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Abstract. Using representation theory tecniques we prove that vari-
ous spaces of derivations or one-sided multipliers over certain operator
algebras are reflexive. A sample result: any bounded local derivation (lo-
cal left multiplier) on an automorphic semicrossed product C(Ω)×σ Z+

is a derivation (resp. left multiplier). In the process we obtain vari-
ous results of independent interest. In particular, the finite dimensional
nest representations of the tensor algebra of a topological graph separate
points.

1. Introduction

One of the early results of Barry Johnson [17] asserts that if A is a semi
simple Banach algebra1 and S : A → A is an operator that leaves invariant
all closed left ideals of A, then S is a left multiplier of A. This result has
been the source of inspiration for subsequent work, including its recent use
by the author [23] to cast new light on a familiar behavior for the adjointable
operators on a Hilbert C∗-module.

It is easy to see that the maps preserving all closed left ideals of a Banach
algebra A coincide with the approximately local left multipliers on A. If X
is a right A-module then a map S : A → X is said to be an approximately
local left multiplier iff for any A ∈ A there exists a sequence {XA,n}n in X
so that S(A) = limnXA,nA. One of the motivating questions for the present
work is to what extend Johnson’s Theorem is valid beyond semisimple op-
erator algebras, i.e., for which operator algebras all approximately local left
multipliers are left multipliers. Equivalently, we ask for which operator alge-
bras A, the algebra LM(A) consisting of all left multipliers on A is reflexive,
i.e., alg latLM(A) = LM(A). (Here we view LM(A) as a subalgebra of all
bounded operators on A.)

This line of investigation is not new. Don Hadwin, Jankui Li and their
collaborators [18, 19, 20, 21, 31] have been investigating questions of this
type for the past 20 years for various reflexive operator algebras through
the use of idempotents and their separating spaces. In particular Hadwin
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and Li [21] have shown that Johnson’s Theorem holds for all CSL algebras.
Also Bresar, Semrl and others have been investigating local multipliers (and
derivations) in various other settings, including the purely algebraic, again
through an intricate use of idempotents [2, 3]. The present paper advocates
the more systematic use of representation theory on this line of investiga-
tion and adds new examples which were previously inaccessible to the list
of operator algebras for which Johnson’s Theorem is valid. In particular,
Theorem 3.4 shows that all approximately local left multipliers for the ten-
sor algebra of a topological graph are actually left multipliers. This applies
to various algebras that are currently under investigation, including Peters’
semicrossed products, the tensor algebras of multivariable dynamics, subal-
gebras of Stacey’s and Exel’s crossed products and the tensor algebras of
graphs. Theorem 3.4 is proven with the use of representation theory and
a crucial step in its proof is a result of independent interest: the finite di-
mensional nest representations of the tensor algebra of a topological graph
separate points (Theorem 3.2). This generalizes one of the main results of
an earlier work of Davidson and the author [11, Theorem 4.7].

It turns out that the problem of deciding whether approximately local
multipliers are actually multipliers is intimately related to the study of lo-
cal derivations. The concept of a local derivation was introduced by Dick
Kadison in his seminal paper [22] and was further studied by Johnson [16],
Larson [29], Larson and Sourour [30] and many others. If X is a bimodule
of a Banach algebra A then a map δ : A → X is said to be a local derivation
iff for every A ∈ A, there exists derivation δA so that δ(A) = δA(A). (The
obvious approximate version of this definition establishes the concept of ap-
proximately local derivation.) The question of whether all approximately
local derivations of A are actually derivations is equivalent to the reflexivity
(in the sense of [29]) of the space Z1(A) of all derivations and includes as a
special case the corresponding one for local derivations. Johnson established
the much stronger result that the space Z1(A,X ) of all derivations from a
C∗-algebra A into an A-module is reflexive thus generalizing an earlier result
of Kadison [22]. Hadwin and Li [20] and Crist [8] have established the re-
flexivity for Z1(A) in the case where A is a CD CSL algebra or a direct limit
of finite dimensional CSL algebras respectively. Beyond these two classes,
very little is known regarding the reflexivity of Z1(A) for a non-selfadjoint
operator algebra A. (Note however [31].)

The other central result of this paper, Theorem 4.5, establishes that ap-
proximately local derivations are derivations for a large class of tensor alge-
bras of topological graphs. The proof is more involved than that of Theorem
3.4 and introduces new tools, including that of an acyclic discrete graph and
its associated representations. It turns out that if there are sufficiently many
acyclic or transitive discrete graphs associated with a topological graph, then
one can build a nice representation theory for its tensor algebra (see Lem-
mas 4.2 and 4.4). Our theory applies in particular to Peters’ semicrossed
products C0(Ω)×σ Z+ when σ is a homeomorphism on Ω [1, 10, 34], to the
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tensor subalgebras of Exel and Vershik’s crossed products by topologically
free coverings [4, 5, 14], to tensor algebras of Exel’s crossed products by
partial automorphisms [13] and to various tensor algebras of multivariable
dynamical systems [9]. In all these cases, approximately local derivations
are derivations. We also obtain a similar result for various non-selfadjoint
algebras which do not come from C∗-correspondences. In particular, Propo-
sition 4.13 implies that any local derivation on the universal non-selfadjoint
algebra generated by n contractions is a derivation.

Unlike the case of C∗-algebras [16] or CSL algebras [21], local derivations
on bimodules of tensor algebras need not be derivations. Counterexamples
to demonstrate that behavior are presented in the last section of the paper.
The author welcomes this phenomenon and believes that it will lead to
computable isomorphism invariants for these algebras. This will be explored
in a subsequent work.

2. Revisiting the General Theory

In this section we gather various results needed for the rest of the paper.
Theorem 2.1 and 2.3 are due to Don Hadwin, Jankui Li and their collabo-
rators [18, 19, 20, 21, 31]. Both results have appeared repeatedly in the
literature in various forms and degrees of generality. It turns out that in the
form needed here, both have quite elementary proofs (even in the non-unital
case) which we include. Examples 2.4 and 2.5 at the end of the section ap-
pear to be new; these are quite crucial for building the counterexamples of
the subsequent sections.

Theorem 2.1. Let A be a Banach algebra generated (as a Banach space) by
its idempotents and X be a right Banach A-module. Then any approximately
left multiplier from A into X is a multiplier. Hence LM(A,X ) is reflexive.

Proof. Let S : A → X be an approximate left multiplier. Note that for any
A,B, P ∈ A with P = P 2, we have S(ABP ) ∈ XBP and S(AB(I − P )) ∈
X (B −BP ) Therefore

S(AB)P = S(ABP )P + S(AB(I − P ))P

= S(ABP )P = S(ABP ).

Letting B range over an approximate unit forA, we obtain S(AP ) = S(A)P .
Since A is generated by its idempotents, S is a left multiplier, as desired.

One can easily see that a slight modification of the above proof also implies
that the space EndA(X ) of right A-module operators on X is also reflexive.
We leave the details to the reader.

Lemma 2.2. Let X be a Banach A-bimodule for a unital Banach algebra
A and let δ : A → X be an approximately local derivation. Then

δ(PQ) = δ(P )Q+ Pδ(Q)

for any idempotents P,Q ∈ A.
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Proof. Since δ is an approximately local derivation,

P⊥δ(PQ)Q⊥ = Pδ(P⊥Q)Q⊥ = 0,

where P⊥ ≡ I − P and similarly for Q⊥. Hence

(1) δ(PQ)Q⊥ = Pδ(PQ)Q⊥ = Pδ(Q)Q⊥

and similarly

δ(PQ⊥)Q = Pδ(Q⊥)Q.

By replacing in the above equation Q⊥ with I − Q and then distributing,
we obtain

δ(P )Q− δ(PQ) = Pδ(I)Q− Pδ(Q)Q

and since δ(I) = 0,

(2) δ(PQ)Q = δ(P )Q+ Pδ(Q)Q.

The conclusion follows by adding (1) and (2).

Theorem 2.3. Let A be a Banach algebra generated by its idempotents and
X an Banach A-bimodule. Then Z1(A,X ) is reflexive.

Proof. Extend δ by linearity to an approximate derivation δ̂ of the unitaza-
tion A1 of A, by setting δ̂(I) = 0. Then the extension δ̂, and therefore δ
itself, satisfies the conclusion of the above result for P,Q ∈ A. Since A is
generated by its idempotents, the result follows.

In the papers [18, 19, 20, 21, 31, 36] the reader will find more general
results regarding local maps on Banach algebras. We now present some
counterexamples which demonstrate that even in the simplest of situations,
local maps may fail the corresponding global property.

Example 2.4. If

A =

{(
λ µ
0 λ

)
| λ, µ ∈ C

}
= {λI + µE12 | λ, µ ∈ C}

then

SA : A −→ A : λI + µE12 7−→ λI + 2µE12

is a local multiplier which is not a multiplier.
Indeed if λ 6= 0 then SA(λI+µE12) = (I+µ/λE12)(λI+µE12) or otherwise

SA(µE12) = 2I(µE12). This shows that SA is a local multiplier. It is easy to
see that in the case λ 6= 0, the factor (I + µ/λE12) is uniquely determined
by λI + µE12 and so SA cannot be a multiplier.

Example 2.5. Let {Eij}3i,j=1 be the standard matrix unit system of M3(C)
and let N = E12 + E23.

If

B =


λ µ ν

0 λ µ
0 0 λ

 | λ, µ, ν ∈ C

 =
{
λI + µN + νN2 | λ, µ, ν ∈ C

}
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then

δB : B −→ B : λI + µN + νN2 7−→ νN2

is a local derivation which is not a derivation.
Indeed, it is easy to see that the mappings

δ1 : B −→ B : λI + µN + νN2 7−→ µN2

and

δ2 : B −→ B : X 7−→ (E11 + E22)X −X(E11 + E22)

are derivations. Furthermore, if X = λI + µN + νN2, then

δB(X) =

{
(ν/µ) δ1(X) if µ 6= 0
δ2(X) otherwise.

Therefore δB is a local derivation.
However, δB is not a derivation. Indeed, if X = λI + µN + νN2 and

X ′ = λ′I + µ′N + ν ′N2, then the (1, 3)-entry of

δB(XX ′)− δB(X)X ′ −XδB(X ′)

is equal to µµ′, which is not equal to 0 in general.

Example 2.6 (Crist [8]). Let {Eij} be the standard matrix unit system
for M3(C). If

C = CI + [E12, E13, E23].

and

δC : C −→ C :
∑

xijEij 7−→ (2x13 − x12 + x23)E13

then δC is a local derivation which is not a derivation.

3. Tensor algebras, nest representations and local multipliers

Davidson and the author have shown in [11, Theorem 4.7] that the finite
dimensional nest representations of the tensor algebra of a countable graph
separate points. In this section we extend this result to all tensor algebras
of topological graphs. This applies in particular to algebras associated to
one or more dynamical systems such as Peters’ semicrossed products. Com-
bined with the results of the previous section, this result allows us to obtain
definitive information regarding the local multipliers on these algebras.

A C∗-correspondence (X,A, ϕX) consists of a C∗-algebra A, a Hilbert A-
module (X, 〈 , 〉) and a (perhaps degenerate) ∗-homomorphism ϕX : A →
L(X).

A (Toeplitz) representation (π, t) of a C∗-correspondence into a C∗-algebra
B, is a pair of a ∗-homomorphism π : A → B and a linear map t : X → B,
such that

(i) π(a)t(ξ) = t(ϕX(a)(ξ)),
(ii) t(ξ)∗t(η) = π(〈ξ, η〉),
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for a ∈ A and ξ, η ∈ X. A representation (π, t) is said to be injective iff π
is injective; in that case t is an isometry.

The C∗-algebra generated by a representation (π, t) equals the closed

linear span of tn(ξ̄)tm(η̄)∗, where for simplicity ξ̄ ≡ (ξ1, . . . , ξ(n)) ∈ Xn

and tn(ξ̄) ≡ t(ξ1) . . . t(ξn). For any representation (π, t) there exists a ∗-
homomorphism ψt : K(X)→ B, such that ψt(Θ

X
ξ,η) = t(ξ)t(η)∗.

It is easy to see that for a C∗-correspondence (X,A, ϕX) there exists uni-
versal Toeplitz representation, denotes as (π∞, t∞), so that any other repre-
sentation of (X,A, ϕX) is equivalent to a sub representation of (π∞, t∞).
We define the Cuntz-Pimsner-Toeplitz C∗-algebra TX as the C∗-algebra
generated by all elements of the form π∞(a), t∞(ξ), a ∈ A, ξ ∈ X. The
algebra TX satisfies the following universal property: for any Toeplitz rep-
resentation (π, t) of X, there exists a representation π × t of TX so that
π(a) =

(
(π × t) ◦ π∞

)
(a), ∀a ∈ A, and t(ξ) =

(
(π × t) ◦ t∞

)
(ξ), ∀ξ ∈ X.

Definition 3.1. The tensor algebra T +
X of a C∗-correspondence

(X,A,ϕX) is the norm-closed subalgebra of TX generated by all elements of
the form π∞(a), t∞(ξ), a ∈ A, ξ ∈ X.

It is worth mentioning here that T +
X also sits naturally inside the Cuntz-

Pimsner algebra OX associated with the C∗-correspondence X; this folloes
from [24, 32]. As we will not be making essential use of that theory here,
we skip the pertinent definitions and results and instead direct the reader
to [24, 32] for more details.

The tensor algebras for C∗-correspondences were pioneered by Muhly and
Solel in [32]. They form a broad class of non-selfadjoint operator algebras
which includes as special cases Peters’ semicrossed products [34], Popescu’s
non-commutative disc algebras [35], the tensor algebras of graphs (intro-
duced in [32] and further studied in [25] and the tensor algebras for multi-
variable dynamics [9], to mention but a few.

Due to its universality, the Cuntz-Pimsner-Toeplitz C∗-algebra TX admits
a gauge action that leaves π∞(A) elementwise invariant and “twists” each
t∞(ξ), ξ ∈ X, by a unimodular scalar. Using this action, and reiterating a
familiar trick with the Fejer kernel, one can verify that each element T ∈ T +

X
admits a Fourier series expansion

(3) T = π∞(a) +

∞∑
i=1

tn∞(ξ̄n), a ∈ A, ξ̄n ∈ X n, n = 1, 2, . . . ,

where the summability is in the Cesaro sense. (See [26, 32] for more details.)
A broad class of C∗-correspondences arises naturally from the concept of

a topological graph. A topological graph G = (G0,G1, r, s) consists of two
σ-locally compact2 spaces G0, G1, a continuous proper map r : G1 → G0 and
a local homeomorphism s : G1 → G0. The set G0 is called the base (vertex)

2Due to this assumption, all discrete graphs appearing in this paper are countable.
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space and G1 the edge space. When G0 and G1 are both equipped with the
discrete topology, we have a discrete countable graph (see below).

With a topological graph G = (G0,G1, r, s) there is a C∗-correspondence
XG over C0(G0). The right and left actions of C0(G0) on Cc(G1) are given
by

(fFg)(e) = f(r(e))F (e)g(s(e))

for F ∈ Cc(G1), f, g ∈ C0(G0) and e ∈ G1. The inner product is defined for
F,G ∈ Cc(G1) by

〈F |G〉 (v) =
∑

e∈s−1(v)

F (e)G(e)

for v ∈ G0. Finally, XG denotes the completion of Cc(G1) with respect to
the norm

(4) ‖F‖ = sup
v∈G0
〈F |F 〉 (v)1/2.

When G0 and G1 are both equipped with the discrete topology, then the
tensor algebra T +

G ≡ T
+
XG

associated with G coincides with the quiver algebra

of Muhly and Solel [32]. In that case, T +
G has a natural presentation which

we now describe.
Let G = (G0,G1, r, s) be a countable discrete graph and let G∞ be the path

space of G. This consists of all vertices v ∈ G0 and all paths p = ekek−1 . . . e1,
where the ei are edges satisfying s(ei) = r(ei−1), i = 1, 2, . . . , k, k ∈ N.
(Paths of the form p = ekek−1 . . . e1 are said to have length |p| = k and
vertices are called paths of length 0.) The maps r and s extend to G∞ in the
obvious way, two paths p1 and p2 are composable whenever s(p2) = r(p1)
and in that case, the composition p2p1 is just the concatenation of p1 and
p2. Let {ξp}p∈G∞ denote the usual orthonormal basis of the Fock space
HG ≡ l2(G∞), where ξp is the characteristic function of {p}. The left creation
operator Lq, q ∈ G∞, is defined by

Lqξp =

{
ξqp if s(q) = r(p)
0 otherwise.

By [15, Corollary 2.2], the algebra generated by {Lp | p ∈ G∞} is (com-
pletely isometrically) isomorphic to T +

G . Its weak closure, denoted as LG ,
is the familiar free semigroupoid algebra of G, first studied by Kribs and
Power [28].

Another class of examples for topological graphs arises from multivariable
dynamical systems. If Ω is a σ-locally compact Hausdorff space equipped
with n proper continuous self maps σ = (σ1, σ2, . . . , σn) then let G0 = Ω,
G1 = {1, 2, . . . , n} × Ω, let s : G1 → G0 be the natural projection and let
r(i, x) = σi(x). This defines a topological graph denoted as G(Ω, σ) and
such graphs are naturally associated to various familiar operator algebras.
Indeed in the case of a single variable dynamical system (Ω, σ), the tensor
algebra T +

G(Ω,σ) is completely isometrically isomorphic to Peter’s semicrossed
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product C0(Ω)×σ Z+ [34], which was first studied by Arveson [1]. This is
the universal non-selfadjoint operator algebra generated by a copy of C0(Ω)
and an isometry V , subject to the covariance relations fV = V (f ◦ σ) ,
f ∈ C0(Ω). For more general dynamical systems (Ω, σ), the tensor algebra
T +
G(Ω,σ), usually denoted as T +(Ω, σ), was first studied by Davidson and the

author in [9].
The following generalizes one of the main results of an earlier work of

Davidson and the author [11, Theorem 4.7] and it is essential for the main
result of this section, Theorem 3.4.

Theorem 3.2. If G = (G0,G1, r, s) is a topological graph, then the finite
dimensional nest representations of its tensor algebra T +

G separate points.

Proof. We will construct a family of representations (πv, tv), v ∈ G0, of
the correspondence XG so that the integrated representations ϕv ≡ πv × tv
satisfy:

(i) for each v ∈ G0 there exists a discrete graph Gv so that

(5) ϕv(T +
G )

wot
= LGv ,

where LGv is the free semigroupoid algebra associated with Gv
(ii) the representations ϕv, v ∈ G0, separate the points in T +

G .

Once this is done, the proof follows from the result of Davidson and Kat-
soulis [11, Theorem 4.7] that the weakly continuous finite dimensional nest
representations of the free semigroupoid algebras separate points.

Fix a v ∈ G0 and define inductively

G0
v, n+1 = r

(
G1
v, n

)
G1
v, n+1 = s−1

(
G0
v, n+1

)
, n = 0, 1, . . . ,

where G0
v,0 = {v} and G1

v,0 = s−1({v}). If

Giv =
⋃
n≥0

Giv,n, i = 0, 1,

then we define Gv ≡ (G0
v ,G1

v , r, s), where r and s are the restrictions on G1
v

of the corresponding maps coming from G = (G0,G1, r, s). (The family of
discrete graphs Gv, v ∈ G0, appearing in this proof is said to be the family
of discrete graphs associated with G.)

Let G∞v be the (finite) path space of Gv and let HGv be the Fock Hilbert
space associated with Gv. For f ∈ C0(G0) and F ∈ Cc(G1) we define

πv(f)ξp = f(r(p))ξp

and

tv(F )ξp =
∑

e∈s−1(r(p))

F (e)ξep, p ∈ G∞v
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with the understanding that r(p) = p, when p ∈ G0
v . Clearly,

‖tv(F )ξp ‖2 = ‖ 〈F |F 〉 (r(p))‖ ≤ ‖F‖

for any p ∈ G∞v . Hence tv(F ) extends to a bounded operator on HGv with
its adjoint satisfying t∗v(F )ξw = 0, when w ∈ G0

v , and

t∗v(F )ξep = F (e)ξp

otherwise. Therefore,

tv(F )∗tv(G)ξp = tv(F )∗
( ∑
e∈s−1(r(p))

G(e)ξep

)
=

∑
e∈s−1(r(p))

F (e)G(e)ξp

= 〈F |G〉 (r(p))ξp = πv(〈F |G〉)ξp.

A simple calculation also shows that πv(f)tv(F )πv(g) = tv(fFg), for all
f, g ∈ C0(G0) and F ∈ Cc(G1). Hence (πv, tv) is an isometric covariant
representation of the correspondence XG .

Let π ≡ ⊕v∈G0πv and t ≡ ⊕v∈G0tv. We will show now that the C∗-algebra
C∗(π, t) generated by π(C0(G0)) and t(XG) is isomorphic to the Toeplitz-
Cuntz-Pimsner C∗-algebra TG . From this it will follow that the family of
representations ϕv, v ∈ G0, separates the points in T +

G , since T +
G ⊆ TG .

By the Gauge Invariant Uniqueness Theorem of Katsura [27, Theorem
6.2], it suffices to show that π is faithful on C0(G0), the C∗-algebra C∗(π, t)
admits a gauge action and finally that

I (π, t) ≡ {f ∈ C0(G0) | π(f) ∈ ψt(K(XG))} = 0.

Since πv(f)ξv = f(v)ξv, v ∈ G0, it is clear that π is faithful. To define a
gauge action on C∗(π, t) let

αλ : C∗(π, t) −→ C∗(π, t) : A 7−→ U∗λAUλ, λ ∈ T,

where Uλξp = λ|p|ξp, p ∈ G∞v and |p| equals the length of the path p. Finally,
for any G ∈ XG , we have tv(G)∗ξv = 0, for all v ∈ G0. However if π(f) ∈
I (π, t), then πv(f) can be approximated by linear combinations of elements
of the form

tv(F1) . . . tv(Fk)tv(G1)∗ . . . tv(Gk)
∗, k = 1, 2, . . . ..

Since tv(G)ξv = 0, for all G ∈ XG , we have

|f(v)| = ‖f(v)ξv‖ = ‖πv(f)ξv‖ = 0,

for all v ∈ G0. Hence f = 0, as desired.
It remains to verify the validity of (5). Let v1, v2, . . . be an enumeration

of G0
v . Fix an i ∈ N; for each n ∈ N use Urysohn’s Lemma to obtain

fn = fn,i ∈ C0(G0
v) with

fn(vi) = 1, fn(vj) = 0, for 1 ≤ j ≤ n, j 6= i,
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and |fn(vj)| ≤ 1, for all other j. If L̂vi is any weak limit of {πv(fn)}n then

L̂viξp = ξp, if r(p) = vi, or otherwise L̂viξp = 0. Hence, L̂vi = Lvi , for all i.
Furthermore,

(6) ϕv(T +
G )

wot
3 tv(F )Lvi =

∑
e∈s−1(vi)

F (e)Le ∈ LG .

However
∑∞

i=1 Lvi = I and so (6) implies that

tv(F ) =
∞∑
i=1

tv(F )Lvi ∈ LG , F ∈ Cc(G1
v),

i.e., ϕv(T +
G )

wot
⊆ LG . To obtain the reverse inclusion, let e1, e2, . . . be an

enumeration of G1
v . Fix an i ∈ N; for each n ∈ N use Urysohn’s Lemma to

obtain Fn ∈ Cc(G1
v) with

Fn(ei) = 1, Fn(ej) = 0, for 1 ≤ j ≤ n, j 6= i,

and |Fn(ej)| ≤ 1, for all other j. If vji = s(ei), then again by (6) any weak
limit of {tv(Fn)Lvji}n will equal Lei and the conclusion follows.

Remark 3.3. The representations ϕv in the proof of Theorem 3.2 were
inspired by the familiar orbit representations (see [9, 34]). However, it is
frequent the case that these two classes of representations differ.

Indeed, let (Ω, σ) be a dynamical system on a locally compact Hausdorff
space Ω and recall that Peters’ semicrossed product C0(Ω) ×σ Z+ is the
tensor algebra corresponding to the topological graph G = (G0,G1, r, s) with
G0 = G1 = Ω, s = id and r = σ. Let v ∈ Ω and let H be a separable
Hilbert space with orthonormal base {ξn}∞n=1. The orbit representation λv
of C0(Ω)×σ Z+ is defined by

λv(f)ξn = f(σ(n)(v))ξn, f ∈ C0(Ω), n ∈ N,
λv(V ) = S,

where V ∈ C0(Ω) ×σ Z+ is the universal isometry and S the forward shift
on {ξn}∞n=1.

It is easy to see that when v ∈ Ω is aperiodic (Definition 4.6), then
λv (C0(Ω)×σ Z+) is sot-dense the nest algebra of all lower triangular infinite

matrices with respect to {ξn}∞n=1. Therefore, λv (C0(Ω)×σ Z+)
′′

= B(H).
On the other hand, the range of any of the ϕv′ , v

′ ∈ Ω, constructed above is
sot-dense in a free semigroupoid algebra and so [28, Corollary 4.5] implies

that ϕv′ (C0(Ω)×σ Z+)
′′

is a free semigroupoid algebra. Since B(H) is not
a free semigroupoid algebra, no such ϕv′ , v

′ ∈ Ω, can be unitarily equivalent
to λv, when v is aperiodic.

In [31] it was observed that the representation theory of Davidson and
the author [11] has definitive applications on the theory of local maps for
graph algebras. The following extends the results of [31] to a much broader
class of operator algebras.
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Theorem 3.4. If G = (G0,G1, r, s) is a topological graph, then any approxi-
mately local left multiplier on T +

G is actually a left multiplier, i.e., the algebra

LM(T +
G ) of left multipliers on T +

G is reflexive.

Proof. Let S be an approximately local multiplier on T +
G By the previous

Theorem, there exists a separating family of representations

ρi : T +
G → B(Hi), i ∈ I

on finite dimensional Hilbert space so that each ρi(T +
G ) is a finite dimensional

nest algebra. Furthermore, ρi(T +
G ) is a right T +

G / ker ρi-module, with the
right action coming from ρi. Since S preserves closed left ideals we obtain

Si : T +
G / ker ρi −→ ρi(T +

G );A+ ker ρi 7−→ ρi(S(A)), i ∈ I.

It is easy to verify that Si is an an approximate left multiplier and so The-
orem 2.1 implies that Si is a actually a left multiplier. Hence

Si(AB + ker ρi) = Si(A+ ker ρi)ρi(B)

and so

ρi
(
S(AB)− S(A)B

)
= 0, for all i ∈ I.

Since ∩i ker ρi = {0}, the conclusion follows.

Corollary 3.5. Let (Ω, σ) be a multivariable dynamical system and let
T +(Ω, σ) be its tensor algebra. Then any approximately local multiplier on
T +(Ω, σ) is a multiplier.

There is another class of operator algebras associated to a multivariable
dynamical system (Ω, σ), the so called semicrossed product C0(Ω) ×σ F+

n ,
which was introduced and first studied by Davidson and the author in [9].
We do not know whether approximately local left multipliers are left multi-
pliers in general but the following provides an answer in a particular situa-
tion.

Proposition 3.6. Let (A, σ) be an automorphic multivariable C∗-dynamical
system and assume that the crossed product C∗-algebra A×σ Fn is residually
finite dimensional (RFD). Then any approximately local left multiplier on
A×σ F+

n is a left multiplier.

Proof. Let U1, U2, . . . , Un be the free unitaries in A×σFn implementing the
covariance relations. Let πi, i ∈ I, be a family of irreducible representations
that separates the points in A×σ Fn and let π̂i, i ∈ I, be the restriction of
that family on A×σ F+

n . Since πi(A×σ F+
n ) is an operator algebra acting on

a finite dimensional space, it is inverse closed and therefore it contains the
adjoints of the unitary operators πi(Uj), i = 1, 2, . . . , n. Hence πi(A×σ F+

n )
equals πi(A×σFn) and so π̂i, i ∈ I, is a separating family of finite dimensional
irreducible representations for A×σ F+

n . As with Theorem 3.4, this suffices
to prove the result.



12 E.G. KATSOULIS

Proposition 3.6 applies in particular to the case where A = C and σ
consisting of n-copies of the identity map. Indeed

Corollary 3.7. Let C∗(Fn) be the full C∗-algebra of the free group on n-
generators and let A(F+

n ) be the non-selfadjoint subalgebra of C∗(Fn) gener-
ated by the generators. Then any approximately local multiplier on A(F+

n )
is a multiplier.

Proof. The result follows from a well-known result of Choi [7, Theorem 1]
and Proposition 3.6.

An interesting result of Samei [36] asserts that if all approximately local
one-sided multipliers from a Banach algebra A into its one-sided modules
are one-sided multipliers, then all approximately local derivations on A-
bimodules are derivations. This approach was used by Hadwin and Li [21]
to prove that all local derivations on CSL algebras are actually derivations
by proving the corresponding result for approximately one-sided multipliers.

It turns out that this approach is not applicable here. Neither Theo-
rem 3.4 nor Corollary 3.5 do extend to approximate left multipliers acting
on modules instead of the algebras themselves. The following provides a
broad class of counterexamples.

Example 3.8. Let (Ω, σ) be a dynamical system on a locally compact Haus-
dorff space and assume that σ has a fixed point x ∈ Ω. Then there ex-
ists a finite dimensional C0(Ω) ×σ Z+-module A and a local left multiplier
S : C0(Ω)×σ Z+ → A which is not a left multiplier.

Indeed, let A and SA be as in Example 2.4. Since x ∈ Ω is a fixed point
for σ the mapping

π : C0(Ω)×σ Z+ −→ A;
∞∑
n=0

V nfn 7−→
(
f0(x) f1(x)

0 f0(x)

)
is a representation that makes A a right C0(Ω) ×σ Z+-module with the
natural action coming from π. If

S : C0(Ω)×σ Z+ −→ A; A 7−→ SA(π(A)),

then S is a local left multiplier which is not a left multiplier (otherwise SA
would be a multiplier as well).

4. Local Derivations

In this section we investigate whether an analogue of Theorem 3.4 is valid
for approximately local derivation instead of multipliers. This is a harder
problem and the following illustrates where the difficulty lies.

Proposition 4.1. Let A be an operator algebra and assume that

(i) the finite dimensional nest representations separate points in A
(ii) any derivation on A is inner.

Then any approximately local derivation on A is a derivation.
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Proof. Let δ be an approximately local derivation on A and let {ϕi}i∈I be
a family of finite dimensional nest representations that separate points in A.
Since locally δ can be approximated by inner derivations, it is easy to see
that δ preserves closed ideals. Hence we obtain well-defined approximately
local derivations

δi : A/ kerϕi −→ ϕi(A);A+ kerϕi 7→ ϕi(δ(A)), i ∈ I,

with the right action on ϕi(A) coming from ϕi. Since A/ kerϕi is generated
by its idempotents (it is a finite dimensional nest algebra), Theorem 2.3
implies that the δi are actually derivations. Hence

ϕi
(
δ(AB)− δ(A)B −Aδ(B)

)
= 0,

for all i ∈ I. Since ∩i∈I kerϕi = {0}, the conclusion follows.

If we knew that any derivation on the tensor algebra of a topological graph
is inner, then the result above combined with Theorem 3.2 would imply
that local derivations are derivations on the tensor algebra of a topological
graph. With the exception of [12], it seems that nothing is known in that
direction. We therefore adopt a different approach: using the concept of an
acyclic graph, we build a more flexible representation theory than that of
Theorem 3.2. The drawback is that it is not applicable in all situations.

We begin by recalling some further results regarding the structure of the
tensor algebra of a topological graph G = (G0,G1, r, s). Let

Gn ≡ {enen−1 . . . e1 | ei ∈ G1, s(ei+1) = r(ei), 1 ≤ i ≤ n}

be the space of paths of length n equipped with the topology it inherits
a a subset of G1 × G1 × · · · × G1. Equip Gn with the obvious domain and
range maps s : Gn → G0 and r : Gn → G0, i.e., s(enen−1 . . . e1) = s(e1) and
r(enen−1 . . . e1) = r(en). Then [26, Lemma 1.25] shows that the quadruple
(Gn,G0, r, s) becomes a topological graph which we simply denote as Gn.
Furthermore, [26, Proposition 1.27] shows that XGn ' XG ⊗XG ⊗ · · ·⊗XG ,
via the identification

(7)
(
Fn ⊗ Fn−1 ⊗ · · · ⊗ F1

)
(enen−1 . . . e1) = Fn(en)Fn−1(en−1) . . . F1(e1),

where Fi ∈ XG , i = 1, 2, . . . , n, enen−1 . . . e1 ∈ Gn and ⊗ denotes the
internal tensor product of C∗-correspondences.

Now fix a v ∈ G0 so that the graph Gv is acyclic, i.e., no paths of length
higher than zero start and end at the same vertex, and recall the represen-
tation ϕv = πv × tv of T +

G , as it appears in the proof of Theorem 3.2. Using

ϕv, we construct now a family of finite dimensional representations for T +
G

whose kernels satisfy a useful property.
For each n ∈ N, let

Fv,n =

{
p ∈ G∞v

∣∣∣ s(p) ∈ n⋃
i=0

G0
v,i and r(p) ∈

n⋃
i=0

G0
v,i

}
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and

Hv,n =
∨
{ξp | p ∈ Fv,n} ⊆ HGv .

It is easy to verify that Hv,n is co-invariant for ϕv(T +
G ) and so the compres-

sion of ϕv on Hv,n defines a representation of T +
G denoted as ϕv,n. Since∨

nHv,n = HGv , the family {ϕv,n}n∈N separates points in T +
G / kerϕv.

In order to ensure that the representations appearing in the next lemma
are finite dimensional we need to assume that the topological graph G =
(G0,G1, r, s) is source finite, i.e., s−1({v}) is a finite set for any v ∈ G0.
This assumption is automatically satisfied when G1 is compact and in all
applications considered in this paper.

Lemma 4.2. If ϕv,n is as above, with Gv acyclic, then ϕv,n(T +
G ) is a finite

dimensional operator algebra which is generated by its idempotents.

Proof. Since Gv is acyclic, Gv,i ∩ Gv,j = ∅, for i 6= j. This implies that the
cardinality of Fv,n is finite. Hence Hv,n is finite dimensional and the algebra
ϕv,n(T +

G ) is generated as a linear space by the (finitely many) compressions

L̂p ≡ Lp|Hv,n , p ∈ Fv,n.

If p ∈ Fv,n ∩ G0
v , then L̂p is an idempotent (actually an orthogonal pro-

jection). Otherwise, L̂p = L̂r(p)L̂pL̂s(p) and since Gv is acyclic we have

L̂r(p)L̂s(p) = 0.

Hence the identity

L̂p =
1

2

((
L̂r(p) + L̂p

)
−
(
L̂r(p) − L̂p

))
shows that L̂p is the average of two idempotents and the conclusion
follows.

If G = (G0,G1, r, s) is a topological graph and S ⊆ G1, then N(S) denotes
the collection of continuous functions F ∈ XG with F|S = 0, i.e., vanishing
at S.

Lemma 4.3. Let G = (G0,G1, r, s) be a topological graph.

(i) If S1, S2 ⊆ G1 closed, then

N(S1 ∩ S2) = N(S1) +N(S2).

(ii) If S1 ⊆ G0, S2 ⊆ G1 closed, then

N(r−1(S1) ∪ S2) =
[
{(h ◦ r)F | h|S1

= 0, F|S2
= 0}

]
(iii) If S1 ⊆ G0, S2 ⊆ G1 closed, then

N(s−1(S1) ∪ S2) =
[
{(h ◦ s)F | h|S1

= 0, F|S2
= 0}

]
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Proof. Let K ⊆ G1 compact. We claim that for any sequence {Fn}n with
suppFn ⊆ K, n ∈ N, convergence in XG is equivalent to convergence in the
usual supremum norm ‖ ‖∞ of C0(G1).

Indeed, this will follow if we show that there exists n ∈ N so that
‖F‖ ≤ n‖F‖∞, for any F with suppF ⊆ K. Let U1, U2, . . . , Un be an
open cover of K so that s|Ui is injective for all i = 1, 2, . . . , n. Notice that
for any function G, with suppG ⊆ Ui for some i, we have ‖G‖ = ‖G‖∞.
Hence, if {Hi}ni=1 is a partition of unity for K subordinated by the cover
U1, U2, . . . , Un, then,

‖F‖ ≤
n∑
i=1

‖HiF‖ =
n∑
i=1

‖HiF‖∞ ≤ n‖F‖∞

and the conclusion follows.
(i) Let F ∈ N(S1 ∩ S2). By [26, Lemma 1.6] and its proof, F can be

approximated by functions of the form HF , where H ∈ Cc(G
1). Clearly

such functions belong to N(S1 ∩ S2) and so without loss of generality we
may assume that suppF = K compact. The proof now follows familiar lines
as we only need to approximate F by elements of N(S1) + N(S2), in the
usual supremum norm, while staying inside K.

Let ε > 0 and let Kε = {e ∈ K | |F (e) ≥ ε}. Since Kε is disjoint
from S1 ∩ S2, we can cover Kε with finitely many U1, U2, . . . Um so that
each of the Ui is disjoint from one of the S1, S2. Let Hi, i = 1, 2, . . . ,m
a partition of unity for Kε which is subordinate to U1, U2, . . . Um. Then∑m

i=1 HiF ∈ N(S1) +N(S2) and is ε-close to F .
(ii) Let f ∈ N(s−1(S1) ∪ S2). Once again, by [26, Lemma 1.6] there is

no loss of generality assuming that F has compact support. If {hi}i∈I, is an
increasing approximate unit for C0(G0\S1) ⊆ C0(G0), then Dini’s Theorem
implies that the family {(hi ◦ r)F}i∈I approximates F (in both norms) and
proves the Lemma.

(iii) The proof is similar to that of (ii).

Lemma 4.3 is now being used in the following with Giv, i ∈ N, in the place
of G.

Lemma 4.4. If ϕv,n is as above, with Gv acyclic, then

(kerϕv,n)2 = kerϕv,n.

Proof. From the Fourier series expansion of (3) and the results of Katsura
discussed in the beginning of this section, it follows that each elements of
T +
G admits a Fourier series expansion of the form

(8) π∞(F0) +

∞∑
i=1

ti∞(Fi),

with F0 ∈ C0(G0) and Fi ∈ XGi , i = 1, 2, . . . . It is easy to see now that

kerϕv,n consists precisely of all elements of T +
G , whose Fourier series (8)
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satisfies
Fi ∈ N

(
{p ∈ Fv,n | |p| = i}

)
, i = 0, 1, . . .

Note that in the case where i > n, the set {p ∈ Fv,n | |p| = i} is empty and
so the above simply says that Fi ranges over XGiv .

To prove the Lemma, notice that any sum of the form

(9)
∑(

π∞(F ′0)ti∞(F ′i ) + ti∞(F ′′1 )π∞(F ′′0 )
)

= ti∞

(∑
(F ′0 ◦ r)F ′i +

∑
F ′′1 (F ′′0 ◦ s)

)
,

where F ′0, F
′′
0 ∈ N(∪ni=0G0

v,i) and F ′i , F
′′
i ∈ N({p ∈ Fv,n | |p| = i}), belongs to

(kerϕv,n)2. However, Lemma 4.3 shows that sums of the form
∑

(F ′0 ◦ r)F ′i
are dense in

(10) N
(
r−1
( n⋃
j=0

G0
v,j

)⋃{
p ∈ Fv,n

∣∣∣|p| = i
})

,

and similarly, sums of the form
∑
F ′′1 (F ′′0 ◦ s) are dense in

(11) N
({

p ∈ Fv,n
∣∣∣|p| = i

})⋃
s−1
( n⋃
j=0

G0
v,j

))
,

where r, s denotes the range and source functions on paths of length i. Since
Gv is acyclic

r−1
( n⋃
j=0

G0
v,j

)⋂
s−1
( n⋃
j=0

G0
v,j

)
=
{
p ∈ Fv,n

∣∣∣|p| = i
}

and so Lemma 4.3(i) shows that the closed linear space generated by (10) and
(11) equals {p ∈ Fv,n

∣∣|p| = i}. This shows that the sums in (9) approximate
the i-th Fourier coefficient of any element in kerϕv,n.

Another possibility that we will be considering here is that the graph Gv
may be transitive, i.e., given any two vertices v′, v′′ ∈ G0

v there exists a path
starting at v′ and ending at v′′. In that case, Davidson and the author
have shown [11, Theorem 4.4] that LGv admits a separating family of finite
dimensional irreducible representations. Composing these representations
with the representation ϕv of Theorem 3.2, we obtain a separating family
ϕv,n, n ∈ N, of finite dimensional irreducible representations of T +

G / kerϕv

Theorem 4.5. Let G = (G0,G1, r, s) be a source finite topological graph and
let {Gv}v∈G0 be the family of discrete graphs associated with G. Assume that
the set of all points v ∈ G0 for which Gv is either acyclic or transitive, is
dense in G0. Then any approximately local derivation on T +

G is a derivation.

Proof. Let δ be an approximately local derivation. Consider the represen-
tations ϕv,n, discussed above, where v ranges over all points for which Gv is
either acyclic or transitive and n ∈ N. Because of the density assumption
this family separates points.
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Claim: For any approximately local derivation δ̂ : T +
G → T+

G , we have

δ̂(kerϕv,n) ⊆ kerϕv,n.

Indeed let A ∈ ker ρx,n and let δA be a derivation of T+
G so that δ̂(A) =

δA(A). We distinguish two cases.
If Gv is transitive, then we have noted in the discussion proceeding this

theorem that ϕv,n is a finite dimensional irreducible representation and so
kerϕv,n is a primitive ideal. Since derivations of Banach algebras leave

primitive ideals invariant [33, Proposition 6.4.16], δ̂(A) = δA(A) ∈ kerϕv,n.
On the other hand, if Gv is acyclic then Lemma 4.4 shows that

(kerϕv,n)2 = kerϕv,n. Hence any derivation of T +
G leaves ker ρx,n invari-

ant. In particular, this applies to δA and so δ̂(A) = δA(A) ∈ kerϕv,n in this
case as well.

The rest of the proof follows now familiar lines. By the Claim above, δ
preserves kerϕv,n and so we obtain a map

δx,n : T +
G / kerϕv,n −→ ϕv,n(T +

G );A+ kerϕv,n 7→ ϕv,n(δ(A)).

It is easy to see, again from the Claim above, that δx,n is an an approximate
local derivation. Furthermore, by Lemma 4.2, T +

G / kerϕv,n is generated
by its idempotents and so Theorem 2.3 implies that δx,n is a actually a
derivation. Hence

ϕv,n
(
δ(AB)− δ(A)B −Aδ(B)

)
= 0.

Since ∩v,n kerϕv,n = {0}, the conclusion follows.

The first significant application of the above result is to Peters’ semi-
crossed products, where nothing was previously known regarding local deriva-
tions.

Definition 4.6. Let (Ω, σ) be a dynamical system on a locally compact
Hausdorff space. A point x ∈ Ω is said to be periodic if there exists i ∈ N
so that σ(i)(x) = x. The point x ∈ Ω is said to be eventually periodic if x is

not periodic but one of its iterations σ(i)(x), i ∈ N is periodic. Otherwise x
is said to be aperiodic.

Let (Ω, σ) be a dynamical system on a locally compact Hausdorff space.
The semicrossed product C(Ω)×σ Z+ is the tensor algebra corresponding to
the topological graph G = (G0,G1, r, s) with G0 = G1 = Ω, s = id and r = σ.
If v ∈ Ω then

G0
v = G1

v = Ov ≡ {v, σ(v), σ(2)(v), . . . },
ie., the orbit of v. If v is periodic with period n, then the corresponding
graph Gv is the n-cycle graph Cn that has been studied quite extensively in
the graph algebra theory; this is a transitive graph. On the other hand, if
v is aperiodic then Gv is an infinite countable graph with exactly one edge
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starting from each σ(n)(v) (and ending at σ(n+1)(v)), n =, 0, 1, 2, . . . . This
graph is acyclic.

There also a third possibility that the point v ∈ Ω is eventually periodic
for σ. In that case the graph Gv is a combination of the above graphs. If
k ∈ N is the least positive integer so that σ(k)(v) is periodic, then at σ(k)(v)

the graph Gv supports an n-cycle graph (n is the period of σ(k)(v)) and
receives a tail starting at v. We do not know how to deal with that case as
it is not covered by Theorem 4.5 and so in the next result we assume that
such points are topologically insignificant.

Corollary 4.7. Let (Ω, σ) be a dynamical system on a locally compact Haus-
dorff space Ω. Assume that the eventually periodic points of σ have empty
interior, e.g, σ is a homeomorphism. Then any approximately local deriva-
tion on C(Ω)×σ Z+ is a derivation. Hence Z1(C(Ω)×σ Z+) is reflexive.

Let Ω be a compact Hausdorff space and let σ : Ω→ Ω be a covering map.
Consider the topological graph GEV(Ω, σ) = (G0,G1, r, s), where G0 = G1 =
Ω, r = id and s = σ. Assume further that the system (Ω, σ) is topologically

free, i.e., the sets Ωm,n ≡ {v ∈ Ω | σ(m)(v) = σ(n)(v)} have empty interior
for all m 6= n. It is known [5, Theorem 6.1] that the Cuntz-Pimsner C∗-
algebra associated with GEV(Ω, σ) is isomorphic to the Exel crossed product
C∗-algebra C(Ω)oσ,LN, where L is the transfer operator that averages over
inverse images of points. The condition of topological freeness was isolated
by Exel and Vershik in their original work [14] and was further studied in
[4, 5, 6]. It is consequence of these works that the tensor algebra T +

EV(Ω, σ)
for GEV(Ω, σ) admits the following elegant description

Example 4.8. A faithful representation for a T +
EV(Ω, σ), when (Ω, σ) is

topologically free.
Let H be a Hilbert space with orthonormal base {ev}v∈Ω. For f ∈ C(Ω)

let Mf be the multiplication operator Mf (ev) = f(v)ev, v ∈ Ω, and

S(ev) =
(
L(1Ω)(v)

)−1/2
∑

w∈σ−1({v})

ew

In [6, Theorem 6] it is shown that the C∗-algebra generated by Mf , f ∈
C(Ω), and S is canonically isomorphic to C(Ω)oσ,L N, i.e., with generators
going to generators. Furthermore, it is a consequence of [5, Proposition
3.1] and [5, Theorem 6.1] that C(Ω) oσ,L N is once again canonically iso-

morphic to OEV(Ω, σ). This implies that T +
EV(Ω, σ) is isomorphic to the

non-selfadjoint algebra generated by Mf , f ∈ C(Ω), and S.

Corollary 4.9. Let Ω be a compact Hausdorff space and let σ : Ω → Ω
be a topologically free covering map. If GEV(Ω, σ) = (G0,G1, r, s), where
G0 = G1 = Ω, r = id and s = σ, then any approximately local derivation on
T +
EV(Ω, σ) is a derivation.

Proof. It is not difficult to see that for a point v ∈ Ω, the corresponding
discrete graph Gv is acyclic iff v /∈ ∪m 6=nΩm,n. By the Baire Category
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Theorem, ∪m6=nΩm,n has empty interior and the conclusion follows from
Theorem 4.5

Another application of Theorem 4.5 takes place for certain tensor alge-
bras that materialize as subalgebras of Exel’s crossed products by partial
automorphisms. Let Ω be a locally compact space and σ a partial homeo-
morphism, i.e., σ : U → V is a homeomorphism between two open subset
U, V of Ω. Let θ : C0(U) → C0(V ) be the ∗-automorphism induced by
σ. The triple (θ, C0(U), C0(V )) is called a partial automorphism of C0(Ω).
In [13, Definition 3.7] Exel associates a C∗-algebra C0(Ω) ×θ Z with the
partial automorphism (θ, C0(U), C0(V )). This algebra is defined through a
universal property but Katsura has shown that it corresponds to the Cuntz-
Pimsner algebra corresponding to the graph G = (G0,G1, r, s), where G0 = Ω,
G1 = U , r = σ and s is the natural embedding.

Corollary 4.10. Let C0(Ω) ×θ Z be Exel’s crossed product by the partial
automorphism (θ, C0(U), C0(V )) of Ω and let C0(Ω)×θ Z+ be the associated
tensor algebra. Then any approximately local derivation on C0(Ω)×θ Z+ is
a derivation.

We now focus on tensor algebras for multivariable dynamical systems. If
(Ω, σ) is such a system, with σ = (σ1, σ2, . . . , σn), and u = ikik−1 . . . i1 ∈ F+

n

then we write σu ≡ σik ◦ σik−1
◦ · · · ◦ σi1 .

Corollary 4.11. Let (Ω, σ) be a multivariable system on a locally compact
space Ω and assume that the set

Ω0 =
{
v ∈ Ω | σu(v) = σw(v), for some u,w ∈ F+

n with |u| 6= |w|
}

has empty interior. Then any approximately local derivation on T +(Ω, σ) is
a derivation.

Proof. It is easy to verify that Gv is acyclic provided that v ∈ Ω\Ω0.

The assumptions of the above Corollary hold in particular when Ω = T,
and σk(z) = e2πiθkz, k = 1, 2, with θ1, θ2 irrational satisfying θ1/θ2 /∈ Q.

Corollary 4.12. Let G be a finite group acting on a locally compact Haus-
dorff space Ω via a family of automorphisms σG ≡ {σg}g∈G. Then any
approximately local derivation on T +(Ω, σG) is a derivation.

Proof. We claim that for any v ∈ Ω, the graph Gv of Theorem 3.2 is tran-
sitive, i.e., given any two vertices v′, v′′ ∈ G0

v there exists a path starting at
v′ and ending at v′′. Indeed by construction for any v′ ∈ G0

v there is a path
of the form

(gi, σg−1
i

(v′)), . . . (g2, σg1(v))(g1, v), gk ∈ G, k = 1, 2, . . . , i

starting at v and ending at v′. Since G is a group, the opposite path

(g−1
1 , g1(v)) . . . (g−1

i−1, g
−1
i (v′))(g−1

i , v′)
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exists thus establishing the existence of paths between v and any v′ in both
directions. Thus Gv is transitive. The result follows now from
Theorem 4.5.

We observed in Proposition 3.6 that the semicrossed product A×σ F+
n for

a multivariable C∗-dynamical system (A, σ) admits a separating family π̂i,
i ∈ I of finite dimensional irreducible representations. Since the kernels of
these representation are primitive ideals of A×σF+

n , any approximately local
derivation leaves them invariant. Therefore by following the same steps as
in the proof of Theorem 4.7 we obtain

Proposition 4.13. Let (A, σ) be an automorphic multivariable
C∗-dynamical system and assume that the crossed product C∗-algebra A×σFn
is residually finite dimensional (RFD). Then any approximately local deriva-
tion on A×σ F+

n is a derivation.

In particular, Proposition 4.13 applies to the universal algebra A(F+
n ) ⊆

C∗(Fn) generated by n contractions (see the proof of Proposition 3.7). Here
is another application coming from [9].

Corollary 4.14. Let σ = (σ1, σ2) be a multivariable system on the two-point
space Ω = {0, 1}, with σ1 = id and σ2(i) = i+ 1 mod 2, i = 0, 1, Then any
approximately local derivation on C(Ω)×σ F+

2 is a derivation.

Proof. In [9, Example 3.24], we observed that C(Ω)×σ F2 ' M2(C∗(F3)),
which is RFD, and so the conclusion follows from Proposition 4.13.

5. concluding remarks and open problems

Theorem 4.5 does not extend to local derivations with range on a bimodule
rather than the tensor algebra itself. The counterexample is a actually on a
semicrossed product bimodule.

Example 5.1. Let (Ω, σ) be a dynamical system on a locally compact
Hausdorff space and assume that σ has a fixed point x ∈ Ω. Then there
exists a finite dimensional C0(Ω) ×σ Z+-module B and a local derivation
δ : C0(Ω)×σ Z+ → B which is not a derivation.

Indeed, let B and δB be as in Example 2.5. Since x ∈ Ω is a fixed point
for σ the mapping

π : C0(Ω)×σ Z+ −→ B;

∞∑
n=0

V nfn 7−→

f0(x) f1(x) f2(x)
0 f0(x) f1(x)
0 0 f0(x)


is a representation that makes B a right C0(Ω) ×σ Z+-module with the
natural action coming from π. If

δ : C0(Ω)×σ Z+ −→ B; A 7−→ δB(π(A)),

then δ is a local derivation which is not a derivation (otherwise δB would be
a derivation as well).
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A modification of the above example also works for the non-commutative
disc algebra An, i.e., the tensor algebra of the graph with one vertex and
n-loops, thus showing the failure of Theorem 4.5 for local derivations on
An-modules as well. It turns out that using Example 2.6, we can construct
yet another An-module to demonstrate that failure.

Example 5.2. Let An, n ≥ 2, be the non-commutative disc algebra with
generators A1, A2, . . . , An and let C, δC be as in Example 2.6. From the dila-
tion theory for row contractions, it follows that there exists a representation
π : An → M3(C) so that

π(A1) = E12, π(A2) = E23 and π(Ai) = 0, for all other i.

If

δ : An −→ C; A 7−→ δC(π(A)),

then δ is a local derivation from An onto the An-module C = π(An) which
is not a derivation.

The above example shows that A2 admits local derivations on modules of
dimension 3 and 4, which are not derivations. Does this persist on higher
dimensions? One is tempted to guess that the answer is affirmative but we
do not have a systematic way of producing such examples. What about
semicrossed product modules? Can one construct such counterexamples as
Example 5.1 with modules of dimension higher than 3? Also we wonder
whether any counterexamples do exist in the case where σ is free.

It goes without saying that the following two open problems are tantaliz-
ing.

Problem 1. Prove or disprove that a local left multiplier on the tensor
algebra of a C∗-correspondence is actually a left multiplier.

Problem 2. Prove or disprove that an approximately local derivation on an
arbitrary semicrossed product is actually a derivation.
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