SEMICROSSED PRODUCTS OF THE DISK ALGEBRA

KENNETH R. DAVIDSON AND ELIAS G. KATSOU LIS

Abstract. If \(\alpha \) is the endomorphism of the disk algebra, \(A(D) \), induced by composition with a finite Blaschke product \(b \), then the semicrossed product \(A(D) \times_{\alpha} \mathbb{Z}^+ \) imbeds canonically, completely isometrically into \(C(T) \times_{\alpha} \mathbb{Z}^+ \). Hence in the case of a non-constant Blaschke product \(b \), the C*-envelope has the form \(C(S_b) \times_s \mathbb{Z} \), where \((S_b, s) \) is the solenoid system for \((T, b) \). In the case where \(b \) is a constant, then the C*-envelope of \(A(D) \times_{\alpha} \mathbb{Z}^+ \) is strongly Morita equivalent to a crossed product of the form \(C(S_e) \times_s \mathbb{Z} \), where \(e: T \times \mathbb{N} \to T \times \mathbb{N} \) is a suitable map and \((S_e, s) \) is the solenoid system for \((T \times \mathbb{N}, e) \).

1. Introduction

If \(\mathcal{A} \) is a unital operator algebra and \(\alpha \) is a completely contractive endomorphism, the semicrossed product is an operator algebra \(\mathcal{A} \times_{\alpha} \mathbb{Z}^+ \) which encodes the covariant representations of \((\mathcal{A}, \alpha) \): namely completely contractive unital representations \(\rho: \mathcal{A} \to B(\mathcal{H}) \) and contractions \(T \) satisfying

\[
\rho(a)T = T \rho(\alpha(a)) \quad \text{for all } a \in \mathcal{A}.
\]

Such algebras were defined by Peters [9] when \(\mathcal{A} \) is a C*-algebra.

One can readily extend Peter’s definition [9] of the semicrossed product of a C*-algebra by a \(* \)-endomorphism to unital operator algebras and unital completely contractive endomorphisms. One forms the polynomial algebra \(\mathcal{P}(\mathcal{A}, t) \) of formal polynomials of the form \(p = \sum_{i=0}^{n} t^i a_i \), where \(a_i \in \mathcal{A} \), with multiplication determined by the covariance relation \(at = t \alpha(a) \) and the norm

\[
\|p\| = \sup_{(\rho,T) \text{covariant}} \left\| \sum_{i=0}^{n} T^i \rho(a_i) \right\|.
\]

2000 Mathematics Subject Classification. 47L55.

Key words and phrases. semicrossed product, crossed product, disk algebra, C*-envelope.

First author partially supported by an NSERC grant.
Second author was partially supported by a grant from ECU.
This supremum is clearly dominated by $\sum_{i=0}^{n} \|a_i\|$; so this norm is well defined. The completion is the semicrossed product $\mathcal{A} \times_\alpha \mathbb{Z}_+$. Since this is the supremum of operator algebra norms, it is also an operator algebra norm. By construction, for each covariant representation (ρ, T), there is a unique completely contractive representation $\rho \times T$ of $\mathcal{A} \times_\alpha \mathbb{Z}_+$ into $\mathcal{B}(\mathcal{H})$ given by

$$\rho \times T(p) = \sum_{i=0}^{n} T^i \rho(a_i).$$

This is the defining property of the semicrossed product.

In this note, we examine semicrossed products of the disk algebra by an endomorphism which extends to a $*$-endomorphism of $C(T)$. In the case where the endomorphism is injective, these have the form $\alpha(f) = f \circ b$ where b is a non-constant Blaschke product. We show that every covariant representation of $(A(D), \alpha)$ dilates to a covariant representation of $(C(T), \alpha)$. This is readily dilated to a covariant representation (σ, V), where σ is an $*$-representation of $C(T)$ (so $\sigma(z)$ is unitary) and V is an isometry. To go further, we use the recent work of Kakariadis and Katsoulis [6] to show that $C(T) \times_\alpha \mathbb{Z}_+^+$ imbeds completely isometrically into a C^*-crossed product $C(S_b) \times_\alpha \mathbb{Z}$. In fact, $C^*_e(C(T) \times_\alpha \mathbb{Z}_+^+) = C(S_b) \times_\alpha \mathbb{Z}$ and as a consequence, we obtain that (ρ, T) dilates to a covariant representation (τ, W), where τ is a $*$-representation of $C(T)$ (so $\sigma(z)$ is unitary) and W is a unitary.

In contrast, if α is induced by a constant Blaschke product, we can no longer identify $C^*_e(C(T) \times_\alpha \mathbb{Z}_+^+)$ up to isomorphism. In that case, α is evaluation at a boundary point. Even though every covariant representation of $(A(D), \alpha)$ dilates to a covariant representation of $(C(T), \alpha)$, the theory of [6] is not directly applicable since α is not injective. Instead, we use the process of “adding tails to C^*-correspondences” [8], as modified in [3, 7] and we identify $C^*_e(C(T) \times_\alpha \mathbb{Z}_+^+)$ up to strong Morita equivalence as a crossed product. In Theorem 2.6 we show that $C^*_e(C(T) \times_\alpha \mathbb{Z}_+^+)$ is strongly Morita equivalent to a C^*-algebra of the form $C(S_e) \times_s \mathbb{Z}$, where $e: T \times N \to T \times N$ is a suitable map and (S_e, s) is the solenoid system for $(T \times N, e)$.

Semi-crossed products of the disc algebra were introduced and first studied by Buske and Peters in [1], following relevant work of Hoover, Peters and Wogen [5]. The algebras $A(D) \times_\alpha \mathbb{Z}_+$, where α is an arbitrary endomorphism, where classified up to algebraic endomorphism in [2]. Results associated with their C^*-envelope can be found in [1, Proposition III.13] and [10, Theorem 2]. The results of the present paper subsume and extend these earlier results.
2. The Disk Algebra

The C*-envelope of the disk algebra $A(D)$ is $C(T)$, the space of continuous functions on the unit circle. Suppose that α is an endomorphism of $C(T)$ which leaves $A(D)$ invariant. We refer to the restriction of α to $A(D)$ as α as well. Then $b = \alpha(z) \in A(D)$; and has spectrum $\sigma_{A(D)}(b) \subset \sigma_{A(D)}(z) = D$ and $\sigma_{C(T)}(b) \subset \sigma_{C(T)}(z) = T$.

Thus $\|b\| = 1$ and $b(T) \subset T$. It follows that b is a finite Blaschke product. Therefore $\alpha(f) = f \circ b$ for all $f \in C(T)$. When b is not constant, α is completely isometric.

A (completely) contractive representation ρ of $A(D)$ is determined by $\rho(z) = A$, which must be a contraction. The converse follows from the matrix von Neumann inequality; and shows that $\rho(f) = f(A)$ is a complete contraction. A covariant representation of $(A(D), \alpha)$ is thus determined by a pair of contractions (A, T) such that $AT = Tb(A)$.

The representation of $A(D) \times_\alpha \mathbb{Z}^+$ is given by

$$\rho \times T \left(\sum_{i=0}^{n} t^i f_i \right) = \sum_{i=0}^{n} T^i f_i(A),$$

which extends to a completely contractive representation of the semicrossed product by the universal property.

A contractive representation σ of $C(T)$ is a *-representation, and is likewise determined by $U = \sigma(z)$, which must be unitary; and all unitary operators yield such a representation by the functional calculus. A covariant representation of $(C(T), \alpha)$ is given by a pair (U, T) where U is unitary and T is a contraction satisfying $UT = Tb(U)$. To see this, multiply on the left by U^* and on the right by $b(U)^*$ to obtain the identity

$$U^* T = Tb(U)^* = T \bar{b}(U) = T \alpha(z)(U).$$

The set of functions $\{f \in C(T) : f(U)T = T\alpha(f)(U)\}$ is easily seen to be a norm closed algebra. Since it contains z and \bar{z}, it is all of $C(T)$. So the covariance relation holds.

Theorem 2.1. Let b be a finite Blaschke product, and let $\alpha(f) = f \circ b$. Then $A(D) \times_\alpha \mathbb{Z}^+$ is (canonically completely isometrically isomorphic to) a subalgebra of $C(T) \times_\alpha \mathbb{Z}^+$.

Proof. To establish that $A(D) \times_\alpha \mathbb{Z}^+$ is completely isometric to a subalgebra of $C(T) \times_\alpha \mathbb{Z}^+$, it suffices to show that each (A, T) with $AT = Tb(A)$ has a dilation to a pair (U, S) with U unitary and S a contraction such that $US = Sb(U)$ and $P_H S^n U^m |_H = T^n A^m$ for all
This latter condition is equivalent to \mathcal{H} being semi-invariant for the algebra generated by U and S.

The covariance relation can be restated as

$$\begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix} \begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix}$$

Dilate A to a unitary U which leaves \mathcal{H} semi-invariant. Then $\begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix}$ dilates to $\begin{bmatrix} U & 0 \\ 0 & b(U) \end{bmatrix}$. By the Sz.Nagy-Foiaş Commutant Lifting Theorem, we may dilate $\begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix}$ to a contraction of the form $\begin{bmatrix} \ast & S \\ \ast & \ast \end{bmatrix}$ which commutes with $\begin{bmatrix} U & 0 \\ 0 & \alpha(U) \end{bmatrix}$ and has $\mathcal{H} \oplus \mathcal{H}$ as a common semi-invariant subspace. Clearly, we may take the \ast entries to all equal 0 without changing things. So (U, S) satisfies the same covariance relations $US = Sb(U)$. Therefore we have obtained a dilation to the covariance relations for $(C(T), \alpha)$.

Once we have a covariance relation for $(C(T), \alpha)$, we can try to dilate further. Extending S to an isometry V follows a well-known path. Observe that

$$b(U)S^*S = S^*US = S^*Sb(U).$$

Thus $D = (I - S^*S)^{1/2}$ commutes with $b(U)$. Write $b^{(n)}$ for the composition of b with itself n times, Hence we can now use the standard Schaeffer dilation of S to an isometry V and simultaneously dilate U to U_1 as follows:

$$V = \begin{bmatrix} S & 0 & 0 & 0 & \ldots \\ D & 0 & 0 & 0 & \ldots \\ 0 & I & 0 & 0 & \ldots \\ 0 & 0 & I & 0 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \text{and} \quad U_1 = \begin{bmatrix} U & 0 & 0 & 0 & \ldots \\ 0 & b(U_1) & 0 & 0 & \ldots \\ 0 & 0 & b^{(2)}(U_1) & 0 & \ldots \\ 0 & 0 & 0 & b^{(3)}(U_1) & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

A simple calculation shows that $U_1V = Vb(U_1)$. So as above, (U, V) satisfies the covariance relations for $(C(T), \alpha)$.

We would like to make V a unitary as well. This is possible in the case where b is non-constant, but the explicit construction is not obvious. Instead, we use the theory of C*-envelopes and maximal dilations. First we need the following.

Lemma 2.2. Let b be a finite Blaschke product, and let $\alpha(f) = f \circ b$. Then

$$C^*_e(A(\mathbb{D}) \times_\alpha \mathbb{Z}^+) \simeq C^*_e(C(T) \times_\alpha \mathbb{Z}^+).$$
Proof. The previous Theorem identifies $A(D) \times_\alpha \mathbb{Z}^+$ completely isometrically as a subalgebra of $C(T) \times_\alpha \mathbb{Z}^+$. The C*-envelope \mathcal{C} of $C(T) \times_\alpha \mathbb{Z}^+$ is a Cuntz-Pimsner algebra containing a copy of $C(T)$ which is invariant under gauge actions. Now \mathcal{C} is a C*-cover of $C(T) \times_\alpha \mathbb{Z}^+$, so it is easy to see that it is also a C*-cover of $A(D) \times_\alpha \mathbb{Z}^+$. Since $A(D) \times_\alpha \mathbb{Z}^+$ is invariant under the same gauge actions, its Shilov ideal $\mathcal{J} \subseteq \mathcal{C}$ will be invariant by these actions as well. If $\mathcal{J} \neq 0$ then by gauge invariance $\mathcal{J} \cap C(T) \neq 0$. Since the quotient map

$$A(D) \longrightarrow C(T)/(\mathcal{J} \cap C(T))$$

is completely isometric, we obtain a contradiction. Hence $\mathcal{J} = 0$ and the conclusion follows.

We now recall some of the theory of semicrossed products of C*-algebras. When \mathfrak{A} is a C*-algebra, the completely isometric endomorphisms are the faithful *-endomorphisms. In this case, Peters shows [9, Prop.I.8] that there is a unique C*-algebra \mathfrak{B}, a *-automorphism β of \mathfrak{B} and an injection j of \mathfrak{A} into \mathfrak{B} so that $\beta \circ j = j \alpha$ and \mathfrak{B} is the closure of $\bigcup_{n \geq 0} \beta^{-n}(j(\mathfrak{A}))$. It follows [9, Prop.II.4] that $A(D) \times_\alpha \mathbb{Z}^+$ is completely isometrically isomorphic to the subalgebra of the crossed product algebra $\mathfrak{B} \times_\beta \mathbb{Z}$ generated as a non-self-adjoint algebra by an isomorphic copy $j(\mathfrak{A})$ of \mathfrak{A} and the unitary u implementing β in the crossed product. Actually, Kakariadis and the second author [6, Thm.2.5] show that $\mathfrak{B} \times_\beta \mathbb{Z}$ is the C*-envelope of $\mathfrak{A} \times_\alpha \mathbb{Z}^+$.

In the case where $\mathfrak{A} = C(X)$ is commutative and α is induced by an injective self-map of X, the pair (\mathfrak{B}, β) has an alternative description.

Definition 2.3. Let X be a topological space and φ a surjective self-map of X. We define the solenoid system of (X, φ) to be the pair (S_φ, s), where

$$S_\varphi = \{(x_n)_{n \geq 1} : x_n = \varphi(x_{n+1}), x_n \in X, n \geq 1\}$$

equipped with the relative topology inherited from the product topology on $\prod_{i=1}^{\infty} X_i$, $X_i = X$, $i = 1, 2, \ldots$, and s is the backward shift on S_φ.

It is easy to see that in the case where $\mathfrak{A} = C(X)$ and α is induced by an injective self-map φ of X, the pair (\mathfrak{B}, β) for (\mathfrak{A}, α) described above, is conjugate to the solenoid system (S_φ, s). Therefore, we obtain

Corollary 2.4. Let b be a non-constant finite Blaschke product, and let $\alpha(f) = f \circ b$ on $C(T)$. Then

$$C^*_e(A(D) \times_\alpha \mathbb{Z}^+) = C^*_e(C(S_b) \times_s \mathbb{Z})$$

where (S_b, s) is the solenoid system of (T, b).
It is worth restating this theorem as a dilation result.

Corollary 2.5. Let α be an endomorphism of $A(D)$ induced by a non-constant finite Blaschke product and let $A, T \in B(H)$ be contractions satisfying $AT = T\alpha(A)$. Then there exist unitary operators U and W on a Hilbert space $K \supset H$ which simultaneously dilate A and T, in the sense that $P_H W^m U^n \big|_H = T^m A^n$ for all $m, n \geq 0$, so that $UW = W\alpha(U)$.

Proof. Every covariant representation (A, T) of $(A(D), \alpha)$ dilates to a covariant representation (U_1, V) of $(C(T), \alpha)$. This in turn dilates to a maximal dilation τ of $C(T) \times_{\alpha} Z^+$, in the sense of Dritschel and McCullough [4]. The maximal dilations extend to \ast-representations of the C^*-envelope. Then A is dilated to $\tau(j(z)) = U$ is unitary and T dilates to the unitary W which implements the automorphism β on B, and restricts to the action of α on $C(T)$.

The situation changes when we move to non-injective endomorphisms α of $A(D)$. Indeed, let $\lambda \in T$ and consider the endomorphism α_λ of $A(D)$ induced by evaluation on λ, i.e., $\alpha_\lambda(f)(z) = f(\lambda)$, $\forall z \in D$. (Thus α_λ is the endomorphism of $A(D)$ corresponding to a constant Blaschke product.) If two contractions A, T satisfy $AT = T\alpha_\lambda(A) = \lambda T$, then the existence of unitary operators U, W, dilating A and T respectively, implies that $A = \lambda I$. It is easy to construct a pair A, T satisfying $AT = \lambda T$ and yet $A \neq \lambda I$. This shows that the analogue Corollary 2.5 fails for $\alpha = \alpha_\lambda$ and therefore one does not expect $C^\ast_e(A(D) \times_{\alpha_\lambda} Z^+)$ to be isomorphic to the crossed product of a commutative C^*-algebra, at least under canonical identifications. However as we have seen, a weakening of Corollary 2.5 is valid for $\alpha = \alpha_\lambda$ if one allows W to be an isometry instead of a unitary operator. In addition, we can identify $C^\ast_e(A(D) \times_{\alpha_\lambda} Z^+)$ as being strongly Morita equivalent to a crossed product C^*-algebra. Indeed, if $e: \mathbb{T} \times \mathbb{N} \to \mathbb{T} \times \mathbb{N}$ is defined as

$$e(z, n) = \begin{cases} (1, 1) & \text{if } n = 1 \\ (z, n - 1) & \text{otherwise,} \end{cases}$$

then

Theorem 2.6. Let $\alpha = \alpha_\lambda$ be an endomorphism of $A(D)$ induced by evaluation at a point $\lambda \in \mathbb{T}$. Then $C^\ast_e(A(D) \times_{\alpha_\lambda} Z^+)$ is strongly Morita equivalent to $C(S_e) \times_s Z$, where $e: \mathbb{T} \times \mathbb{N} \to \mathbb{T} \times \mathbb{N}$ is defined above and (S_e, s) is the solenoid system of $(\mathbb{T} \times \mathbb{N}, e)$.
Proof. In light of Lemma 2.2, it suffices to identify the C*-envelope of $C(T) \times_\alpha \mathbb{Z}^+$. As α is no longer an injective endomorphism of $C(T)$, we invoke the process of adding tails to C*-correspondences [8], as modified in [3, 7]. Indeed, [7, Example 4.3] implies that the C*-envelope of the tensor algebra associated with the dynamical system $(C(T), \alpha)$ is strongly Morita equivalent to the Cuntz-Pimsner algebra associated with the injective dynamical system $(T \times \mathbb{N}, e)$ defined above. Therefore by invoking the solenoid system of $(T \times \mathbb{N}, e)$, the conclusion follows from the discussion following Lemma 2.2.

References

Pure Mathematics Department, University of Waterloo, Waterloo, ON N2L–3G1, CANADA
E-mail address: krdavids@uwaterloo.ca

Department of Mathematics, University of Athens, 15784 Athens, GREECE
Alternate address: Department of Mathematics, East Carolina University, Greenville, NC 27858, USA
E-mail address: katsoulise@ecu.edu