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Abstract. Let (G,P ) be an abelian, lattice ordered group and let X

be a compactly aligned, φ̃-injective product system over P . We show
that the C*-envelope of the Nica tensor algebra NT +

X is the Cuntz-Nica-
Pimsner algebra NOX as defined by Sims and Yeend. We give several
applications of this result. First we resolve a problem posed by Skalski
and Zacharias on dilating isometric representations of product systems
to unitary representations. As a second application we characterize the
C∗-envelope of the tensor algebra of a finitely aligned higher-rank graph.
An analogous result holds for the C∗-envelope of the tensor algebra of a
compactly aligned topological k-graph. As a third application we show
that the Hao-Ng isomorphism problem for generalized gauge actions
of discrete groups on C∗-algebras of product systems has an affirma-
tive answer in many cases, generalizing recent results of Bedos, Quigg,
Kaliszewski and Robertson and of the second author. As a final appli-
cation, we show the existence of a co-universal C∗-algebra for injective,
gauge compatible, Nica-covariant representations of a compactly aligned
product system over an abelian, lattice ordered group. This is done with-
out the assumption of φ̃-injectivity and we therefore resolve in that case
a problem that was left open in the work of Carlsen, Larsen, Sims and
Vittadello.

1. Introduction

Since its inception by Arveson [3] in the late 60’s, the concept of the
C*-envelope, or non-commutative Shilov boundary, has played an impor-
tant role in operator algebra theory with its importance recently increasing
considerably. Indeed, it is through the ideas of non-commutative bound-
aries that the work of Kennedy and Kalantar on C*-simplicity took flight
[30], and more recently, in the work of Davidson and Kennedy [15], a con-
jecture of Arveson [6] related to approximation theory was solved for the
commutative case. In addition, in [39] it is shown that the Arveson-Douglas
conjecture can be phrased in terms of the C*-envelope of non-self-adjoint
operator algebras arising from homogeneous polynomial relations.
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The central result of this paper, Theorem 3.2, characterizes the C∗-envel-
ope of the tensor algebra of a product system X over P , where (G,P ) is
an abelian, lattice ordered group and X satisfies certain mild hypotheses.
This is a new development even in the case of the abelian ordered groups
(Zd,Nd) for d ∈ N. A result in the spirit of Theorem 3.2 has been sought
after ever since the special case of the ordered group (Z,N) was established
in [33], over a decade ago. Concrete cases of it have already appeared in
the literature with the proofs sometimes requiring considerable effort. Our
approach incorporates many of these special cases by providing a unified
treatment and furthermore, it gives answers in new cases which were previ-
ously inaccessible by other means.

In [53], Pimsner generalized many constructions of operator algebras
by associating them to C*-correspondences. Pimsner associates two C*-
algebras TX and OX to a C*-correspondence X, where the algebra OX
generalizes Cuntz-Krieger algebras [12] arising from directed graphs and
crossed products by Z, while TX generalizes their Toeplitz extensions. In a
sequence of papers [35, 36, 37], Katsura drew insight from these specific
examples and expanded Pimsner’s construction. Katsura removed any as-
sumptions on the C*-correspondence while simplifying and expanding many
of Pimsner’s results.

Many examples of (non-self-adjoint) operator algebras arise as tensor al-
gebras of C*-correspondences, i.e., subalgebras of TX generated as closed
algebras by a copy of the C∗-correspondence and the coefficient algebra.
Following Arveson’s programme on the C∗-envelope, it makes sense to ask
for a characterization of the C∗-envelope of a tensor algebra T +

X . Muhly
and Solel [49] and Fowler, Muhly and Raeburn [25] established that the
C*-envelope of T +

X is Pimsner’s Cuntz-Pimsner algebra OX , under various
restrictions on the C∗-correspondence X. The problem was finally settled by
Katsoulis and Kribs [33] who removed all restrictions and showed that the
C*-envelope of any tensor algebra T +

X is Katsura’s Cuntz-Pimsner algebra
OX . The proof required an intricate tail adding technique, as developed
by Muhly and Tomforde in [50]. Although successful attempts have been
made for C*-dynamical systems over Nd [16, 29], this tail-adding technique
is difficult to generalize beyond single C∗-correspondences. This has been
an impediment for the continued development of the non-selfadjoint theory.

The concept of a product system over a partially ordered discrete group
generalizes that of a C∗-correspondence. In order to obtain a satisfactory
theory one needs to add the extra requirement that the product system is
compactly aligned over a quasi-lattice ordered semigroup. Given a com-
pactly aligned product system X over a quasi-lattice ordered group, one
builds a Nica-Toeplitz algebra NTX as a universal object for a suitable class
of representations called Nica-covariant representations. The development
of this theory owes to the work of many hands [20, 45, 51, 26, 23]. The
theory of the Toeplitz-Nica-Pimsner algebras NTX associated with prod-
uct system X reached its current state with the work of Fowler [24], who
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successfully refined all previous ideas and provided a uniqueness theorem
for it (see Theorem 2.2). However, it was unclear what the right analogue
of the Cuntz-Pimsner algebra of a non-injective product system X should
be and this was open for quite some time. Nevertheless this has now been
settled in many cases by Sims and Yeend [58], who gave a definition for
the Cuntz-Nica-Pimsner algebra NOX and by Carlsen, Larson, Sims and
Vittadello [13], who provided the gauge invariant uniqueness theorem for
NOX . (See Theorem 2.3).

Non-selfadjoint operator algebras can also often be described as tensor al-
gebras of compactly aligned product systems over lattice ordered semigroups
(G,P ) with G abelian. The list is long and includes examples that do not
materialize as tensor algebras of a single C∗-correspondence. These exam-
ples include the tensor algebras of a k-graphs, studied by Kribs and Power
[42] and Davidson, Power and Yang [18] and the recent Nica semicrossed
products of C*-dynamical systems over Nd, studied by Davidson, Fuller and
Kakariadis [16] (see [17] for a survey). In these cases, the C∗-envelopes
have been calculated successfully, sometimes with considerable effort. Mo-
tivated by the special case of the tensor algebra of a C∗-correspondence,
it is tempting to ask whether the aforementioned result of Katsoulis and
Kribs [33] holds in the greater generality of product system, i.e., whether
the C∗-envelope of the Nica tensor algebra of a product system is isomor-
phic to the Cuntz-Nica-Pimsner algebra of the system. Our Theorem 3.2
answers this question by showing that if X is a compactly aligned product
system over an abelian, lattice ordered semigroup (G,P ), then indeed the
C∗-envelope of the Nica tensor algebra NT +

X is the Cuntz-Nica-Pimsner al-
gebra NOX of Sims and Yeend. This result generalizes the earlier result
of Katsoulis and Kribs [33], without the use of any tail adding technique
in its proof (such a technique is currently unavailable for arbitrary product
systems). It further shows that the view of NOX as a co-universal object
can be fully materialized within Arveson’s programme for the C∗-envelope,
without any reference to gauge actions. This is something that was desired
(but not attained) in [13] and conjectured indirectly in [17]. In fact, in the
last section we show in Theorem 7.2 that by using the C*-envelope picture,
one can go beyond φ̃-injective cases of [13], to obtain a co-universal object in
the sense of Carlsen, Larsen, Sims and Vitadello, for any compactly aligned
product systems over abelian, lattice ordered groups.

We give several applications of our main result. In the context of a source-
less row-finite higher rank graph Λ, it was shown in [32, Theorem 3.6] (see
also [18, Theorem 3.5]) that the C*-envelope of the tensor algebra T+(Λ) is
the higher rank graph C*-algebra C∗(Λ) of Kumjian and Pask [43]. In [57]
a more general C*-algebra was associated to a finitely aligned higher rank
graph Λ, and a gauge invariant uniqueness theorem was proven for it. A
tensor algebra T+(Λ) can still be defined, and our main theorem (Theorem
2.3) is used to easily extend [32, Theorem 3.6] to finitely aligned higher rank
graphs (see Theorem 5.1).
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As another application of our results, we are able to resolve a question of
Skalski and Zacharias from the end of [59]. They ask the following question:
given a product system X over (Zd,Nd), and a representation of X in the
sense that (σ, T1, ..., Td) is a (d+ 1)-tuple where each (σ, Ti) is an isometric
representation of Xi with some commutation condition, is there a common
dilation (π, U1, ..., Ud) to a representation of X where each (π, Ui) is both
isometric and fully-coisometric. In Corollary 4.2 we show that there is a
positive answer to their question when X is regular, and the representation
(σ, T1, ..., Td) is doubly-commuting (which is equivalent to Nica covariance
in this case). We also construct in Example 5.2 a higher rank graph and
an isometric representation for its associated product system that has no
isometric and fully coisometric dilation. This shows that Nica-covariance
is necessary, and together with earlier observations in [59], this shows that
our result is optimal.

We also give another application to C∗-algebra theory; we use our main
result to obtain analogues of the Hao-Ng isomorphism theorem in the context
of product systems over more general semigroups. Recall that the Hao-Ng
isomorphism problem, as popularized in [8], asks for the validity of the
isomorphism

(1.1) OX or
α G ∼= OXorα G

in the case where X is a single C∗-correspondence and G a locally compact
group acting on X. Even though this problem is still open in general, two
important cases have been worked out: when G is amenable, by Hao and
Ng in their original work [28], and more recently when G is discrete, by the
second author [31]. In this paper we investigate the obvious generalization
of the Hao-Ng isomorphism for product systems and verify its validity for
discrete groups acting on finitely aligned product systems. More specifically,
in Theorem 6.10 we show that if (G,P ) is an abelian, lattice ordered group,

X is a finitely aligned and φ̃-injective product system over P and G is a
discrete group acting on X, then the analogue of equation (1.1) holds in the
sense that NOX or

α G ∼= NOXorα G . This generalizes results from [8, 28,
31, 38].

In the final section of the paper we consider a problem that was left
open in the work of Carlsen, Larsen, Sims and Vittadello [13]. In [13],
the authors study the concept of a co-universal C∗-algebra for a compactly
aligned product system X over a quasi-lattice ordered group (G,P ). This
C∗-algebra, denoted as NOrX , is co-universal with respect to all injective,
gauge compatible representations of X and its existence is not automatically
guaranteed. The main result of [13], when applied to abelian, lattice ordered

groups, shows that NOrX always exists, provided that the system X is φ̃-
injective. (See [13, Theorem 4.1].) Therefore the work in [13] leaves open
the case for various product systems, including those in [58, Example 3.16]

which are not φ̃-injective. As it turns out, the non-selfadjoint techniques of
our paper can be used to tackle this problem as well. In Theorem 7.2 we show
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that for any compactly aligned product system X over an abelian, lattice
ordered group (G,P ), the co-universal C∗-algebra NOrX always exists and
coincides with C∗e(NT +

X ) in a canonical way. This further necessitates the

identification of C∗e(NT +
X ) beyond φ̃-injective product systems, a problem

that we plan to pursue in subsequent work.

Acknowledgement. The present paper grew out of discussions between the
authors during the Multivariable Operator Theory Conference, which was
held at the Technion, Israel, June 18-22, 2017. The authors are grateful
to the organizers of the conference for the invitation to participate and for
their hospitality.

2. Preliminaries

2.1. Operator algebras and C∗-envelopes. We will survey the theory of
non-commutative boundaries for unital operator algebras, and we refer the
reader to [3, 4, 7, 10] for a more in-depth treatment of the theory. A brief
exposition of the results described below, including proofs, can be found in
[9, Section 2.5].

Let A be an operator algebra. We say that the pair (B, ι) is a C*-cover for
A, if ι : A → B is a completely isometric homomorphism, and C∗(ι(A)) = B.

There is always a unique, smallest C*-cover for an operator algebra A.
This C*-cover (C∗e (A), κ) is called the C*-envelope of A and it satisfies the
following universal property: given any other C*-cover (B, ι) for A, there ex-
ists a (necessarily unique and surjective) ∗-homomorphism π : B → C∗e (A),
such that π ◦ ι = κ. We will sometimes identify A with its image ι(A) under
a given C*-cover (B, ι) for A.

The existence of the C∗-envelope for a unital operator algebra was first
established in the seventies by Hamana [27], following the pioneering work of
Arveson [3]. (See [52, Theorem 15.16] for a proof in the spirit of Hamana’s
original work.) For a non-unital operator algebra, the existence of the C∗-
envelope was established much later via unitization, which we now describe.

If A ⊆ B(H) is a non-unital operator algebra generating a C*-algebra
B = C∗(A), a theorem of Meyer [47, Section 3] (see also [10, Corollary
2.1.15]) states that every representation ϕ : A → B(K) extends to a unital
representation ϕ1 on the unitization A1 = A ⊕ CIH of A by specifying
ϕ1(a+λIH) = ϕ(a)+λIK. Meyer’s theorem shows that A has a unique (one-
point) unitization, in the sense that if (B, ι) is a C*-cover for the operator
algebra A, and B ⊆ B(H) is some faithful representation of B, then the
operator-algebraic structure on A1 ∼= ι(A) + C1H is independent of the
C*-cover and the faithful representation of B.

The C*-envelope of a non-unital operator algebra can be computed from
the C*-envelope of its unitization. More precisely, as the pair (C∗e(A), ι)
where C∗e(A) is the C*-subalgebra generated by ι(A) inside the C*-envelope
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(C∗e(A1), ι) of the (unique) unitization A1 of A. By the proof of [10, Propo-
sition 4.3.5] this C*-envelope of an operator algebra A has the desired (co-
)universal property, that for any C*-cover (ι′,B′) of A, there exists a (nec-
essarily unique and surjective) ∗-homomorphism π : B′ → C∗e(A), such that
π ◦ ι′ = ι.

For an operator algebra A generating a C*-algebra B, an ideal J of B is
called a boundary ideal for A if the quotient map B → B/J is a complete
isometry on A. The existence of a C∗-envelope for A implies the existence of
a largest boundary ideal JA of A in B, which is called the Shilov ideal of A
in B. Its importance in our context is that it gives a way of computing the
C*-envelope. Namely, the C*-envelope of A is always isomorphic to B/JA.

2.2. Maximal maps and the unique extension property. The results
of the previous subsection form the necessary prerequisites from abstract
operator algebra theory for the proof of our main result, which is Theo-
rem 3.2. The applications of Theorem 3.2 however require more from that
theory. We survey these additional results from abstract operator algebra
theory in this subsection.

Suppose A is a unital operator algebra generating a C*-algebra B. We
say that a unital complete contraction ρ : A → B(H) has the unique ex-
tension property if the only unital completely positive extension to B is a
∗-representation.

When A is a unital operator algebra, any unital completely contractive
map ρ can be extended to a unital completely positive map on the operator
system A∗ + A. Hence, when A is a unital operator algebra, by Arveson’s
extension theorem any unital complete contraction ρ : A → B(H) has some
unital completely positive extension φ : B → B(H). When ρ has the unique
extension property, it must be automatically multiplicative.

When π : B → B(H) is a ∗-representation such that π|A has the unique
extension property, then any boundary ideal of A in B is annihilated by π.
We will call such π a boundary representation if it is also irreducible. The
boundary theorem of Arveson, Davidson and Kennedy (See [19] and [5])
then shows that the Shilov ideal is the intersection of all kernels of boundary
representations, providing another way of computing the C*-envelope.

For a unital operator algebraA and a unital complete contraction ϕ : A →
B(H), a unital complete contraction ψ : A → B(K) is said to dilate ϕ if there
is an isometry V : H → K such that for all a ∈ A we have ϕ(a) = V ∗ψ(a)V .
Since V is an isometry, we can identify H ∼= V (H) as a subspace of K, so
that ψ dilates ϕ if and only if there is a larger Hilbert space K containing
H such that for all a ∈ A we have that ϕ(a) = PHψ(a)|H where PH is the
projection onto H. We say that a unital complete contraction ρ : A → B(K)
is maximal if whenever π is a unital complete contraction dilating ρ, then
in fact π = ρ⊕ ψ for some unital complete contraction ψ.

Based on ideas of Agler [1] Muhly and Solel from [48], Dritschel and
McCullough [21, Theorem 1.1] (See also [7]) showed that a unital complete
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contraction ρ : A → B(K) is maximal if and only if it has the unique
extension property. Dritschel and McCullough [21, Theorem 1.2] then used
this to show that every unital complete contraction ρ on A can be dilated
to a maximal unital complete contraction π on A.

2.3. Quasi-lattice ordered semigroups. Let P be a subsemigroup of a
group G such that P ∩ P−1 = {e}, where e is the identity element of G.
Then P induces a partial order on G by defining p ≤ q iff p−1q ∈ P which is
left-invariant in the sense that if p ≤ q then rp ≤ rq for p, q, r ∈ P . Following
Nica [51], we say that (G,P ) is a quasi-lattice ordered group if every finite
subset of G with a common upper bound in P , has a (necessarily unique)
least upper bound in P . When p, q ∈ P have a common upper bound, we
will denote their least upper bound by p∨q; and when they do not, we write
p ∨ q =∞. We note that by [14, Lemma 7], the pair (G,P ) is quasi-lattice
ordered if and only every finite subset of G with a common upper bound in
G has a least upper bound in G. When any finite set in G has both a least
upper bound and greatest lower bound, we will say that (G,P ) is lattice
ordered.

An Ore semigroup is a (left and right) cancellative semigroup P such
that Ps ∩ Pt 6= ∅ for all s, t ∈ P . It is easy to see from this, that if
(G,P ) is a quasi-lattice ordered semigroup, then P is Ore if and only if P is
directed in the sense that any two elements p, q ∈ P have a common upper
bound. When (G,P ) is abelian, then xy is an upper bound for any two
elements x and y in P , and we may define x∧ y = (x−1 ∨ y−1)−1. With the
operation ∧, the pair (G,P ) becomes an abelian, lattice ordered group, and
is automatically directed.

For a quasi-lattice ordered group (G,P ), a representation V : P → B(H)
of P by isometries is said to be Nica-covariant if it satisfies

VpV
∗
p VqV

∗
q = Vp∨qV

∗
p∨q.

By a theorem of Laca from [44] (See also [16, Proposition 2.4.8]), every
isometric representation V : P → B(H) of an Ore semigroup has a dilation
to a unitary representation U : P → B(H). In this case, it is easy to verify
that U is automatically Nica-covariant. This theorem is the semigroup ana-
logue of the classical theorem of Itô from dilation theory, that every d-tuple
of commuting isometries have a power dilation to a d-tuple of commuting
unitaries. In particular, we see that every Nica-covariant isometric repre-
sentation of an abelian, lattice ordered group (G,P ) has a unitary dilation.

2.4. C*-correspondences. Here we will give an overview of Hilbert C*-
correspondences. For further details and material, we recommend [46].

Let A be a C*-algebra. A right inner product A-module is a complex
vector space X equipped with a right action of A and an A-valued map
〈·, ·〉 : X ×X → A which is A-linear in the second argument, such that for
x, y ∈ X and a ∈ A we have

(i) 〈x, x〉 ≥ 0
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(ii) 〈x, x〉 = 0 if and only if x = 0
(iii) 〈x, y〉 = 〈y, x〉∗

When X is complete with respect to the norm given by ‖x‖ = ‖〈x, x〉‖
1
2 we

say that X is a Hilbert A-module.
Let X be a Hilbert A module. We say that a map T : X → X is

adjointable if there’s a map T ∗ : X → X such that 〈Tx, y〉 = 〈xT ∗y〉 for
every x, y ∈ X. Every adjointable operator is automatically A-linear and
continuous. We denote by L(X) the C*-algebra of adjointable operators
equipped with the operator norm. For x, y ∈ X there is a special adjointable
operator θx,y ∈ L(X) given by θx,y(z) = x · 〈y, z〉. We will denote by
K(X) C L(X) the ideal of generalized compact operators generated by θx,y
with x, y ∈ X.

A B-A C∗-correspondence is then just a (right) Hilbert A-module X
along with a ∗-homomorphism φ : B → L(X) which is non-degenerate,
i.e., [φ(B)X] = X (this is sometimes called essential). If X is an A-A C∗-
correspondence we will just call X an A-correspondence. We think of φ as
implementing a left action of B on X, and we often write b · x for φ(b)x.

When X is a C-B-correspondences and Y a B-A-correspondence, we may
form the interior tensor product X⊗BY . Indeed, let X�BY be the algebraic
B-balanced tensor product. Then the formula

〈x� y, w � z〉 := 〈y, 〈x,w〉 · z〉,

determines an A-valued sesquilinear form on X�B Y , whose Hausdorff com-
pletion X ⊗B Y is a (right) Hilbert A-module. There is then a left C action
C → L(X ⊗B Y ) given by c · (x� y) = (c · x)� y for each x ∈ X, y ∈ Y and
c ∈ C.

An important example of an A-correspondence is A itself, equipped with
the left and right actions coming from A, and the inner product 〈a, b〉 = a∗b.
Then K(A) is isomorphic to A via θa,b 7→ ab∗, while L(A) is isomorphic to
the multiplier algebra of A.

2.5. Product systems over quasi-lattice ordered semigroups. Let A
be a C*-algebra and P a semigroup with identity e. A product system over
P with coefficients A is a semigroup of A-correspondences X = (Xp)p∈P
such that

(i) Xe is A as an A-correspondence.
(ii) For p, q ∈ P , there exists a unitary A-linear isomorphism Mp,q :

Xp ⊗Xq → Xpq

(iii) The left and right multiplication on each Xp are given via Me,p

and Mp,e for each p ∈ P and we also have associativity in the sense
that for p, q, r ∈ P ,

Mp,qr(IXp ⊗Mq,r) = Mpq,r(Mp,q ⊗ IXr)

Note that our definition forces each Xp to be non-degenerate since Xe⊗Xp

is isomorphic to Xp via the left action implemented by Me,p. We will denote
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Mp,q(x ⊗ y) = xy ∈ Xpq for every x ∈ Xp and y ∈ Xq. We will also denote
by φp : A → L(Xp) the left action on Xp for each p ∈ P . In particular,
φpq(a)(xy) = (φp(a)x)y for all p, q ∈ P , a ∈ A and x ∈ Xp, y ∈ Xq.

Given p ∈ P \{e} and q ∈ P , the unitary A-linear map Mp,q : Xp⊗Xq →
Xpq induces a ∗-homomorphism ιpqp : L(Xp)→ L(Xpq) via

ιpqp := Mp,q ◦ (S ⊗ idXp)M−1
p,q

for each S ∈ L(Xp). Alternatively, we have that the ∗-homomorphism ιpqp
is given by the formula ιpqp (S)(xy) = (Sx)y for each S ∈ L(Xp), x ∈ Xp

and y ∈ Xq. For ιqe, we first define on A ∼= K(A) via ιpe(a) = φp(a), and
then extend uniquely to L(A) via [46, Proposition 2.5] to obtain a map
ιqe : L(A)→ L(Xq). Finally, for notational purposes, we will define ιrp to be
zero whenever r 6= pq for all q ∈ P .

When X = (Xp)p∈P is a product system over a quasi-lattice ordered
semigroup (G,P ), we will say that X is compactly aligned if whenever S ∈
K(Xp) and T ∈ K(Xq) for some p, q ∈ P with p ∨ q < ∞, then S ∨ T :=

ιp∨qp (S)ιp∨qq (T ) ∈ K(Xp∨q).

2.6. Nica-Toeplitz representations. We begin with an important defini-
tion.

Definition 2.1. Suppose (G,P ) is a quasi-lattice ordered group, and X
a compactly aligned product system over P with coefficients in A. An
isometric representation of X into a C∗-algebra B is a map ψ : X → B
comprised of linear maps ψp : Xp → B for each p ∈ P such that

(i) ψe is a ∗-homomorphism from A = Xe into B.
(ii) ψp(x)ψq(y) = ψpq(xy) for all p, q ∈ P and x ∈ Xp, y ∈ Xq.
(iii) ψp(x)∗ψp(y) = ψe(〈x, y〉) for all p ∈ P and x, y ∈ Xp.

It is standard to show that each ψp is contractive, and is isometric pre-
cisely when ψe is injective. We will say that ψ is non-degenerate provided
that B ⊆ B(H) and ψe is non-degenerate. For each p ∈ P we obtain a

∗-homomorphism ψ(p) : K(Xp) → B given by ψ(p)(θx,y) = ψp(x)ψp(y)∗ for
all x, y ∈ Xp.

We will say that an isometric representation ψ of a compactly aligned
product system X is Nica-covariant if for any p, q ∈ P and S ∈ K(Xp),
T ∈ K(Xq) we have that

(2.1) ψ(p)(S)ψ(q)(T ) =

{
ψ(p∨q)(S ∨ T ) if p ∨ q <∞
0 otherwise.

In the case where B ⊆ B(H) is a non-degenerate representation of B,
the above definition simplifies when we consider ψ into B(H). Indeed by
[46, Proposition 2.5] the ∗-homomorphism ψ admits a unique strict-sot

continuous extension on L(Xp), which will be still denoted as ψ(p). Then
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ψ : X → B(H) is Nica-covariant if and only if for any p, q ∈ P we have

(2.2) ψ(p)(I)ψ(q)(I) =

{
ψ(p∨q)(I) if p ∨ q <∞
0 otherwise.

Actually the above condition is the one appearing in the original defini-
tion of Nica-covariance, as it appeared in [26]. It has the drawback that
it applies only to representations into concrete Hilbert spaces, but has the
advantage that it works for arbitrary product systems which are not nec-
essarily compactly aligned. With the advent of compactly aligned systems,
condition (2.2) was replaced by (2.1). Both conditions are equivalent for
concrete representations by [24, Proposition 5.6].

Each product system X has a natural Nica-covariant isometric represen-
tation on Fock space which we now describe. We denote by FX := ⊕p∈PXp

the direct sum of sequences, which is naturally an A-correspondence in its
own. We then define l : X → L(FX) given by lp(x)(yq)q∈P = (xyq)q∈P for
each p ∈ P , x ∈ Xp, and (yq)q∈P ∈ FX . We call l the Fock representation,
which is an isometric Nica-covariant representation of X by [24, Lemma
5.3].

We denote by NTX the universal C*-algebra generated by a Nica-co-
variant representation for X, which exists due to [24, Theorem 6.3]. Put in
other words, there is an isometric Nica-covariant representation iX : X →
NTX such that NTX is generated by the image of iX and for any other
isometric Nica-covariant representation ψ : X → B(H) there exists a ∗-
homomorphism ψ∗ : NTX → B(H) such that ψ∗ ◦ iX,p = ψp, for every
p ∈ P . We remark that in the pertinent selfadjoint literature NTX is usually
denoted as Tcov(X).

By [13, Proposition 3.5] (See also [24, Proposition 4.7]) there is a canon-
ical gauge coaction δX : NTX → NTX ⊗ C∗(G) given by δX(iX,p(x)) =
iX,p(x) ⊗ iG(p) for each p ∈ P and x ∈ Xp. We will say that a rep-
resentation ψ : X → B(H) is gauge-compatible if there is a (full) gauge
coaction β of G on C∗({ψp(Xp)}p∈P ) such that β(ψp(x)) = ψp(x) ⊗ iG(p)
for all x ∈ Xp and p ∈ P . When ψ is gauge compatible, the induced ∗-
homomorphism ψ∗ : NTX → C∗({ψp(Xp)}p∈P ) is equivariant in the sense
that (ψ∗ ⊗ idC∗(G)) ◦ δX = β ◦ ψ∗.

In [24, Theorem 7.2] Fowler provides a condition on an isometric Nica-
covariant representation ψ to induce a faithful ∗-representation ψ∗ of NTX .
We state it here for the case where (G,P ) is abelian, lattice ordered.

As we saw earlier, for an isometric Nica-covariant representation ψ we
have the projections {ψ(p)(I)}p∈P . Each ψ(p)(I) is the SOT limit of (any)

contractive approximate identity for ψ(p)(K(Xp)). Furthermore, since each

Xp is essential, ψ(p)(I) projects onto ψp(Xp)H.

Theorem 2.2 (Fowler). Suppose (G,P ) is an abelian, lattice ordered group,
X is a compactly aligned product system over P with coefficients in A, and
ψ : X → B(H) an isometric Nica-covariant representation. Suppose that
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for any finite set F ⊆ P \ {e} the representation A→ B(H) given by

a 7→ ψe(a)
∏
p∈F

(
I − ψ(p)(I)

)
is faithful. Then the induced ∗-representation ψ∗ : NTX → B(H) is faithful.

As an easy application of this theorem, we see that the ∗-homomorphism
l∗ : NTX → L(FX) induced from the Fock representation l is faithful.
To show this, suppose that ι : A → B(H) is a faithful non-degenerate
representation, so that it induces a representation ψ := l⊗ι : X → B(FX⊗A
H) on a Hilbert space. It is clear that l∗ is injective if and only if ψ∗ is
injective, since the induced map from L(FX) → L(FX ⊗H) given by T 7→
T ⊗ IH is an injective ∗-homomorphism. Hence, we will show instead that
ψ∗ is injective. For that purpose, note that ψe : A → L(FX ⊗H) is faithful
because it is faithful on A after restricting ψe(a) to the reducing subspace

Xe⊗H = A⊗H for every a ∈ A. Next, since (I −ψ(p)(I))|Xe⊗H = PXe⊗H,

we see that the map a 7→ ψe(a)
∏
p∈F

(
I − ψ(p)(I)

)
is faithful on A. Thus,

by the theorem above, we are done.

2.7. Cuntz-Nica-Pimsner representations. In order to define Cuntz-
Nica-Pimsner representations, we need to recall some definitions from [58].
Suppose (G,P ) is quasi-lattice ordered andX is a compactly aligned product
system over P with coefficients in A. We denote Ie(X) = A, and for each
q ∈ P \ {e} write Iq(X) := ∩e<p≤q Ker(φp). We then denote

X̃q := ⊕p≤qXp · Ip−1q(X).

The homomorphism implementing the left action on the A-correspondence
is denoted by φ̃q, and we say that X is φ̃-injective if φ̃q is injective for all
q ∈ P . By [58, Lemma 3.15], if every bounded subset of P has a maximal

element, every product system over P is automatically φ̃-injective. This
holds, for instance, when P = Nd.

Recalling the definitions of the maps ιqp, we obtain homomorphisms ι̃qp :

L(Xp)→ L(X̃q) for all p, q ∈ P with p 6= e defined by ι̃qp(T ) = ⊕p≤r≤qιrp(T )
for all p, q ∈ P with p 6= e. When p = e, similarly to the above we obtain a
homomorphism ι̃qe : K(Xe)→ L(X̃q).

Suppose now that X is φ̃-injective. We say that a Nica-covariant isometric
representation ψ of X is Cuntz-Nica-Pimsner covariant if for every s ∈ P
there exists r ≥ s such that for every q ≥ r and every finite set F ⊆ P for
which

∑
p∈F ι̃

q
p(Tp) = 0, we have

∑
p∈F ψ

(p)(Tp) = 0 when Tp ∈ K(Xp) for
p ∈ F .

When X is φ̃-injective, by [58, Proposition 3.12] there is a universal
C*-algebra NOX generated by a (universal) CNP covariant representation
jX : X → NOX called the Cuntz-Nica-Pimsner algebra of X. One of the
main results [58, Theorem 4.1] in the paper of Sims and Yeend is that the
representation jX,p := (jX)p is isometric on each Xp. By [13, Remark 4.5],
the gauge coaction δX on NTX then yields a natural gauge coaction νX on
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NOX which makes jX into a gauge compatible representation. We combine
[13, Corollary 4.12] and [13, Definition 4.10] to obtain the following gauge
invariant uniqueness theorem.

Theorem 2.3 (Carlsen, Larsen, Sims & Vittadello). Let (G,P ) be an ab-
elian, lattice ordered group and let X be a compactly aligned product system
over P with coefficients in A. Assume that X is φ̃-injective. If ψ : X →
B(H) is a Cuntz-Nica-Pimsner covariant gauge-compatible isometric repre-
sentation such that ψe is injective on A, then the induced ∗-homomorphism
ψ∗ : NOX → C∗({ψp(Xp)}p∈P ) is a ∗-isomorphism.

Since we are assuming in this paper that G is abelian, the concept of
gauge compatibility reduces to a more familiar one and the statement of the
theorem above simplifies considerably.

Proposition 2.4. Let (G,P ) be an abelian, lattice ordered group, and X
a compactly aligned product system over P with coefficients in A. Then a
representation ψ : X → B(H) is gauge-compatible if and only if there exists
a gauge action

α̂X : Ĝ −→ Aut
(
C∗({ψp(Xp)}p∈P )

)
such that α̂X,γ(ψp(x)) = γ(p)ψp(x) for all x ∈ Xp, p ∈ P and γ ∈ Ĝ, the
Pontryagin dual of G.

Proof. For notational simplicity, let B ≡ C∗({ψp(Xp)}p∈P ). Assume first
that ψ is gauge-compatible via a coaction δ of G. Let

F : C∗(G) −→ C(Ĝ)

be the Fourier transform. Then for each γ ∈ Ĝ, the desired α̂X,γ : B → B is
given by the composition

B δ // B ⊗ C∗(G)
id⊗F // B ⊗ C(Ĝ)

id⊗eγ // B,

where eγ : C(Ĝ)→ C denotes the evaluation at γ ∈ Ĝ.

Conversely, assume that ψ admits a gauge action α̂X : Ĝ −→ AutB with
α̂X,γ(ψp(x)) = γ(p)ψp(x) for all x ∈ Xp, p ∈ P and γ ∈ Ĝ. Then the desired
coaction δ comes from the composition

B R // B ⊗ C(Ĝ)
id⊗F−1

// B ⊗ C∗(G),

where R : B → B ⊗ C(Ĝ) is defined by R(b)(γ) ≡ α̂X,γ(b) for b ∈ B, γ ∈ Ĝ,

where we identify B ⊗ C(Ĝ) with C(Ĝ,B).

3. The C*-envelope of a Nica tensor algebra

In this section we characterize the C*-envelope of the Nica tensor algebra
NT +

X of a product system X over a (discrete) abelian, lattice ordered group
(G,P ).
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The Nica tensor algebra of the product system X is given by

NT +
X := alg

‖·‖{iXp (Xp)}.

Alternatively, NT +
X is completely isometrically isomorphic to the non-selfad-

joint operator algebra generated by the image of the Fock representation
l : X → L(FX). It is naturally a subalgebra of NTX , and is also the uni-
versal norm-closed operator algebra generated by a Nica-covariant isometric
representation of X.

In the special case where (G,P ) is the ordered group (Z,N), the alge-
bra NT +

X is just the tensor algebra of a C∗-correspondence of Muhly and
Solel [49]. Such algebras are at the forefront of non-selfadjoint operator
algebra research. See [9, Chapter 2] and the references therein for more
details.

Let (G,P ) be a quasi-lattice ordered group. If ψ : X → B(H) and
V : P → B(K) are isometric representations, then we define a representation

(3.1) ψ ⊗ V : X −→ B(H⊗K); Xp 3 x 7−→ ψp(x)⊗ Vp, p ∈ P.

Clearly ψ ⊗ V is an isometric representation of X.

Lemma 3.1. Let (G,P ) be a quasi-lattice ordered group and let X be a
compactly aligned product system over P with coefficients in A. Assume
that ψ : X → B(H) and V : P → B(K) are isometric representations. Then

(i) If both ψ and V are Nica-covariant then ψ ⊗ V is also Nica-co-
variant.

(ii) If ψ is a CNP representation and U is a unitary representation of
P , then ψ ⊗ U is also a CNP representation of X.

Proof. (i) According to (2.2), we need to verify that

(ψ ⊗ V )(p)(I)(ψ ⊗ V )(q)(I) =

{
(ψ ⊗ V )(p∨q)(I) if p ∨ q <∞
0 otherwise.

Now notice that

(ψ ⊗ V )(p)(I)(H⊗K) = (ψ ⊗ V )p(X)(H⊗K)

=
(
ψp(X)⊗ Vp

)
(H⊗K)

= ψp(X)(H)⊗ Vp(K)

=
(
ψ(p)(I)⊗ VpV ∗p

)
(H⊗K).

Hence we have (ψ⊗V )(p)(I) = ψ(p)(I)⊗VpV ∗p and similarly (ψ⊗V )(q)(I) =

ψ(q)(I)⊗ VqV ∗q . Therefore, if p ∨ q <∞, we have

(ψ ⊗ V )(p)(I)(ψ ⊗ V )(q)(I) = ψ(p)(I)ψ(q)(I)⊗ VpV ∗p VqV ∗q
= ψ(p∨q)(I)⊗ Vp∨qV ∗p∨q
= (ψ ⊗ V )(p∨q)(I)
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and similarly if p and q have no upper bound, (ψ⊗V )(p)(I)(ψ⊗V )(q)(I) = 0,
as desired.

(ii) Since (ψ⊗U)(p) = ψ(p) ⊗ IK, the conclusion follows directly from the
definition of Cuntz-Nica-Pimsner covariance.

The following is the central result of the paper.

Theorem 3.2. Let (G,P ) be an abelian, lattice ordered group. Let X be a

compactly aligned φ̃-injective product system over P with coefficients in A.
Then

C∗e(NT +
X ) ' NOX

via a map that sends generators to generators.

Proof. Let jX : X → NOX ⊆ B(H) be the universal CNP representation
of X where NOX ⊆ B(H) is non-degenerate, and let V : P → B(K) be
the universal Nica-covariant isometric representation of P . We define the
representation

jX ⊗ V : X −→ B(H⊗K); Xp 3 x 7−→ jX(x)⊗ Vp, p ∈ P.
Since both representations jX and V are Nica-covariant, Lemma 3.1(i) im-
plies that jX ⊗ V is also Nica-covariant.

Now V contains the left-regular representation of P as a direct summand
and so there is some 0 6= ξ ∈ K such that VtV

∗
t ξ = 0 for all t ∈ P \ {e}. The

subspace
Hξ := H⊗ span{Vtξ}t∈P

is reducing for jX ⊗ V and for all p ∈ P \ {e} we have(
I − (jX ⊗ V )(p)(I)

)
|Hξ = I ⊗ Pξ,

where Pξ is the projection onto Cξ. Hence, for each finite set F ⊆ P \ {e},
the map

A −→ B(H⊗K); a 7−→ (jX ⊗ V )e(a)
∏
p∈F

(
I − (jX ⊗ V )(p)(I)

)
is injective when restricted to the reducing subspaceHξ. Hence, Theorem 2.2
implies that the induced ∗-homomorphism

(jX ⊗ V )∗ : NTX −→ B(H⊗K)

is injective. In particular, it is completely isometric on NT +
X .

Laca’s theorem [44, Theorem 1.4] now implies the existence of a unitary
dilation

U : P −→ B(K′)
of V on some Hilbert space K′ ⊇ K, and by Lemma 3.1(ii) we have that
jX ⊗ U is a CNP representation of X. Since jX ⊗ U dilates jX ⊗ V , the
induced ∗-homomorphism

(jX ⊗ U)∗ : NTX −→ B(H⊗K′)
is completely isometric on NT +

X .
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On the other hand, the representation jX ⊗ U also induces a ∗-homo-
morphism

(jX ⊗ U)∗∗ : NOX −→ B(H⊗K′).
which is faithful by Theorem 2.3. Indeed, using Proposition 2.4, the C*-
algebra (jX ⊗ U)∗∗(NOX) admits a gauge coaction coming from the gauge

action of Ĝ given by α̂X ⊗ id on (j ⊗ U)∗(NTX) ⊆ NOX ⊗ C∗(G).
Since

jX∗ |NT +
X

= (jX ⊗ U)−1
∗∗ ◦ (jX ⊗ U)∗ |NT +

X
,

the last two paragraphs imply that jX∗ |NT +
X

is a complete isometry and so

(NOX , jX∗ |NT +
X

) is a C*-cover for NT +
X .

To finish the proof we need to verify that (NOX , jX∗ |NT +
X

) is actually

the C∗-envelope of NT +
X . Let JX be the Shilov ideal of NT +

X ⊆ NOX . We

will show that JX = {0} and so C∗e(NT +
X ) ' NOX via a map that sends

generators to generators.
By way of contradiction, assume that JX 6= {0}. Let

α̂X : Ĝ −→ Aut(NOX)

be the canonical gauge action of Proposition 2.4. Clearly each α̂X,γ leaves

invariant NT +
X ⊆ NOX and so it will leave invariant the largest boundary

ideal of NT +
X , i.e., α̂X,γ(JX) = JX , for all γ ∈ Ĝ. Therefore NOX/JX

inherits a canonical gauge action

α̌X : Ĝ −→ Aut(NOX/JX)

so that α̌X,γ ◦ π = π ◦ α̂X,γ , for all γ ∈ Ĝ, where

π : NOX → NOX/JX
is the natural quotient map. By Proposition 2.4, the quotient map π is gauge
compatible, as a representation of X. Since π is not faithful, Theorem 2.3
implies that πe = π |A is not faithful. But since A ⊆ NT +

X , this implies

that π is not faitfhful on NT +
X and so JX is not a boundary ideal, which is

a contradiction. Hence JX = {0} and so C∗e(NT +
X ) = NOX as desired.

Remark 3.3. (i) It is shown in [13] that NOX is co-universal in the sense
that it is the unique C∗-algebra which: (1) is generated by an injective Nica-
covariant representation of X; (2) carries a gauge coaction that is equivariant
with the canonical gauge coaction on Fowler’sNTX ; and (3) has the property
that, given any other C∗-algebra B satisfying (1) and (2), there is a canonical
∗-homomorphism φ : B → NOX .

The above properties do not a priori imply that NOX ' C∗e(NT +
X ) even

though they seemingly come close to doing that. The reason is the univer-
sality property (3). Indeed, to be the C∗-envelope of NTX , NOX must have
the property that given any other C∗-algebra B generated by a completely
isometric representation ψ of NT +

X , there is a canonical *-homomorphism
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φ : B → NOX . It is easy to construct examples of completely isometric rep-
resentations ψ of NT +

X , whose restrictions on X do not produce isometric
representations, in the sense of Definition 2.1. Hence property (3) does not
give the universal property for the C*-envelope.

(ii) In the special case where X is an injective product system over
(Zd,Nd) and satisfies an additional condition (strong compact alignment),
Theorem 3.2 has been obtained independently by Evgenios Kakariadis using
different methods.

4. Dilations of Nica-Toeplitz representations

In this section we answer a question of Skalski and Zacharias, which ap-
pears at the end of [59]. Suppose that X is a compactly aligned product
system with coefficients in A over a quasi-lattice ordered semigroup (G,P ).
We will say that a Nica-covariant isometric representation ψ of X is fully-
coisometric if ψp(Xp)H = ψe(A)H for every p ∈ P .

When (G,P ) = (Zd,Nd), we have a standard set of generators {ei}di=1

for Nd, so that an isometric representation ψ can be considered as d + 1-

tuples (σψ, Tψ1 , ..., T
ψ
d ) where σψ := ψe is a representation of the coefficient

algebra A, and Tψi := ψei is a representation of Xei . In this case, the

d + 1-tuple (σψ, Tψ1 , ..., T
ψ
d ) becomes an isometric representation of X in

the sense of [59, Definition 1.2]. Nica covariance of ψ is equivalent to the

assumption that (Tψ1 , ..., T
ψ
d ) are doubly commuting in the sense of [59,

Definition 2.1], and when ψ is non-degenerate, it is fully-coisometric if and

only if (σψ, Tψ1 , ..., T
ψ
d ) is fully-coisometric as in [59, Definition 1.1]. In fact,

the above forms a bijection between Nica-covariant isometric representations
ψ of X, and doubly-commuting isometric representations (σ, T1, ..., Td) as in
definition [59, Definition 1.1].

In the classical context of a unitary dilation of isometries, a theorem of
Itô shows that every commuting d-tuple of isometries dilate to a commut-
ing d-tuple of unitaries. In the hope of generalizing Itô’s theorem, Skalski
and Zacharias (See [59, Section 5]) ask when an isometric representation
(σ, T1, ..., Td) of a product system X over Nd has an isometric and fully-
coisometric dilation (π, U1, ..., Ud). Laca’s theorem [44] generalizes Itô’s
theorem to show that every isometric representation V : P → B(H) of an
Ore semigroup (G,P ) dilates to a unitary representation.

Recall that a product system X over a quasi-lattice ordered semigroup
(G,P ) is said to be regular when the left action φp of eachXp is injective with
image in K(Xp). By [58, Corollary 5.2] we know that for regular product
systems X with P directed, an isometric representation ψ of X is CNP if
and only if ψ(p) ◦ φp = ψe for all p ∈ P . Hence, when X is regular, since

the projection ψ(p)(I) onto ψp(Xp)H is the SOT limit of (any) contractive

approximate identity for ψ(p)(K(Xp)), we have that ψ is CNP if and only
if each ψp is fully-coisometric. The following yields an answer to Skalski
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and Zacharias’ question in the positive when X is regular and ψ is Nica-
covariant, and is a generalization of [59, Theorem 5.4] to the semigroup
context.

Theorem 4.1. Let X be a regular product system over an abelian, lattice
ordered semigroup (G,P ) and let ψ be a Nica-covariant isometric represen-
tation of X on a Hilbert space H. Then there is an isometric and fully-
coisometric representation ψ̃ of X on K that dilates ψ in the sense that
H ⊆ K and ψp(xp) = PHψ̃p(xp)|H for every xp ∈ Xp.

Proof. Assume that NT +
X is not unital. Since NT +

X has an approximate

unit, by [10, Remark 2.1.8] no C∗-cover of NT +
X is unital.

Let ψ be a Nica-covariant isometric representation of X. This induces
a representation of NTX ; in particular, a completely contractive represen-
tation ψ∗ : NT +

X → B(H) is induced. By Meyer’s Theorem, we have a
completely contractive unitization

ψ1
∗ : (NT +

X )1 −→ B(H)

By the Dritschel-McCullough theorem [21, Theorem 1.2], we have that ψ1
∗

dilates to a maximal representation

ψ̃1
∗ : (NT +

X )1 −→ B(H),

which by [21, Theorem 1.1] has the unique extension property. By Theorem
3.2 and Meyer’s Theorem, (NOX)1 becomes a C∗-cover of (NT +

X )1, via a
map that sends generators to generators canonically. We may therefore

extend ψ̃1
∗ to a ∗-representation of (NOX)1, which we denote with the same

symbol. We now define

ψ̃ : X −→ B(K); ξp = ψ̃1
∗(iX,p(ξp)), p ∈ P,

to obtain an isometric Nica-covariant representation ψ̃ : X → B(K) that
dilates ψ. Since

jX : X −→ NOX
in a CNP representation [58, Proposition 3.12], we have that ψ̃ = ψ̃1

∗ ◦ jX
is also a CNP representation. By the remarks preceding the theorem, ψ̃
is an isometric and fully-coisometric representation that dilates ψ. This
completes the proof in the non-unital case.

If NT +
X is unital, then a repetition of the above arguments without re-

sorting to unitizations, suffices for the proof.

The following is the positive answer to the original question of Skalski
and Zacharias, under the assumption of Nica-covariance.

Corollary 4.2. Let X be a regular product system over Nd, and suppose
that (σ, T1, ..., Td) is a doubly-commuting isometric representation of X on
a Hilbert space H. Then there is an isometric and fully-coisometric repre-
sentation (π, U1, ..., Ud) of X that dilates ψ.
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As another corollary of [58, Corollary 5.2] and Theorem 3.2, we obtain

Corollary 4.3. Let X be a regular product system over an abelian, lattice
ordered semigroup (G,P ). Then C∗e(NT +

X ) is the universal C*-algebra gen-
erated by the image of representations ψ∗ where ψ is a representation of X
such that ψ(p) ◦ φp = ψe for all p ∈ P .

5. Examples and comparisons

5.1. Higher rank graphs. Here we collect some terminology on higher
rank graphs and their product systems. More details can be found in [55],
[56] and [57]. Let G = (V,E, r, s) be directed graph, and partition E =
E1 ∪ ...∪Ed such that each edge carries a unique color from a selection of d
colors. Denote by E• the collection of all paths in G. We may then define
a multi-degree function d : E• → Zd+ by d(λ) = (n1, ..., nd), where ni is the
number of edges in λ from Ei.

A higher rank structure on G is an equivalence relation ∼ on E• such that
for all λ ∈ E• and p, q ∈ Zd+ with d(λ) = p+ q, there exist unique µ, ν ∈ E•
with s(λ) = s(ν), r(λ) = r(µ), such that d(µ) = p and d(ν) = q and λ ∼ µν.
We denote Λ = E•/ ∼ and keep denoting d : Λ→ Zd+ the multi-degree map.
We call the pair (Λ, d) a higher rank graph, so that this way, it becomes a
higher rank graph as in [56, Definition 2.1]. We will keep denoting elements
in Λ by λ with the understanding that they may be represented in various
ways. For each p ∈ Zd+ we denote Λp := {λ ∈ Λ | d(λ) = p}, and when
λ ∈ Λ and F ⊆ Λ, we denote λF := {λµ | µ ∈ F with s(λ) = r(µ)} and

Fλ := {µλ |µ ∈ F with s(µ) = r(λ)}. Wealso write Λ1 := Λ0 ∪
⋃d
i=1 Λei .

For µ, ν ∈ Λ let

Λmin(µ, ν) := {(α, β) : µα = νβ, d(µα) = d(µ) ∨ d(ν)}

be the set of minimal common extensions of µ and ν. We will say that (Λ, d)
is finitely aligned if |Λmin(µ, ν)| < ∞. Given a vertex v ∈ Λ0, we say that
a subset F ⊆ vΛ is exhaustive if for every µ ∈ vΛ there is ν ∈ F such that
Λmin(µ, ν) 6= ∅. Given a finitely aligned higher rank graph (Λ, d), a set of
partial isometries {Sλ}λ∈Λ is called a Toeplitz-Cuntz-Krieger Λ-family if

(P) {Sv}v∈Λ0 is a collection of pairwise orthogonal projections;
(C) SµSν = Sµν when s(µ) = r(ν);

(NC) S∗µSν =
∑

(α,β)∈Λmin(µ,ν) SαS
∗
β.

It is called a Cuntz-Krieger Λ-family if it additionally satisfies

(CK)
∏
λ∈F (Sv − SλS∗λ) = 0 for every v ∈ Λ0 and all non-empty finite

exhaustive sets F ⊆ vΛ.

We will denote the universal C∗-algebra generated by a Cuntz-Krieger Λ-
family by C∗(Λ).

Every higher rank graph (Λ, d) has a natural product system X(Λ) asso-
ciated to it as in [55]. More precisely, for each p ∈ Zd+ we put a pre-Hilbert
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c0(Λ0)-bimodule structure on c0(Λp) via the formula

〈ξ, η〉(v) :=
∑
s(λ)=v

ξ(λ)η(λ) , and (a · ξ · b)(λ) := a(r(λ))ξ(λ)b(s(λ))

The completion X(Λ)p of this pre-Hilbert bimodule then becomes a product
system where the identification X(Λ)p⊗X(Λ)q ∼= X(Λ)p+q is given by δµ⊗
δν = δµν when s(µ) = r(ν) (and is 0 otherwise in both sides if s(µ) 6= r(ν)).
It was shown in [55, Theorem 5.4] that X(Λ) is compactly aligned if and
only if Λ is finitely aligned. Furthermore, X(Λ) is regular if and only if Λ is
row-finite and sourceless (in each color separately).

Given a representation ψ of X(Λ), the family { tλ | λ ∈ Λ } given by
tλ = ψp(δλ) becomes a Λ-family that satisfies conditions (P ) and (C). the
representation ψ is then Nica-covariant if and only if {tλ}λ∈Λ satisfies condi-
tion (NC). In fact, Nica-covariant representations ψ of X(Λ) are in bijection
with Toeplitz-Cuntz-Krieger Λ families. We will denote by T (Λ) = NTX(Λ)

the universal C*-algebra generated by a Toeplitz-Cuntz-Krieger family. By
[58, Theorem 5.4] we see that the Cuntz-Nica-Pimsner algebra NOX(Λ) co-
incides with the universal C*-algebra C∗(Λ) generated by a Cuntz-Krieger
Λ-family, and that CNP representations of X(Λ) are in bijection with Cuntz-
Krieger Λ-families. Denote by T+(Λ) the norm closed generated by a uni-
versal Toeplitz-Cuntz-Krieger Λ-family, which coincides with NT +

X(Λ). As

a corollary of Theorem 3.2 we obtain the following generalization of [32,
Theorem 3.6] to the finitely-aligned case.

Corollary 5.1. Let Λ be a finitely aligned higher rank graph. The C*-
envelope of T+(Λ) coincides with the universal Cuntz-Krieger algebra C∗(Λ)
associated to Λ.

In Theorem 4.1, the assumption of faithfulness of left actions φp for a
product system X over (G,P ) is easily seen to be a necessary assumption
for every isometric Nica-covariant representation to have an isometric and
fully-coisometric dilation. Less clear is the assumption that φp(A) ⊆ K(Xp).
However, in [59, Example 5.5] it is shown that an isometric representation
of a product system over N fails to have an isometric and fully-coisometric
dilation, even with faithful left actions. Our next goal is to show that in the
multivariable context, the assumption of double commutation in Corollary
4.2 cannot be dropped completely.

Example 5.2. There exists an isometric representation ψ of a regular prod-
uct system X(Λ) coming from a finite sourceless graph Λ for which there is
an isometric representation with no isometric and fully coisometric dilation
(and in particular this representation is not Nica-covariant).

Indeed, we begin by describing a colored graph G = (V,E) on four vertices

V := {v1, v2, v3, v4}. v3 has two loops ν
(1)
3 and ν

(2)
3 of distinct colors 1 and 2

respectively, v4 has one loop ν
(1)
4 of color 1 and v2 has one loop ν

(2)
2 of color

2. There are two edges h1, h2 from v4 to v1 with color 1, two edges g1, g2
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•
v1

•
v2

•
v3•

v4 e

f

g1

g2

h2 h1

from v2 to v1 of color 2, an edge f from v3 to v2 of color 1 and an edge e
from v3 to v4 of color 2. This defines a 2-colored graph as in the drawing.
We obtain a higher-rank graph Λ on it by specifying the commutation of
any pair of concatenating edges of distinct colors

hje = gjf, ν
(2)
2 f = fν

(2)
3 , ν

(1)
4 e = eν

(1)
3 , ν

(1)
3 ν

(2)
3 = ν

(2)
3 ν

(1)
3 .

For each 1 ≤ i ≤ 4 define a different copy Hi of the Hilbert space M :=

H(c)
1 ⊕ H

(c)
2 ⊕ H

(s)
1 ⊕ H

(s)
2 , identified via a unitary operator Ji : Hi → M,

where each summand is ℵ0 dimensional and H(c)
j and H(s)

j have orthonormal

bases {ξ(n)
c,j }n∈N and {ξ(n)

s,j }n∈N respectively.

To define a Λ-family {Sλ}λ∈Λ that satisfy (P ) and (C), it will suffice to
specify isometries Tλ : M → M where the source s(λ) = vi and range
r(λ) = vi′ and then set Sλ = J−1

i′ TλJi.

Fix an isometry V :M→H(c)
1 ⊕H

(c)
2 , and take two unitaries T1 :M→

H(c)
1 ⊕ H

(s)
1 and T2 : M → H(c)

2 ⊕ H
(s)
2 . Next, define a switching operator

W :M→M given by

W (ξ
(n)
c,j ) = ξ

(n)
c,j , W (ξ

(n)
s,1 ) = ξ

(n)
s,2 and W (ξ

(n)
s,2 ) = ξ

(n)
s,1 .

We then set

Te = V = Tf , Th1 = T1, Th2 = T2 Tg1 = WT1 and Tg2 = WT2.

By the previous paragraph, we obtain Se, Sf , Sh1 , Sh2 , Sg1 and Sg2 . We
then set each Svi to be the projection onto the i-th copy of Hi, the loops
S
ν
(1)
3

= S
ν
(2)
3

to be the projection onto H3, together with S
ν
(2)
2

and S
ν
(1)
4

as

the projections onto H2 and H4 respectively.
Then, we see that SgiSf = ShiSe so that S = {Sλ}λ∈E∪V clearly satisfies

conditions (P ) and (C), and can hence be extended to a Λ-family {Sλ}λ∈Λ.
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However, S∗g1Sh2 is identified as an operator on M with T ∗1W
∗T2 6= 0, so

we get that S∗g1Sh2 6= 0 while Λmin(g1, h2) = ∅. The former holds since

for ξ = T−1
2 (ξ

(n)
s,2 ) ∈ M we have T ∗1WT2(ξ) = T ∗1W (ξ

(n)
s,2 ) = T ∗1 (ξ

(n)
s,1 ) 6= 0,

and the latter holds since if it didn’t then there would be α, β ∈ Λ such
that g1α = h2β, forcing α = e and β = f . This will contradict the unique
factorization property since we already have g1α = h1β. Hence, S = {Sλ}
fails (NC).

We next show that S cannot have a dilation that satisfies condition (NC).
Assume towards contradiction that W = {Wλ}λ∈Λ is a TCK Λ-family that
dilates S. It would have to have the form

Wλ =

∗ Xλ ∗
0 Sλ ∗
0 0 ∗


for every λ ∈ Λ. Since Wg1W

∗
g1 = Wh2W

∗
h2

= Wv1 , we get that

X∗g1Xg1 + S∗g1Sg1 = Sv1 = X∗h2Xh2 + S∗h1Sh1 ,

and since S∗g1Sg1 = Sv1 = S∗h1Sh1 we see that Xg1 = Xh2 = 0. Since W
satisfies condition (NC), we must have that W ∗g1Wh2 = 0, where the (2, 2)
corner of this equation yields

X∗g1Xh2 + S∗g1Sh2 = S∗g1Sh2 6= 0

in contradiction. Hence, if ψ is the representation of X associate to the
Λ-family S, we see that ψ is fails to have an isometric and fully-coisometric
dilation. Indeed, such a dilation would be Cuntz-Pimsner covariant in the
sense that ψ(p) ◦φp = ψe so that by [24, Proposition 5.4] it would automat-
ically be Nica-covariant.

5.2. Topological higher rank graphs. There is a class of product systems
that generalizes those arising from higher-rank graphs. To describe this
class, one needs to introduce the class of topological higher-rank graphs.
We will not do this here but instead we direct the reader to the papers of
Yeend [60, 61] for the pertinent definitions and additional details.

Corollary 5.3. Let Λ be a compactly aligned topological k-graph. Let GΛ

be Yeend’s boundary path groupoid [61, Definition 4.8] and let X(Λ) be the
product system associated with Λ as in [13, Proposition 5.9]. Then the C*-
envelope of T +

X(Λ) coincides with the groupoid C∗ algebra C∗(GΛ).

Proof. In [13, Theorem 5.20] it is shown that NO(X(Λ)) ' C∗(GΛ). The
conclusion now follows from Theorem 3.2.

Remark 5.4. In the work of Davidson, Fuller and Kakariadis [16], non-
commutative C*-dynamical systems α : ZN+ → End(A) and associated
Nica-Toeplitz NT (A,α) and Cuntz-Nica-Toeplitz NO(A,α) crossed prod-
uct algebras were considered. The majority of [16, Subsection 4.3] is de-
voted to obtain a multivariable tail-adding technique that allows them to
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prove a strong Morita equivalence between NO(A,α) and NO(B, β) where
β : ZN+ → End(B) is injective. This yields several consequences for non-
injective systems, among which are a gauge-invariant uniqueness theorem
[16, Theorem 4.3.17] and a characterization of the C*-envelope [16, Corol-
lary 4.3.18]. In an upcoming paper of the first author with Kakariadis,
we recover [16, Theorem 4.3.17] in an alternative way, and the results in
this current paper can then be used to obtain [16, Corollary 4.3.18], for
non-degenerate systems, as an immediate consequence. This makes for a
substantial simplification of the characterization of the C*-envelope, as it
no longer requires the use of a multivariable tail-adding technique.

6. An application to C∗-algebra theory: the Hao-Ng
isomorphism for product systems

In this section we examine the Hao-Ng isomorphism problem in the con-
text of product systems. In what follows, we assume some familiarity with
the theory of reduced crossed product of (not-necessarily-self-adjoint) oper-
ator algebras, as it appears in [34].

Let (G,P ) be a quasi-lattice ordered group and X = (Xp)p∈P product
system over P with coefficients in A. Consider an action α : G → AutNTX
so that αg(Xp) = Xp, for all g ∈ G and p ∈ P . We call such an action α a
generalized gauge action and we say that the group G acts on X. (Note that
we do not insist that the automorphisms αg fix Xp, p ∈ P , element-wise but
instead that they fix them only as sets.) Clearly the action α restricts to a
generalized gauge action α : G → AutNT +

X . This generalized gauge action

extends to a generalized gauge action on C∗e(NT +
X ) so that when G is abelian

and X is φ̃-injective, we have a generalized gauge action on C∗e(NT +
X ) ∼=

NOX by Theorem 3.2. The crossed product of NOX by such actions play
an important role in C∗-algebra theory: in the case of a Cuntz or a Cuntz-
Krieger C∗-algebra, examples of such actions are the so-called quasi-free
actions whose crossed products have been studied extensively [22, 40, 41].

For each p ∈ P let Xpor
α G be the closed subspace of NTXor

α G generated
by Cc(G, Xp) ⊆ NTX or

α G, i.e., all finite sums of the form
∑

s xsUs, xs ∈
Xp, s ∈ G. Just as in [34, Lemma 7.11], one can verify that for every
p ∈ P , Xpor

α G is an Aor
α G-correspondence with inner product defined by

〈x, y〉 = x∗y, x, y ∈ Xp or
α G ⊆ NTX or

α G. Furthermore, it is easily seen
that (Xp or

α G)(Xq or
α G) ⊆ Xpq or

α G is dense for any p, q ∈ P . Therefore
(Xp or

α G)p∈P forms a product system that we denote as X or
α G.

The C∗-algebra NTXor
α G also contains a non-selfadjoint crossed product

algebra which we denote as NT +
X or

α G. This is the norm closed algebra

generated by a completely isometric copy of NT +
X ⊆ NTX or

α G and C∗r(G).
In particular have the inclusions

X or
α G ⊆ NT +

X or
α G ⊆ NTX or

α G.
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Furthermore, NT +
X or

α G is generated as a closed algebra by X or
α G and

so NTX or
α G is a C∗-cover for NT +

X or
α G.

Remark 6.1. (i) The reader familiar with the theory of non-selfadjoint
crossed products (as developed in [34]) recognizes that NT +

X or
α G coincides

with the reduced crossed product of the dynamical system (NT +
X ,G, α), as

defined in [34, Definition 3.16]. Indeed this follows from an immediate
application of [34, Corollary 3.15].

(ii) When G is abelian, and X is φ̃-injective, we see that NT +
X or

α G is
completely isometrically isomorphic to the natural subalgebra of NOXor

α G
generated by a copy of X and C∗r (G). This follows from Theorem 3.2 and
[34, Corollary 3.16]. Hence, we also obtain an injective copy of X or

α G
sitting naturally inside NOX or

α G.

In order to apply the theory of Section 3 we need to verify that certain
properties of a product system are being preserved when passing to crossed
products by discrete groups. First we investigate compact alignment. The
following definition was inspired by the theory of higher-rank graph C∗-
algebras.

Definition 6.2. Let (G,P ) be a quasi-lattice ordered group and X a prod-
uct system over P . We say that X is finitely aligned if there exists a family
Sp ⊆ Xp, p ∈ P , of total subsets so that whenever p, q ∈ P with p ∨ q <∞,
then θx1,x2 ∨ θy1,y2 ∈ L(Xp∨q) is a generalized finite rank operator for any
choice of x1, x2 ∈ Sp and y1, y2 ∈ Sq.

If (Λ, d) is a finitely-aligned higher-rank graph, then the natural product
system X(Λ) associated with (Λ, d) is finitely aligned. Indeed in that case
simply take

Sp := {δµ | µ ∈ Λp}, p ∈ P
and then follow the proof of [55, Theorem 5.4]. Therefore the class of finitely
aligned product systems includes a very natural and broad class of examples.
But there are many more

Example 6.3. (i) If (G,P ) is totally ordered and X is a product system
over P , then X is finitely aligned.

Indeed in this case we simply take Sp = Xp and we note that if p, q ∈ P ,

then p∨ q is equal to either p or q, say p. But then ιp∨qp (θx1,x2) = θx1,x2 and
so

θx1,x2 ∨ θy1,y2 = ιp∨qp (θx1,x2)ιp∨qq (θy1,y2) = θx1,x2ι
p∨q
q (θy1,y2)

is a generalized rank one operator.
(ii) Let (G,P ) be a quasi-lattice ordered group and X is a product system

over P with coefficients in A. If A acts on each fiber Xp by finite rank
operators, then X finitely aligned.

Indeed it is enough to show that for any p, q ∈ P and x, y ∈ Xp, the
operator θx,y ⊗ I ∈ L(Xp∨q) is of finite rank. To see that express x = x′a
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for a suitable a ∈ Xe and then note that

θx,y ⊗ I = θx′φ(a)θ∗y,

where

θx′ : Xp−1(p∨q) −→ Xp∨q; Xp−1(p∨q) 3 ξ 7−→ x′ξ

and similarly for θy. (See the proof of [46, Proposition 4.7]).

We would have liked to show that the property of compact alignment is
preserved when taking crossed products. Even though we cannot do that,
we obtain a result which is sufficiently close for our purposes.

Proposition 6.4. Let (G,P ) be a quasi-lattice ordered group and X a prod-
uct system over P . Let α : G → AutNTX be a generalized gauge action by a
discrete group G. If X is finitely aligned, then X or

α G is compactly aligned.

Proof. Let Sp, p ∈ P , be as in Definition 6.2 and let p, q ∈ P with p∨q <∞.
To show that X or

α G is compactly aligned, it suffices to verify that S ∨ T
is always a generalized finite rank operator, whenever S and T range over
suitable total subsets of K(Xp or

α G) and K(Xq or
α G) respectively.

Let

(6.1) S = θx1Us1 ,x2Us2 and T = θy1Ut1 ,y2Ut2 ,

where s1, s2, t1, t2 ∈ G and

x1 ∈ αs(Sp), x2 ∈ αt1t−1
2

(Sp), y1 ∈ αt1t−1
2

(Sq), y2 ∈ Sq,

with s := s1s
−1
2 t1t

−1
2 . Then for any z ∈ Xp∨q and r ∈ G, we have

(6.2)

(S ∨ T )zUr = (x1Us1U
∗
s2x
∗
2)(y1Ut1U

∗
t2y
∗
2)zUr

= Usx3x
∗
4y3y

∗
2zUr

= Us
(
(θx3,x4 ∨ θy3,y2)z

)
Ur,

where

x3 = αs−1(x1), x4 = αt2t−1
1

(x2) and y3 = αt2t−1
1

(y1).

Note that x3, x4 ∈ Sp and y3, y2 ∈ Sq and so the hypothesis of X being
finitely aligned implies the existence of zi, z

′
i ∈ Xp∨q, i = 1, 2, . . . n, so that

θx3,x4 ∨ θy3,y2 =

n∑
i=1

θzi,z′i .

Hence (6.2) implies that S∨T =
∑n

i=1 θαs(zi)Us,z′i is a generalized finite rank

operator. Since αs(Sp), αt1t−1
2

(Sp) and αt1t−1
2

(Sq),Sq are total subsets of Xp

and Xq respectively, the conclusion follows.

Now we need a good supply of Nica-covariant representations for the
crossed product system X or

α G.
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Lemma 6.5. Let (G,P ) be a quasi-lattice ordered group and X a product
system over P . Let α : G → AutNTX be a generalized gauge action by
a discrete group G. If π : NTX → B(H) is a ∗-representation, then the
restriction of the regular representation

Indπ : NTX or
α G → B(H⊗ `2(G))

on the product system X or
α G ⊆ NTX or

α G forms a Nica-covariant repre-
sentation.

Proof. Let p ∈ P . Since the correspondence X or
α G is non-degenerate

(essential), we have that Ind
(p)
π (I) projects on the subspace

Indπ
(
(X or

α G)p
)
(H⊗ `2(G)) = Indπ(Xp or

α G)(H⊗ `2(G))

= π(Xp)(H)⊗ `2(G)

and so Ind
(p)
π (I) = π(p)(I)⊗ I. This suffices to prove the result.

Finally we wish to assure that φ̃-injectivity is preserved under discrete
crossed products, so as to get the relations of Sims and Yeend. We use the
following result from [58].

Lemma 6.6. ([58, Lemma 3.2]) Let (G,P ) be a quasi-lattice ordered group
and X a product system over P with coefficients in A. Let p, q ∈ P with
p ≤ q and let x ∈ Xp. Then x ∈ XpIp−1q(X) if and only if xy = 0 for all

y ∈ Xr with e < r ≤ p−1q.

Corollary 6.7. Let (G,P ) be a quasi-lattice ordered group and X a product
system over P . Let α : G → AutNTX be a generalized gauge action by a
discrete group G. Fix p, q ∈ P with p ≤ q.

(i) If x ∈ XpIp−1q(X), then αs(x) ∈ XpIp−1q(X), for any s ∈ G.
(ii) If x ∈ XpIp−1q(X), then x = xUe ∈ (X or

α G)pIp−1q(X or
α G).

Proof. To prove (i) note that if y ∈ Xr with e < r ≤ p−1q, then αs−1(y) ∈
Xr and so

αs−1

(
αs(x)y

)
= xαs−1(y) = 0.

Hence αs(x)y = 0. Since this is true for all y ∈ Xr with e < r ≤ p−1q,
Lemma 6.6 implies that αs(x) ∈ XpIp−1q(X).

The proof of (ii) is an immediate application of Lemma 6.6.

In order to establish the permanence of φ̃-injectivity under reduced crossed
products, we also need a basic fact regarding crossed products of C∗-algebras.
Let A be a C∗-algebra and let α : G → AutA. It is well-known that the
map

E : Cc(G,A) −→ A; Cc(G,A) 3
∑

agUg 7−→ ae

extends to a faithful expectation of A or
α G. Similarly, we have maps

Es : Cc(G,A)→ A given by Es(A) = E(AUs−1), A ∈ Aor
α G. The maps Es

allow for a useful “Fourier series” viewpoint for elements of A or
α G. We
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write A ∼
∑

s∈G Es(A)Us, with the understanding that if Es(A) = 0 for
every s ∈ G, then A = 0. See [54, Proposition 6.1] for a proof of this fact.

Proposition 6.8. Let (G,P ) be a quasi-lattice ordered group and X a prod-
uct system over P with coefficients in A. Let α : G → AutNTX be a gener-
alized gauge action by a discrete group G. If X is φ̃-injective, then X or

α G
is also φ̃-injective.

Proof. We need to verify that for all q ∈ P if the action of A ∈ Aor
α G by

left multiplication on ˜(X or
α G)q is null then A = 0.

Let 0 6= A ∈ Aor
α G and q ∈ P . If A ∼

∑
s∈G asUs is the Fourier expansion

of A ∈ Aor
α G, then by the discussion above there exists t ∈ G so that at 6= 0.

Since X is φ̃-injective, there exists p ≤ q and x ∈ XpIp−1q(X) so that
atx 6= 0. Corollary 6.7 implies now that αt(x)Ue ∈ (Xor

α G)pIp−1p(Xor
α G)

for all t ∈ G. Furthermore

Aαt−1(x)Ue ∼
∑
s∈G

asαs−1t(x)Us

Since the t-term of the series above is atαt−1t(x)Ut = atxUt 6= 0, we have

that Aαt−1(x)Ue 6= 0. Hence A acts non trivially on ˜(X or
α G)q and the

conclusion follows.

Theorem 6.9. Let (G,P ) be an abelian, lattice ordered group and X a
finitely aligned product system over P with coefficients in A. Let
α : G → AutNTX be a generalized gauge action by a discrete group G.
Then

NT +
X or

α G ' NT +
Xorα G .

Therefore, if X is φ̃-injective, then we have

C∗e
(
NT +

X or
α G

)
' NOXorα G .

Proof. Let i = iX : X → B(H) be the universal Nica-covariant representa-
tion of X and let

V : P −→ B(`2(P )); p 7−→ Vp

be the left regular representation of P on `2(P ). Let π ≡ i ⊗ V be defined
as in (3.1). By Lemma 3.1, π is a Nica-covariant representation of X. It is
easily seen to satisfy the requirements of Fowler’s Theorem (Theorem 2.2)
and therefore it induces a faithful representation π∗ : NTX → B(H⊗`2(P )).

Consider the regular representation

Indπ∗ : NTX or
α G −→ B

(
H⊗ `2(P )⊗ `2(G)

)
and let

ψ : X or
α G −→ B

(
H⊗ `2(P )⊗ `2(G)

)
be the restriction of Indπ∗ on X or

α G ⊆ NT or
α G. By Lemma 6.5, ψ is

Nica-covariant.
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We claim that ψ satisfies the requirements of Fowler’s Theorem. Indeed
let Qp ∈ `2(P ) be the projection on the one dimensional subspace corre-
sponding to the characteristic function of p ∈ P and let

Q̂p ≡ (I ⊗Qp)⊗ I ∈ B
(
H⊗ `2(P )⊗ `2(G)

)
.

If f ∈ Cc(G, Xp), p ∈ P , is a finite sum in Xpor
α G and h ∈ H⊗`2(P )⊗`2(G),

then (
Q̂eψp(f)h

)
(s) = Q̂e(Indπ∗f)h(s)

=
∑
s∈G

(I ⊗Qe)π∗
(
α−1
t (f(s))

)
h(s−1t)

=
∑
s∈G

(I ⊗Qe)
(
ip(α

−1
t (f(s)))⊗ Vp

)
h(s−1t)

=
∑
s∈G

(
ip(α

−1
t (f(s)))⊗QeVp

)
h(s−1t) = 0

Hence Q̂eψ
(p)(I) = 0 and so each projection I − ψ(p)(I), p ∈ P , dominates

Q̂e. Therefore if F ⊆ P\{e} is any finite set, then the product
∏
p∈F

(
I −

ψ(p)(I)
)

also dominates Q̂e. Hence

(6.3)
∥∥ψe(f)

∏
p∈F

(
I − ψ(p)(I)

)∥∥ ≥ ∥∥ψe(f)Q̂e
∥∥ =

∥∥Indπ(f)Q̂e
∥∥,

for any f ∈ Cc(G,A). On the other hand

π∗ |A'
(
⊕p∈P (I ⊗Qp)π∗

)
|A'

(
⊕ (I ⊗Qe)π∗

)
|A,

i.e., the restriction of π∗ on A is unitarily equivalent to a direct sum indexed
by P of copies of (I ⊗Qe)π∗ restricted to A. From this we obtain,

ψe = Indπ∗ |Aorα G ' ⊕IndQeπ∗ |Aorα G' ⊕Q̂eIndπ∗ |Aorα G .

Combining the above with (6.3) we now obtain∥∥ψe(f)
∏
p∈F

(
I − ψ(p)(I)

)∥∥ ≥ ∥∥Indπ∗(f)Q̂e
∥∥ = ‖ψe(f)‖

for any f ∈ Cc(G,A), which establishes the claim.
From the claim we obtain that the induced representation ψ∗ is a faith-

ful ∗-representation of NTXorα G . In addition, note that ψ∗(NT +
Xorα G) '

NT +
Xorα G is equal to the closed linear span of

ψ∗(X or
α G) =

⋃
p∈P

ψp(Xp or
α G) =

⋃
p∈P

Indπ∗Cc(G, Xp).

However, NT +
X or

α G is also completely isometrically isomorphic to the closed
linear span of ⋃

p∈P
Indπ∗Cc(G, Xp).
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Hence, NT +
X or

α G ' NT +
Xorα G .

Finally if (G,P ) is directed and X is φ̃-injective, then Proposition 6.8

implies that X or
α G is φ̃-injective and so

C∗e
(
NT +

X or
α G

)
' C∗e(NT +

Xorα G) ' NOXorα G ,

with the last identification following from Theorem 3.2.

We now use the above to obtain our extension of the Hao-Ng isomorphism.

Theorem 6.10. Let (G,P ) be an abelian, lattice ordered group and let X

be a finitely aligned and φ̃-injective product system over P . Let α : G →
AutNTX be a generalized gauge action by a discrete group G. Then

NOX or
α G ' NOXorα G .

Proof. By Theorem 6.9 we have

C∗e
(
NT +

X or
α G

)
' NOXorα G .

On the other hand [31, Theorem 2.5] implies that

C∗e
(
NT +

X or
α G

)
' C∗e(NT +

X ) or
α G.

Hence C∗e(NT +
X ) or

α G ' NOXorα G . Now an application of Theorem 3.2

shows that C∗e(NT +
X ) ' NOX via a G-equivariant map that intertwines the

corresponding generalized gauge actions and the conclusion follows.

Let us indicate the utility of Theorem 6.10 with a quick application. Let
(Λ, d) be a finitely aligned k-graph and let G be a discrete group acting
on X(Λ) via α : G → Aut C∗(Λ), e.g., let G = Fk be the free group on
k-generators acting on C∗(Λ) by twisting the generators with unimodular
scalars. As we discussed in Remark 6.1(ii), X(Λ) or

α G is just the closed
subspace of C∗(Λ) or

α G generated by all monomials of the form xUs, with
x ∈ X(Λ) and s ∈ G. Theorem 6.10 implies that the Cuntz-Nica-Pimsner
C∗-algebra of X(Λ)or

α G is isomorphic to C∗(Λ)or
α G. Even in very special

cases, it is quite intricate to verify this result directly from the definition of
the Cuntz-Nica-Pimsner C∗-algebra.

7. Beyond φ̃-injectivity

In this section we exhibit the existence of a co-universal C*-algebra with
respect to gauge compatible isometric Nica-covariant representations of pro-
duct systems over abelian, lattice ordered groups. Our approach goes
through the C*-envelope and does not assume φ̃-injectivity as in [58]. In
fact, this is what allows for more complicated abelian semigroup pairs such
as (Qd,Qd

+) for which product systems are not easily shown to be φ̃-injective,
and those appearing in [13, Example 3.16] for which there are product sys-

tems that fail to be φ̃-injective.
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Lemma 7.1. Let (G,P ) be an abelian, lattice ordered group. Let X be a
compactly aligned product system over P . Suppose ψ : X → B(H) is an
isometric Nica-covariant representation of X such that

(i) ψe is faithful, and
(ii) ψ is gauge compatible.

Then ψ∗ is completely isometric on NT +
X .

Proof. Suppose ψ is a representation as above. Since ψ is gauge compatible,
there is a ∗-homomorphism

β : C∗({ψ(Xp)}p∈P )→ C∗({ψ(Xp)}p∈P )⊗ C∗(G)

such that β(ψp(x)) = ψp(x) ⊗ Up, p ∈ P , where g 7→ Ug is the left regular
representation of G. Hence, we have the commutative diagram

NTX
ψ∗
��

δX // NTX ⊗ C∗(G)

ψ∗⊗id

��
C∗({ψ(Xp)}p∈P )

β
// C∗({ψ(Xp)}p∈P )⊗ C∗(G))

In order to prove that ψ∗ is completely isometric on NT +
X , it is therefore

sufficient to show that (ψ∗ ⊗ id) ◦ δ is completely isometric on NT +
X .

Consider the isometric representation

ψ ⊗ V : X −→ B
(
H⊗ `2(P )

)
;Xp 3 x 7−→ ψp(x)⊗ Vp, p ∈ P,

where p 7→ Vp is the left regular representation of P . We claim that ϕ
satisfies the conditions of Theorem 2.2 (Fowler’s Theorem). Indeed, let Pe
be the projection onto the characteristic function of e ∈ P in `2(P ). Then
for any p ∈ P\{e} we have

(ψ ⊗ V )(p)(I)(I ⊗ Pe) = (I ⊗ Pe)(ψ ⊗ V )(p)(I) = 0

and for all p ∈ P \ {e} we have
(
I − (ψ⊗V )(p)(I)

)
(I ⊗Pe) = I ⊗Pe. Hence,

for each finite set F ⊆ P \ {e}, the map

Xe −→ B(H⊗ `2(P )); a 7−→ (ψ ⊗ V )e(a)
∏
p∈F

(
I − (ψ ⊗ V )(p)(I)

)
is injective when restricted to the reducing subspace Hξ. Hence, Fowler’s
Theorem implies that the induced ∗-homomorphism

(ψ ⊗ V )∗ : NTX −→ B(H⊗ `2(P ))

is injective. In particular, it is completely isometric on NT +
X .

Let Q be the projection from `2(G) to `2(P ). Then

(I ⊗Q)(ψ ⊗ U)(xp)(I ⊗Q) = (ψ ⊗ l)(xp),
for all xp ∈ Xp, p ∈ Q. Since I ⊗ Q is semi-invariant for (ψ ⊗ U)∗(X), the
above equation promotes to

(7.1) (I ⊗Q)(ψ ⊗ U)∗(x)(I ⊗Q) = (ψ ⊗ V )∗(x),
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for all x ∈ NT +
X . As we saw earlier, (ψ ⊗ V )∗ is completely isometric on

NT +
X . Therefore (7.1) implies the same for (ψ ⊗ U)∗. However

(ψ ⊗ U)∗ = (ψ∗ ⊗ id)δ

and so (ψ∗ ⊗ id) ◦ δ is isometric on NT +
X , as desired.

The main result of this section now follows.

Theorem 7.2 (Co-universality). Let (G,P ) be an abelian, lattice ordered
group and X a compactly aligned product system over P . Then C∗e(NT +

X )
is a co-universal C∗-algebra for isometric, Nica-covariant, gauge compatible
representations of X in the following sense: the representation j : X →
C∗e(NT +

X ) that induces the canonical quotient j∗ : NTX → C∗e(NT +
X ) satis-

fies

(i) je is faithful,
(ii) j∗ is gauge compatible, and
(iii) for any gauge-compatible Nica-covariant isometric representation

ψ : X → B(H) for which ψe is faithful, there is a surjective ∗-
homomorphism q : C∗({ψp(Xp)}p∈P )→ C∗e(NT +

X ) such that

q ◦ ψ(x) = j(x), for all ξ ∈ X.

Proof. The validity of (ii) follows as in the proof of Theorem 3.2. In order
to establish (iii) notice that Lemma 7.1 implies that if such a ψ exists then
ψ∗ is faithful on NT +

X . The existence of the map q : C∗({ψp(Xp)}p∈P ) →
C∗e(NT +

X ) now follows from the defining properties of the C∗-envelope.

The universality conditions of Theorem 7.2 are exactly the defining prop-
erties of the C∗-algebra NOrX of Carlsen, Larsen, Sims and Vittadello. Since
this algebra is canonically isomorphic to any other C∗-algebra satisfying the
same universality conditions (see Theorem 4.1 in [13]), we obtain that NOrX
exists for any compactly aligned product system over an abelian, lattice or-
dered group. This improves [13, Theorem 4.1] for this case, since we do not

require that the system be φ̃-injective.

Acknowledgments. The authors wish to thank Ken Davidson for identi-
fying an error in Example 5.2 of an earlier version of the paper.
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