and the remaining
embeddings. The summands that eventually get mapped into some
Ai ji ∈ Γ are denoted as summ(Γ). Two paths Γ = {Ai ji}

∞
i=1 and

Γ′ =
{

Ai j′i

}∞
i=1

are said to be disjoint if for all but finitely many i ∈ N,
the nodes (i ji) and (i j′i) are distinct.

Lemma 2.7. Let Γ = {Ai ji}
∞
i=1 and Γ′ =

{

Ai j′i

}∞
i=1

be two disjoint
paths for an AF C∗-algebra A = lim−→(Ai, ϕi) and let ω = lim−→ωi and
ω′ = lim−→ω′

i be pure states so that the ωi and ω′
i are supported on Ai ji

and Ai j′i
respectively. Then the states ω and ω′ induce inequivalent

GNS representations.

Proof. Assume that the states ω and ω′ produce equivalent irreducible
representations π and π′. Then by [30, Theorem 10.2.6], there exists
a unitary u ∈ A so that ω = ω′ adu, where adu(a) = uau∗. Every
unitary in an AF algebra is a limit of unitaries in its finite dimensional
subalgebras. Hence there is a unitary v in some Bi so that ‖ω −
ω′ adv ‖ < 1. However the disjointness of the paths Γ and Γ′ shows
that this cannot occur and the conclusion follows. ¤

In [13] it was shown that the quotient A/J of a TAF algebra A
by a prime ideal J is operator primitive, i.e., it admits an isometric
representation on a Hilbert spaceH so that the 2-ball of A/J is weakly
dense in the unit ball of B(H). In particular, a TAF subalgebra A of a
primitive C∗-algebra is operator primitive. We now generalize this to
an arbitrary semisimple TAF algebra.

Theorem 2.8. A semisimple TAF algebra A = lim−→(Ai, ϕi) is operator
semisimple.

Proof. Before embarking with the proof we need to establish some
terminology. If e1 and e2 are matrix units in Ai1 and Ai2 , i1 < i2, then
we say that e2 is a subordinate of e1 if there exists a diagonal matrix
unit p ∈ Ai2 so that e2 = pe1. If e2 and f2 are subordinates of e1
and f1, then we say that e2 majorizes f2 if there exist matrix units
s, t ∈ Ai2 so that e2 = sf2t.

For the proof, start with any direct summand A
(1)
1,j1

of A1. Let e
(1)
1

be the characteristic vector of A
(1)
1,j1

, i.e., the vector at the top right

corner of A
(1)
1,j1

. Since A is semisimple there exist a link f
(1)
2 for e

(1)
1
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in some later summand of A. For notational convenience we assume
that f

(1)
2 belongs to some summand A

(1)
2,j2

of A2 and ϕ
(1)
1,j1

is the mixing

embedding from A
(1)
1,j1

into A
(1)
2,j2

that maps e
(1)
1 onto two copies, say e

(1)
(1,1)

and e
(1)
(1,2), linked by f

(1)
2 . Now let e

(1)
2 be the characteristic matrix unit

of A
(1)
2,j2

and let f
(1)
3 be a link for e

(1)
2 in A

(1)
3,j3

and ϕ
(1)
2,j2

the corresponding

linking mapping. This way we construct a path Γ(1) for lim−→(Ai, ϕi). If

summ(Γ(1)) contains all the summands for all the finite dimensional
algebras Ai we stop. Otherwise we chose a direct summand of A not
in summ(Γ(1)) and we repeat the process described earlier. This way
we define inductively a sequence {Γ(a)}a∈N of paths so that all maps
involved with the nodes of the path are mixing and the union

⋃

a∈N

summ(Γ(a))

contains all direct summands of A.
Given any path Γ(a) defined above, we now construct a pure state ωa

as follows. Start with any unit vector, i.e., normalized sum of diagonal

matrix units, ξ
(a)
1 in the central projection determined by A

(a)
1,j1

. Let ω
(a)
1

be the vector state on A1 determined by ξ
(a)
1 , i.e., ω

(a)
1 (A) = 〈Aξ(a)1 , ξ

(a)
1 〉

Notice that ξ
(a)
1 , being a sum of diagonal matrix units, it is mapped

by ϕ
(1)
1,j1

onto several copies in A2. Two of them, say ζ
(a)
1 and ζ

(a)
2 are

majorized by e
(a)
(1,1) and e

(a)
(1,2) respectively. Let

ξ
(a)
2 =

1√
2

(

ζ
(a)
1 + ζ

(a)
2

)

and ω
(a)
2 be the vector state on A2 determined by ξ

(a)
2 . Consequently,

find two copies ζ
(a)
1 and ζ

(a)
2 of the image of ξ

(a)
2 in A3 subordinated

by e
(a)
(2,1) and e

(a)
(2,2) etc. This way we construct inductively a sequence

{ωa}a∈N of vector states. Since the states ωa are supported in single
summands of A, they are pure states and hence their direct limit ωa is
also pure.
Let (τa,Ha, ga) be the GNS representation induced by ωa, a ∈ N, i.e.,

ωa(A) = 〈τa(A)ga, ga〉, A ∈ A. Notice that by Lemma 2.7 the repre-
sentations τa are mutually inequivalent. Therefore, Corollary 10.3.9 in
[30] shows that the representation τ = ⊕a∈N τa maps A onto a weakly
dense subalgebra of ⊕a∈N B(Ha). Since ∪a∈N summ(Γ(a)) contains all
the direct summands from A, an easy argument shows that τ is faithful
and so isometric. Therefore, Kaplansky’s Theorem shows that τ satisfy
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the requirements of Definition 2.1 for A. It only remains to show that
τ satisfies the same requirements for A
For each i ∈ N we construct a contractive map Φi : Ai → Ai+1 as

follows. Let u be a matrix unit in Ai. If u does not belong to any of

the nodes A
(a)
i,ji

associated with the paths Γ(a) then we set Φi(u) = 0.

If u ∈ A
(a)
i,ji

, for some a ∈ N, then consider the subordinates u1 and u2

of u majorized by e
(a)
(i,1) and e

(a)
(i,2) respectively. Define Φi(u) to be the

matrix unit with initial projection the initial projection of u2 and final

projection that of u1. Notice that since the matrix units e
(a)
(i,1) and e

(a)
(i,2)

are linked in Ai+1, we have that Φi(u) ∈ Ai+1. Moreover,

ωa (B (A− 2Φi(A))C) = 0

for any A,B,C ∈ Ai. The weak density of the 2-ball of τ(A) in
⊕a∈N B(Ha)1 follows now from the above equation and the fact that
the collection of all vectors of the form

⊕a∈N τa(Aa)ga, Aa ∈ ∪i∈N Ai,

where all but finitely many Aa equal 0, is a dense subset of the space
⊕a∈N Ha. ¤

The techniques of the previous Theorem are also applicable to induc-
tive limits of block upper triangular matrices with mixing embeddings,
thus showing that such algebras are operator semisimple.

A function f : X −→ C is said to be unitary if |f(x)| = 1, for all
x ∈ X .

Theorem 2.9. Let X be a compact Hausdorff space and let A ⊆ C(X )
be a norm closed algebra of continuous functions containing the con-
stant functions. If the unitary functions in A separate the points of X ,
then A is an operator semisimple algebra.

Proof. Let X = {xi | i ∈ I} and for each i ∈ I, consider the one di-
mensional representation (Hi, τi, zi) so that f(xi) = 〈τi(f)zi, zi〉, f ∈ A.
Clearly, the representation τ = ⊕i∈I τi is the reduced atomic representa-
tion of C(X ). Hence, the strong closure of τ(C(X )) equals the algebra
D of all diagonal matrices on ⊕i∈IHi, i.e., D = l∞(I). We are to show
that the strong closure of τ(A)1 equals D1.

Claim. Given xi1 , xi2 , . . . xin ∈ X and a unimodular number w, there
exists F in the strong closure of τ(A)1 so that 〈Fzi1 , zi1〉 = w
and 〈Fzik , zik〉 = 1, k = 2, 3, . . . , n.

In order to prove the claim we make use of Mobius maps; if g ∈ A has
norm 1 and m is a Mobius transformation, then the composite function
m◦ g also belongs to A1. For the proof, for each 2 ≤ l ≤ n we choose a
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unitary function gl that separates xi1 from xil . We apply a Mobius map
to each gl to get g′l so that g′l(xi1) = 1 and either g′l(xik) = 1 or eiπαkl

with αkl ∈ [1/n, 2/n]. If g =
∏

l g
′
l then g(xi1) = 1 and g(xil) = eπiαl ,

where αl ∈ [1/n, 2 − 2/n]. Now another application of a Mobius map
produces a function fs ∈ A so that fs(xi1) = w and |fs(xil)− 1| ≤ 1/s,
l = 2, . . . , n. Any weak limit of {τ(fs)}s∈N proves the claim.

Since the strong closure of τ(A)1 is closed under multiplication, a
repeated use of the claim shows that given xi1 , xi2 , . . . xin ∈ X and a
unimodular n-tuple (w1, w2, . . . , wn), there exists an F in the strong
closure of τ(A)1 so that 〈Fzij , zij〉 = wj. A convexity argument now
shows the desired equality. ¤

Corollary 2.10. The Hardy space H∞ and the disc algebra A(D) are
operator semisimple.

Proof. Both the Hardy space H∞ and the disc algebra A(D) satisfy
the requirements of Theorem 2.9 [24, page 174]. ¤

One of the pleasing features of the representations τ in the proofs
of Theorems 2.8 and 2.9 is that they extend to a ∗-representation of
their enveloping C∗-algebra. (We coin the term C∗-semisimple for an
operator semisimple algebra admiting such a representation.) Using the
fact that the spatial norm on the tensor product of two C∗-algebras is
minimal, one can easily conclude that the spatial tensor product of
C∗-semisimple algebras is also C∗-semisimple. Hence tensor products
between C∗-algebras, semisimple TAF algebras, Douglas algebras and
irreducible algebras are operator semisimple thus providing additional
examples of such algebras.

A subalgebra A of a C∗-algebra A is said to be Dirichlet iff it satisfies
A+A∗ = A. The prototypical example of a Dirichlet algebra is the disc
algebra, as a subalgebra of the continuous functions on the circle. The
term originates from the theory of functions. It has also been studied in
the context of non-selfadjoint operator algebras by Arveson [9], Muhly
and Solel [35] and others. All strongly maximal TAF algebras are
easily seen to be Dirichlet.

Proposition 2.11. Let A be a Dirichlet subalgebra of an infinite di-
mensional simple C∗-algebra A. If A is operator semisimple then the
unit ball of A does not have any non-trivial compact faces.

Proof. Assume that the unit ball of A has a non-trivial compact face.
Then Theorem 2.6 shows that A contains a non-zero atom P . Hence,

PAP = P (A+A∗)P ⊆ PAP + (PAP )∗ = CP
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and so A contains a non-zero atom. But then, Theorem 2.6 contradicts
the simplicity of A. ¤

Combining Proposition 2.11 with Theorem 2.8 we obtain that the
unit ball of the familiar standard, alternation and A(Q, ν) algebras
contain no non-trivial compact faces. (We do not know if the same is
true for the unit ball of the refinement algebra.) Proposition 2.11 also
applies to semicrossed products C(X )×α Z+ corresponding to minimal
actions α on a compact metric space X . In [14] it is shown that such
semicrossed products are operator primitive. Since these are Dirichlet
subalgebras of simple C∗-algebras their unit ball contains no non-trivial
compact faces.

3. Spectral obstructions for the existence of compact
faces

In this section we obtain non-commutative analogs of Corollary 1.7.
A free semigroup algebra is the weakly closed algebra generated by n
isometries with orthogonal ranges. The central example for these alge-
bras is the "non-commutative Toeplitz algebra" Ln which is generated
by the left regular representation of the free semigroup on n letters.
The study of Ln was initiated by Popescu [41, 42, 43] in the context
of dilation theory. A detailed analysis of Ln is contained in the papers
of Davidson and Pitts [16, 17], Kribbs [33] and Arias and Popescu
[7, 8] which develop the analytic structure. Apart from being a good
example, it turns out that Ln is also a model for free semigroup alge-
bras: the Structure Theorem in [15] shows that every free semigroup
algebra has a 2×2 lower triangular form where the first column is a slice
of a von Neumann algebra and the 22 entry is an algebra isomorphic
to Ln. Special classes of free semigroup algebras are important in the
classification of certain representations of the Cuntz-Toeplitz algebra
[16] and the construction of wavelets [10]
A continuous factor representation of the Cuntz algebra induces a

non-atomic free semigroup algebra. Moreover, Ln is also non-atomic.
Our next result shows that the unit ball of such free semigroup algebras
contains no non-trivial geometrically compact elements. Specifically

Theorem 3.1. If A is a free semigroup algebra, then the following are
equivalent:

(i) the unit ball of A has non-trivial compact faces;
(ii) the unit ball of A has non-trivial finite dimensional faces;
(iii) A contains non-zero geometrically compact elements;
(iv) A contains an atom.
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Proof. As in proof of Theorem 2.6 we only need to verify that (iii)
implies (iv). Let A be a free semigroup algebra with no atoms. By
Theorem 2.6 in [15], A decomposes via a projection P in A as A =
MP + P⊥AP⊥, where M is the von Neumann algebra generated by
A and P⊥A|P⊥H is isomorphic to Ln. Let π be the isomorphism from
P⊥A|P⊥H onto Ln.

By way of contradiction assume that A is a non-trivial geometrically
compact element of A. Then, Proposition 1.4 shows that

(6)
(

AB(H)1/2A
)

∩ A ⊆ cp({B});

and so the norm closure of AA1A is norm compact.
We now claim that P⊥AP⊥ = 0
Indeed notice that

P⊥AP⊥ (

P⊥AP⊥)

1
P⊥AP⊥ ⊆ P⊥ (AA1A)P

⊥

is norm compact. Therefore, by applying π, we obtain a non-zero el-
ement ÝA := π(P⊥AP⊥) of Ln so that the closure of ÝA(Ln)1 ÝA is norm
compact. Then either, A = 0 or arguing as in the proof of Theorem 1.6
we conclude that the spectrum of ÝA is countable. However, [16, Corol-
lary 1.8] asserts that the spectrum of every non-scalar element of Ln

is connected and contains more than one point. Since Ln is infinite
dimensional, ÝA = 0.

The claim above, combined with the first paragraph of the proof
shows that A = AP . Now let I −Q be the span of all atoms in M. It
is well known that Q is a central projection in M and that QMQ is
non-atomic. Since A contains no atoms, PMP is non-atomic and so
P ⊆ Q. Hence

AM1A = APM1A = A(QMQ)1A.

On the other hand

AMA = AMAP ⊆ MP ⊆ A

and so, by (6), A is a geometrically compact element of the non-atomic
algebra QMQ. Hence Theorem 2.6 implies that A = 0, which is a
contradiction. ¤

In spite of Theorem 3.1, the unit ball of a free semigroup algebra A
always contains non-trivial faces. Indeed, if A contains a slice of a von
Neumann algebra, then this follows from Theorem 2.6. So it suffices to
consider only the case where A = Ln.

Proposition 3.2. The unit ball of Ln contains non-trivial faces.
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Proof. It is enough to prove that the boundary of the unit ball of Ln

contains composite points. Indeed, for any such point A, the face F(A)
is not a singleton or else A is an extreme point.
Notice that the wandering subspaces for any of the left creation oper-

ators Li span the Fock space H. We therefore define an H∞ functional
calculus for Li, which is well-defined, linear and isometric, as follows:
if ϕ ∈ H∞ then ϕ(Li) := lim pn(Li), where {pn}n∈N is any bounded
sequence of polynomials converging to ϕ.

Let ϕ be a composite point on the boundary of the unit ball of H∞

(the existence of such a ϕ follows from the description of the extreme
points of H∞ in [24]). Then, ϕ(Li) is the desired composite point. ¤

The lack of non-trivial compact faces for the unit ball of Ln is due to
the fact that the spectrum of any non-scalar operator in Ln is infinite
and connected. In [28], Hoover, Peters and Wogen study the spectral
properties of algebras which contain no zero divisors. The spectrum of
any operator in such an algebra A is necessarily connected. However,
Amay contain non-zero quasinilpotents and therefore the arguments in
the proof of Theorem 3.1 do not apply in this generality. Nevertheless,
the unit ball of such an algebraA does not contain any non-trivial finite
dimensional faces. Indeed, A does not contain any non-zero nilpotent
operators and therefore no finite dimensional subalgebras apart from
the trivial one. The conclusion follows now from Theorem 1.8.
If A is a Banach algebra and α an automorphism of A, then the

semicrossed product A ×α Z+ is is the enveloping Banach algebra of
l1(A,Z+, α) with respect to the class of contractive Hilbert space rep-
resentations. An interesting feature of the class of algebras studied by
Hoover, Peters and Wogen in [28] is that it is closed under semicrossed
products by Z+. (If A ×α Z+ contains x and y so that xy = 0, then
the lowest Fourier coefficients of x and y are necessarily zero divisors
in A.) Hence,

Theorem 3.3. Let A be an algebra which contains no zero divisors
and let α be an automorphism of A. Then the unit ball of A ×α Z+

does not contain any non-trivial finite dimensional faces.

The theorem above applies in particular to the algebras A(D)×α Z+

and H∞×αZ+, studied in [27].
Notice that C(X ), X compact metric space, contains zero divisors

and so Theorem 3.3 does not apply in this case. Crossed products of
the form C(X ) ×α Z+ were studied in the previous section with the
use of representation theory. They can also be studied with the use of
Corollary 1.10 as follows.
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Theorem 3.4. Let X be a compact connected metric space and let ϕ
be a homeomorphism of X with a dense set of recurrent points. Then
the unit ball of C(X )×ϕ Z+ has no finite dimensional faces.

Proof. By [20], the algebra C(X )×ϕ Z+ is semisimple. We claim that
C(X )×ϕ Z+ contains no non-trivial idempotents.
Indeed, let Q ∈ C(X )×ϕZ+ be an idempotent and let Q =

∑∞
i=1 fit

i,
fi ∈ C(X ) be its Fourier expansion. Since Q is an idempotent, f0 is an
idempotent. But X is connected and so f0 is either 0 or I.
If f0 = 0 then the lowest Fourier coefficient in the expansion of Q2 is

of order 2 and so f1 = 0. Consequently, the lowest Fourier coefficient in
the expansion of Q2 is of order 4 and so and so f2 = f3 = 0. Repeated
applications of this argument show that fn = 0, n ≥ 0 and so Q = 0.
If f0 = I then the second Fourier coefficient of Q2 is 2f1. Hence

f1 = 0. Repeated applications of this argument show that the rest of
the Fourier coefficients are equal to 0 and so Q = I in this case. This
proves the claim.
Since C(X )×ϕZ+ contains no non-trivial idempotents, the conclusion

follows from Corollary 1.10. ¤

4. Concluding remarks

The operator semisimple and C∗-semisimple algebras can be thought
as special cases of diagonal algebras. An operator algebra A is said to
be block diagonalizable if there exists a bicontinuous (but not neces-
sarily isometric) representation τ , satisfying the rest of the properties
in Definition 2.1. Several results of Section 2, such as Lemmas 2.2,
2.3 and one direction in Theorem 2.4, are valid in this more general
context.
By the Wedderburn-Artin Theorem, all finite dimensional semisim-

ple algebras are block diagonalizable. However, there are semisimple
operator algebras which fail that property, as the following example
shows.

Example 4.1. A semisimple operator algebra which is not block di-
agonalizable.

Let L = {0,M,N, I}, where M,N are closed subspaces satisfying

M ∩N = M⊥ ∩N⊥ = 0

so that the sum M + N is not closed. Let A = AlgL be the algebra
of all operators leaving both M and N invariant. By an old result of
Longstaff, a rank one operator A ∈ A is of the form R = e⊗ f , where
either e ∈ M⊥ and f ∈ N or e ∈ N⊥ and f ∈ M . The rank one
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subalgebra R(L) of AlgL consists of all sums of rank one operators in
AlgL. In [39] it is shown that R(L) is weakly dense in AlgL (rank
one density).
The semisimplicity of A follows from [31]. We are to show that A

is not block diagonalizable.
By way of contradiction assume that (τa,Ha), a ∈ A, is the family

of representations of A implementing the operator semisimplicity and
let τ = ⊕a∈A τa. Notice that RAR is one dimensional, for any rank one
operator R ∈ A, and so τ(R) is also a rank one operator. Since R(L)
is dense in AlgL, τ( A) contains the set K of all compact operators in
the diagonal algebra ⊕a∈A B(Ha). The restriction of τ−1 on K is similar
to a ∗-representation. Therefore there exists an invertible operator S
so that

R(SL) ⊆ Sτ−1(K)S−1 ⊆ AlgSL.
However, Sτ−1(K)S−1 is selfadjoint and so the density of R(SL) in
AlgSL implies that AlgSL is selfadjoint. Hence SL is orthocomple-
mented and so the sum M +N is closed, a contradiction.

In this paper we addressed the problem of existence for non-trivial
finite dimensional faces. The problem of characterizing which operators
belong to such faces is much harder. Indeed, by the Krein-Milman
Theorem such faces are the closed convex hull of their extreme points
and therefore one needs to have a good understanding of the extreme
points for the unit ball. This is also corroborated by the following

Proposition 4.2. Let X be a normed space and let x be an element of
its unit ball. If x belongs to a finite dimensional face then there exist
an extreme point e for the unit ball of X and an element f with finite
geometric rank so that x = e+ λf , for some λ ∈ R.

Proof. Since F is finite dimensional, F(x) is also finite dimensional
and by the Krein-Milman Theorem it contains an extreme point e.
Moreover there exists an element f in the affine hull of F(x) so that
x = e + f ′. By Lemma 1.2, the affine hull of F(x) equals [cp({x})].
Since cp({x}) is convex, a moments reflection shows that [cp({x})]
consists of multiples of cp({x}) and so there exists an element f ∈
cp({x}) so that f ′ = λf , for some λ ∈ R. However,

cp(2)({f}) ⊆ cp(3)({x}) = cp({x}),

which shows that f has finite geometric rank, as desired. ¤

Even though we have a complete understanding of the elements with
finite geometric rank, we are far from characterizing the extreme points
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for operator semisimple algebras. For instance, the problem of charac-
terizing the extreme points of the standard algebra is open [26]. Also
compare the nature of extreme points in the unit ball of a C∗-algebra
with that of H∞ [24, page 138]. However, the situation in operator
primitive algebras is much better.

Theorem 4.3. Let A be an operator algebra containing the compact
operators and let A ∈ A with ‖A‖ = 1. Then the operator A belongs
to a finite dimensional face of A1 if and only if

dim [(I − AA∗)A(I − A∗A)] < ∞.

Proof. Assume first that dim [(I − AA∗)A(I − A∗A)] < ∞ and so
both I−AA∗ and I−A∗A are finite rank operators. Hence if P and Q
are the range projections of (I−A∗A)1/2 and (I−AA∗)1/2 respectively,
then PAQ ⊆ A is finite dimensional.

Let B ∈ cp({A}). Then [34, Lemma 1] shows that there exist
bounded operators S and T such that

B = S(I − A∗A)1/2 = (I − AA∗)1/2T

and so B = QBP . Therefore cp({A}) is finite dimensional and so
Lemma 1.2 shows that A belongs to the finite dimensional face F(A).
Conversely, assume that F(A) is finite dimensional face and so, by

Theorem 1.8, S (F(A)) = cp({A}) is a finite dimensional hereditary
subalgebra of A. A moment’s reflection shows that there exist finite
dimensional projections P,Q so that cp({A}) = PAQ.

We now claim that

(I − P ) ∩ (I − A∗A)1/2 (H) = (I −Q) ∩ (I − AA∗)1/2 (H) = {0}.

Indeed, by way of contradiction assume that one of the above in-
tersections, say the first one, is non-trivial. Consider a unit vector

(I − AA∗)1/2 f ∈ I − P and let e be a vector of norm 1/2 so that

(I − A∗A)1/2 e 6= 0. Then [34, Corollary 1] shows that the rank one
operator

R = (I − A∗A)1/2e⊗ (I − AA∗)1/2f

= (I − AA∗)1/2(e⊗ f)(I − A∗A)1/2

belongs to cp({A}) and so our earlier observations show that R =
PRQ, which is a contradiction that proves the claim.
From the above claim follows that

(I − P ) ∩ (I − A∗A) (H) = (I −Q) ∩ (I − AA∗) (H) = {0}.
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Since both I − P and I − Q are of finite codimension, we conclude
that the ranges of both I − A∗A and I − AA∗ are finite dimensional,
as promised. ¤

Arguments similar to the ones above lead to a generalization of
Kadison’s characterization of the extreme points of the unit ball of
a C∗-algebra [29]. Indeed one can show that a contraction A be-
longs to a finite dimensional face of a C∗-algebra A if and only if
dim [(I − AA∗)A(I − A∗A)] < ∞. (This was first shown to us by
Anoussis with a different proof.)

Another example that illustrates the complexities associated with
extreme points in non-selfadjoint operator algebras is the following.
Let A be an operator algebra acting on a Hilbert space H and consider
the operator algebra

T (A) =

{(

λ 0
f A

)

| A ∈ A, f ∈ H, λ ∈ C
}

with the obvious multiplications.

Proposition 4.4. The rank one operator R = (1, 0) ⊗ (0, f) is an
extreme point for the unit ball of T (A) if and only if f is a separating
unit vector for A∗.

Proof. Assume first that f is a separating unit vector for A∗ and let
X ∈ T (A) so that ‖R±X‖ = 1. Then,

X∗X ≤ I − (1, 0)⊗ (1, 0)

and

XX∗ ≤ I − (0, f)⊗ (0, f).

The first inequality shows that X ∈ A. The second one shows that the
range of X is orthogonal to f and so 〈Xg, f〉 = 0, ∀g ∈ H. Hence,
〈g,X∗f〉 = 0, ∀g ∈ H, and so X∗f = 0. Since f is separating for A∗,
X = 0 and so R is an extreme point.
Reversing the arguments above we obtain the other direction in the

Theorem. ¤

The identification of separating vectors for an operator algebra A,
i.e., the cyclic vectors for A′, is an important and difficult problem.
Most notable is the work in [21] for the adjoint of the unilateral shift.

Note that the algebras of the form T (A), when A∗ admits separating
vectors, show that Theorem 2.4 fails for algebras which are not operator
semisimple. Indeed, by way of contradiction assume that an operator
T ∈ T (A) is geometrically compact if and only if there exists an isomet-
ric representation ϕ of T (A) so that ϕ(T ) is a compact operator. This
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applies in particular to any operator of the form T = (e, 0) ⊗ (0, f)
and so such an operator is geometrically compact. This contradicts
however Proposition 4.4.
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