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Abstract

We study crossed products of arbitrary operator algebras by locally compact
groups of completely isometric automorphisms. We develop an abstract theory
that allows for generalizations of many of the fundamental results from the selfad-
joint theory to our context. We complement our generic results with the detailed
study of many important special cases. In particular we study crossed products
of tensor algebras, triangular AF algebras and various associated C˚-algebras. We
make contributions to the study of C˚-envelopes, semisimplicity, the semi-Dirichlet
property, Takai duality and the Hao-Ng isomorphism problem. We also answer
questions from the pertinent literature.
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CHAPTER 1

Introduction

In this monograph we develop a theory of crossed products that allows for a
locally compact group to act on an arbitrary operator algebra, not just a C˚-algebra.
We establish foundational results, uncover permanence properties and demonstrate
important connections between our crossed product theory and various lines of
current research in both the non-selfadjoint and the C˚-algebra theory.

The reader familiar with the non-selfadjoint literature knows well that crossed
product type constructions have occupied the theory since its very beginnings.
However most constructions in that theory involve the action of a semigroup which
rarely happens to be a group, on an operator algebra which is usually a C˚-algebra.
There is a good reason for this and it goes back to the early work of Arveson [3, 6].
Arveson recognized that in order to better encode the dynamics of a homeomor-
phism σ acting on a locally compact space X , one should abandon group actions
and instead focus on the action of Z` on C0pX q implemented by the positive it-
erates of σ. This initiated the study of what Peters coined as the semicrossed
product C0pX q ˆσ Z` [75]. The study of semicrossed products by Z`, F`n (the
free semigroup on n generators) and other important semigroups has produced a
steady stream of important results and continues to this day at an increasing pace
and depth [3, 6, 16, 18, 19, 21, 48, 67, 75, 88].

In this monograph we follow a less-travelled path: we start with an arbitrary
operator algebra, preferably non-selfadjoint, and we allow a whole group to act on
it. It is remarkable that there have been no systematic attempts to build a com-
prehensive theory around such algebras even though this class includes all crossed
product C˚-algebras. Admittedly, our interest in group actions on non-selfadjoint
operator algebras arose reluctantly as well. Indeed, apart from certain important
cases (see, e.g., [15, 68, 91]), the structure of automorphisms for non-selfadjoint
operator algebras is not well understood. Our initial approach stemmed from an
attempt to settle two open problems regarding semi-Dirichlet algebras (which we do
settle using the crossed product). We soon realized that even for very “elementary”
automorphisms (gauge actions), the crossed product demonstrates a behavior that
allows for significant results.

The monograph is organized in eight chapters, including this introduction which
appears as Chapter 1. Chapter 2 establishes the terminology used in the monograph
and contains many of the fundamental results from operator algebra theory that
we require in the sequel. Most of the results contained here come from five main
sources [10, 12, 58, 74, 98], with additional sources mentioned within the chapter.
Chapter 2 also contains some original material, i.e., Propositions 2.2 and 2.6, to be
used in later chapters.

In Chapter 3 we define the various crossed products appearing in the mono-
graph. Given a C˚-dynamical system pA,G, αq there are two natural choices for a
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2 1. INTRODUCTION

crossed product, the (full) crossed product A¸α G and the reduced crossed product
A¸rα G. In the general case of an operator algebra A there are many more choices,
which we call relative crossed products, depending on the various choices of a C˚-
cover for A. After a careful consideration, we single out the appropriate choice for
the (full) crossed product (Definition 3.9) as the relative crossed product coming
from the universal C˚-cover C˚maxpAq of A. Because all relative reduced crossed
products coincide (Corollary 3.16), the quest for a reduced crossed product trivi-
alizes. With the appropriate definitions at hand, we can now transfer results from
the selfadjoint theory to our context. For instance, in Theorem 3.10 we generalize
to the non-selfadjoint setting a result of Raeburn [86] regarding the universality
of the crossed product of C˚-algebras. In Theorem 3.14 we show that if the lo-
cally compact group G is amenable, then all relative crossed products coincide; the
proof of this result requires the theory of maximal dilations [33]. In Theorem 3.20
we give a “covariant” generalization of Naimark’s Theorem on positive definite
group representations. This allows us to obtain the von Neumann-type inequality
of Corollary 3.21.

Iterated crossed products play a prominent role in the selfadjoint theory. Our
first task in Chapter 4 is to explain how to make sense of an iterated crossed
product within the framework of our theory. After accomplishing this, we move on
to Takai duality. Indeed one of the central results of the selfadjoint theory involving
iterated crossed products is the Takai Duality Theorem [95], which extends the
Pontryagin Duality to the context of operator algebras and C˚-dynamical systems.
In Theorem 4.4 we succeed in extending the Takai Duality to the context of arbitrary
dynamical systems not just selfadjoint. Apart from its own interest, this extension
has significant applications for the study of semisimplicity for operator algebras, as
witnessed in Chapter 6. (See Theorem 6.14 and Example 6.15.)

One of the immediate consequences of our early theory and a key ingredient in
the proof of our Takai duality, is the identity

C˚max

`

A¸α G
˘

» C˚maxpAq ¸α G.

(See Theorem 4.1.) One of the motivating questions of the monograph is the validity
of the other identity

(1.1) C˚env

`

A¸α G
˘

» C˚envpAq ¸α G,

regarding the C˚-envelope of the crossed product. In Chapter 3 we verify this
identity in the case where G is a locally compact abelian group (Theorem 3.23). In
Chapter 5 we continue this investigation and in Theorem 5.5 we verify (1.1) in the
case where A is Dirichlet but G arbitrary. In Chapter 5 we also present the first
application of our theory. In [20], Davidson and Katsoulis made a comprehensive
study of dilation theory, commutant lifting and semicrossed products, with the
class of semi-Dirichlet algebras playing a central role in the theory. At the time of
the writing of [20], our understanding of the abundance of semi-Dirichlet algebras
was limited and the following two questions arose regarding them. Are there any
semi-Dirichlet algebras which are not isometrically isomorphic to tensor algebras
of C˚-correspondences? Are there any semi-Dirichlet algebras which are neither
tensor algebras of C˚-correspondences nor Dirichlet algebras? In Theorem 5.12
and Corollary 5.15 we answer both questions in the affirmative. A key ingredient
in producing these results is Theorem 5.8 which asserts that the reduced crossed
product of a semi-Dirichlet operator algebra is also semi-Dirichlet. If one wishes to
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study semi-Dirichlet algebras, then the crossed product is indeed an indispensable
tool.

In Chapter 6, we uncover another permanence property in the theory of crossed
product algebras. In Theorem 6.2 we show that if A is a semisimple operator algebra
and G a discrete abelian group, then A¸α G is semisimple. This raises the question
whether the converse is also true. It turns out that in certain cases this is indeed
true but in other cases it is not. To demonstrate this we investigate a class of
operator algebras which was quite popular in the mid 90s: triangular AF algebras
[17, 27, 29, 28, 44, 63, 84]. Building on the beautiful ideas of Donsig [27], we
prove Theorem 6.9 which states that if A is a strongly maximal TAF algebra and
G a discrete abelian group, then the dynamical system pA,G, αq is linking if and
only if A ¸α G is semisimple. In Example 6.8, we present an example of a non-
semisimple TAF algebra A that admits a linking automorphism α. Therefore A¸αZ
is semisimple even though A is not, thus refuting the converse of Theorem 6.2. On
the other hand, Theorem 6.12 shows that for TUHF algebras the semisimplicity of
A and A ¸α G are equivalent properties. We expect more in this direction, with
the investigation of other dynamical systems pA,G, αq and the semisimplicity of
the associated crossed products. We truly envision the study of semisimplicity (or
other permanence properties) for crossed products as a theory that will parallel in
interest and abundance of results that of simplicity for selfadjoint crossed products.
As evidence we offer a remarkable, we believe, result which shows that for crossed
products by compact abelian groups, the situation of Theorem 6.2 reverses. In
Theorem 6.14 we show that if A ¸α G is a semisimple operator algebra and G
a compact abelian group, then A is semisimple. Furthermore, in Example 6.15
we show the converse is not in general true. Both these results are accomplished
through the use of our non-selfadjoint Takai duality.

Chapter 7 makes a connection with a topic in C˚-algebra theory, which is
currently under investigation or impacts the work of various authors, including
Abadie, Bedos, Deaconu, Hao, Kaliszewski, Katsura, Kim, Kumjian, Ng, Quigg,
Schafhauser and others [1, 7, 26, 42, 50, 56, 59, 94]. These authors are either
using or currently investigating the validity of the Hao-Ng isomorphism Theorem
beyond the class of amenable locally compact groups. This is a problem seemingly
irrelevant to the non-selfadjoint theory as it involves the functoriality of two crossed
product constructions in C˚-algebra theory. It is a consequence of our Theorem 7.7
that the investigation of the previously mentioned authors is equivalent to resolv-
ing the identity (1.1) for a very special class of non-selfadjoint dynamical systems
pA,G, αq, where A is the tensor algebra of a C˚-correspondence and α : G Ñ AutA,
the action of a locally compact group by generalized gauge automorphisms. Actu-
ally, Theorem 7.7 leads to a recasting of the Hao-Ng Isomorphism Problem, which
we verify in the case of (not necessarily injective) Hilbert bimodules (Theorem 7.14).

It is worth mentioning that the main focus of Chapter 7 is not the Hao-Ng
Isomorphism problem itself but instead verifying another permanence property for
the crossed product: the crossed product of a tensor algebra A by a locally compact
group G of gauge automorphisms remains in the class of tensor algebras. (We
have seen in Theorem 5.12 that this is not the case when the group G acts by
arbitrary automorphisms.) In order to obtain the affirmative answer (Theorem 7.9)
we use a result of independent interest, which we label the Extension Theorem. The
Extension Theorem (Theorem 7.5) gives a very broad criterion for verifying whether
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an operator algebra “naturally” containing a C˚-correspondence X is isomorphic
to the tensor algebra of X. This a very general result with additional applications
to appear elsewhere.

The monograph closes with Chapter 8, where we list some open problems for
further investigation. With each open problem listed, we give a brief commentary
intended to help the reader guide himself through the pertinent material or liter-
ature. Two of these problems concern the classification of crossed products. This
a topic which is left untouched in this monograph and we plan to address it in a
subsequent work.

Beyond the specific problems of Chapter 8, this work also suggests two general
directions for future research: one “abstract” and another one more “concrete”. The
current C˚-algebra literature is occupied with the study of more general concepts
of a crossed product, e.g., crossed products by coactions, twisted actions and much
more. This is such a broad area that we will not even be attempting to survey
it here; see however [35] and the references therein. If one wishes to develop
non-commatative duality and the appropriate versions of our non-selfadjoint Takai
duality of Chapter 4, then the abstract study of these more general crossed products
at the non-selfadjoint level is of the highest priority.

On the concrete side, the non-selfadjoint operator algebra theory is currently
being infused by a wealth of very deep and far-reaching studies. In a broad sense,
the current rapid development of “free analysis” and “free function theory” involves
naturally certain non-selfadjoint operator algebras, as witnessed in the works of
Muhly and Solel [69, 70], Popescu [80, 81, 82, 83] and others. Closer to this
monograph, Shalit and Solel [93] pioneered recently the study of a new class of
operator algebras, the tensor algebras of subproduct systems. These algebras ex-
hibit a very diverse and unexpected behavior as demonstrated in the recent papers
[32, 49]. Even for very special cases the study of these algebras relates to topics
which are very popular and quite demanding, such as the Drury-Arveson spaces and
algebraic varieties associated with ideals [24, 25, 43], stochastic matrices [31, 32],
subshifts [49, 93] and more. It seems to us that the tensor algebras of subproduct
systems and their peripheral algebras should be the natural place to extend the
theory of Chapter 7. In particular it would be very interesting to see how the Hao-
Ng isomorphism problem manifests itself in that context. This of course hinges on
understanding what the Cuntz-Pimsner algebra of a subproduct system should be;
again this is a topic of important current research [49, 32, 96, 97].

Finally a word about the groups appearing in this monograph. Our main goal
is to develop a comprehensive theory of crossed products that is applicable to all
locally compact groups. Hence the majority of our work concerns that generality.
Nevertheless many of our results are new and interesting even in the case where
G “ Z. For instance, this is the case with all (counter)examples appearing in
Chapter 5 or the semisimplicity results of Chapter 6. A special mention needs to
made for Chapter 7. There we took the unusual step of “duplicating” proofs in
order to give a more elementary and self-contained treatment of the case where G
is discrete. We believe that this adds to the monograph as it makes very accessible
a work that bridges the selfadjoint with the non-selfadjoint theory.



CHAPTER 2

Preliminaries

2.1. Generalities

The term operator algebra is understood to mean a norm closed subalgebra
of the algebra of all bounded operators acting on a Hilbert space. All algebras
in this monograph are assumed to be approximately unital, i.e., they possess a
contractive approximate identity. All representations (and homomorphisms into
multiplier algebras, whenever applicable) will be required to be non-degenerate.

On occasion we will need to exploit the richer structure of unital operator
algebras. If A is an operator algebra without a unit, let A1 ” A`CI. If ϕ : AÑ B
is a completely isometric homomorphism between non-unital operator algebras,
then Meyer [65, Corollary 3.3] shows that ϕ extends to a complete isometry ϕ1 :
A1 Ñ B1. This shows that the unitization of A is unique up to complete isometry.

In the category of unital algebras with morphisms the completely contractive
maps, the concept of a dilation of a morphism is defined as follows. Let A be a unital
operator algebra and π : A Ñ BpHq be a completely contractive map. A dilation
ρ : A Ñ BpKq for π is a completely contractive map so that PHρp.q |H“ π. A
completely contractive map is called maximal if it admits no non-trivial dilations.
(Since we are within the unital category, all maps so far are either assumed or
required to be unital.) Dritschel and McCullough [33, Theorem 1.2] have shown
that any completely contractive representation π of an operator algebra A admits
a maximal dilation ρ, which also happens to be multiplicative.

Given an operator algebra A, a C˚-cover pC, jq for A consists of a C˚-algebra
C and a completely isometric homomorphism j : AÑ C with C “ C˚pjpAqq.

Definition 2.1. Two C˚-covers pCi, jiq, i “ 1, 2, of an operator algebra A
are said to be equivalent, denoted as pC1, j1q » pC2, j2q, provided that there exists
˚-isomorphism j : C1 Ñ C2 that makes following diagram

(2.1) C1

j

  
A

j1

OO

j2
// C2

commutative.

Given an operator algebra A, the C˚-envelope C˚envpAq ” pC˚envpAq, jq is any
C˚-cover of A satisfying the following property: for any other C˚-cover pC, iq of A
there exists a ˚-epimorphism ϕ : C Ñ C˚envpAq so that ϕpipaqq “ jpaq, for all a P A.
As it turns out the collection of all C˚-covers that qualify as the C˚-envelope for
A forms an equivalence class under the equivalence of Definition 2.1. The concept
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6 2. PRELIMINARIES

of the C˚-envelope plays a paramount role in abstract operator algebra theory
[4, 5, 22].

If pC, jq is a C˚-cover of a unital operator algebra A, then there exists a largest
ideal J Ď C, the Shilov ideal of A in pC, jq, so that the quotient map C Ñ C{J when
restricted on jpAq is completely isometric. It turns out that C˚envpAq » pC{J , q˝jq,
where q : C Ñ C{J is the natural quotient map. A related result asserts that if
π : AÑ BpHq is a completely isometric representation of a unital operator algebra
A and ρ a maximal dilation of π, then

`

C˚
`

ρpAq
˘

, ρ
˘

» C˚envpAq. See [5, 33] for
more details. If A is a non-unital operator algebra then we can describe the C˚-
envelope of A by invoking its unitization as follows: if C˚envpA1q »

`

C˚envpA1q, j1
˘

,

then C˚envpAq » pC, jq, where C ” C˚pj1pAqq and j ” j1
|A. See the proof of [10,

Proposition 4.3.5] for the precise argument.
If A is an operator algebra then there exists a C˚-cover C˚maxpAq ” pC˚maxpAq, jq

with the following universal property: if π : A Ñ C is any completely contractive
homomorphism into a C˚-algebra C, then there exists a (necessarily unique) ˚-
homomorphism ϕ : C˚maxpAq Ñ C such that ϕ ˝ j “ π. The cover C˚maxpAq is called
the maximal or universal C˚-algebra of A. The equivalence class of this C˚-cover
also plays a crucial role in abstract operator algebra theory [8, 9]. See also [10]
and the references therein for more applications of C˚maxpAq.

We list a few more results regarding (approximately unital) operator algebras.
The interested reader should consult the comprehensive monograph of Blecher and
Le Merdy [10] for more details. By [10, Lemma 2.1.7], the C˚-cover of an approx-
imately unital operator algebra A is actually unital only when A itself is unital.
Furthermore a contractive approximate unit for A is also an approximate unit for
any C˚-cover C “ C˚pAq of A [10, Lemma 2.1.7]. If A is an operator algebra, then

MpAq ” tx P A˚˚ | xa, ax P A, for all a P Au

is the multiplier algebra of A. For any completely isometric non-degenerate repre-
sentation π : AÑ BpHq, the algebra

tT P BpHq | Tπpaq, πpaqT P A, for all a P Au

is completely isometrically isomorphic to MpAq via an isomorphism that fixes A
elementwise [10, Proposition 2.6.8]. Furthermore, MpAq ĎMpCqq for any C˚-cover
C of A [10, page 87]. Therefore, A ĎMpAq is a (two-sided) ideal, which is essential
both as a left and a right ideal of MpCq.

Let A, B be operator algebras. A completely contractive homomorphism
ϕ : AÑMpBq is said to be a multiplier-nondegenerate morphism, if both rϕpAqBs
and rBϕpAqs are dense in B. There are many equivalent formulations of this prop-
erty based on Cohen’s factorization theorem; see [10, Section 2.6.11]. A multiplier-
nondegenerate morphism ϕ : AÑ MpBq always admits a unique, unital and com-
pletely contractive extension ϕ : MpAq Ñ MpBq [10, Proposition 2.6.12]; such a
map is easily seen to be strictly continuous.

Finally we need to explain how we make sense of integrals where the integrand
is a function taking values in the multiplier algebra of an operator algebra. (Propo-
sitions 3.7, 3.8 and Theorem 3.10.) If the integrand is norm continuous, then see
[98, Lemma 1.91]. Otherwise we use the following.

Proposition 2.2. Let G be a locally compact group with left-invariant Haar
measure µ. Let A be an operator algebra and let G Q s ÞÑ fpsq PMpAq be a strictly
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continuous function with compact support. Then there exists a unique element
ş

fpsqdµpsq PMpAq satisfying
´

ż

fpsqdµpsq
¯

a “

ż

fpsqadµpsq

a
´

ż

fpsqdµpsq
¯

“

ż

afpsqdµpsq,

(2.2)

for all a P A.
Furthermore, if B is an approximately unital operator algebra and ϕ : A Ñ

MpBq is a completely contractive, multiplier-nondegenerate morphism, then

(2.3) ϕ
´

ż

fpsqdµpsq
¯

“

ż

ϕ
`

fpsq
˘

dµpsq.

Proof. If A is a C˚-algebra, then the existence and uniqueness of such an
element follows from Lemma 1.101 in [98]. We will rely on this result in order to
to explain the validity of (2.2) and (2.3) in general.

Let C be a C˚-cover for A; as we noticed earlier we have MpAq Ď MpCq. Let
teiuiPI be a contractive approximate identity for A (and therefore for C as well).
For any c P C, the functions G Q s ÞÑ fpsqc P C and s ÞÑ cfpsq P C can be
uniformly approximated by the norm continuous functions s ÞÑ fpsqeic, i P I, and
s ÞÑ ceifpsq, i P I, respectively and so they are norm continuous. Hence s ÞÑ fpsq
is strictly continuous in MpCq. Lemma 1.101 in [98] implies the existence of an
element

ş

fpsqdµpsq PMpCq so that
´

ż

fpsqdµpsq
¯

c “

ż

fpsqcdµpsq

c
´

ż

fpsqdµpsq
¯

“

ż

cfpsqdµpsq,

for all c P C. However, the above equations show that for any a P A both
` ş

fpsqdµpsq
˘

a and a
` ş

fpsqdµpsq
˘

are in A and so
ş

fpsqdµpsq PMpAq.
In order to establish (2.3), assume that ϕ : A Ñ MpBq is a multiplier- non-

degenerate morphism, i.e., rϕpAqBs and rBϕpAqs are dense in B. Since B is also
approximately unital, both integrals in (2.3) are well-defined. Therefore, for arbi-
trary a P A, b P B, we have

ϕ
´

ż

fpsqdµpsq
¯

ϕpaqb “ ϕ
´

ż

fpsqdµpsqa
¯

b “ ϕ
´

ż

fpsqadµpsq
¯

b

“

´

ż

ϕ
`

fpsqa
˘

dµpsq
¯

b “
´

ż

ϕ
`

fpsq
˘

ϕpaqdµpsq
¯

b

“

´

ż

ϕ
`

fpsq
˘

dµpsq
¯

ϕpaqb.

A similar argument establishes

bϕpaqϕ
´

ż

fpsqdµpsq
¯

“ bϕpaq
´

ż

ϕ
`

fpsq
˘

dµpsq
¯

.

Since B ĎMpBq is an essential ideal, the conclusion follows. �

Remark 2.3. If ϕ : A Ñ BpHq is a contractive, non-degenerate representa-
tion, then it can also be viewed as a morphism ϕ : A Ñ M

`

KpHq
˘

, where KpHq
denotes the compact operators. Since A is approximately unital, then it follows
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that ϕ : A Ñ M
`

KpHq
˘

is also a multiplier-nondegenerate morphism and so (2.3)
is applicable for such a ϕ.

To see the multiplier-nondegeneracy of ϕ, let teiuiPI be a contractive approx-
imate identity for A. The non-degeneracy of ϕ implies that tϕpeiquiPI converges
strongly to the identity I P BpHq. Hence for an k P KpHq, we have limi ϕpeiqk “ k
in norm and so [10, Lemma 2.1.6] implies limi k

˚ϕpeiq “ k˚. Therefore rKpHqϕpAqs Ď
KpHq is dense. The density of rϕpAqKpHqs in KpHq is elementary to verify.

2.2. C˚-correspondences and tensor algebras

A C˚- correspondence pX, C, ϕXq consists of a C˚-algebra C, a Hilbert C-module
pX, x , yq and a (non-degenerate) ˚-homomorphism ϕX : C Ñ LpXq into the ad-
jointable operators on X.

Two C˚-correspondences pX, C, ϕXq and pY,D, ϕY q are said to be unitarily
equivalent if there exist a ˚-isomorphism σ : C Ñ D and a linear surjection W :
X Ñ Y so that:

(i) W pxcq “ pWxqσpcq and W pϕXpcqxq “ ϕY pσpcqqWx,
(ii) xWx,Wx1y “ σ

`

xx, x1y
˘

,

for all c P C and x, x1 P X. In that case we say that the pair pW,σq implements the
unitary equivalence.

An isometric (Toeplitz) representation pρ, tq of a C˚-correspondence into a C˚-
algebra D, is a pair consisting of a ˚-homomorphism ρ : C Ñ D and a linear map
t : X Ñ D, such that

(1) ρpcqtpxq “ tpϕXpcqpxqq,
(2) tpxq˚tpx1q “ ρpxx, x1yq,

for all c P C and x, x1 P X. A representation pρ, tq is said to be injective iff ρ is
injective; in that case t is an isometry.

The C˚-algebra generated by a representation pρ, tq equals the closed linear
span of tnpx̄qtmpȳq˚, where for simplicity x̄ ” px1, . . . , xnq P Xn and tnpx̄q ”
tpx1q . . . tpxnq. For any representation pρ, tq there exists a ˚-homomorphism ψt :
KpXq Ñ B, such that ψtpθ

X
x,yq “ tpxqtpyq˚.

It is easy to see that for a C˚-correspondence pX, C, ϕXq there exists a universal
Toeplitz representation, denoted as pρ8, t8q, so that any other representation of
pX, C, ϕXq is equivalent to a direct sum of sub-representations of pρ8, t8q. We
define the Cuntz-Pimsner-Toeplitz C˚-algebra TX as the C˚-algebra generated by
all elements of the form ρ8pcq, t8pxq, c P C, x P X. By the universality of pρ8, t8q
the algebra TX satisfies the following property: for any Toeplitz representation pρ, tq
of X, there exists a representation ρ¸ t of TX , called the integrated form of pρ, tq,
so that ρpcq “

`

pρ ¸ tq ˝ ρ8
˘

pcq, for all c P C, and tpxq “
`

pρ ¸ tq ˝ t8
˘

pxq, for all
x P X. (See [57, Definition 3.1] and the subsequent comments.)

We say that a Toeplitz representation pρ, tq admits a gauge action if there exists
a family tγzuzPT of ˚-endomorphisms of C˚

`

pρ¸ tqpTXq
˘

so that

γzpρpcqq “ ρpcq, for all c P C, γzptpxqq “ ztpxq, for all x P X.

The following result of Katsura [57, Theorem 6.2] gives an easy to use criterion for
verifying that a Toeplitz representation pρ, tq integrates to a faithful representation
ρ¸ t of TX .
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Theorem 2.4 (Gauge Invariant Uniqueness Theorem). Let pX, C, ϕXq be a C˚-
correspondence and let pρ, tq a Toeplitz representation of pX, C, ϕXq that admits a
gauge action and satisfies

(2.4) I 1pρ,tq ” tc P C | ρpcq P ψtpKpXqqu “ t0u.

Then ρ¸ t is a faithful representation of TX .

It is worth giving an example of a concrete Toeplitz representation of pX, C, ϕXq
that will help make some of the results that follow more transparent. For that
we need to define first the concept of the stabilized tensor product between C˚-
correspondences.

Let pX, C, ϕXq and pY, C, ϕY q be C˚-correspondences. The interior or stabilized
tensor product, denoted by XbY , is the quotient of the vector space tensor product
X balg Y by the subspace generated by the elements of the form

xcb y ´ xb ϕY pcqy, x P X, y P Y, c P C.

It becomes a pre-Hilbert C-module when equipped with

pxb yqc ” xb pycq,

xx1 b y1, x2 b y2y ” xy1, ϕY pxx1, x2yqy2y ,

where x, x1, x2 P X, y, y1, y2 P Y and c P C. For S P LpXq we define S b idY P
LpX b Y q as the mapping

xb y ÞÑ Spxq b y, x P X, y P Y.

Hence X b Y becomes a C˚-correspondence by defining ϕXbY pcq ” ϕXpcq b idY ,
c P C.

The Fock space FX over the correspondence pX, C, ϕXq is the interior direct
sum of the Xbn ” Xbn´1 b X, n P N, with the structure of a direct sum of
C˚-correspondences over C,

FX “ C ‘X ‘Xb2 ‘ . . . .

Given x P X, the (left) creation operator t18pxq P LpFXq is defined as

t18pxqpc, ζ1, ζ2, . . . q “ p0, xc, xb ζ1, xb ζ2, . . . q,

where c P C and ζn P X
bn, for all n P N. For any c P C, we define

ρ18pcq “ Lc ‘ ϕXpcq ‘ p‘
8
n“1ϕXpcq b idnq.

It is easy to verify that pρ18, t
1
8q is a Toeplitz representation of pX, Cq which is

called the Fock representation of pX, Cq. It follows from Theorem 2.4 that the
representation ρ18 ¸ t

1
8 : TX Ñ LpFXq is actually faithful.

Given a C˚-correspondence pX, C, ϕXq, there is a natural non-selfadjoint sub-
algebra of TX that plays an important role in this monograph.

Definition 2.5. The tensor algebra T `X of a C˚-correspondence pX, C, ϕXq is
the norm-closed subalgebra of TX generated by all elements of the form ρ8pcq, t8pxq,
c P C, x P X.

It is worth mentioning here that T `X also sits naturally inside the Cuntz-Pimsner
algebra OX associated with the C˚-correspondence X. This follows from work in
[34, 54, 67] which we now describe.
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If pX, C, ϕXq is a C˚-correspondence, then let

JX ” kerϕKX X ϕ
´1
X pKpXqq.

A representation pρ, tq of pX, C, ϕXq is said to be covariant iff ψtpϕXpcqq “ ρpcq,
for all c P JX . The universal C˚-algebra for “all” covariant representations of
pX, C, ϕXq is the Cuntz-Pimsner algebra OX . The algebra OX contains (a faithful
copy of) C and (a unitarily equivalent) copy of X. Katsoulis and Kribs [54, Lemma
3.5] have shown that the non-selfadjoint algebra of OX generated by these copies of
C and X is completely isometrically isomorphic to T `X . Furthermore, C˚envpT `X q »
OX . See [54, 67] for more details.

The tensor algebras for C˚-correspondences were pioneered by Muhly and Solel
in [67]. They form a broad class of non-selfadjoint operator algebras which includes
as special cases Peters’ semicrossed products [75], Popescu’s non-commutative disc
algebras [78], the tensor algebras of graphs (introduced in [67] and further studied
in [53]) and the tensor algebras for multivariable dynamics [21], to mention but a
few.

Due to its universality, the Cuntz-Pimsner-Toeplitz C˚-algebra TX admits a
gauge action tψzuzPT that leaves ρ8pCq elementwise invariant and “twists” each
t8pxq, x P X, by a unimodular scalar z P T, that is ψzpt8pxqq “ zt8pxq, x P X.
Using this action, and reiterating a familiar trick with the Fejer kernel, one can
verify that each element a P T `X admits a Fourier series expansion

(2.5) a “ ρ8pcq `
8
ÿ

n“1

t8pxnq, c P C, xn P Xbn, n “ 1, 2, . . . ,

where the summability is in the Cesaro sense.
One of the immediate consequences of (2.5) is that the diagonal of T `X equals

C, i.e., T `X X pT `X q˚ “ ρ8pCq. Another consequence now follows.
If pX, C, ϕXq is a C˚-correspondence and ρ a bounded multiplicative linear

functional on C, then Mρ will denote the collection of all bounded multiplicative
linear functionals on T `X , whose restriction on C agrees with ρ.

Proposition 2.6. Let pX, C, ϕXq be a C˚-correspondence and ρ is a bounded
multiplicative linear functional on C. If Mρ is as above, then Mρ is either a sin-
gleton or it is at least the size of the continuum.

Proof. Due to the gauge action tψzuzPT discussed above, TX admits an ex-
pectation

(2.6) Φ : TX ÝÑ T fix
X : a ÞÝÑ

1

2π

ż

ψtpaqdt

onto the fixed point algebra of tψzuzPT. When restricted on T `X , the expectation Φ
is multiplicative and projects onto ρ8pCq.

If ρ is a bounded multiplicative linear functional on C, then ρ ˝Φ PMρ. Hence
Mρ ‰ H. If ρ1, ρ2 P Mρ are distinct, then at least one of them, say ρ1, does not
annihilate X. But then, ρ1 ˝ ψz, z P T, are all distinct elements of Mρ and the
conclusion follows. �

2.3. Crossed products of C˚-algebras

The crossed product of an operator algebra will be formally defined in the
next chapter. Nevertheless we collect here various known results regarding crossed
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products of C˚-algebras to be used throughout the monograph. Our main references
are [12, 98]; we follow closely [98] in terms of notation.

Let G be a discrete amenable group, let C be a C˚-algebra and let α : G Ñ Aut C
be a representation. Since G is amenable, both the full crossed product C¸α G and
the reduced C¸rα G coincide. On C¸α G there is a well-defined faithful expectation
Φe projecting on C Ď C ¸α G, which satisfies

Φe
`

ÿ

gPG
cgUg

˘

“ ce

for any finite sum of the form
ř

gPG cgUg, where Ug are the universal unitaries in

the multiplier algebra MpC ¸α Gq implementing the action of αg, g P G.
If S P C ¸α G, then the Fourier coefficients tΦgpSqugPG of S are defined by the

formula ΦgpSq ” ΦepSU
˚
g q, g P G. It is easy to see that if tSnun is a sequence of

polynomials in C ¸α G converging to S, then limn ΦgpSnq “ ΦgpSq, @g P G.
Since the group G is amenable, it contains a Folner net, i.e., a net tFiuiPI of

finite subsets of G so that

lim
iPI

|gFi X Fi|

|Fi|
“ 1, @g P G.

This allows us to deduce a Cesaro type approximation for any S P C ¸α G using
polynomials with coefficients ranging over tΦgpSqugPG .

Proposition 2.7. Let pC,G, αq be as above and let S P C ¸α G. Then given
ε ą 0 there exists a finite set Fε Ď G so that

›

›

›
S ´

ÿ

gPG

|gFε X Fε|

|Fε|
ΦgpSqUg

›

›

›
ď ε.

In particular, if ΦgpSq “ 0, @g P G, then S “ 0.

Proof. By [12, Lemma 4.2.3], for any finite set F Ď G, the map

(2.7) cgUg ÞÝÑ
|gF X F |

|F |
cgUg, cg P C, g P G

extends to a completely contractive map ΨF on C¸α G. If S P C¸α G, then the net
tΨFipSquiPI converges to S, where tFiuiPI is a Folner net for G. Choose Fε so that
}S ´ ΨFεpSq} ď ε. The conclusion follows now by applying ΨFε to any sequence
tSnun of polynomials in C ¸α G converging to S. �

In the case where G is a discrete abelian group we can say something more. In
that case the Pontryagin dual Ĝ of G, equipped with the compact-open topology is
compact and therefore it admits a (normalized) Haar measure dγ. One can then
verify that for an S P C ¸α G we have

(2.8) ΦgpSqUg “

ż

Ĝ
α̂γpSqγpgqdγ, g P G,

where Ĝ Q γ ÞÑ α̂γ P Aut C ¸rα G is the dual action, i.e., α̂γpcUgq “ γpgqcUg, c P C,
g P G.

Hence, if J Ď C¸α G is a closed linear space which is left invariant by tα̂γuγPĜ ,

then ΦgpSqUg P J , for any g P G and S P J .





CHAPTER 3

Definitions and Fundamental Results

In what follows, a dynamical system pA,G, αq consists of an approximately
unital operator algebra A and a locally compact (Hausdorff) group G acting con-
tinuously on A by completely isometric automorphisms, i.e., there exists a group
representation α : G Ñ AutA which is continuous in the point-norm topology.
(Here AutA denotes the collection of all completely isometric automorphisms of
A.) The group G is equipped with a left-invariant Haar measure µ; the modular
function of µ will be denoted as ∆. Usually αpsq, s P G, will be denoted as αs and
on occasion as s.

Now let pC,G, αq be a C˚-dynamical system and let CcpG, Cq denote the con-
tinuous compactly supported functions from G into C. Then CcpG, Cq is a ˚-algebra
in the usual way [98, page 48]. In the sequel, if c P C and f P CcpGq then
f b c P CcpG,Aq will denote the function f b cpsq “ fpsqc, s P G. Any covari-
ant representation pπ, u,Hq of pC,G, αq induces a representation π¸ u on CcpG, Cq,
which is called the integrated form of pπ, u,Hq [98, Proposition 2.23]. The full
crossed product C˚-algebra C¸α G is the completion of CcpG, Cq with respect to an
appropriate supremum norm arising from all integrated covariant representations
of pC,G, αq. The reduced crossed product C ¸rα G is defined using the left regular
representation for G. See [98] for more details.

In the case of an arbitrary dynamical system pA,G, αq, we appeal to the self-
adjoint theory described above in order to define crossed product algebras. Here
we have several options for defining a full or reduced crossed product, depending
on the various choices of a C˚-cover for A.

Definition 3.1. Let pA,G, αq be a dynamical system and let pC, jq be a C˚-
cover of A. Then pC, jq is said to be α-admissible if there exists a group represen-
tation 9α : G Ñ AutpCq which extends the representation

(3.1) G Q s ÞÑ j ˝ αs ˝ j
´1 P AutpjpAqq.

Note that the representation 9α of Definition 3.1 is automatically continuous
over a dense subalgebra of C and so an easy ε{3 argument actually shows that
9α : G Ñ AutpCq is a continuous group representation. In the sequel, since 9α is
uniquely determined by its action on jpAq, both (3.1) and its extension 9α will be
denoted by the same symbol α.

Definition 3.2 (Relative Crossed Product). Let pA,G, αq be a dynamical sys-
tem and let pC, jq be an α-admissible C˚-cover for A. Then, A¸C,j,αG and A¸rC,j,αG
will denote the subalgebras of the crossed product C˚-algebras C ¸α G and C ¸rα G
respectively, which are generated by Cc

`

G, jpAq
˘

Ď Cc
`

G, C
˘

.

One has to be a bit careful with Definition 3.2 when dealing with an abstract
operator algebra. It is common practice in operator algebra theory to denote a

13
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C˚-cover by the use of set theoretic inclusion. Nevertheless a C˚-cover for A is
not just an inclusion of the form A Ď C but instead a pair pC, jq, where C is a C˚-
algebra, j : AÑ C is a complete isometry and C “ C˚pjpAqq. Furthermore, in the
case of an α-admissible C˚-cover, it seems that the structure of the relative crossed
product for A should depend on the nature of the embedding j and one should
keep that in mind when working with that crossed product. To put it differently,
assume that pA,G, αq is a dynamical system and pCi, jiq, i “ 1, 2, are C˚-covers for
A. Further assume that the representations G Q s ÞÑ ji ˝ αs ˝ j

´1
i P AutpjipAqq

extend to ˚-representations αi : G Ñ AutpCiq, i “ 1, 2. It is not at all obvious
that whenever C1 » C2 (or even C1 “ C2), the C˚- dynamical systems pCi,G, αiq
are conjugate nor that the corresponding crossed product algebras are isomorphic.
Therefore the (admittedly) heavy notation A ¸C,j,α G and A ¸rC,j,α G seems to be
unavoidable.

We have already encountered the concept of equivalence between C˚-covers in
Definition 2.1. Indeed our view of C˚maxpAq and C˚envpAq in Chapter 2 is essentially
that of an equivalence class of C˚-covers and not just of a single element.

Lemma 3.3. Let pA,G, αq be a dynamical system and let pC1, j1q be an α-
admissible C˚-cover for A. If pC2, j2q is another C˚-cover of A which is equiv-
alent to pC1, j1q, then pC2, j2q is also α-admissible and so both representations
G Q s ÞÑ ji ˝ αs ˝ j

´1
i P AutpjipAqq extend to ˚-representations αi : G Ñ AutpCiq,

i “ 1, 2. . Furthermore

A¸C1,j1,α1
G » A¸C2,j2,α2

G and A¸rC1,j1,α1
G » A¸rC2,j2,α2

G

via complete isometries that map generators to generators.

Proof. Let j : C1 Ñ C2 be a ˚-isomorphism so that the diagram (2.1) com-
mutes. To see that pC2, j2q is α-admissible simply notice that j ˝α1,s ˝ j

´1 extends

j2 ˝ αs ˝ j
´1
2 to a ˚-automorphism of C2, for any s P G. Hence pC2, j2q is also

α-admissible.
Now note that j is G-equivariant, i.e., it implements a conjugacy between the

C˚-dynamical systems pC1,G, α1q and pC2,G, α2q. Indeed, if x “ j1paq, a P A, then

jα1,spxq “ jj1αspaq “ j2αspaq “ α2,sjpxq, s P G

and since j1pAq generates C1 as a C˚-algebra, jα1,spxq “ α2,sjpxq, for all x P C1.
The conjugacy j : C1 Ñ C2 between pC1,G, α1q and pC2,G, α2q implies that

the (full) crossed product C˚-algebras are ˚-isomorphic [98, Proposition 2.48].
Furthermore this isomorphism maps generators to generators, i.e., it maps j1f
onto jj1f “ j2f , for any f P CcpG,Aq. This establishes that A ¸C1,j1,α1 G and
A ¸C2,j2,α2

G are completely isometrically isomorphic. A similar argument, using
[35, Lemma A.16] this time, establishes the isomorphism of the operator algebras
A¸rC1,j1,α1

G and A¸rC2,j2,α2
G. �

The previous lemma will allow us to adopt a notation lighter than the notation
A¸C,j,αG and A¸rC,j,αG at least in the case where the C˚-covers are coming either
from the C˚-envelope or from the universal C˚-algebra of A. Indeed

Lemma 3.4. Let pA,G, αq be a dynamical system and let pCi, jiq be C˚-covers
for A with either pCi, jiq » C˚envpAq, i “ 1, 2, or pCi, jiq » C˚maxpAq, i “ 1, 2. Then
there exist continuous group representations αi : G Ñ AutpCiq which extend the
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representations

G Q s ÞÑ ji ˝ αs ˝ j
´1
i P AutpjipAqq, i “ 1, 2.

Furthermore A ¸C1,j1,α1
G » A ¸C2,j2,α2

G and A ¸rC1,j1,α1
G » A ¸rC2,j2,α2

G, via
complete isometries that map generators to generators.

Proof. We deal with C˚maxpAq and the full crossed product. Similar arguments
work in all other cases as well.

The proof essentially follows from the well-known fact that any completely
isometric automorphism β of A extends to a ˚-automorphism ρ of C˚maxpAq ”
pC˚maxpAq, jq. Indeed, the defining property of C˚maxpAq implies the existence of a
˚-homomorphism ρ : C˚maxpAq Ñ C˚maxpAq so that ρ ˝ j “ j ˝ β. Similarly, there
exists a ˚-homomorphism ρ1 : C˚maxpAq Ñ C˚maxpAq so that ρ1 ˝ j “ j ˝ β´1. Hence,
if x “ jpaq, a P A we have

ρρ1pxq “ ρρ1jpaq “ ρjβ´1paq “ jββ´1paq “ jpaq “ x,

i.e., pρ˝ρ1q|jpAq “ id|jpAq, and since A generates C˚maxpAq as a C˚-algebra, ρ˝ρ1 “ id.
Similarly ρ1 ˝ ρ “ id and so ρ P Aut C˚maxpAq with ρ ˝ j “ j ˝ β and so ρ|jpAq “

pj ˝ β ˝ j´1q|jpAq.
The previous paragraph implies the existence of ˚-automorphisms αi,s, s P G,

which extend the maps ji ˝ αs ˝ j
´1
i |jipAq, i “ 1, 2. Since

G Q s ÞÑ ji ˝ αs ˝ j
´1
i P AutpjipAqq, i “ 1, 2

are group representation, the same is true for G Q s ÞÑ αi,s over a dense subalgebra
of Ci. Therefore the αi : G Ñ Aut Ci are group representations. �

Because of the previous two lemmas we can now write A¸C˚maxpAq,αG, A¸C˚envpAq,α
G and similarly for the associated reduced crossed products. It turns out that in
specific situations there are more crossed products to be associated naturally with
the system pA,G, αq. This is truly a feature of the non-selfadjoint world.

Our next results establish basic properties for the crossed product to be used
frequently in the rest of the monograph. Both results are easy to prove in the case
where G is discrete but the general case requires some agility.

Lemma 3.5. Let pA,G, αq be a dynamical system and let pC, jq be an α-admissible
C˚-cover for A. Then the algebras A ¸C,j,α G and A ¸rC,j,α G are approximately
unital.

Proof. Consider the collection tUi | i P Iu of all compact neighborhoods of the
identity e P G, ordered by inverse set-theoretic inclusion and contained in a fixed
compact set K. For each such neighborhood Ui, choose a non-negative continuous
function wi with suppwi Ď Ui and

ş

wipsqdµpsq “ 1.
Set ei ” wi b ai, i P I, where taiuiPI is a contractive approximate identity for

A (and therefore for C). We claim that teiuiPI is a left contractive approximate
identity for CcpG, Cq in the L1-norm.

Indeed let c P C, z P CcpGq and fix an ε ą 0. Then,

`

eipz b cq
˘

psq “

ż

aiαrpcqwiprqzpr
´1sqdµprq, s P G.

Since the supports of the wi “shrink” to e P G, we can choose the i P I large enough
so that the aiαrpcq are eventually ε-close to c, for all r P suppwi. Hence for such
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i P I we have

(3.2)
›

›

›

`

eipz b cq
˘

psq ´

ż

cwiprqzpr
´1sqdµprq

›

›

›
ď ε}z}8

for all s P G. Since left translations act continuously on CcpGq, we can also arrange
for these i P I to satisfy, |zpr´1sq ´ zpsq| ď ε, for all r P suppwi and s P G. Hence,

›

›

›

ż

cwiprqzpr
´1sqdµprq ´

ż

cwiprqzpsqdµprq
›

›

›
ď ε}c}

ż

wiprqdµprq

“ ε}c}.
(3.3)

However,
ş

cwiprqzpsqdµprq “ pz b cqpsq and so (3.2) and (3.3) imply that
›

›

›

`

eipz b cq
˘

psq ´ pz b cqpsq
›

›

›
ď εp}z}8 ` }c}q

for all s P G and sufficiently large i P I. From this it is easily seen that teiuiPI is a
left contractive approximate identity for CcpG, Cq in the L1-norm.

From the above it follows that teiuiPI is a left contractive approximate identity
for C ¸α G and C ¸rα G. Hence by [10, Lemma 2.1.6] we have that teiuiPI is also a
right contractive identity and the conclusion follows. �

Proposition 3.6. Let pA,G, αq be a dynamical system and let pC, jq be an α-
admissible C˚-cover for A. Then C ¸α G is a C˚-cover for A¸C,j,α G and C ¸rα G
is a C˚-cover for A¸rC,j,α G.

Proof. We verify the first claim only. Let c P C and z P CcpGq. We will show
that if zbc P C˚pA¸C,j,αGq then zbac, zba˚c P C˚pA¸C,j,αGq, for all a P A. This
suffices to show that all elementary tensors in CcpG, Cq belong to C˚pA ¸C,j,α Gq
and the conclusion then follows from [98, Lemma 1.87].

Let teiuiPI be the approximate identity of A ¸C,j,α G (Lemma 3.5) and let
piC , iGq be the covariant homomorphism of pC,G, αq into M

`

C ¸α G
˘

, appearing in
[98, Proposition 2.34]. Then

z b ac “ lim
i
pwi b aaiqpz b cq P C˚pA¸C,j,α Gq.

On the other hand,

z b a˚c “ lim
i
iCpa

˚qe˚i pz b cq “ lim
i

`

eiiCpaq
˘˚
pz b cq.

However, eiiCpaqpsq “ zpsqaiαrpaq P A, for all s P G, and so eiiCpaq P CcpG,Aq.
This implies that z b a˚c P C˚pA¸C,j,α Gq and the conclusion follows. �

The crossed product A ¸C˚maxpAq,α G shares an important property which we

describe in Proposition 3.7 below. But first we need a few definitions.
A covariant representation of a dynamical system pA,G, αq is a triple pπ, u,Hq

consisting of a Hilbert space H, a strongly continuous unitary representation u :
G Ñ BpHq and a non-degenerate, completely contractive representation π : A Ñ

BpHq satisfying

upsqπpaq “ πpαspaqqupsq, for all s P G, a P A.
If we insist that the dimension of H is at most cardpA ˆ Gq then the collection of
all covariant representations forms a set. (This is a crude requirement that can be
refined further; for instance if A is separable and G is countable we can simply ask for
H to be separable.) Nevertheless the direct sum of all covariant representations on a
Hilbert space of dimension at most cardpA¸Gq forms a representation pπ8, u8,H8q
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that we call the universal covariant representation for pA,G, αq. A special class of
covariant representations for pA,G, αq arises from the left regular representation
λ : G Ñ BpL2pG, µqq. If π : AÑ H is a completely contractive representation of A
then on the Hilbert space L2pG,Hq » Hb L2pGq, we define

π̄ : A ÝÑ BpL2pG,Hqq A Q a ÝÑ π̄paq

with π̄paqhpsq ” π
`

α´1
s paq

˘`

hpsq
˘

, s P G, h P L2pG,Hq and

λH : G ÝÑ BpHb L2pGqq; G Q s ÝÑ 1b λpsq.

A representation pπ, λHq of the above form will be called a regular covariant repre-
sentation for pA,G, αq.

Our next result identifies a universal property of A ¸C˚maxpAq,α G and lends

support to our subsequent Definition 3.9.

Proposition 3.7. Let pA,G, αq be a dynamical system. Then

(i) there exists a completely isometric non-degenerate covariant homomor-
phism piA, iGq of pA,G, αq into M

`

A¸C˚maxpAq,α G
˘

,

(ii) given a non-degenerate covariant representation pπ, u,Hq of pA,G, αq, there
is a non-degenerate representation π ¸ u of A ¸C˚maxpAq,α G such that

π “ pπ ¸ uq ˝ iA and u “ pπ ¸ uq ˝ iG, and,
(iii) A¸C˚maxpAq,α G “ spantiApaq̃ıGpzq | a P A, z P CcpGqu,

where

(3.4) ı̃Gpzq ”

ż

G
zpsqiGpsqdµpsq, for all z P CcpGq.

Proof. Let C stand for C˚maxpAq. Before embarking with the proof note that
the presence of a contractive approximate identity for A¸α G implies

(3.5) MpA¸C,α Gq ĎM
`

C ¸α G
˘

.

Furthermore, the integral (3.4) is understood as in Proposition 2.2.
For C¸α G such a covariant representation piC , iGq of pC,G, αq into M

`

C¸α G
˘

exists by [98, Proposition 2.34]. We will show that the same pair piC , iGq restricted
on A works for A¸C,α G as well.

By [98, Proposition 2.34],

iCpcqfpsq “ cfpsq and iGptqfpsq “ αtpfpt
´1sqq,

for all f P CcpG, Cq and c P C. From this, it is immediate that piC , iGq maps pA,G, αq
into MpA¸C,αGq. Furthermore, iA is non-degenerate because A Ď C is approximate
unital and iC is non-degenerate. Hence (i) follows.

Corollary 2.36 in [98] shows that iCpcq̃ıGpzq “ z b c, z P CcpGq, c P C. This
implies (iii).

It only remains to verify (ii). If pπ, uq is a non-degenerate covariant representa-
tion of pA,G, αq, then there exists a non-degenerate ˚-representation ρ of C so that
ρ ˝ j “ π, where j : AÑ C is the canonical inclusion. But then

upsqρ
`

jpaq
˘

“ upsqπpaq “ π
`

pαspaq
˘

upsq

“ ρ
´

j ˝ αs ˝ j
´1

`

jpaq
˘

¯

upsq,

for all a P A, and since C is generated by A, the pair pρ, uq is a covariant rep-
resentation for pC,G, αq. Proposition 2.39 in [98] implies now the existence of a
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representation ρ¸ u, which satisfies the analogous properties of (ii) for C ¸α G. If
we set π ¸ u ” pρ¸ uq|A¸C,αG , the conclusion follows. �

The previous proposition shows that any covariant representation pπ, uq for
pA,G, ϕq “integrates” in a very precise sense to a completely contractive represen-
tation π ¸ u of A¸C˚maxpAq,α G. Indeed, π ¸ u is given by the familiar formula

pπ ¸ uqpfq “

ż

π
`

fpsq
˘

upsqdµpsq, f P CcpG,Aq.

Our next result shows that this class of representations exhausts all the completely
contractive representations of A¸C˚maxpAq,α G.

Proposition 3.8. Let pA,G, ϕq be a dynamical system and let

ϕ : A¸C˚maxpAq,α G ÝÑ BpHq

be a non-degenerate completely contractive representation. Then there exists a non-
degenerate covariant representation pπ, u,Hq of pA,G, ϕq so that ϕ “ π ¸ u.

Proof. Since A ¸C˚maxpAq,α G is approximately unital, the representation ϕ

is multiplier-nondegenerate, when viewing BpHq as the multiplier algebra of the
compact operators (Remark 2.3). Let ϕ : MpA ¸C˚maxpAq,α Gq Ñ BpHq be the

canonical (unital) extension of ϕ by [10, Proposition 2.6.12]. We set

πpaq “ ϕ
`

iApaq
˘

, a P A,
upsq “ ϕ

`

iGpsq
˘

, s P G,

where piA, iGq is the covariant representation of pA,G, αq into M
`

A¸C˚maxpAq,α G
˘

appearing in Proposition 3.7.
Now notice that pπ, uq is a covariant representation of pA,G, ϕq. Indeed, for

every s P G, upsq P BpHq is a contraction with inverse the contraction ups´1q,
hence a unitary. Furthermore the map s ÞÑ upsq is strictly continuous as the
composition of two such maps. Finally π is non-degenerate. Indeed iA is non-
degenerate so if taiuiPI is a contractive approximate unit for A then tiApaiquiPI
is a contractive approximate unit for A ¸C˚maxpAq,α G, i.e., it converges strictly to

I P M
`

A ¸C˚maxpAq,α G
˘

. Since ϕ is strictly continuous, we obtain that tπpaiquiPI
converges strictly (and so strongly) to I P BpHq. Hence the non-degeneracy of π.

By Proposition 3.7 we obtain the representation π ¸ u that integrates pπ, uq
and satisfies the conclusions of that result.

If f P CcpG,Aq, then

pπ ¸ uqpfq “

ż

π
`

fpsq
˘

upsqdµpsq

“

ż

ϕ
´

iA
`

fpsq
˘

¯

ϕ
`

iGpsq
˘

dµpsq

“

ż

ϕ
´

iA
`

fpsq
˘

iGpsq
¯

dµpsq

“ ϕ
´

ż

iA
`

fpsq
˘

iGpsqdµpsq
¯

(by Proposition 2.2)

“ ϕpfq (by [98, Corollary 2.36])

and the conclusion follows. �
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We have gathered enough evidence for us now to justify the following definition.

Definition 3.9 (Full Crossed Product). If pA,G, αq is a dynamical system
then

A¸α G ” A¸C˚maxpAq,α G

In the case where A is a C˚-algebra, the algebra A ¸α G is nothing else but
the full crossed product C˚-algebra of pA,G, αq. In the general case of an operator
algebra A, one might be tempted to define A¸α G as the relative crossed product
A¸C˚envpAq,αG, by virtue of the fact that C˚envpAq is a more tractable (perhaps more

popular) object than C˚maxpAq. Even though in the case where A is selfadjoint,
A¸C˚envpAq,α G also reduces to the usual full crossed product, in the non-selfadjoint

case it is not clear at all that A¸C˚envpAq,α G satisfies the universal properties that

A ¸C˚maxpAq,α G does. Of course, any covariant representation of pC˚envpAq,G, αq
extends some covariant representation of pA,G, αq. The problem is that the converse
may not be true, i.e., a covariant representation of pA,G, αq does not necessarily
extend to a covariant representation of pC˚envpAq,G, αq, as it happens with C˚maxpAq.
As it turns out, the identification A¸α G » A¸C˚envpAq,αG is a major open problem

in this monograph, which is resolved in the case where G is amenable or when A is
Dirichlet.

To make the previous paragraph more precise, let us show now that the prop-
erties of A¸α G, as identified in Proposition 3.7, actually characterize the crossed
product as the universal object for covariant representations of the dynamical sys-
tem pA,G, αq. In the case where A is a C˚-algebra, this was done by Raeburn in
[86]. Below we prove it for arbitrary operator algebras, borrowing from the ideas
of [86] and [98, Theorem 2.61].

Theorem 3.10. Let pA,G, αq be a dynamical system. Assume that B is an
approximately unital operator algebra such that

(i) there exists a completely isometric non-degenerate covariant representa-
tion pjA, jGq of pA,G, αq into MpBq,

(ii) given a non-degenerate covariant representation pπ, u,Hq of pA,G, αq, there
is a completely contractive, non-degenerate representation L : B Ñ BpHq
such that π “ L̄ ˝ jA and u “ L̄ ˝ jG, and,

(iii) B “ spantjApaq̃Gpzq | a P A, z P CcpGqu,
where

̃Gpzq ”

ż

G
zpsqjGpsqdµpsq, for all z P CcpGq.

Then there exists a completely isometric isomorphism ρ : B Ñ A¸α G such that

(3.6) ρ̄ ˝ jA “ iA and ρ̄ ˝ jG “ iG

where piA, iGq is the covariant representation of pA,G, αq appearing in Proposi-
tion 3.7.

Proof. We will show that the map

(3.7) B Q
ÿ

k

jApak q̃Gpzkq ÝÑ
ÿ

k

iApak q̃ıGpzkq P A¸α G,

where ak P A, zk P CcpGq, is a well-defined map, which is a complete isometry and
therefore extends to the desired isomorphism ρ : B Ñ A¸α G.
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Let ϕ : A¸α G Ñ BpHq be a completely isometric non-degenerate representa-
tion and let ϕ : MpA¸α Gq Ñ BpHq its canonical extension. Let

πpaq “ ϕ
`

iApaq
˘

, a P A,
upsq “ ϕ

`

iGpsq
˘

, s P G.

Then for any a P A and z P CcpGq we have

L
`

jApaq̃Gpzq
˘

“ L̄
`

jApaq
˘

L̄
`

̃Gpzq
˘

“ L̄
`

jApaq
˘

ż

zpsqL̄
`

jGpsq
˘

dµpsq

“ πpaq

ż

zpsqupsqdµpsq

“ ϕ
`

iApaq
˘

ż

zpsqϕ
`

iGpsq
˘

dµpsq

“ ϕ
`

iApaq̃ıpzq
˘

.

Since ϕ is a complete isometry, the above shows that (3.7) is a well-defined map
which is a complete contraction. By reversing the roles of A ¸α G and B in the
above arguments, we obtain that (3.7) is a complete isometry, as desired.

It remains to verify (3.6). We indicate how to do this with the second identity
and we leave the first for the reader.

Fix a z P CcpGq and s P G. An easy calculation using (3.4) reveals that
ı̃GpzqiGpsq “ ı̃Gpwq, where w P CcpGq with wprq “ ∆ps´1qzprs´1q, r P G. A
similar calculation shows that ̃GpzqjGpsq “ ̃Gpwq as well. Hence for any a P A we
have

ρ
`

jApaq̃pzq
˘

ρ̄
`

jGpsq
˘

“ ρ
`

pjApaq̃Gpwq
˘

“ iApaq̃ıGpwq “ iApaq̃ıGpzqiGpsq

“ ρ
`

jApaq̃pzq
˘

iGpsq.

Since the linear span of elements of the form ρ
`

jApaq̃pzq
˘

, a P A, z P CcpGq, is
dense in A ¸α G and A ¸α G is essential as a left ideal of MpA ¸α Gq, we have
ρ̄pjGpsqq “ iGpsq, as promised. �

We need the following

Lemma 3.11. Let A be a unital operator algebra and let pC, jq be a C˚-cover
for A. Let α P Aut C be a completely isometric automorphism satisfying α

`

jpAq
˘

“

jpAq. If JA Ď C denotes the Shilov ideal of A, then αpJAq “ JA.

Proof. It is a result of Hamana [41] (see [52, Theorem 5.9] for a “modern”
proof) that if J Ď C is any ideal so that the natural quotient map q : C Ñ C{J
is completely isometric on jpAq, then J Ď JA. Since αpJAq clearly satisfies this
property, we have αpJAq Ď JA. Similarly, α´1pJAq Ď JA and so

JA “ α
`

α´1pJAq
˘

Ď αpJAq Ď JA,

as desired. �

Our next result is a key step in the proof of Theorem 3.14. In the proof, we make
an essential use of the theory of maximal dilations of Dritschel and McCullough [33].
The reader familiar with the earlier work of Kakariadis and Katsoulis will recognize
the influence of [48, Proposition 2.3] in the proof below.
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Lemma 3.12. Let pA,G, αq be a unital dynamical system and let pC, jq be an
α-admissible C˚-cover for A. If JA Ď C denotes the Shilov ideal of A, then

A¸rC,j,α G » A{JA ¸
r
C{JA, q˝j, α

G
via a complete isometry that maps generators to generators.

Proof. Notice that by its maximality, the Shilov ideal JA is left invariant
by the automorphisms αs, s P G. Therefore we have a continuous representation
α : G Ñ Aut

`

C{JA
˘

and the crossed product A{JA ¸
r
C{JA,α

G is meaningful.

The statement of the lemma asserts that the association

(3.8) C{JA ¸α G Q
ÿ

i

zi b pai ` JAq ÞÝÑ
ÿ

i

zi b ai P C ¸α G,

where ai P A, zi P CcpGq, is a well-defined map that extends to a complete isometry.
(Note that the map A{JA Q a` JA ÞÑ a P A is a well-defined complete isometry.)

Let π be a faithful representation of C on a Hilbert space H and let pπ̄, λHq be
the associated regular covariant representation of pC,G, αq. Consider the completely
isometric map

ϕ : A{JA ÝÑ BpHq : a` JA ÞÝÑ πpaq, A P A.
According to the Dritschel and McCullough result [33, Theorem 1.2], there is a
maximal dilation pΦ,Kq of ϕ which extends uniquely to a representation of C{JA
such that

PHΦpa` JAq|H “ ϕpa` JAq “ πpaq,

for all a P A. Since PHbL2pGq “ PH b I, we have that

PHbL2pGqΦ̄pa` JAqq|HbL2pGq “ π̄pa` JAq,

for all a P A. Also, λKpsq|HbL2pGq “ λHpsq, s P G, and so

›

›π̄ ¸ λH
`

ÿ

i

zi b ai
˘
›

› “
›

›

ÿ

i

π̄paiq

ż

zipsqλHpsqdµpsq
›

›

“

›

›

›
PHbL2pGq

˜

ÿ

i

Φ̄pai ` JAq

ż

zipsqλKpsqdµpsq

¸

|HbL2pGq

›

›

›

ď
›

›

ÿ

i

Φ̄pai ` JAq

ż

zipsqλKpsqdµpsq
›

›

“
›

›Φ̄¸ λK
`

ÿ

i

zi b pai ` JAq
˘
›

›

The same is also true for all the matrix norms. Since the covariant representation
pπ̄, λH,H b L2pGqq norms C ¸rα G, the map in (3.8) is well defined and completely
contractive. By reversing the roles between A and A{J pAq in the previous ar-
guments, we can also prove that (3.8) is actually an isometry, and the conclusion
follows. �

The previous lemma applies only to unital dynamical systems. In order to take
advantage of it in the general case, we require the following.

Lemma 3.13. Let pA,G, αq be a dynamical system and assume that A does
not have a unit. Let pC, jq be an α-admissible C˚-cover for A. Then the operator
algebras generated by

CcpG,Aq Ď A1 ¸C1,j1,α G
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and

CcpG,Aq Ď A1 ¸rC1,j1,α
G

are isomorphic to A ¸C,j,α G and A ¸rC,j,α G respectively via complete isometries
that map generators to generators.

Proof. We address first the case of the full crossed product. Since any co-
variant representation pπ, Uq of pC,G, αq extends to a covariant representation of
pC1,G, αq, we have from [98, Lemma 2.27] that the map

C ¸α G Ą CcpG, Cq Q f ÞÝÑ f P CcpG, C1q Ď C1 ¸α G

is an isometry that extends to a ˚-injection of C ¸α G into C1 ¸α G that maps
generators to generators. In particular, this injection maps A ¸C,j,α G onto the
subalgebra generated by CcpG,Aq Ď A1 ¸C1,j1,α G.

The case of the reduced crossed product follows from the fact that if π : C Ñ
BpHq is a faithful ˚-representation, then

π1 ¸ λH |CcpG,Cq“ π ¸ λH |CcpG,Cq,

where π1 is the unitization of π. �

The following is one of the main results of this chapter and generalizes a classical
result from the theory of crossed product C˚-algebras to the theory of arbitrary
operator algebras. It shows that in the case of an amenable group G, the crossed
product is a unique object. In particular, it allows us to identify A ¸C˚maxpAq,α G
with A¸C˚envpAq,α G in a canonical way.

Theorem 3.14. Let pA,G, αq be a dynamical system with G amenable and let
pC, jq be an α-admissible C˚-cover for A. Then

A¸α G » A¸C,j,α G » A¸rC,j,α G

via a complete isometry that maps generators to generators.

Proof. We begin with the case where pA,G, αq is a unital dynamical system.
With the understanding that the symbol » stands for a complete isometry that
sends generators to generators we have

A¸C,j,α G » A¸rC,j,α G

because G is amenable.
On the other hand

A¸rC,j,α G » A¸rC{JA, q˝j, α
G (by Lemma 3.12)

Also

A¸α G » A¸C˚maxpAq,j,α G (by definition)

» A¸r
C˚maxpAq,j,α

G (since G is amenable)

» A¸r
C˚maxpAq{JA, q˝j, α

G (by Lemma 3.12)

However both C˚-covers
`

C{JA, q ˝ j
˘

and
`

C˚maxpAq{JA, q ˝ j
˘

give C˚envpAq and
so Lemma 3.4 implies A¸α G » A¸rC,j,α G, as desired.

In the general case notice that from the above we have

A1 ¸α G » A1 ¸C1,j,α G » A1 ¸rC1,j,α G
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via complete isometries that maps generators to generators. In particular these
isometries map surjectively the operator algebras generated by CcpG,Aq inside the
crossed products appearing above. The conclusion follows now from Lemma 3.13.

�

Of course, Theorem 3.14 does much more than just provide an isomorphism
between relative (full) crossed products. It also allows us to utilize regular covariant
representations for pC˚envpAq,G, αq in order to norm the crossed product. Indeed

Corollary 3.15. Let pA,G, αq be a dynamical system and assume that G is
amenable. If π : C Ñ BpHq is a faithful non-degenerate ˚-representation of C˚envpAq
then π̄ ¸ λH is a completely isometric representation of A¸α G.

Proof. Since G is amenable, π̄¸λH is a faithful representation of C˚envpAq¸αG,
where α is the unique extension of G Q s ÞÑ αs P AutpAq. By the previous results

A¸α G » A¸rα G » A¸r
C˚envpAq,α

G Ď C˚envpAq ¸α G

and the conclusion follows �

Part of the proof of Theorem 3.14 establishes the fact that all relative reduced
crossed products coincide with each other, even for non-amenable G. Stated for-
mally

Corollary 3.16. Let pA,G, αq be a dynamical system, with G an arbitrary
locally compact group, and let pC, jq be an α-admissible C˚-cover for A. Then,

A¸rC,j,α G » A¸r
C˚envpAq,α

G » A¸r
C˚maxpAq,α

G

via complete isometries that map generators to generators.

Proof. If A is unital than the result follows from Lemma 3.12 as in the proof
of Theorem 3.14. If A is non-unital, then

A1 ¸rC1,j,α G » A1 ¸r
C˚envpAq1,α

G » A1 ¸r
C˚maxpAq1,α

G

via complete isometries that map generators to generators. These isometries map
surjectively the operator algebras generated by CcpG,Aq inside the reduced crossed
products appearing above. The conclusion follows again from Lemma 3.13. �

In light of Corollary 3.16 we give the following definition.

Definition 3.17 (Reduced Crossed Product). If pA,G, αq is a dynamical sys-
tem then the reduced crossed product of pA,G, αq is the operator algebra

A¸rα G ” A¸r
C˚envpAq,α

G

Remark 3.18. (i) Since A ¸r
C˚envpAq,α

G » A ¸r
C˚maxpAq,α

G, it follows that any

regular covariant representation of pA,G, αq integrates to a continuous representa-
tion of A¸rαG. One can actually view A¸rα G as the universal object for the regular
covariant representations of pA,G, αq.

(ii) If pA,G, αq is a C˚-dynamical system then it is well known that any regular
covariant representation pπ, λHq integrates to a faithful representation of A¸rα G,
provided that π is faithful. This remains true for arbitrary dynamical systems
under the additional requirement that π is a maximal, completely isometric map
for A. (Note that for a C˚-algebra A, any faithful ˚-representation is automatically
maximal and completely isometric.)
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We will now use the theory we have developed so far to obtain von Neumann
type inequalities, where the role of the disc algebra is being played now by the
crossed product A¸αG. First we obtain a covariant version of a theorem of Naimark
and Sz.-Nagy that applies to arbitrary operator algebras.

Let G be a group and let ϕ : G Ñ BpHq. We say that ϕ is completely positive
definite if for every finite set of elements s1, s2, . . . , sn of G, the operator matrix
pϕps´1

i sjqqij is positive; if ϕpeq “ I then ϕ is said to be unital.
Note that for a completely positive definite map ϕ : G Ñ BpHq, the matrix

´

ϕpeq ϕpsq

ϕps´1
q ϕpeq

¯

, s P G, is automatically positive and so

(3.9) ϕpsq˚ “ ϕps´1q, for all s P G.

We need the following

Lemma 3.19. Let A,B P BpHq, B ě 0, be commuting operators. Then

| xABx, xy | ď }A} xBx, xy ,

for any x P H.

Proof. Note that,

| xABx, xy |2 “
ˇ

ˇ

ˇ

A

B1{2AB1{2x, x
E
ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

A

AB1{2x,B1{2x
E
ˇ

ˇ

ˇ

2

ď

A

B1{2A˚AB1{2x, x
E

xBx, xy

ď }A}2 xBx, xy
2

as desired �

In the case where A is a C˚-algebra, the following result was established by
McAsey and Muhly in [64, Proposition 4.2]. In the generality appearing below, the
result is new and its proof requires new arguments.

Theorem 3.20. Let A be a unital operator algebra, let G be a group and let
pA,G, αq be a dynamical system. Let ϕ : G Ñ BpHq be a unital, strongly continuous
and completely positive definite map and let ρ : A Ñ BpHq be a unital completely
contractive map satisfying

(3.10) ϕpsqρpaq “ ρpαspaqqϕpsq, for all s P G, a P A.

Then there exists a Hilbert space K Ą H, a strongly continuous unitary representa-
tion ϕ̂ : G Ñ BpKq and a completely contractive map ρ̂ : AÑ BpKq so that

ρpaq “ P ρ̂paq |P , ϕpsq “ Pϕ̂psq |P ,

and

ϕ̂psqρ̂paq “ ρ̂pαspaqqϕ̂psq, a P A, s P G,
where P is the orthogonal projection on H. Furthermore, H reduces ρ̂pAq. In the
case where ρ is multiplicative, ρ̂ is multiplicative as well.

Proof. Since G acts completely isometrically on A, this action extends to
C˚envpAq. Similarly, since ρ is unital, it extends to a completely positive map on
C˚envpAq. We reserve the same symbols for these extensions. Note that these
extensions do not satisfy (3.10), but their restrictions on the operator system
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SpAq ” A`A˚ do. Indeed, in (3.10) replace s with s´1, a with αspaq and use
(3.9) to obtain ϕpsq˚ρpαspaqq “ ρpaqϕpsq˚ and by taking adjoints

ρpαspa
˚qqϕpsq “ ϕpsqρpa˚q, for all s P G, a P A,

as desired. For the rest of the proof we concentrate on that system.
We start by adopting the ideas of [74, Theorem 4.8] in our context. Consider

the vector space c00pG,Hq of finitely supported functions from G to H and define a
bilinear function on this space by〈ÿ

s1

h1s1χs1 ,
ÿ

s

hsχs
〉
“

ÿ

s1,s

@

ϕps´1s1qh1s1 , hs
D

.

As in the proof of [74, Theorem 4.8], we observe that xh, hy ě 0 and that the
set N “ th P c00pG,Hq | xh, hy “ 0u is a subspace of c00pG,Hq. We let K be
the completion of c00pG,Hq{N with respect to the induced inner product and we
identify H as a subspace of K, via the isometry V that satisfies h ÞÑ hχe.

Let ϕ̂ : G Ñ BpKq be left translation, i.e.,

pϕ̂psqhqps1q “ hps´1s1q.

It is easy to see that ϕ̂ is a unitary representation and ϕpsq “ V ˚ϕ̂V . Since V is
an isometry, we simply write ϕ̂psq “ PHϕpsq |H.

Defining ρ̂ and verifying its properties requires more care. If a P SpAq then we
define

ρ̂paq
`

ÿ

s

hsχs `N
˘

“
ÿ

s

ρ
`

α´1
s paq

˘

hsχs `N

We need to verify that ρ̂ is well defined. Assume that
řm
l“1 hlχsl P N , i.e.,

xBh, hy “ 0

where

h “ ph1, h2, . . . , hmq
T P Hm and B “ pϕps´1

k slqqkl.

Now if

C “

¨

˚

˚

˚

˝

ρpα´1
s1 paqq 0 . . . 0
0 ρpα´1

s2 paqq . . . 0
...

...
. . .

...
0 0 . . . ρpα´1

smpaqq

˛

‹

‹

‹

‚

then the covariance condition (3.10) implies that B and C commute. Hence

〈 m
ÿ

l“1

ρ
`

α´1
sl
paq

˘

hlχsl ,
m
ÿ

k“1

ρ
`

α´1
sk
paq

˘

hkχsk
〉

“ xC˚BCh, hy “
A

B1{2C˚CB1{2h, h
E

ď }C}2 xBh, hy “ 0,

as desired.
We now verify that ρ̂ is completely contractive; this will require an application

of Schwarz’s inequality. Let paijqij P MrpAq be a contraction and we are to verify
that pρ̂paijqqij is also a contraction.
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Start by noticing that if s1, s2, . . . sm P G,

A “

¨

˚

˚

˚

˚

˝

“

ρ
`

α´1
s1 paijq

˘‰

ij
0 . . . 0

0
“

ρ
`

α´1
s2 paijq

˘‰

ij
. . . 0

...
...

. . .
...

0 0 . . .
“

ρ
`

α´1
smpaijq

˘‰

ij

˛

‹

‹

‹

‹

‚

is in MmrpρpAqq and B “
“

ϕps´1
k slqIr

‰

kl
PMmrpBpHqq, then (3.10) implies that A

and B commute. Furthermore, since ρ˝αsl is completely contractive, an application
of Schwarz’s inequality implies

“

ρ
`

α´1
sl
paijq

˘‰˚

ij

“

ρ
`

α´1
sl
paijq

˘‰

ij
ď pρ ˝ α´1

sl
qprq

´

“

paijq
‰˚

ij

“

paijq
‰

ij

¯

ď pρ ˝ α´1
sl
qprqpIrq “ Ir

and so A˚A ď Imr, i.e., A is a contraction.

Now let h “ ph1 ` N , h2 ` N , . . . hr ` N qT P

´

c00pG,Hq{N
¯r

with hi “
řm
k“1 hikχsk . We calculate〈

rρ̂paijqsijh, h
〉
“

r
ÿ

i,j“1

〈
ρ̂paijqphj `N q, phi `N q

〉
“

r
ÿ

i,j“1

m
ÿ

k,l“1

〈
ρ
`

α´1
sk
paijq

˘

ϕ
`

s´1
k sl

˘

hjl, hik

〉
“
〈
ABx, x

〉
,

where x “ px1, x2, . . . , xmq
T with xl “ ph1l, h2l, . . . hrlq

T , l “ 1, 2, . . .m. An appli-
cation of Lemma 3.19 shows now that

ˇ

ˇ

〈
rρ̂paijqsijh, h

〉ˇ
ˇ “ | 〈ABx, x〉 | ď }A} 〈Bx, x〉
ď 〈Bx, x〉 “ 〈h, h〉

and so pρ̂paijqqij is a contraction, as desired. Hence ρ̂ is completely contractive

(and so completely positive).
It remains to verify that ρ̂pAq reduces H; here lies the reason why we extended

the original dynamical system on SpAq. It is clear that ρ̂pSpAqq leaves H invariant
and since ρ̂ is completely positive, H reduces ρ̂pSpAqq. (If we had chosen to define
ρ̂ only on A, then we would only have that ρ̂pAq leaves H invariant.) �

Note that in the proof of the above theorem, the only reason why we ask for A
to be unital is to guarantee that the unital completely contractive map ρ extends
to a completely positive map on C˚envpAq. If ρ is assumed to be multiplicative, such
an extension exists without that requirement, because of Meyer’s result [65, Corol-
lary 3.3]. This is implicitly used below in obtaining the promised von Neumann
inequality.

Corollary 3.21. Let pA,G, αq be a unital dynamical system and assume that
G is a locally compact amenable group. Let ϕ : G Ñ BpHq be a unital, strongly con-
tinuous and completely positive definite map and let ρ : AÑ BpHq be a completely
contractive representation satisfying

(3.11) ϕpsqρpaq “ ρ
`

αspaq
˘

ϕpsq, for all s P G, a P A.
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Then, for any f P CcpG,Aq, we have

(3.12)
›

›

›

ż

ρ
`

fpsq
˘

ϕpsqdµpsq
›

›

›
ď

›

›

›

ż

π̄
`

fpsq
˘

λHpsqdµpsq
›

›

›
,

where π : C˚envpAq Ñ BpHq is a faithful ˚-representation and pπ̄, λHq the associated
regular covariant representation of pC˚envpAq,G, αq.

Proof. By Theorem 3.20, there exists a Hilbert space K Ě H and a covariant
representation representation pρ̂, ϕ̂q of pA,G, αq, whose compression on H gives
pρ, ϕq. Hence

›

›

›

ż

ρ
`

fpsq
˘

ϕpsqdµpsq
›

›

›
ď

›

›

›

ż

ρ̂
`

fpsq
˘

ϕ̂psqdµpsq
›

›

›
.

On the other hand, the representation pρ̂, ϕ̂q extends to a covariant representation
of the dynamical system pC˚maxpAq,G, αq. (See the last paragraph of the proof of
Proposition 3.7). Hence,

›

›

›

ż

ρ̂
`

fpsq
˘

ϕ̂psqdµpsq
›

›

›
ď }f}C˚maxpAq¸α G .

Theorem 3.14 shows however that on CcpG,Aq all relative crossed product norms
coincide. In particular

}f}C˚maxpAq¸α G “ }f}C˚envpAq¸rα G

and the conclusion follows. �

Remark 3.22. (i) Corollary 3.21 achieves its most pleasing form in the case
where G is discrete, as in that case (3.12) becomes an inequality involving finite
sums instead of integrals, i.e.,

›

›

›

ÿ

s

ρpasqϕpsq
›

›

›
ď

›

›

›

ÿ

s

π̄pasqλHpsq
›

›

›
,

where as P A and s ranges over a finite subset of G.
(ii) We have defined pπ, u,Hq to be a covariant representation of pA,G, αq pro-

vided that
upsqπpaq “ πpαspaqqupsq, for all s P G, a P A.

This is of course equivalent to

πpαspaqq “ upsqπpaqu˚psq, for all s P G, a P A.
It is important to note that there we have no analogue of Theorem 3.20 nor Corol-
lary 3.21 for the second set of covariance relations.

The reader that has followed us this far should recognize now why we choose
to define the crossed product A¸α G as a universal object with regards to arbitrary
representations of A (Definition 3.9). It is true that had we chosen to work only
with the relative crossed product A¸C˚envpAq,αG, we would not need to work so hard

with the various relative crossed products, including A¸C˚maxpAq,αG. However, since

the “allowable” representations of A would have been only the C˚envpAq-extendable
ones, the von Neumann inequality of Corollary 3.21 would have been unattainable.
This added flexibility in our definition for A¸α G is truly invaluable.

Corollary 3.21 also raises the question whether C˚envpAq ¸α G is the “best
choice” in our von Neumann inequality. In other words, we wonder what is the
C˚-envelope of A¸αG and A¸rαG. Clearly, Lemma 3.12 implies that C˚envpA¸rαGq
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is a quotient of C˚envpAq ¸rα G but beyond that, we don’t know too much. This
is going to be a recurrent theme in this monograph. It turns out that even in
special cases, the problem of identifying the C˚-envelope of the crossed product is
intimately related to problems in C˚-algebra theory which are currently open, such
as the Hao-Ng isomorphism problem. We will have to say more about that later in
this monograph.

For the moment, we deal with the case where G is an abelian group and A is a
unital operator algebra. The case where G is discrete follows easily from the work
we have done so far and from the ideas of either [48] in the Z case or more directly
from [16, Theorem 3.3], by choosing P “ G, α̃ “ α and transposing the covariance
relations. In the generality appearing below, the result is new and paves the way
for exploring non-selfadjoint versions of Takai duality.

Theorem 3.23. Let pA,G, αq be a unital dynamical system. If G is an abelian
locally compact group, then

C˚envpA¸α Gq “ C˚envpAq ¸α G.

Proof. Let C denote the C˚-envelope of A. Let ei, i P I, be the common
contractive approximate identity of A ¸α G and C ¸α G, as in Lemma 3.5. The
presence of a common approximate identity implies that A¸α G contains a unit if
and only if C ¸α G does [10, Lemma 2.1.7]. We will deal only with the case where
A¸α G is non-unital and leave the other case for the reader.

Let pC ¸α Gq1 and pA ¸α Gq1 be the unitizations of C ¸α G and A ¸α G
respectively resulting from adjoining a unit to C ¸α G. We claim that

(3.13) C˚envppA¸α Gq1q » pC ¸α Gq1

By way of contradiction assume that t0u ‰ J Ď pC ¸α Gq1 is the Shilov ideal for
pA ¸α Gq1. Since both J and A ¸α G are invariant by the dual action α̂, the
ideal J X pC ¸α Gq is also α̂-invariant. By [54, Lemma 3.6] J X pC ¸α Gq is also
non-trivial. Hence, [39, Corollary 2.2] (or [72, Corollary 3.4 (i)] for non-separable
systems) implies the existence of an α-invariant ideal J Ď C so that

J ¸α G “ JX pC ¸α Gq.

Now note that J ĎMpC ¸α Gq and furthermore,

(3.14) J pC ¸α Gq Ď J ¸α G Ď J.

If Lx P BpC¸α Gq, x PMpC¸α Gq, stands for the left multiplication operator, then
for arbitrary a P A, j P J we have

}a´ j} ě sup
i
}La´jpeiq} “ sup

i
}aei ´ jei}

ě sup
i
}aei} (by (3.14) and because J is a boundary ideal)

“ sup
i
}Laei} “ supt}aeix} | x P C ¸α G, }x} “ 1, i P Iu

“ }La} “ }a},

where teiuiPI is the contractive approximate unit of A¸α G appearing in Lemma 3.5.
A matricial variation of the above argument shows that

}a´ j} ě }a},
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for arbitrary a P MnpAq and j P MnpJ q. Therefore it follows that J Ď C is a
boundary ideal for A. Since C “ C˚envpAq, we obtain J “ t0u. But this implies
that JXpC¸α Gq “ t0u, a contradiction that establishes (3.13). Now the C˚-algebra
generated by A¸α G inside pC¸α Gq1 equals C¸α G and the conclusion follows. �

Remark 3.24. Certainly the extension of [39, Corollary 2.2] to non-separable
systems does not require the heavy machinery of coactions, as it happens in [72,
Corollary 3.4 (i)]. Nevertheless we have not able to locate an appropriate reference
in the literature that does not involve coactions. A standard reference, even for
the case of a non-separable system, seems to be [40, Theorem 3.4]. However that
result too involves the use of coactions. Furthermore, even though the proof of [40,
Theorem 3.4] works for arbitrary dynamical systems, the authors of [40, Theorem
3.4] make the blanket assumption that all C˚-dynamical systems appearing in their
monograph are separable.

In Chapter 7 we will use the above theorem in order to give a proof of the
Hao-Ng Theorem [42] for locally compact abelian groups.





CHAPTER 4

Maximal C˚-covers, Iterated Crossed Products
and Takai Duality

Even though most of the non-selfadjoint operator algebras currently under in-
vestigation are actually unital, we have gone to great lengths to build a theory of
crossed products that encompasses non-unital algebras as well. There is a good
reason for that and this becomes apparent in this chapter. Both the context of an
iterated crossed product and the non-selfadjoint Takai duality presented here would
be meaningless had we not incorporated non-unital algebras in our theory.

We begin with an important identity.

Theorem 4.1. Let pA,G, αq be a dynamical system. Then

C˚max

`

A¸α G
˘

» C˚maxpAq ¸α G.

Proof. Let ϕ : A¸α G Ñ BpHq be a completely contractive (perhaps degen-
erate) representation. Since ϕpAq is approximately unital, the subspace rϕpAqpHqs
reduces ϕpAq. Therefore, by restricting on rϕpAqpHqs, we may assume that ϕ is
actually non-degenerate. (See [10, Lemma 2.1.9] for more details.)

By Proposition 3.8, there exists a covariant representation pπ, u,Hq of pA,G, ϕq
so that ϕ “ π ¸ u. Extend π to a C˚-representation π̂ : C˚maxpAq Ñ BpHq.

We claim that pπ̂, u,Hq is a covariant representation of pC˚maxpAq,G, ϕq. By
taking adjoints in the covariance equation

ups´1qπpaq “ πpα´1
s paqqups

´1q

and then setting a “ αspbq, we obtain upsqπpbq˚ “ πpαspbqq
˚upsq, i.e.,

π̃pb˚qupsq “ upsqπ̃pαspbq
˚q “ upsqπ̃pαspb

˚qq,

and the conclusion follows. Furthermore the C˚-representation

π̂ ¸ u : C˚maxpAq ¸α G Ñ BpHq

extends ϕ “ π ¸ u.
This shows that C˚maxpAq¸α G satisfies the universal property for C˚max

`

A¸α G
˘

and the conclusion follows. �

Let A be an operator algebra. Let K,H be locally compact groups and consider
continuous actions β : K Ñ AutA and δ : H Ñ AutpA¸βKq. The iterated crossed
product pA¸β Kq ¸δ H can be described as follows.

By Lemma 3.4 both β and δ extend to actions β : K Ñ Aut C˚maxpAq and
δ : H Ñ Aut

`

C˚maxpA ¸β Kq
˘

respectively, denoted by the same symbols for
convenience. Now, Theorem 4.1 shows that

C˚maxpA¸β Kq »
`

C˚maxpAq ¸β K, j
˘

,

31
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where j : A¸βK Ñ C˚maxpAq¸βK is the canonical map arising from the “inclusion”
A Ď C˚maxpAq. Therefore we may identify pA ¸β Kq ¸δ H with the norm closed
subalgebra of

`

C˚maxpAq ¸β K
˘

¸δ H generated by CcpH,A¸β Kq Ď
`

C˚maxpAq ¸β
K
˘

¸δ H.
In the case where both K and H are abelian there is a more convenient de-

scription of the iterated crossed product.

Proposition 4.2. Let A be a unital operator algebra. Let K,H be locally
compact abelian groups and consider continuous actions β : K Ñ AutA and
δ : H Ñ AutpA¸βKq. Then the iterated crossed product pA¸βKq¸δH is canon-
ically and completely isometrically isomorphic with the norm closed subalgebra of
`

C˚envpAq ¸β K
˘

¸δ H generated by CcpH,A¸β Kq Ď
`

C˚envpAq ¸β K
˘

¸δ H.

Proof. By Theorem 3.14, we have

pA¸β Kq ¸δ H » pA¸β Kq ¸C˚envpA¸βKq,δ H.

However, Theorem 3.23 shows that

C˚envpA¸β Kq »
`

C˚envpAq ¸β K, j
˘

,

where j : A¸βK Ñ C˚envpAq¸βK is the canonical map arising from the “inclusion”
A Ď C˚envpAq. This implies the desired identification. �

Before embarking with the Takai duality, we need a technical result. Let C
be a C˚-algebra, H,K locally compact groups and β : K Ñ C, δ : H Ñ C ¸β K
continuous actions. Then we can view CcpH ˆ K, Cq as a dense subspace of the
iterated crossed product

`

C ¸β K
˘

¸δ H

by associating to a “kernel” F P CcpH ˆK, Cq, the function λF P CcpH, C ¸β Kq
defined by

(4.1) λF phqpkq ” F ph, kq, h P H, k P K.

Assuming a compatibility condition for δ, one can show (see [98, p. 191]) that
actually the subspace

tλF | F P CcpH ˆK, Cqu
forms a ˚-subalgebra of the iterated crossed product. The compatibility condition
requires that CcpK, Cq Ď C ¸β K is invariant for δ, and that

(4.2) ph, h1, kq ÞÑ δh
`

λF ph
1q
˘

pkq

is continuous with compact support in h1 and k. (For instance, if supp δpλF phqq Ď
suppλF phq, for all h P H, then (4.2) is satisfied.) Actually one can show that for
functions λFi P CcpH, C ¸β Kq, i “ 1, 2, we have

(4.3)
`

λF1λF2

˘

ph1, k1q “

ż

H

ż

K

λF1phqpkqβk

´

δh
`

λF2ph
´1h1q

˘

pk´1k1q
¯

dµHdµK

How does this transfer to non-selfadjoint algebras? Assume now that the sys-
tems pA,K, βq and pA ¸β K,H, δq are as in the beginning of this chapter and let
C “ C˚maxpAq. Assume further that the compatibility condition is satisfied by δ,
regarding both its action on CcpK, Cq Ď C ¸β K and on CcpK,Aq Ď C ¸β K.1

1In this case we simply require that CcpK,Aq Ď C ¸β K is invariant for δ.
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Lemma 4.3. If A, C, β and δ are as in the paragraph above, then the set

(4.4) tλF | F P CcpH ˆK,Aqu

forms a dense subalgebra of the iterated crossed product pA¸β Kq ¸δ H.

Proof. Indeed, (4.3) shows that the set in (4.4) is a subalgebra of pA¸βKq¸δ
H. The density follows from the fact that kernels of the form

F ph, kq “ azphqwpkq, a P A, z P CcpHq, w P CcpKq

give λF “ pabwqb z and such elements form a total subset of pA¸βKq¸δH. �

A particular case of an iterated crossed product comes from the dual action of
a locally compact abelian group G on the crossed product A ¸α G. Here we have
a dynamical system pA,G, αq, with G abelian, and we let K “ G, β “ α, H “ Ĝ
and δ “ α̂. The dual action α̂ is defined on CcpG,Aq by α̂γpfqpsq “ γpsqfpsq,

f P CcpG,Aq, γ P Ĝ. (By Theorem 3.14, it does not matter whether we consider
CcpG,Aq as a subalgebra of A¸α G or any other relative crossed product.)

Let ρ : G Ñ B
`

L2pG, µq
˘

be the right-regular representation of G and consider

the dynamical system Ad ρ : G Ñ K
`

L2pGq
˘

where pAd ρqs ” ρpsqTρps´1q, s P G.
Then for the dynamical system pA, α,Gq, we can form the tensor product dynamical
system αbAd ρ : G Ñ Aut

`

AbK
`

L2pGq
˘

.
For C˚-algebras, the following is known as the Takai duality Theorem [95]. We

establish its validity for crossed products of arbitrary operator algebras.

Theorem 4.4 (Takai duality). Let pA,G, αq be a dynamical system with G a
locally compact abelian group. Then

(4.5)
`

A¸α G
˘

¸α̂ Ĝ » AbK
`

L2pGq
˘

,

where K
`

L2pGq
˘

denotes the compact operators on L2pGq and AbK
`

L2pGq
˘

is the

subalgebra of C˚envpAqbK
`

L2pGq
˘

generated by the appropriate elementary tensors.
Furthermore, the complete isomorphism

Φ:
`

A¸α G
˘

¸α̂ Ĝ ÝÑ AbK
`

L2pGq
˘

,

which implements (4.5) can be chosen to be equivariant for the double dual action
ˆ̂α : G Ñ Aut

`

pA¸α G
˘

¸α̂ Ĝ
˘

and the action αbAd ρ : G Ñ Aut
`

AbK
`

L2pGq
˘

.

Proof. The proof follows verbatim the plan laid down by Williams in [98,
Theorem 7.1]. What we need to do here is to keep track of where our non-selfadjoint
operator algebra is mapped under the various maps appearing in Williams’ proof.
(For the record, Williams attributes his proof to Raeburn [86], with an extra con-
tribution by S. Echterhoff.)

Let C ” C˚maxpAq. In [98, Lemma 7.2], it is shown that there exists an isomor-
phism

Φ1 :
`

C ¸α G
˘

¸α̂ Ĝ ÝÑ
`

C ¸id Ĝ
˘

¸
îd
´1
bα

G.

Here C ¸id Ĝ » C˚pĜq b C and the action îd
´1
b α of G (which also satisfies the

compatibility condition) is given by

pîd
´1
b αqspfqpγq “ γpsqαs

`

fpγq
˘

,
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where f P CcpĜ, Cq, s P G and γ P Ĝ. Actually, Φ1 is constructed so that on kernels

F P CcpĜ ˆ G, Cq it acts as

(4.6) Φ1pF qps, γq “ γpsqF pγ, sq, s P G, γ P Ĝ,
in the sense that Φ1pλF q “ λΦ1pF q. Therefore Φ1 maps the linear space

(4.7) tλF | F P CcpĜ ˆ G,Aqu Ď
`

A¸α G
˘

¸α̂ Ĝ
onto the linear space

(4.8) tλF | F P CcpG ˆ Ĝ,Aqu Ď
`

A¸id Ĝ
˘

¸
îd
´1
bα

G.

Recall that both α̂ and îd
´1
b α satisfy the compatibility condition and so two

applications of Lemma 4.3 show that the algebras appearing on the left side of (4.7)
and (4.8) are dense in the algebras appearing in the right sides of these relations.
Hence we have a completely isometric surjection

(4.9) rΦ1 :
`

A¸α G
˘

¸α̂ Ĝ ÝÑ
`

A¸id Ĝ
˘

¸
îd
´1
bα

G.

In [98, Lemma 7.3] it is shown that there exists isomorphism

Φ2 :
`

C ¸id Ĝ
˘

¸
îd
´1
bα

G ÝÑ C0pG, Cq ¸ltbα G

Here pltbαqspfqprq “ αs
`

fps´1rq
˘

, f P C0pG, Cq » C0pGq b C. By its construction,
Φ2 satisfies

pcb ϕq b z
Φ2

ÞÝÝÝÝÝÝÑ pcb ϕ̂q b z,

where ϕ P CcpĜq, z P CcpGq and ϕ̂ denotes the Fourier transform of ϕ. Clearly

Φ2 maps
`

A ¸id Ĝ
˘

¸
îd
´1
bα

G onto C0pG,Aq ¸ltbα G and so we have a complete

isomorphism

(4.10) rΦ2 :
`

A¸id Ĝ
˘

¸
îd
´1
bα

G ÝÑ C0pG,Aq ¸ltbα G

Now [98, Lemma 7.4] provides an isomorphism

Φ3 : C0pG, Cq ¸ltbα G ÝÑ C0pG, Cq ¸ltbid G,
which satisfies

Φ3

`

pab zq b w
˘

“ ϕ3pab zq b w,

where z, w P CcpGq and ϕ3pa b zqpsq “ α´1
s paqzpsq, s P G. Clearly we have a

complete isometry

(4.11) rΦ3 : C0pG,Aq ¸ltbα G ÝÑ C0pG,Aq ¸ltbid G,
Combining (4.9), (4.10) and (4.11), we obtain

(4.12)
`

A¸α G
˘

¸α̂ Ĝ » C0pG,Aq ¸ltbid G

via the complete isometry rΦ3 ˝ rΦ2 ˝ rΦ1. However

C0pG, Cq ¸ltbid G »
`

C0pGq b C
˘

¸ltbid G
»
`

C0pGq ¸lt G
˘

b C
» K

`

L2pGq
˘

b C

by the Stone-von Neumann Theorem [98, Theorem 4.24]. Now these isomorphisms
preserve A-valued functions, i.e.,

C0pG,Aq ¸ltbid G » AbK
`

L2pGq
˘

.
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This combined with (4.12) completes the proof of the first paragraph of the theorem.
In [98, Lemma 7.5] it is shown that there exists an equivariant isomorphism

ϕ4 from
`

C0pGq ¸lt G,G, rtbid
˘

onto
`

KpL2pGqq,G,Ad ρ
˘

and so we have an equivariant isomorphism ϕ4 b id from
´

`

C0pGq ¸lt G
˘

b C,G, prtbidq b α
¯

onto
´

C bK
`

L2pGq
˘

,G, αbAd ρ
¯

,

where C “ C˚maxpAq. Therefore [98, Lemma 2.75] implies the existence of an
equivariant isomorphism Φ4 from

`

C0pG, Cq ¸ltbid G,G, prtbαq b id
˘

onto
`

C bKpL2pGqq,G, αbAd ρ
˘

.

Note that Φ4 preserves the non-selfadjoint subalgebras C0pG,Aq ¸ltbid G and Ab
KpL2pGqq and so it establishes an equivariant isomorphism rΦ4 for the non-selfadjoint
dynamical systems

`

C0pG,Aq ¸ltbid G,G, prtbαq b id
˘

and
`

AbKpL2pGqq,G, αbAd ρ
˘

.

Finally let Φ “ Φ3 ˝ Φ2 ˝ Φ1, where Φ1,Φ2,Φ3 are as earlier in the proof.
In the proof of [98, Theorem 7.1], it is shown that Φ establishes an equivariant
isomorphism from

`

pC ¸α Gq ¸α̂ Ĝ,G, ˆ̂α
˘

onto
`

C0pG, Cq ¸ltbid G,G, prtbαq b id
˘

and so rΦ ” rΦ3 ˝ rΦ2 ˝ rΦ1 establishes an equivariant isomorphism from
`

pA¸α Gq ¸α̂ Ĝ,G, ˆ̂α
˘

onto
`

C0pG,Aq ¸ltbid G,G, prtbαq b id
˘

.

Composing rΦ4 ˝ rΦ gives the desired equivariant isomorphism from
`

pA¸α Gq ¸α̂ Ĝ,G, ˆ̂α
˘

onto
`

AbKpL2pGqq,G, αbAd ρ
˘

.

This completes the proof of the second paragraph of the theorem. �





CHAPTER 5

Crossed Products and the Dirichlet Property

A far more illuminating, but prohibitively longer title for this monograph should
be “Dirichlet algebras, tensor algebras and the crossed product of an operator alge-
bra by a locally compact group”. Indeed the initial motivation for this monograph
came from our desire to understand when a Dirichlet operator algebra fails to be
the tensor algebra of a C˚-correspondence. In principle, examples of such algebras
should abound but remarkably, up until the recent monograph of Kakariadis [47],
none was mentioned in the literature. In this monograph we manage to come up
with many additional examples (see Theorem 5.12) and the apparatus for prolifer-
ating such examples is the crossed product of an operator algebra. In this chapter
we produce the first such class of examples, with additional ones to come in later
chapters. (See Theorem 6.17.)

Actually, we do even more here. In [20] Davidson and Katsoulis introduced the
class of semi-Dirichlet algebras. The semi-Dirichlet property is a property satisfied
by all tensor algebras and the premise of [20] is that this is the actual property
that allows for such a successful dilation and representation theory for the tensor
algebras. Indeed in [20] the authors verified that claim by recasting many of the
tensor algebra results in the generality of semi-Dirichlet algebras. What was not
clear in [20] was whether there exist “natural” examples of semi-Dirichlet algebras
beyond the classes of tensor and Dirichlet algebras. It turns out that the crossed
product is the right tool for generating new examples of semi-Dirichlet algebras
from old ones, as Theorem 5.8 indicates. By also gaining a good understanding
on Dirichlet algebras and their crossed products (Theorems 5.3 and 5.5) we are
able to answer a related question of Ken Davidson: we produce the first examples
of semi-Dirichlet algebras which are neither Dirichlet algebras nor tensor algebras
(Theorem 5.15).

Definition 5.1. Let B be an operator algebra and let C˚envpBq » pC, jq. Then
B is said to be Dirichlet iff

C “ jpBq ` jpBq˚ ” SpBq.

Many of the applications of the crossed product in this monograph involve
Dirichlet operator algebras. Our first priority is to show that whenever A is Dirich-
let, A ¸α G and A ¸rα G are Dirichlet and also calculate the C˚-envelope in that
important case.

First we need the following lemma which gives a workable test for verifying the
Dirichlet property. Its proof usually follows as an application of a result of Effros
and Ruan [36, Proposition 3.1], which asserts that completely isometric unital
surjections between unital operator algebras are always multiplicative. Below we
give a new proof that avoids [36, Proposition 3.1] but uses instead the existence of
maximal dilations.

37
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Lemma 5.2. Let B be an operator algebra contained in a C˚-algebra C and
assume that SpBq “ C. Then, C˚envpBq » pC, jq, where j : B Ñ C denotes the
inclusion map.

Proof. Assume first that B is unital and let C act on a Hilbert space H.
Consider the diagram

C
ρ˚ // BpKq

c

��
B

j
//

ρ
<<

j

OO

C

where ρ is a maximal dilation of j on a Hilbert space K Ą H, c : BpKq Ñ H is the
compression on H and ρ˚ is the extension of ρ to a ˚-homomorphism on C so that
the above diagram commutes.

Since ρ is a maximal dilation of the complete isometry j : B Ñ C, we have that

C˚envpBq “ C˚pρpBqq “ C˚pρ˚pBqq “ ρ˚pCq.

Therefore it suffices to show that ρ˚ is a complete isometry, i.e., it is injective.
Assume that ρ˚

`

jpb1q ` jpb2q
˚
˘

“ 0. Then

jpb1q ` jpb2q
˚ “ c

`

ρpb1q
˘

` c
`

ρpb2q
˘˚
“ c

`

ρpb1q
˘

` c
`

ρpb2q
˚
˘

“ c
`

ρpb1q ` ρpb2q
˚
˘

“ c
´

ρ˚pjpb1qq ` ρ˚pjpb2qq
˚
¯

“ c
´

ρ˚
`

jpb1q ` jpb2q
˚
˘

¯

“ 0

as desired.
If B does not have a unit, then let j1 : B1 Ñ C1 be the unitization of the

inclusion map. Clearly the pair pC1, j1q satisfies the requirements of the lemma for
the unital algebra B1 and so C˚envpB1q “ pC1, j1q. Since j1 |B“ j and C˚pj1pBqq “ C,
we conclude that C˚envpBq “ pC, jq. �

First we deal with the reduced crossed product.

Theorem 5.3. Let pA,G, αq be a dynamical system and assume that A is a
Dirichlet operator algebra. Then A¸rα G is a Dirichlet operator algebra and

C˚envpA¸rα Gq “ C˚envpAq ¸rα G.

Proof. From Definition 3.17 we have

A¸rα G ” A¸r
C˚envpAq,α

G Ď C˚envpAq ¸rα G

Furthermore, since the elementary tensors are dense in CcpG,Aq, it is easily seen
that

S
`

A¸r
C˚envpAq,α

G
˘

» C˚envpAq ¸rα G.
Hence the conclusion follows from Lemma 5.2. �

The case of the full crossed product of a Dirichlet operator algebra requires
more work.

In what follows, if pA,G, αq is a dynamical system and A Ď S Ď C˚envpAq a uni-
tal operator system left invariant by the action of G, then a covariant representation
of pS,G, αq consists of a Hilbert space H, a unitary representation u : G Ñ BpHq and
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a completely contractive map π : S Ñ BpHq satisfying upsqπpaq “ πpαspaqqupsq,
for all s P G, a P S.

Lemma 5.4. Let pA,G, αq be a unital dynamical system and let pSpAq,G, αq
be the restriction of the natural extension pC˚envpAq,G, αq on SpAq “ A`A˚ Ď
C˚envpAq. Then any covariant representation pπ, u,Hq of pA,G, αq admits an exten-
sion to a covariant representation pπ̃, u,Hq of pSpAq,G, αq.

Proof. By [74, Proposition 3.5] the map

π̃ : A`A˚ ÝÑ BpHq; a` b˚ ÞÝÑ πpaq ` πpbq˚, a, b P A
is well defined and extends to a completely contractive map on SpAq. By taking
adjoints in the covariance equation

ups´1qπpaq “ πpα´1
s paqqups

´1q

and then setting a “ αspbq, we obtain upsqπpbq˚ “ πpαspbqq
˚upsq, i.e.,

π̃pb˚qupsq “ upsqπ̃pαspbq
˚q “ upsqπ̃pαspb

˚qq,

and the conclusion follows. �

Theorem 5.5. Let pA,G, αq be a dynamical system and assume that A is a
Dirichlet operator algebra. Then A¸α G is a Dirichlet operator algebra and

C˚envpA¸α Gq » C˚envpAq ¸α G.
Furthermore, A¸α G » A¸C˚envpAq,α G.

Proof. We deal first with the unital case. We will show that the map

(5.1) C˚envpAq ¸α G Q f ÞÝÑ f P C˚maxpAq ¸α G, f P CcpG,Aq
is a complete contraction (and therefore a complete isometry). Hence A ¸α G
embeds completely isometrically in C˚envpAq ¸α G via a map that maps generators
to generators. Lemma 5.2 then implies the conclusion.

Let pπ, u,Hq be a covariant representation of pA,G, αq. By the previous lemma,
it admits an extension to a covariant representation pπ̃, u,Hq of pSpAq “ C˚envpAq,G, αq.
Note however that the map π̃ may not be multiplicative.

We now claim that pπ̃, u,Hq admits a covariant Stinespring dilation, pπ̂, û,Kq,
so that ûpGq reduces H.

The process for constructing that dilation is standard [46, 73]. Indeed start
with the algebraic tensor product C˚envpAq bH with the positive semi-definite bi-
linear form coming from setting

〈ab x, bb y〉 “ xπ̃pb˚aqx, yy
for a, b P A and x, y P H. If N “ tf P C˚envpAq b H | xf, fy “ 0u then K0 ”

C˚envpAq bH{N becomes a pre Hilbert space, whose completion K is of dimension
less than cardpA ˆ Gq. The original Hilbert space is identified as a subspace of K
via the isometry H Q x ÞÑ 1b x P K; let P be the orthogonal projection onto (that
copy of) H

On K0 we define maps π̂paq, a P A, and ûpsq by

π̂paq
´

ÿ

ai b xi

¯

“
ÿ

paaiq b xi

and

ûpsq
´

ÿ

ai b xi

¯

“
ÿ

αspaiq b upsqxi
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respectively. We leave it to the reader to verify that π̂ is well defined and bounded;
this is done as in [74, page 45]. Note that ûpGq leaves H Ď K invariant and so P
commutes with ûpGq. Furthermore if a, b P A and x, y P H, then the calculation

@

ûpsq
`

ab x
˘

, ûpsq
`

bb y
˘D

“ xαspaq b upsqx, αspbq b upsqyy

“
@

π̃
`

αspb
˚aq

˘

upsqx, upsqy
D

“ xπ̃pb˚aqx, yy “ xab x, bb yy

shows that ûpsq is an isometry with inverse ûps´1q, s P G, and thus a unitary. The
strong continuity of s ÞÑ ûpsq is easy to verify.

Returning to (5.1), given f P CcpG,Aq, we have

›

›pπ ¸ uq
`

f
˘
›

› “

›

›

›

ż

π
`

fpsq
˘

upsqdµpsq
›

›

›

“

›

›

›

ż

Pπ̂
`

fpsq
˘

PûpsqPdµpsq
›

›

›

“

›

›

›

ż

Pπ̂
`

fpsq
˘

ûpsqPdµpsq
›

›

›

“

›

›

›
P
´

ż

π̂
`

fpsq
˘

ûpsqdµpsq
¯

P
›

›

›

ď
›

›pπ̂ ¸ ûqpfq
›

› ď }f}

where the last norm is calculated in C˚envpAq¸α G. Since the covariant representa-
tion pπ, u,Hq of pA,G, αq is arbitrary, the map in (5.1) is a contraction. A similar
calculation holds at the matricial level and the conclusion follows.

Assume now that A is not unital. Since its unitization A1 is Dirichlet, the
unital case above applies thus showing that

A1 ¸α G ” A1 ¸C˚maxpAq1,α G » A1 ¸C˚envpAq1,α G.
An application of Lemma 3.13 shows now that

A¸C˚maxpAq,α G » A¸C˚envpAq,α G.
From this it is immediate that

C˚envpA¸α Gq » C˚env

`

A¸C˚envpAq,α G
˘

» C˚envpAq ¸α G.

since A¸C˚envpAq,α G Ď C˚envpAq ¸α G is Dirichlet. �

In [20], Davidson and Katsoulis introduced a new class of operator algebras.

Definition 5.6. Let B be an operator algebra and let C˚envpBq » pC, jq. Then
B is said to be semi-Dirichlet iff

jpBq˚jpBq Ď jpBq ` jpBq˚ ” S
`

jpBq
˘

.

The name is justified by the fact that both B and B˚ are semi-Dirichlet if and
only if B is Dirichlet [20, Proposition 4.2]. As in the Dirichlet case, where SpBq
being a C˚-algebra implied that B was Dirichlet, we remove the necessity of working
in the C˚-envelope.

Lemma 5.7. Let B be an operator algebra and let pC, jq be a C˚-cover of B. If

jpBq˚jpBq Ď S
`

jpBq
˘

Ď C,
then B is semi-Dirichlet.
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Proof. Identify B with jpBq and let ϕ : C Ñ C˚envpBq be the surjective ˚-
homomorphism that maps B completely isometrically. It is immediate that

ϕpBq˚ϕpBq Ď ϕpSpBqq Ď SpϕpBqq Ď C˚envpBq.

Therefore, B is semi-Dirichlet. �

Theorem 5.8. Let pA,G, αq be a unital dynamical system. If A is a semi-
Dirichlet operator algebra then so is A¸rα G.

Proof. Let z, w P CcpGq with supp z “ K and suppw “ L. Let a, b P A Ď

C˚envpAq. Since A is semi-Dirichlet, there exist sequences tcnu
8
n“1, tdnu

8
n“1 in A so

that

a˚b “ lim
n
pc˚n ` dnq

Let

fn ” pz b cnq
˚pw0 b 1q˚ ` pz0 b 1qpw b dnq, n P N,

where,

z0psq “ ∆ps´1qzps´1q

w0psq “ ∆psqwps´1q, s P G.

Clearly fn P CcpG,Aq˚ ` CcpG,Aq. We will show that tfnu
8
n“1 approximates pz b

aq˚pw b bq in the crossed product norm.
Note that

`

pz b aq˚pw b bq
˘

psq “

ż

∆pr´1qzpr´1qαrpa
˚qwpr´1sqαrpbqdµprq

“

ż

∆pr´1qzpr´1qwpr´1sqαrpa
˚bqdµprq.

On the other hand,

(5.2) fnpsq “

ż

∆pr´1qzpr´1qwpr´1sqαrpc
˚
n ` dnqdµprq

and so
›

›fnpsq ´
`

pz b aq˚pw b bq
˘

psq
›

› ď }c˚n ` dn ´ a
˚b}}z}8}w}8µpK

´1q,

for any s P G. Furthermore, supp fn Ď K´1L, n P N, which is a compact set. Hence,
tfnu

8
n“1 converges to pz b aq˚pw b bq in the inductive limit topology [98, Remark

1.86] and so in the L1-norm. This suffices to prove the desired approximation.
We have shown that

pz b aq˚pw b bq P CcpG,Aq˚ ` CcpG,Aq.

Similarly,
´

n
ÿ

i“1

zi b ai

¯˚´ m
ÿ

j“1

wj b bj

¯

P CcpG,Aq˚ ` CcpG,Aq.

Since the linear span of the elementary tensors is dense in CcpG,Aq [98, Lemma
1.87] we have

`

A¸r
C˚envpAq,α

G
˘˚`A¸r

C˚envpAq,α
G
˘

Ă SpA¸r
C˚envpAq,α

Gq.

By the previous lemma, A¸rα G is semi-Dirichlet. �



42 5. CROSSED PRODUCTS AND THE DIRICHLET PROPERTY

Outside of the amenable case it is not known whether the full crossed product
preserves the semi-Dirichlet property. Nevertheless, the following holds for arbitrary
locally compact groups, with a proof similar to that of Theorem 5.8.

Corollary 5.9. Let pA,G, αq be a unital dynamical system. If A is a semi-
Dirichlet operator algebra then so is A¸C˚envpAq,α G.

We have built enough machinery now to present our first applications. It was
an open question in [20] whether all semi-Dirichlet algebras are tensor algebras of
C˚-correspondences. Apparently, any Dirichlet algebra that fails to be a tensor
algebra would serve as a counterexample to the question of Davidson and Katsoulis
but no such examples were available at that time. It was Kakariadis in [47] that
produced the first example of a Dirichlet operator algebra which is not completely
isometrically isomorphic to the tensor algebra of a C˚-correspondence.

In what follows we use the crossed product of operator algebras to produce
new examples of Dirichlet and semi-Dirichlet algebras which are not tensor alge-
bras. Actually our algebras are not isomorphic to tensor algebras even by isometric
isomorphisms, thus improving Kakariadis’ result. These are our first non-trivial
examples of crossed products of operator algebras, with more to follow in later
chapters. But first we have to resolve a subtle issue regarding the diagonal of a
crossed product.

Definition 5.10. If A is an operator algebra then the diagonal of A is the
largest C˚-algebra contained in A.

If A is contained in a C˚-algebra C, then the diagonal of A is simply equal to
A X A˚ Ď C. We retain that notation for the diagonal of A, without making any
reference to the containing C˚-algebra C.

Proposition 5.11. Let pA,G, αq be a dynamical system and assume that G is
a discrete amenable group. Then,

(5.3) A¸α G X
`

A¸α G
˘˚
“ C˚

´!

ÿ

g

agUg | ag P AXA˚, g P G
)¯

.

Proof. Consider A ¸α G as a subset of C˚envpAq ¸α G; clearly the set A ¸α
G X pA¸α Gq˚ contains all monomials agUg, ag P A, g P G, where Ug PMpA¸α Gq
are the universal unitaries implementing the action of α on A. Hence the inclusion
Ě in (5.3) is obvious.

Conversely let X P A ¸α G X pA ¸α Gq˚. Using an approximation argument
involving finite polynomials in A¸α G approximating either X or X˚, we see that
ΦgpXq P AXA˚, g P G, where tΦgpXqugPG denotes the Fourier coefficients of X P

C˚envpAq ¸α G. By Proposition 2.7, X can be approximated by finite polynomials
with coefficients in tΦgpXqugPG and tUgugPG , which completes the proof. �

It is not known to us whether an analogue of Proposition 5.11 holds for the
diagonal of A¸α G, when G is not necessarily discrete and amenable.

Recall that the non trivial conformal homeomorphisms of the unit disc D are
classified as either elliptic, parabolic or hyperbolic depending on the nature of their
fixed points. An elliptic conformal homeomorphism has only one fixed point in the
interior of D; such maps are conjugate via a Möbius transformation to a rotation.
The hyperbolic transformations have two fixed points which are both located on the
boundary of D. The parabolic transformations have only one fixed point located
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on the boundary of D. (See [14, Section 2.3] or [11] for a more detailed exposition
and proof of these facts.)

Theorem 5.12. Let G be a discrete amenable group and let α : G Ñ Aut
`

ApDq
˘

be a non-trivial representation. Assume that the common fixed points of the Möbius
transformations associated with tαgugPG do not form a singleton. Then ApDq ¸α G
is a Dirichlet algebra which is not isometrically isomorphic to the tensor algebra of
any C˚-correspondence.

Proof. By way of contradiction assume that there exists isometric isomor-
phism σ : ApDq ¸α G Ñ T `X , for some C˚-correspondence pX,Cq.

By Proposition 5.11 we have

(5.4) ApDq ¸α G X
`

ApDq ¸α G
˘˚
“ C˚

´!

ÿ

g

sgUg | sg P C, g P G
)¯

» C˚pGq,

where Ug are the universal unitaries in ApDq ¸α G.
By its universality, C˚pGq admits a (non-zero) multiplicative linear functional

ρ. Let Mρ be the collection of all (necessarily contractive) multiplicative linear
functionals on ApDq ¸α G whose restriction on C˚pGq agrees with ρ.

Claim: Either Mρ “ H or Mρ contains exactly two elements.

Indeed any multiplicative form ρ1 on ApDq ¸α G is determined by its action on
ApDq and tUgugPG . If it so happens that ρ1 PMρ, then (5.4) implies that ρ1 is only
determined by its action on ApDq and therefore by its value on f0pzq “ z, z P T. If
ρ1pf0q “ z0, then the covariance relation Ugf0 “ pf0 ˝ αgqUg implies

ρ1pUgqz0 “ ρ1pUgqρ
1pf0q “ ρ1pUgf0q

“ ρ1
`

pf0 ˝ αgqUg
˘

“
`

f0 ˝ αg
˘

pz0qρpUgq

“ αgpz0qρ
1pUgq

for all g P G. Since ρ1pUgq ‰ 0, we obtain z0 “ αgpz0q and so z0 is a fixed
point for all αg, g P G. If such points do not exist, then Mρ “ H. Otherwise,
our assumptions imply that there exist exactly two common fixed points. Hence
there are exactly two choices for ρ1, which both materialize by the universality of
ApDq ¸α G (Proposition 3.7). Hence |Mρ| “ 2, as desired.

Corollary 2.10 in [2] (see also [19, Proposition 3.1]) implies that the isomor-
phism σ maps the diagonal of ApDq ¸α G onto the diagonal of T `X . Hence the
induced isomorphism σ˚ onto the spaces of multiplicative linear functionals satis-
fies σ˚pMρq “Mρ̂ for some multiplicative linear functional ρ̂ on C. By the Claim
above |Mρ̂| is either 0 or 2. But this contradicts Proposition 2.6 and the conclusion
follows. �

As we saw in the proof of Theorem 5.12, under the assumptions of that theorem
there are two choices for the common fixed points of tαgugPG : either there are no
such points or otherwise they form a two-point set. Let us show that both choices
do materialize under an amenable action.

Remark 5.13. (i) Let G “ Z, let α be a hyperbolic Möbius transformation of
the disc and let αn “ αpnq, n P Z. In that case the common fixed points form a
two-point set.
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(ii) Let z1, z2 P T be distinct points and consider two Möbius transformations
α1, α2 of the unit disc D. Choose α1 so that it fixes both z1, z2 without being the
identity self map on D. Choose α2 so that it intertwines z1 and z2. Clearly the group
G generated by these transformations has no common fixed points. However, the
set tz1, z2u is invariant by both generators and so G is amenable by [71, Theorem].
Choose α : G Ñ Aut

`

pApDq
˘

to be the identity representation.

In particular the above remark implies that whenever α is a non-trivial hyper-
bolic automorphism of ApDq, then ApDq ¸α Z is not a tensor algebra. It is instruc-
tive to observe that in the case where α is elliptic then ApDq ¸α Z » CpTq ˆα Z`,
which is indeed a tensor algebra. We will have more to say about this later in the
monograph.

We can now extend the previous result into a multivariable context. Recall,
for d ě 2, the non-commutative disk algebra Ad is the universal unital operator
algebra generated by a row contraction rT1 ¨ ¨ ¨Tds [78]. The maximal ideal space is
MpAdq » Bd and so every automorphism ϕ of Ad induces an automorphism ϕ˚ of
Bd by composition ϕ˚pρq “ ρ ˝ ϕ. It is established in [23, 79] that the isometric
automorphisms of Ad are in bijective correspondence with AutpBdq which turn out
to be unitarily implemented and thus completely isometric automorphisms.

In the same way as the disk there are automorphisms of Bd that fix exactly two
points, see [92, Example 2.3.2]. Therefore, in exactly the same way as the proof of
Theorem 5.12, we can now produce semi-Dirichlet algebras that are not isometri-
cally isomorphic to a tensor algebra of any C˚-correspondence, thus providing new
examples for the theory in [20], not covered by the tensor algebra literature.

Theorem 5.14. Let G be an amenable discrete group and let α : G Ñ Aut
`

Ad
˘

be a representation. Assume that the common fixed points of the transformations
associated with tαgugPG form a finite set which is not a singleton. Then Ad ¸α G
is a semi-Dirichlet algebra which is not isomorphic to the tensor algebra of any
C˚-correspondence.

In the case where G is abelian, we can say something more definitive about
Ad¸α G. Indeed in that case, Theorem 3.23 shows that C˚envpAd¸α Gq » Od¸α G.
It is easy to see now that Ad ¸α G is not a Dirichlet algebra, thus showing that
Ad¸α G is a semi-Dirichlet algebra which is neither a tensor algebra nor a Dirichlet
algebra. This answers a question of Ken Davidson that was communicated to both
authors on several occasions. Stated formally

Corollary 5.15. There exist semi-Dirichlet algebras which are neither Dirich-
let nor isometrically isomorphic to the tensor algebra of any C˚-correspondence.



CHAPTER 6

Crossed Products and Semisimplicity

In this chapter we consider the semisimplicity of crossed products by locally
compact abelian groups. Recall from Theorem 3.14 that there is a unique crossed
product for such groups.

We begin by reminding the reader of the definition of the Jacobson Radical of
a (not necessarily unital) ring.

Definition 6.1. Let R be a ring. The Jacobson radical RadR is defined as
the interchapter of all maximal regular right ideals of R. (A right ideal I Ď R is
regular if there exists e P R such that ex´ x P I, for all x P R.)

An element x in a ring R is called right quasi-regular if there exists y P R such
that x ` y ` xy “ 0. It can be shown that x P RadR if and only if xy is right
quasi-regular for all y P R. This is the same as 1` xy being right invertible in R1

for all y P R.
In the case where R is a Banach algebra we have

RadR “ tx P R | lim
n
}pxyqn}1{n “ 0, for all y P Ru

“ tx P R | lim
n
}pyxqn}1{n “ 0, for all y P Ru.

A ring R is called semisimple iff RadR “ t0u.
The study of the various radicals is a central topic of investigation in Abstract

Algebra and Banach Algebra theory. In Operator Algebras, the Jacobson radical
and the semisimplicity of operator algebras have been under investigation since the
very beginnings of the theory. In his seminal paper [90], Ringrose characterized the
radical of a nest algebra, a work that influenced many subsequent investigations
in the area of reflexive operator algebras. Around the same time, Arveson and
Josephson [6] raised the question of when the semicrossed product of a commutative
C˚-algebra by Z` is semisimple. This problem received a good deal of attention
as well [66, 75, 76] and it was finally solved in 2001 by Donsig, Katavolos and
Manoussos [30], building on earlier ideas of Donsig [27].

In Theorem 6.2 we discover that the semisimplicity of an operator algebra
is a property preserved under crossed products by discrete abelian groups. This
provides a huge supply of semisimple operator algebras and also raises the question
of whether or not the converse is true. In order to investigate this, we go back
to a class of operator algebras that has been investigated quite extensively by
Davidson, Donsig, Hopenwasser, Hudson, Katsoulis, Larson, Peters, Muhly, Pitts,
Poon, Power, Solel and others: triangular approximately finite-dimensional (abbr.
TAF) operator algebras [17, 27, 29, 28, 44, 63, 84]. This is one of the main
topics of study of this chapter. Another is the semisimplicity of crossed products
by compact abelian groups. This is done in Section 6.2 where we uncover some
interesting behavior.

45
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In a recent paper [16], Davidson Fuller and Kakariadis make a comprehensive
study of semicrossed products of operator algebras by discrete abelian groups. It
turns out that our ideas on the semisimplicity of crossed products by abelian groups
are also applicable on semicrossed products as well. We devote a whole section on
this topic at the end of this chapter.

6.1. Crossed products by discrete abelian groups

We begin with the following motivating result.

Theorem 6.2. Let pA,G, αq be a dynamical system with G a discrete abelian
group. If A is semisimple then A¸α G is semisimple.

Proof. Assume that the crossed product is not semisimple and so there exists
0 ‰ S P RadA¸αG. Any automorphism of A¸αG fixes the Jacobson radical, which
is closed, and so the discussion at the end of section 2.3 implies that ΦgpSqUg P
RadA¸α G for all g P G.

Now if teiuiPI is a contractive approximate unit for A, then

ΦgpSq “ lim
i

`

ΦgpSqUg
˘

α´1
g peiqU

˚
g ,

and so ΦgpSq P RadA¸α G, for all g P G. By Proposition 2.7 since S ‰ 0 there is
a g P G such that ΦgpSq ‰ 0 and so

0 ‰ ΦgpSq P pRadA¸α Gq XA Ď RadA.

Therefore, A is not semisimple. �

Naturally, one asks whether the converse of the above result is true. This brings
us to the study of crossed products and semisimplicity in the context of strongly
maximal TAF algebras with regular ˚-extendable embeddings. Studying this class
alone will provide us with a good idea of the richness of the theory. As we will
see, even very “elementary” automorphisms, i.e., quasi-inner automorphisms, can
be used to generate crossed product algebras with interesting properties. Below
we give some pertinent definitions and a few instructive examples. We direct the
reader to [84] for a comprehensive treatment of non-selfadjoint AF algebras.

Let A “ lim
ÝÑ
pAn, ρnq be a unital AF C˚-algebra via regular embeddings [84,

Section 5.9] and further assume that ρnpAnq Ď An`1, n “ 1, 2, . . . , where An

denotes the subalgebra of upper triangular matrices in An. The limit algebra A “
lim
ÝÑ
pAn, ρnq is said to be a strongly maximal TAF algebra. In the case of a strongly

maximal TAF algebra A “ lim
ÝÑ
pAn, ρnq the diagonal C ” AXA˚ of A satisfies

C “ lim
ÝÑ
pCn, ρnq, where Cn “ An XA˚n, n “ 1, 2, . . . .

It is easy to see that the Shilov ideal of A “ lim
ÝÑ
pAn, ρnq Ď A is the zero ideal

and so the C˚-algebra A “ lim
ÝÑ
pAn, ρnq together with the inclusion map gives the

C˚-envelope of A.

Definition 6.3. Let teiju
n
i,j“1 denote the usual matrix unit system of the

algebra MnpCq of n ˆ n complex matrices. An embedding σ : MnpCq Ñ MmnpCq
is said to be standard if it satisfies σpeijq “

řm´1
k“0 ei`kn,j`kn, for all i, j. That is,

σpAq “ A‘ ¨ ¨ ¨ ‘A
loooooomoooooon

m

PMmnpCq, @A PMnpCq.



6.1. CROSSED PRODUCTS BY DISCRETE ABELIAN GROUPS 47

Example 6.4. Let Aσ “ lim
ÝÑ
pAn, σnq be a standard limit algebra, i.e., each

An is isomorphic to the kn ˆ kn upper triangular matrices Tkn Ď MknpCq and
σn : MknpCq Ñ Mkn`1

pCq are the standard embeddings. Let Aσ “ C˚envpAσq be
the associated UHF C˚-algebra.

For each z P T, we define an automorphism ψz : Aσ Ñ Aσ, which acts on
matrix units as ψzpe

nk
ij q “ zj´ienkij . Assume further that z “ e2πiθ, with θ P r0, 1q

irrational. We denote the corresponding crossed product C˚-algebra as Aσ ¸θ Z
and the associated non-selfadjoint algebras as Aσ ¸θ Z` and Aσ ¸θ Z. These are
analogues of the familiar irrational rotation C˚-algebras and their non-selfadjoint
counterparts.

Of course, there is nothing special in this discussion about the standard embed-
ding. If Aσ “ lim

ÝÑ
pAn, ρnq is any other presentation of Aσ via regular embeddings,

then one has a commutative diagram

A1
ρ1

ÝÝÝÝÑ A2
ρ2

ÝÝÝÝÑ A3 ÝÝÝÝÑ . . . A
§

§

đ

§

§

đ

§

§

đ

§

§

đ
Ψ

A1
σ1

ÝÝÝÝÑ A2
σ2

ÝÝÝÝÑ A3 ÝÝÝÝÑ . . . A

where the vertical maps are conjugations by permutation unitaries. The composi-
tion Ψ´1 ˝ ψz ˝Ψ allows us to define now an automorphism on the non-selfadjoint
algebra A “ lim

ÝÑ
pAn, ρnq, that twists each matrix unit by a (not necessarily positive)

power of z “ e2πiθ. (This automorphism is actually an example of a quasi-inner
automorphism, i.e., an automorphism that maps An onto An, for all n P N.)

By Theorem 5.5, C˚envpAσ ¸θ Zq » Aσ ¸θ Z. The K-theory of that C˚-algebra
is easy to calculate and it demonstrates how far removed Aσ ¸θ Z is from its TAF
generator.

Proposition 6.5. Let A “ lim
ÝÑ
pAn, ρnq be an AF C˚-algebra and ψ : AÑ A a

quasi-inner automorphism. Then, K0pA¸ψ Zq “ K0pAq and K1pA¸ψ Zq » K0pAq.

Proof. This follows from an application of the Pimsner-Voiculescu exact se-
quence

(6.1)

K0pAq
id˚´ψ˚
ÝÝÝÝÝÑ K0pAq

i˚
ÝÝÝÝÑ K0pA¸ψ Zq

İ

§

§

§

§

đ

K1pA¸ψ Zq ÐÝÝÝÝ
i˚

K1pAq ÐÝÝÝÝÝ
id˚´ψ˚

K1pAq

where i : AÑ A¸ψ Z denotes the inclusion map. Since ψ is quasi-inner, ψ˚ “ id˚
on KipAnq, i “ 0, 1, n P N. By the continuity of the Ki functors (Theorem 6.3.2
and Proposition 8.2.7 in [89]), we obtain ψ˚ “ id˚ on KipAq, i “ 0, 1. Hence
the upper i˚ is injective. Furthermore K1pAq “ 0 [89, Excercise 8.7] and so the
right vertical map is the zero map. Therefore the upper i˚ is also surjective and so
K0pAq » K0pA¸ψ Zq.

On the other hand the left side of (6.1) collapses to

0 ÝÝÝÝÑ K1pA¸ψ Zq ÝÝÝÝÑ K0pAq ÝÝÝÝÑ 0

and so K1pA¸ψ Zq » K0pAq. �
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By Kishimoto’s Theorem [60, Theorem 3.1], the C˚-algebra Aσ ¸θ Z is simple
and therefore any of its representations is necessarily faithful. This allows us to
give a good picture for Aσ ¸θ Z.

Example 6.6. Let Aσ “ lim
ÝÑ
pAn, σnq, θ P r0, 1s and Aσ ¸θ Z be as in Exam-

ple 6.4.
Let tenunPN be an orthonormal basis for a Hilbert space H. An operator

A P BpHq is said to be k-periodic if its matrix representation with respect to
tenunPN consists of a k ˆ k-matrix which is repeated infinitely along the diagonal.
The collection of all k-periodic matrices is denoted as A1k. Clearly the collection
tA1knunPN is an increasing collection of finite dimensional factors that provides a
faithful representation for Aσ.

Consider now the diagonal unitary operator Uθ P BpHq with Uθen “ e2πiθnen,
n P N. Then the algebra generated by

Ť

nPN Akn and tUmθ umPZ is isomorphic to
Aσ ¸θ Z.

As we will see, the semisimplicity of Aσ ¸θ Z is easy to establish. The same
statement for Aσ ¸θ Z` requires more work.

The semisimplicity of strongly maximal TAF algebras was characterized by
Donsig [27, Theorem 4]. Donsig showed that a strongly maximal TAF algebra A is
semisimple iff any matrix unit e P A has a link, i.e., eAe ‰ t0u (Donsig’s criterion).
It is easy to see that any strongly maximal TAF algebra A “ lim

ÝÑ
pAn, ρnq for which

the standard embedding appears infinitely many times satisfies the above and is
therefore semisimple.

Definition 6.7. Let A be a strongly maximal TAF algebra. The dynamical
system pA,G, αq is said to be linking if for every matrix unit e P A there exists a
group element g P G such that eAαgpeq ‰ t0u.

By Donsig’s criterion if A is semisimple then pA,G, αq is linking. The following
example shows that there are other linking dynamical systems.

Example 6.8. Let An “ C‘ T2n and define the embeddings ρn : An Ñ An`1

by

ρnpx‘Aq “ x‘

»

–

x
A

x

fi

fl .

Then A “ lim
ÝÑ

An is a strongly maximal TAF algebra that is not semisimple.
Consider the following map ψ : An Ñ An`1 given by

ψpx‘Aq “ x‘

»

–

x
x

A

fi

fl .

You can see that ψ ˝ ρn “ ρn`1 ˝ψ on An and so ψ is a well-defined map on YAn.
By considering that

ψ´1px‘Aq “ x‘

»

–

A
x

x

fi

fl
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one gets ψ ˝ψ´1 “ ψ´1 ˝ψ “ ρn`1 ˝ρn on An. Hence, ψ extends to be an isometric
automorphism of A. Finally, for every e2n

i,j P An, i ‰ j

e
p2nq
i,j

»

–

02n

02n e
p2nq
j,i

02n

fi

flψp2nqpe
p2nq
i,j q

“

»

–

02n

e
p2nq
i,j

02n

fi

fl

»

–

02n

02n e
p2nq
j,i

02n

fi

fl

»

–

02n

02n

e
p2nq
i,j

fi

fl

“

»

–

02n

02n e
p2nq
i,j

02n

fi

fl .

Therefore, pA,Z, ψq is a linking dynamical system.

The following theorem and the previous example establish that the converse of
Theorem 6.2 is not true in general.

Theorem 6.9. Let A be a strongly maximal TAF algebra and G a discrete
abelian group. The dynamical system pA,G, αq is linking if and only if A ¸α G is
semisimple.

Proof. Assume that pA,G, αq is not linking. This means that there exists a
matrix unit e P A such that eAαgpeq “ t0u for all g P G. For every g P G and a P A
we have

peaUgq
2 “ eaUgeaUg

“ eaαgpeqUgaUg

“ 0UgaUg “ 0.

In the same way for any g1, ¨ ¨ ¨ , gn P G and a1, ¨ ¨ ¨ , an P A

pe
n
ÿ

i“1

aiUgiq
2 “ 0.

Therefore, e P RadA¸α G.

Conversely, assume that pA,G, αq is linking. By way of contradiction, assume
that RadA¸α G contains a non-zero element. As in the proof of Theorem 6.2 this
implies that there is a nonzero element

a P AX RadA¸α G ” J .

It is easy to see that J is a non-zero closed ideal of A. By [84, Theorem 4.7], J is
inductive and so it is generated by the matrix units it contains. Hence there exists
at least one non-diagonal matrix unit e P J XAr1 .

Start with e1 “ e. Since pA,G, αq is linking, there exist g1 P G, b1 P Ar2 matrix
unit and summands er21 , e

r2
2 P Ar2 of e1, so that

(6.2) 0 ‰ eαg1pb1eq “ er21 αg1pb1e
r2
2 q ” e2 P RadA¸α G.

Claim 1: The summands er21 , e
r2
2 P Ar2 of e1 are distinct.
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Indeed if f ” er21 “ er22 , then notice that (6.2) implies that the normalizing partial
isometry αg1pb1q maps inside the initial space of f and f maps inside the initial
space of b1. Hence fαg1

`

b1fαg1pb1q
˘

‰ 0 and so

pfUgb1q
2 “ αg1

`

b1fαg1pb1q
˘

U2
g1 ‰ 0.

Similarly

fαg1

´

b1fαg1
`

b1fαg1pb1q
˘

¯

‰ 0

and so pfUg1b1q
3 ‰ 0. Continuing in this fashion we conclude that pfUg1b1q

n ‰ 0,
for all n P N. However, pfUg1b1q

n is the product of a normalizing partial isometry
with the unitary Ung1 and so }pfUg1b1q

n} “ 1, which contradicts the fact the f P
RadA¸α G.

Note that at this point we cannot conclude that e2 is a matrix unit nor a
sum of such units because of the generic nature of αg1 . However by multiplying
b1 with a suitable diagonal unitary, we may arrange so that αg1pb1e

r2
2 q is a sum of

matrix units with orthogonal initial and final spaces, i.e., a pure normalizing partial
isometry. Hence multiply both sides of (6.2) with a suitable diagonal unitary and
so e2 becomes a pure normalizing partial isometry by being a product of two such
partial isometries. Note that b1 in this situation is no longer a matrix unit but
instead a normalizing partial isometry which may not be even pure.

Since e2 P RadA¸α G, we can find now g2 P G, a normalizing partial isometry
b2 P A and summands er31 , e

r3
2 P Ar3 of one of the matrix units in e2 so that

0 ‰ e2αg2pb2e2q “ er31 αg2pb2e
r3
2 q ” e3 P RadA¸α G

is a sum of matrix units. Since e2 P RadA ¸α G an argument identical to that of
Claim 1 shows that the summands er31 , e

r3
2 are distinct. And so on.

Continuing in this fashion we obtain the sequences temu
8
m“1, term1 u8m“1, term2 u8m“1,

tbmu
8
m“1 and tgmu

8
m“1 so that

(6.3) em`1 “ emαgmpbmemq “ e
rm`1

1 αgmpbme
rm`1

2 q,m P N.

Note that the sequences term1 u8m“1 and term2 u8m“1 are distinct term by term.
In an analogy to the above construction to be understood shortly, we now

construct a sequence Xm P A¸α G, m “ 1, 2, . . . , as follows

X1 “ eUh1
b1

X2 “
`

eUh1
b1
˘

peUh2
b2
˘`

eUh1
b1
˘

...

Xm “ Xm´1

`

eUhmbm
˘

Xm´1, m P N,

where h1 “ g1 and hm “ gmpg1g2 . . . gm´1q
´1, for m ě 2.

Claim 2: Xme “ em`1Ug1g2...gm ,m P N.
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The claim is indeed true for m “ 1. Assuming its validity for m´ 1, we have that

Xme “
`

Xm´1e
˘

Uhmbm
`

Xm´1e
˘

“ emUg1g2...gm´1
UhmbmemUg1g2...gm´1

“ emUgmbmemUg1g2...gm´1

“ emαgmpbmemqUgmUg1g2...gm´1
“ em`1Ug1g2...gm

as desired.

Set

(6.4) eB ” e

˜

8
ÿ

i“1

1

2i
Uhibi

¸

P RadA¸α G,

where h1, h2, ¨ ¨ ¨ P G are as above. We will show that

(6.5) }peBq2
m
´1} ě 1{22m`1

, m P N.
This will imply that the spectral radius of eB is

lim
mÑ8

}peBq}1{2
m
´1 ě lim

mÑ8

ˆ

1

22m`1

˙1{2m´1

“ 1{4

and so eB is not quasinilpotent, thus contradicting (6.4).
To establish (6.5), fix an m P N and note that peBq2

m
´1e can be written as an

infinite sum of the form

ÿ

k“pk1,...k2m´1qPN2m´1

˜

2m´1
ź

l“1

e

2kl
Uhkl bkl

¸

e “

“
ÿ

2´pk peUhk1 bk1qpeUhk2 bk2q . . . peUhk2m´1
bk2m´1

qe

“
ÿ

2´pkeαhk1

`

bk1eαhk2

`

bk2 . . . eαhk2m´1

`

bk2m´1
e
˘˘˘

Uhk1 ...hk2m´1

(6.6)

where pk are suitable exponents.
Note that for a specific k “ pk1, . . . k2m´1q P N2m´1 the corresponding summand in

(6.6) is

2´pkXme “ 2´pkem`1Ug1g2...gm
because of Claim 2 above. The complication we are facing now is that the terms appearing
in (6.6) are not necessarily positive multiples of sums of matrix units. (This is the case
for instance when the automorphisms αg are actually gauge automorphisms.) In order to
bypass this problem and actually show that the norm of the sum in (6.6) is as large as the
norm of each one of its terms, we capitalize on our careful choice of the partial isometries
bm, m P N. We need to establish the following two claims.

Claim 3: bib
˚
j “ 0 for i ‰ j.

Note that

(6.7) er21 pe
r2
1 q

˚
ě ¨ ¨ ¨ ě eri1 pe

ri
1 q
˚
ě e

ri`1
1 pe

ri`1
1 q

˚
ě . . .

Since b˚i bi ď e
ri`1
2 pe

ri`1
2 q

˚ and e
ri`1
2 ‰ e

ri`1
1 we have

b˚i bi K e
ri`1
1 pe

ri`1
1 q

˚

and so by (6.7)

(6.8) b˚i bi K e
ri`l
1 pe

ri`l
1 q

˚, l “ 1, 2, . . . .

On the other hand
b˚i bi ď e

ri`1
2 pe

ri`1
2 q

˚
ď eie

˚
i ď eri1 pe

ri
1 q
˚
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and so replacing i with i` l in the above, we obtain

(6.9) b˚i`lbi`l ď e
ri`l
1 pe

ri`l
1 q

˚, l “ 1, 2, . . . .

By (6.8) and (6.9), b˚i`lbi`l K b˚i bi, l “ 1, 2, . . . , which proves the claim.

Claim 4: Different choices for the index k “ pk1, k2, . . . k2m´1q produce terms in (6.6)
with orthogonal domains.

We will establish this for the case of two factors and will leave the details of the general
case to the reader.

Indeed let

X “ eUhk1 bk1eUhk2 bk2e and Y “ eUhl1 bl1eUhl2 bl2e

and assume that XY ˚ ‰ 0. Since bk1 is a normalizing partial isometry there exists a
projection p P A˚ XA so that bk2ee

˚
“ pbk2 . Then,

XY ˚ “ eUhk1 bk1eUhk2 bk2ee
˚b˚l2U

˚
hl2
e˚b˚l1U

˚
hl1
e˚

“ eUhk1 bk1eUhk2 pbk2b
˚
l2U

˚
hl2
e˚b˚l1U

˚
hl1
e˚.

Since, XY ˚ ‰ 0, Claim 3 implies that k2 “ l2. Hence,

p1 “ eUgk2 pbk2b
˚
k2U

˚
gl2
e˚ P A˚ XA

is a diagonal projection. Now there exists a projection p2 P A˚XA so that bk1p
1
“ p2bk1 .

Hence

XY ˚ “ ebk1Ugk1 p
1U˚gl1 b

˚
l1e
˚

“ eUgk1 p
2bk1b

˚
l1U

˚
gl1
e˚

Another application of Claim 3 implies k1 “ l1, as desired.

Claim 4 shows now that }peBq2
m´1e} is at least as large as the norm of each non-zero

term in (6.6). This shows now that

}peBq2
m´1

} ě }peBq2
m´1e} ě }ag1g2...gnUg1g2...gn}

ě }2´pkem`1Ug1g2...gm}

“ 2´pk .

(6.10)

Note that the multi-index k “ pk1, . . . k2m´1q P N2m´1 appearing above is given by

k2m´1 “ m
k2m´2 “ k3¨2m´2 “ m´ 1

k2m´3 “ k3¨2m´3 “ k5¨2m´3 “ k7¨2m´3 “ m´ 2
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

k1 “ k3 “ k5 “ ¨ ¨ ¨ “ k2m´1 “ 1,

and so
pk “ m` 2pm´ 1q ` 22

pm´ 2q ` ¨ ¨ ¨ ` 2m´1
“ 2m`1

´m´ 2

by an easy inductive argument. Hence pk ď 2m`1, m P N. This fact, together with (6.10),
implies (6.5) and leads to the the desired contradiction. Hence A¸α G is semisimple. �

Remark 6.10. In order to show that the converse of Theorem 6.2 fails, it
suffices to prove Theorem 6.9 only in the case where the automorphisms αg map
matrix units to sums of matrix units, as Example 6.8 clearly indicates. As it turns
out, the proof of Theorem 6.9 simplifies considerably in that case.

If we specialize the automorphisms or the algebras in the previous result we do
have the converse of Theorem 6.2.
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Corollary 6.11. Let A be a strongly maximal TAF algebra and G a discrete
abelian group acting on A by quasi-inner isometric automorphisms. A is semisimple
if and only if A¸α G is semisimple.

Proof. A quasi-inner automorphism acts on a matrix unit e by multiplying e
with some unimodular scalar. By Donsig’s criterion, this fact implies that pA,G, αq
is linking if and only if A is semisimple. �

A strongly maximal TAF algebra A “ lim
ÝÑ
pAn, ρnq is said to be a TUHF al-

gebra if each one of the finite dimensional algebras An is isomorphic to the upper
triangular matrices Tkn ĎMknpCq, n P N.

Theorem 6.12. Let pA,G, αq be a dynamical system with A a strongly maximal
TUHF algebra and G a discrete abelian group. A is semisimple if and only if A¸αG
is semisimple.

Proof. In light of Theorems 6.2 and 6.9 we only need to establish that pA,G, αq
linking implies that A is semisimple. This is accomplished by careful bookkeeping
of indices.

Assume that pA,G, αq is a linking dynamical system with A not semisimple.
By Donsig’s criterion there is a matrix unit e P Tn which cannot be linked in A, i.e.,

eAe “ t0u. Therefore if e
pnq
1 , e

pnq
n are the first and last diagonal matrix units in Tn,

then e
pnq
n Aepnq1 “ t0u or otherwise by multiplying e

pnq
n Aepnq1 from the left and right

with appropriate matrix units in Tn we would get eAe ‰ t0u. Since e
pnq
n Aepnq1 “ t0u

we get e
pnq
1,nAe

pnq
1,n “ t0u and so e

pnq
1,n P RadA because it generates a nilpotent ideal.

Claim 1: There exists an n1 P N and an index 1 ă k ă n1 such that

epn1q
n1

Aepn1q

k “ e
pn1q

k Aepn1q

1 “ t0u.

By linking there exists a g1 P G such that e
pnq
1,nAαg1pe

pnq
1,nq ‰ t0u which is the

same as e
pnq
n Aαg1pe

pnq
1 q ‰ t0u. By inductivity there exists an n1 P N such that

e
pnq
n Tn1αg1pe

pnq
1 q ‰ t0u and αg1pTnq Ă Tn1 . Hence,

e
pnq
1 “

n1{n
ÿ

i“1

e
pn1q

ji
, αg1pe

pnq
1 q “

n1{n
ÿ

i“1

e
pn1q

j1i
,

epnqn “

n1{n
ÿ

i“1

e
pn1q

li
, and αg1pe

pnq
n q “

n1{n
ÿ

i“1

e
pn1q

l1i
,

where 1 “ j1 ă ¨ ¨ ¨ ă jn1{n, 1 “ j11 ă ¨ ¨ ¨ ă j1n1{n
, l1 ă ¨ ¨ ¨ ă ln1{n “ n1 and

l11 ă ¨ ¨ ¨ ă l1n1{n
“ n1. Now

epnqn Aepnq1 “ t0u ñ e
pn1q

l1
Aepn1q

1 “ t0u, and

epnqn Aepnq1 “ t0u ñ αg1pe
pnq
n qAαg1pe

pnq
1 q “ t0u ñ epn1q

n1
Aepn1q

j1
n1{n

“ t0u.

As well,

epnqn Tn1αg1pe
pnq
1 q ‰ t0u ñ l1 ď j1n1{n

.
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Finally, let k “ l1. We already have e
pn1q

k Aepn1q

1 “ t0u and note that

epn1q
n1

Aepn1q

j1
n1{n

“ t0u ñ epn1q
n1

Aepn1q

k “ epn1q
n1

Aepn1q

l1,j1n1{n
e
pn1q

j1
n1{n

“ t0u.

Therefore, the claim is verified.

Claim 2: Suppose ρ : Tm1
Ñ Tm2

is a unital regular ˚-extendable embedding. If

ρpe
pn1q

k q “
řn2{n1

i“1 e
pn2q

ki
with k1 ă ¨ ¨ ¨ ă kn2{n1

then k1 ď pk ´ 1qn2{n1 ` 1 and

kn2{n1
ě kn2{n1.

This follows from the ordered partition theory of [87] due to the rigid structure
of such embeddings.

Let n1, k be those found in Claim 1. By linking there exists g2 P G such that

e
pn1q

1,n1
Aαg2pe

pn1q

1,n1
q ‰ t0u. Thus, there exists n2 P N such that e

pn1q
n1 Tn2

αg2pe
pn1q

1 q ‰

t0u and

αg2pe
pn1q

1 q “

n2{n1
ÿ

i“1

e
pn2q

j1i
epn1q
n1

“

n2{n1
ÿ

i“1

e
pn2q

li

e
pn1q

k “

n2{n1
ÿ

i“1

e
pn2q

ki
, αg2pe

pn1q

k q “

n2{n1
ÿ

i“1

e
pn2q

k1i
,

where the indices are again in increasing order. Now

epn1q
n1

Aepn1q

k “ t0u ñ kn2{n1
ă l1, and

e
pn1q

k Aepn1q

1 “ t0u ñ αg2pe
pn1q

k qAαg2pe
pn1q

1 q “ t0u ñ j1n2{n1
ă k11.

By e
pn1q
n1 Tn2αg2pe

pn1q

1 q ‰ t0u, Claim 2 and the above inequalities we have that

kn2{n1 ď kn2{n1
ă l1 ď j1n2{n1

ă k11 ď pk ´ 1qn2{n1 ´ 1,

which is a contradiction. Therefore, if pA,G, αq is linking then A is semisimple. �

6.2. Crossed products by compact abelian groups

Our previous results on the semimplicity of crossed products by discrete abelian
groups raise the question of what happen in other cases. Here we address the
semisimplicity of crossed products by compact abelian groups. Remarkably the
situation reverses. The key ingredient in our study is non-selfadjoint Takai duality.

We need the following.

Lemma 6.13. Let A be an operator algebra and let KpHq denote the compact
operators acting on a Hilbert space H. If A b KpHq is semisimple, then A is
semisimple.

Proof. Let tξiuiPI be an orthonormal basis for H and let eij be the rank one
operator mapping ξj to ξi, i, j P I. Assume that A acts on some Hilbert space H1.
Then A b KpHq is generated as an operator algebra by all elementary tensors of
the form ab eij P BpH1 bHq, a P A, i, j P I.

By way of contradiction, assume that 0 ‰ x P RadA. Fix an i0 P I and let
X ” x b ei0i0 P A b KpHq. An easy calculation shows that given A P A b KpHq,
there exists a P A so that

ab ei0i0 “ pI b ei0i0qApI b ei0i0q
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and so

pAXqn “ Apxb ei0i0q
´

pI b ei0i0qApI b ei0i0qpxb ei0i0q
¯n´1

“ Apxb ei0i0q
`

paxqn´1 b ei0i0
˘

for all n P N. Hence

lim
n
}pAXqn}1{n ď lim

n
}Apxb ei0i0q}

1{n lim sup
n

}paxqn´1}1{n

“ lim sup
n

}paxqn}1{n “ 0

because x P RadA. Hence 0 ‰ X P RadAbKpHq, which is the desired contradic-
tion. �

Theorem 6.14. Let pA,G, αq be a dynamical system, with G a compact abelian
group. If A¸α G is semisimple, then A is semisimple.

Proof. Assume that A ¸α G is semisimple. Then Theorem 6.2 implies that
`

A ¸α G
˘

¸α̂ Ĝ is semisimple. By Takai duality, A b K
`

L2pGq
˘

is semisimple and
so by Lemma 6.13, A is semisimple, as desired �

Let us see now that the converse of the above theorem is not necessarily true.
Therefore, Theorem 6.2 does not extend beyond discrete abelian groups.

Example 6.15. A dynamical system pB,T, βq, with B a semisimple operator
algebra, for which B ¸β T is not semisimple.

We will employ again our previous results and Takai duality. In Example 6.8
we saw a linking dynamical system pA,Z, αq for which A is not semisimple. Since
pA,Z, αq is linking, we have by Theorem 6.9 that the algebra B ” A ¸α Z is
semisimple. Let β ” α̂. Then,

B ¸β T “
`

A¸α Z
˘

¸α̂ T » AbKp`2pZqq,

which is not semismple, by Lemma 6.13.

6.3. More examples of crossed product Dirichlet algebras

In Chapter 5 we promised additional examples of crossed products which are
Dirichlet algebras and yet fail to be isometrically isomorphic to any tensor algebra.
We remind the reader that the existence of such algebras was an open problem in
[20] that was only solved recently by Kakariadis [47].

Definition 6.16. Let A “ lim
ÝÑ
pAn, ρnq be a strongly maximal TAF algebra

and let A0 ” lim
ÝÑ
pRadAn, ρnq Ď A. We say that A is fractal-like if A0 “ rA2

0 s.

The familiar refinement and alternation limit algebras [84] are examples of
fractal-like limit algebras.

Theorem 6.17. Let A be a strongly maximal TAF algebra and let ψ : AÑ A
be an isometric quasi-inner automorphism. If A is fractal-like, then A ¸ψ Z is a
Dirichlet algebra which is not isometrically isomorphic to the tensor algebra of any
C˚-correspondence.
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Proof. Note that

pA¸ψ Zq X pA¸ψ Zq˚ “ t
8
ÿ

i“´8

ciU
i | ci P AXA˚, i P Zu.

Since ψ is quasi-inner, AXA˚ is left elementwise invariant by ψ and so pA¸ψ ZqX
pA¸ψ Zq˚ is a commutative C˚-algebra.

The conclusion will follow if we verify that an operator algebra B containing
a copy of a fractal-like TAF algebra A “ lim

ÝÑ
pAn, ρnq, cannot be isometrically

isomorphic to the tensor algebra of a commutative C˚-algebra C.
By way of contradiction, assume that there exists a C-bimodule X so that each

element b P B admits a Fourier series b “ c `
ř8

j“1 ξj , with c P C and ξj P X
j ,

j “ 1, 2, . . . . Note that if e P An is any off-diagonal matrix unit then the C-
coefficient in its Fourier series is equal to 0, since such an e is nilpotent of order 2.
Let j0 be the smallest positive integer so that e “

ř8

j“j0
ξj , for some off diagonal

matrix unit e. However e can be written as a finite sum of products of the form
e “ e1e2, where e1, e2 P A are off-diagonal matrix units. But the minimality of j0
implies that each product e1e2 has a Fourier series starting from 2j0, which is a
contradiction. �

It is worthwhile noticing that the above arguments also show that any fractal-
like strongly maximal TAF algebra cannot be isomorphic to the tensor algebra
of a C˚-correspondence. This theme has been further explored in [55], where we
characterize all triangular limit algebras that happen to be isometrically isomorphic
to tensor algebras of C˚-correspondences.

6.4. Semicrossed products and semisimplicity

It is instructive to see what happens in the semicrossed product case. This
can be taken as further evidence that the crossed product is perhaps a nicer non-
selfadjoint object than the semicrossed product.

Let pA,G, αq be a dynamical system with G a discrete abelian group. Suppose
P is a positive spanning cone of G, that is, P is a unital semigroup such that
P X P´1 “ t1u and PP´1 “ G, using multiplicative notation.

Define the (unitary) semicrossed product of the dynamical system
pA, P, αq as

Aˆα P “ algtaUs : a P A, s P P u.
This definition is left-right flipped from the usual one and would really be the defi-
nition for the unitary semicrossed product of pA, P´1, αq. Another important note
is that by [16, Theorem 3.3.1] this semicrossed product is completely isometrically
isomorphic to the isometric semicrossed product.

There is no version of Theorem 6.2 as it is no longer true in this context. To
see this we again turn to strongly maximal TAF algebras.

Definition 6.18. Let A be a strongly maximal TAF algebra. The dynamical
system pA, P, αq is said to be linking if for every matrix unit e P A and every t P P
there exists an s P P such that eAαst

`

e
˘

‰ t0u.

Proposition 6.19. Let pA, P, αq be a dynamical system with P totally ordered.
If for every matrix unit e P A there is an s P P zt1u such that eAαspeq ‰ t0u then
pA, P, αq is linking.
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Proof. Let e P A be a matrix unit. By hypothesis there exists s1 P P zt1u such
that eAαs1peq ‰ t0u. This is an inductive object, hence there exists f1 P A such
that ef1αs1peq is a matrix unit. Again by the hypothesis, there exists s2 P P zt1u
such that

t0u ‰ e1f1αs1pe1qAαs2pe1f1αs1pe1qq Ă e1Aαs2s1pe1q ‰ t0u.

Repeating this argument implies that there are an infinite number of semigroup
elements s P P such that eAαspeq ‰ t0u. Therefore, for t P P , discrete and totally
ordered imply that there exists s P P such that st is a semigroup element in this
infinite set. Hence, eAαstpeq ‰ t0u. �

Note that if A is semisimple then pA, P, αq is not necessarily linking. In par-
ticular, consider the following example.

Example 6.20. Let

An “ C‘ T2 ‘ ¨ ¨ ¨ ‘ T2n´2 ‘ T2n´1 ‘ T2n´2 ‘ ¨ ¨ ¨ ‘ T2 ‘ C

and define the embeddings ρn : An Ñ An`1 by

ρ1pA1q “ A1 ‘

„

A1

A1



‘A1 “ A1 ‘ pI2 bA1q ‘A1

and for n ě 2

ρn

˜

2n´1
à

i“1

Ai

¸

“ A1 ‘

˜

2n´1
à

i“1

I2 bAi

¸

‘A2n´1.

These embeddings are associated with the following Bratteli diagram

1

21 1

42 21 1

8421 4 2 1

...

Then A “ lim
ÝÑ

An is a semisimple strongly maximal TAF algebra. However,
consider the following shift-like map ψ : AÑ A which takes An into An`1 by

ψ
´ 2n´1

à

i“1

Ai

¯

“A1 ‘ pI2 bA1q ‘ pI4 bA1q ‘ pI4 bA2q b ¨ ¨ ¨

‘ pI4 bAn´1q ‘An ‘An`1 ‘ ¨ ¨ ¨ ‘A2n´1.

This is well defined with the ρn embeddings and thus we define

ψ´1
´ 2n´1

à

i“1

Ai

¯

“ A1 ‘A2 ‘ ¨ ¨ ¨ ‘An ‘ pI4 bAn`1q ‘ ¨ ¨ ¨

‘ pI4 bA2n´3q ‘ pI4 bA2n´2q ‘ pI2 bA2n´1q ‘A2n´1.



58 6. CROSSED PRODUCTS AND SEMISIMPLICITY

From these definitions we calculate that

ψ´1 ˝ ψ
´ 2n´1

à

i“1

Ai

¯

“ ρn`1 ˝ ρn

´ 2n´1
à

i“1

Ai

¯

.

Thus, ψ is an isometric automorphism of
Ť8

n“1 An and so extends to an isometric
automorphism of A.

Now consider e1,2 P T2 Ă A2. It is immediate that e1,2Aψpkqpe1,2q “ t0u for all
k ě 1. Therefore, pA,Z`, ψq is not linking even though A is semisimple.

Theorem 6.21. Let A be a strongly maximal TAF algebra and P a semigroup
that is a positive spanning cone of a discrete abelian group. The dynamical system
pA, P, αq is linking if and only if Aˆα P is semisimple.

Proof. Assume that pA, P, αq is not linking. This means that there exists a
matrix unit e P A and a t P P such that eAαstpeq “ t0u for all s P P . For every
s P P and a P A we have

peUtaUsq
2 “ eUtaUseUtaUs

“ eαt
`

a
˘

αst
`

e
˘

αst2
`

a
˘

Us2t2

“ 0αst2
`

a
˘

Us2t2

“ 0.

In the same way for any s1, . . . , sn P P and a1, ¨ ¨ ¨ , an P A

peUt

n
ÿ

i“1

aiUsiq
2 “ 0.

Therefore, eUt P RadAˆα P and so the semicrossed product is not semisimple.
Conversely, suppose that pA, P, αq is linking. This will follow in a similar

manner as the proof of the converse in Theorem 6.9. One only needs to be careful
at a few points since we are dealing with a semigroup instead of a group.

Assume that AˆαP is not semisimple. Thus, there is a non-zero a P RadAˆα
P . Since we are working in a discrete abelian group we can use the Fourier theory
discussed after Proposition 2.7. In light of this, let G “ PP´1 and Ĝ the Pontryagin
dual of G. The gauge actions tψγuγPĜ restrict to gauge automorphisms on A ˆα
P and so ideals in this algebra are left invariant by the gauge actions. Hence,
RadA ˆα P is a closed linear space in A ˆα P Ă A ˆα G, which is left invariant
by the gauge action tψγuγPĜ . Therefore, asUs “ Φspaq P RadAˆα P for all s P P

(being careful to note that this Φs was defined differently).
By Proposition 2.7 there exists s0 P P such that AUs0 X RadA ˆα P ‰ t0u.

This set is inductive and so there exists a matrix unit e P Ar1 such that eUs0 is in
the radical.

Start now with e1 ” e P Ar1 . By linking there exists s11 P P such that
eAαs11s0peq ‰ t0u. Define s1 “ s11s0 P P . By inductivity there is a b1 P Ar2

such that e1αs1pb1e1q is a matrix unit in Ar2 . Because A has regular embeddings
and since any isometric automorphism preserves the normalizer there exists er21 , e

r2
2

summands of e1 such that er21 and αs1pe
r2
2 q are matrix units in Ar2 . This allows

that b1 can be taken to be a normalizing partial isometry and

e2 ” e1αs1pb1e1q “ er21 αs1pb1e
r2
2 q.
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If er21 “ er22 ” f then notice that f˚f “ αs1pb1b
˚
1 q and ff˚ “ b˚1 b1. This implies

that

peUs1b1q
n “ eUs1b1eUs1b1 ¨ ¨ ¨ eUs1b1

“ eαs1pb1eαs1pb1e ¨ ¨ ¨αs1pb1qqqU
n
s1

“ fαs1pb1fαs1pb1f ¨ ¨ ¨αs1pb1qqqU
n
s1

is a partial isometry times a unitary and so eUs0Us11b1 “ eUs1b1 is not quasinilpo-
tent, a contradiction to eUs0 being in the radical. Therefore, er21 ‰ er22 which allows
us to choose r2, b1, e

r2
1 and er22 again such that er21 and er22 are distinct summands

of e. We remark for later in the proof that this gives

(6.11) er21 pe
r2
1 q
˚ K er22 pe

r2
2 q
˚.

Continuing this way, we get a sequence of matrix units temu
8
m“1, em P Arm ,

a sequence of partial isometries tbmu
8
m“1, and semigroup elements tsmu

8
m“1, sm “

s1ms
2
ms0 P P , with

em`1 ” emαsmpbmemq “ e
rm`1

1 αsmpbme
rm`1

2 q ‰ 0

where e
rm`1

1 , e
rm`1

2 are summands of em and

(6.12) s2m “
m´1
ź

i“1

sim´i P P.

By linking s1m P P is chosen such that emAαs1ms2ms0peq ‰ t0u.
Again we need to consider if e

rm`1

1 “ e
rm`1

2 ” f . First, by the recursive
definition of em we have

eUs0B ” eUs0αs´1
0 s1

`

b1eαs2
`

b2e2αs3
`

b3 . . . bm
˘˘˘

Us1m

“ αs1s2...sm´1

`

emsmpbmq
˘

Usm ,

noting that s´1
0 s1 “ s11 P P . Hence,

peUs0Bq
n “

`

αs1s2...sm´1

`

emαsmpbmq
˘

Usm
˘n

“ αs1s2...sm´1

`

emαsm
`

bmemαsm
`

bm . . . emαsm
`

bm
˘˘˘˘

Unsm

“ αs1s2...sm´1

`

fαsm
`

bmfαsm
`

bm . . . fαsm
`

bm
˘˘˘˘

Unsm

is again the product of a partial isometry and a unitary and so eUs0B is not
quasinilpotent, a contradiction. Therefore, in the same way as before we can choose
rm`1, bm, e

rm`1

1 and e
rm`1

2 such that

(6.13) e
rm`1

1 pe
rm`1

1 q˚ K e
rm`1

2 pe
rm`1

2 q˚.

Set

(6.14) eUs0B ” eUs0

˜

8
ÿ

i“1

1

2i
Ut1ibi

¸

“ e

˜

8
ÿ

i“1

1

2i
Utibi

¸

P RadAˆα P,

where the semigroup elements ti will be defined later.
We will show that

(6.15) }peUs0Bq
2m} ě 1{22m`1

, m P N.
This will imply that the spectral radius of eUs0B is

lim
mÑ8

}peUs0Bq
2m}1{2

m

ě lim
mÑ8

ˆ

1

22m`1

˙1{2m

“ 1{2
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and so eUs0B is not quasinilpotent, thus contradicting (6.14).
To establish this contradiction, fix an m P N and note that peUs0Bq

2m can be
written as an infinite sum of the form

(6.16)
ÿ

k“pk1,k2,...k2m qPN2m

` e

2k1
Utk1 bk1

˘` e

2k2
Utk2 bk2

˘

. . .
` e

2k2m
Utk2m bk2m

˘

“
ÿ

k“pk1,k2,...k2m qPN2m

2´pkeαtk1
`

bk1eαtk2
`

bk2 . . . eαtk2m
`

bk2m
˘˘˘

Utk1 ...tk2m ,

where pk are suitable exponents.

The following two claims remain unchanged from the proof of Theorem 6.9.

Claim 1: bib
˚
j “ 0 for i ‰ j.

Claim 2: Different choices for the index k “ pk1, k2, . . . k2nq produce terms in (6.16)
with orthogonal domains.

Claim 3: For any m P N, there is a choice of indices k1, k2, . . . k2m´1 and group
elements tk1 , ¨ ¨ ¨ , tk2m´1

P G “ PP´1 such that

em`1 “ eαtk1
`

bk1eαtk2
`

bk2 . . . αtk2m´1

`

bk2m´1
e
˘˘˘

.

This follows by induction. The case m “ 2 follows from the definition of e2.

Assume that the claim is true for m P N, i.e.,

(6.17) em “ eαtk1
`

bk1eαtk2
`

bk2 . . . αtk
2m´1´1

`

bk2m´1´1
e
˘˘˘

.

Then, for tk2m´1 “ smt
´1
k1
. . . t´1

k2m´1´1
, remembering that G is abelian, we have

em`1 “ emαsmpbmemq

“ eαtk1
`

bk1 . . . αtk
2m´1´1

`

bk2m´1´1
e
˘˘

αsm
`

bmeαtk1
`

bk1 . . . αtk
2m´1´1

`

bk2m´1´1
e
˘˘˘

“ eαtk1
`

bk1 . . . αtk
2m´1´1

`

bk2m´1´1
e

αtk
2m´1

`

bmeαtk1
`

bk1 . . . αtk
2m´1´1

`

bk2m´1´1
e
˘

. . .
˘

,

which proves the claim.
It is instructive to specify the choice of indices k1, k2, . . . k2m´1 appearing in

Claim 3. Indeed

k2m´1 “ m
k2m´2 “ k3¨2m´2 “ m´ 1

k2m´3 “ k3¨2m´3 “ k5¨2m´3 “ k7¨2m´3 “ m´ 2
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

k1 “ k3 “ k5 “ ¨ ¨ ¨ “ k2m´1 “ 1.
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We wish to now prove that the tm are actually in P . To this end, note that by the
recursive formula ti “ siv

´1
i where vi P P . This implies that

tm “ smt
´1
k1
¨ ¨ ¨ t´1

k2m´1´1

“ smpsk1v
´1
k1
q´1 ¨ ¨ ¨ psk2m´1´1

v´1
k2m´1´1

q´1

“ sm

m´1
ź

i“1

s´im´iv
i
m´i

“ s1ms0

m´1
ź

i“1

vim´i P P

by (6.12).

Claim 2 shows now that }peUs0Bq
2m} is at least as large as the norm of each

non-zero term in (6.16). By Claim 3 and setting k2m “ m ` 1, one of these terms
is 2´pkem`1Usm`1

bm`1, which is non-zero. Furthermore for this term we have

pk “ pm` 1q `m` 2pm´ 1q ` 22pm´ 2q ` ¨ ¨ ¨ ` 2m´1 “ 2m`1 ´ 1

by an easy telescoping argument. Hence,

}peUs0Bq
2m} ě }2´pkem`1Usm`1bm`1} “

1

22m`1´1
.

Using this estimate in (6.16), we obtain (6.15), which is the desired contradiction.
Hence Aˆα P is semisimple. �

Corollary 6.11 transfers with no changes in the proof to this semigroup context
and Theorem 6.12 with some changes.

Corollary 6.22. Let A be a strongly maximal TAF algebra and P a positive
spanning cone of a discrete abelian group acting on A by quasi-inner isometric
automorphisms. A is semisimple if and only if Aˆα P is semisimple.

Theorem 6.23. Let pA, P, αq be a dynamical system with A a strongly maximal
TUHF algebra and P a positive spanning cone of a discrete abelian group. A is
semisimple if and only if Aˆα P is semisimple.

Proof. If A ˆα P is semisimple then pA, P, αq is linking by Theorem 6.21.
Using the exact same proof as Theorem 6.12 we get that A is semisimple.

Conversely, due to the failure of Theorem 6.2 in the semicrossed product case
we need a different proof. To this end, assume that A is semisimple. Because A
is a TUHF algebra Donsig’s criterion can be strengthened into the fact that for
any two matrix units e, f P A we have eAf ‰ t0u. This is due to the fact that

e
pnq
1,nAe

pnq
1,n ‰ t0u which implies that e

pnq
n Aepnq1 ‰ t0u for all n P N such that Tn Ă A.

Therefore, for any matrix unit e P A and t P P this gives that eAαtpeq ‰ t0u and
so pA, P, αq is linking. �





CHAPTER 7

The Crossed Product as the Tensor Algebra of a
C˚-correspondence.

There are three sources of inspiration for the results in this chapter. First
we saw in Definition 3.2 that given a system pA,G, αq there is a whole family of
crossed products, parametrized by the possible C˚-covers of A, which we coined
as relative crossed products. In Corollary 3.16 we verified that all relative reduced
crossed products coincide. This raises the question if a similar result is valid for the
relative (full) crossed products. Theorem 7.7 indicates that this is a very delicate
problem that among other things it also rubs shoulders with the validity of WEP
for certain C˚-algebras.

For a second inspiration recall that we have already verified that the identities

(7.1)
C˚envpA¸α Gq » C˚envpAq ¸α G
C˚envpA¸rα Gq » C˚envpAq ¸rα G

are indeed true whenever A ia a Dirichlet algebra and G is an arbitrary discrete
group (Theorems 5.3 and 5.5) or A is arbitrary but G is abelian (Theorem 3.23).
In this chapter we continue to investigate the validity of such identities. We will
show that for a very special class of operator algebras and group actions, the va-
lidity of (7.1) is equivalent to an open problem in C˚-algebra theory, the Hao-Ng
isomorphism problem, which we will describe shortly.

There is a third source of inspiration for the results of this chapter. In Theo-
rem 5.12 we proved that the crossed product of a tensor algebra of a C˚-correspondence
with a discrete group may fail to be a tensor algebra. And yet we noticed that for
an elliptic Möbius transformation α of the unit disc, the crossed product ApDq¸αZ
of the disc algebra is isomorphic to the semicrossed product CpTq ˆα Z` and thus
a tensor algebra. It turns out that this fact is not just a curiosity but general-
izes considerably. As we shall see, the crossed product of any tensor algebra by
a generalized gauge automorphism is once again a tensor algebra of some other
C˚-correspondence.

7.1. Discrete groups

Let us set up the framework of study for this chapter and describe the Hao-
Ng isomorphism problem. Let pX, Cq be a non-degenerate C˚- correspondence
over a C˚-algebra C and let G be a discrete group. Assume that there is a group
representation α : G Ñ Aut TX so that αspCq “ C and αspXq “ X, for all s P G. We
call such an action α a generalized gauge action of G on pX, Cq. Clearly the action
α restricts to a generalized gauge action α : G Ñ Aut T `X , which in turn extends
to a generalized gauge action on OX . Generalized gauge actions, and in particular
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the so-called quasi-free actions, have received a great deal of attention in the study
of C˚-algebras and their states [37, 38, 61, 62].

If pX, Cq, G and α are as above, we define a C˚-correspondence pX¸rαG, C¸rαGq
as follows. Identify formal (finite) sums of the form

ř

s xsUs, xs P X, s P G, with
their image in OX¸

r
α G under π¸λH, where π is a faithful representation of OX on

H. We call the collection of all such sums
`

X ¸rα G
˘

0
. This allows a left and right

action on
`

X ¸rα G
˘

0
by

`

C ¸rα G
˘

0
, i.e., finite sums of the form

ř

s csUs P C ¸rα G,
simply by multiplication. The fact that α is a generalized gauge action guarantees
that

`

C ¸rα G
˘

0

`

X ¸rα G
˘

0

`

C ¸rα G
˘

0
Ď
`

X ¸rα G
˘

0
.

Equip
`

X¸rα G
˘

0
with the

`

C¸rα G
˘

0
-valued inner product x., .y defined by xS, T y ”

S˚T , with S, T P
`

X ¸rα G
˘

0
. The completion of

`

X ¸rα G
˘

0
with respect to the

norm coming from x., .y becomes a pC ¸rα Gq-correspondence denoted as X ¸rα G.

Theorem 7.1 (Hao-Ng Theorem [42, Theorem 2.10]). Let pX, Cq be a non-
degenerate C˚-correspondence and let α : G Ñ pX, Cq be a generalized gauge action
of a discrete1 amenable group G. Then OX ¸

r
α G » OX¸rα G via a ˚-isomorphism

that maps generators to generators.

The reader familiar with the work of Hao-Ng may have noticed that our nota-
tion in Theorem 7.1 differs from that of Hao and Ng in [42, Theorem 2.10]. Indeed
Hao and Ng state their result for a different C˚-correspondence, which is denoted
as X¸α G and it is defined below. As it turns out, in the case where G is amenable
the C˚-correspondences X ¸α G and X ¸rα G are unitarily equivalent and so the
corresponding Cuntz-Pimsner algebras are isomorphic. See Remark 7.3 (ii).

The following is a consequence of the Hao-Ng Theorem that demonstrates its
significance for our work.

Corollary 7.2. Let pX, Cq be a non-degenerate C˚-correspondence and let
α : G Ñ pX, Cq be a generalized gauge action of a discrete amenable group G. Then

T `X ¸rα G » T `X¸rα G and C˚env
`

T `X ¸rα G
˘

» OX ¸
r
α G.

Proof. The conclusion follows directly from Theorem 7.1 and Theorem 3.14.
�

Beyond amenable groups the two notions of a crossed product differ and we
distinguish two cases. For the reduced crossed product, the definition of pX ¸rα
G, C¸rαGq has already been given. The situation is not so tame with the full crossed
product. In this case we have (at least) three crossed product C˚-correspondences

(i) The C˚-correspondence X ¸α G ([7, 42]). Let
`

X ¸α G
˘

0
denote all

formal (finite) sums of the form
ř

s xsUs, xs P X, s P G. This allows a left

and right action on
`

X ¸α G
˘

0
by

`

C ¸α G
˘

0
, i.e., finite sums of the form

ř

s csUs, cs P C, simply by allowing the obvious multiplication rules or the

ones coming from G-covariance. Equip
`

X ¸α G
˘

0
with the C¸α G-valued

inner product x., .y defined by

xS, T y ”
ÿ

s,t

αs´1pxxs, ystyqUt P C ¸α G,

1Note that the Hao-Ng theorem holds for arbitrary locally compact groups.
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where S “
ř

s xsUs and T “
ř

t ytUt are both in
`

X ¸α G
˘

0
. The com-

pletion of
`

X ¸α G
˘

0
with respect to the inner product x., .y becomes a

C ¸α G-correspondence denoted as X ¸α G.
(ii) The C˚-correspondence X ˇ̧αG. Identify both

`

X¸αG
˘

0
and

`

C¸α G
˘

0
with their natural images inside TX ¸α G. This allows a left and right
action on

`

X¸αG
˘

0
by

`

C¸α G
˘

0
simply by multiplication. Equip

`

X¸α
G
˘

0
with the C ˇ̧αG-valued inner product x., .y defined by xS, T y ” S˚T ,

S, T P
`

X ¸α G
˘

0
, where C ˇ̧αG denotes the C˚-subalgebra of TX ¸α G

generated by
`

C¸α G
˘

0
. The completion of

`

X¸αG
˘

0
with respect to the

inner product x., .y becomes a C ˇ̧αG-correspondence denoted as X ˇ̧αG.
(iii) The C˚-correspondence X ˆ̧αG. Identify both

`

X¸αG
˘

0
and

`

C¸α G
˘

0
with their natural images inside OX ¸α G this time. This allows again a
left and right action on

`

X¸αG
˘

0
by

`

C¸α G
˘

0
simply by multiplication.

Equip
`

X ¸α G
˘

0
with the C ˆ̧αG-valued inner product x., .y defined by

xS, T y ” S˚T , S, T P
`

X ¸α G
˘

0
, where C ˆ̧αG denotes the C˚-subalgebra

of OX ¸α G generated by
`

C ¸α G
˘

0
. The completion of

`

X ¸α G
˘

0
with

respect to the inner product x., .y becomes a C ˆ̧G-correspondence denoted
as X ˆ̧αG.

Remark 7.3. (i) The issue with the above definitions is that the algebras
C ¸α G, C ˇ̧αG and C ˆ̧αG might not be isomorphic. It is not even clear that there
is an inclusion C¸α G Ď OX ¸α G, something that would be implied if for instance
C ˆ̧α G » C ¸α G canonically. Indeed even in the case of the trivial action, such an
inclusion would translate to

C bmax C˚pGq Ď OX bmax C˚pGq,

an inclusion that hinges on the validity of WEP for C. (See [12, Corollary 3.6.8].)
Nevertheless, as we shall see in Remark 7.8, the correspondences X¸αG and X ˇ̧αG
are unitarily equivalent via an association that sends generators to generators. We
are thankful to the authors of [7] for pointing this out to us.

(ii) In the case where G is amenable, it is not difficult to see that all crossed prod-
uct C˚-correspondences associated with the generalized gauge action α : G Ñ pX, Cq
are unitarily equivalent. We verify this for the C˚-correspondences pX¸rα G, C¸rα Gq
and pX ¸α G, C ¸α Gq. Let pρ̄8, t8q be the universal covariant representation of
pX, Cq. Given formal sums S “

ř

s xsUs and T “
ř

t ytUt, we have

pC ¸rα Gq0 Q xS, T y “ pπ ¸ λHq
`

ÿ

s

t8pxsqUs
˘˚
pπ ¸ λHq

`

ÿ

t

t8pytqUt
˘

“
ÿ

s,t

π
`

αs´1

`

t8pxsq
˚t8pytq

˘˘

λHps
´1tq

“
ÿ

s,t

π
`

αs´1

`

ρ̄pxxs, yty
˘

λHps
´1tq

“ pπ ¸ λHq
`

ÿ

s,t

αs´1pxxs, ytyqUs´1t

˘

“ pπ ¸ λHq
`

ÿ

s,t

αs´1pxxs, ystyqUt
˘

“ pπ ¸ λHqpxS, T yq,



66 7. CROSSED PRODUCTS AND TENSOR ALGEBRAS

where the last inner product comes from X ¸α G. Since G is amenable, pπ ¸ λHq
is a faithful representation of C ¸α G. Hence the above calculation shows that the
mappings

pX ¸rα Gq0 Q
ÿ

s

t̄8pxsqUs
W
ÝÝÝÑ

ÿ

s

xsUs P pX ¸α Gq0

pC ¸rα Gq0 Q
ÿ

t

ρ8pctqUt
σ

ÝÝÝÑ
ÿ

t

ctUt P pC ¸α Gq0

can be extended to X ¸rα G and C ¸rα G respectively, so that the pair pW,σq
implements the desired unitary equivalence between pX ¸rα G, C ¸rα Gq and pX ¸α
G, C ¸α Gq.

The Hao-Ng isomorphism problem, as popularized in [7, 50, 56, 59], asks
whether given a non-degenerate C˚-correspondence pX, Cq and a generalized gauge
action of a discrete group G, one has isomorphisms of the form OX ¸α G » OX¸α G
or OX ¸

r
α G » OX¸rα G . The analysis in this chapter indicates that in addition to

the correspondence X ¸α G, we should also pay attention to the correspondence
X ˇ̧αG. As it turns out, a recasting of the Hao-Ng isomorphism problem using the
correspondence X ˇ̧αG is equivalent to resolving the identity (1.1) in that special
case.

For the moment we demonstrate a result of independent interest, a tool for
detecting whether a given operator algebra is completely isometrically isomorphic
to the tensor algebra of some naturally occurring C˚- correspondence. We call this
result the Extension Theorem. But first we need a lemma.

Lemma 7.4. Let S0, S1, S2, . . . Sn be bounded operators on a Hilbert space H
and let V be the forward shift on l2pNq. Then,

}

n
ÿ

k“0

Sk} ď }
n
ÿ

k“0

Sk b V
k}

Proof. Consider the character δ1 on C˚pV q which is obtained by taking quo-
tient on CpTq and then evaluating at 1. This induces a ˚-homomorphism

idb δ1 : C˚pSq b C˚pV q ÝÑ C˚pSq.

The conclusion follows by applying idb δ1 on
řn
k“0 Sk b V

k. �

In what follows, if S Ď BpHq, then algpSq will denote the (not necessarily
unital) algebra generated by S, while algpSq will denote its norm closure.

Theorem 7.5 (Extension Theorem). Let C Ď BpHq be a C˚-algebra and let
X Ď BpHq be a closed C-bimodule with X˚X Ď C. If A ” algpXYCq and U denotes
the forward shift acting on l2pZq, then the following are equivalent

(i) A is completely isometrically isomorphic to the tensor algebra T `
pX,Cq via

a map that sends generators to generators.
(ii) The association

(7.2)
C Q C ÝÑ C b I,

X Q S ÝÑ S b U

extends to a well-defined, completely contractive multiplicative map on A.

Proof. We will be showing that condition (ii) above is equivalent to
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(iii) The association

(7.3)
C Q C ÝÑ C b I,

X Q S ÝÑ S b V

extends to a well-defined, completely contractive multiplicative map on
A, where V denotes the forward shift acting on `2pNq.

In order to establish the equivalence of (ii) and (iii) we need to verify

(7.4) }

n
ÿ

k“0

Sk b U
k} “ }

n
ÿ

k“0

Sk b V
k},

where S0, S1, . . . Sn ranges over arbitrary elements of BpHq.
Assume that U acts on l2pZq, with orthonormal basis tenunPZ, let Pm be the

orthogonal projection on the subspace generated by tenu
8
n“m and let V “ P0UP0.

Clearly,
›

›

n
ÿ

k“0

Sk b U
k
›

› “ sup
mPN

#

›

›

›

`

n
ÿ

k“0

Sk b U
k
˘

|IbPm

›

›

›

+

.

However
›

›

›

`

n
ÿ

k“0

Sk b U
k
˘

|IbPm

›

›

›
“

›

›

›

`

n
ÿ

k“0

Sk b U
kUmU´m

˘

|IbPm

›

›

›

“

›

›

›
pI b Umq

`

n
ÿ

k“0

Sk b U
kU´m

˘

|IbPm

›

›

›

“

›

›

›

`

n
ÿ

k“0

Sk b U
k
˘

pI b U´mq |IbPm

›

›

›

“

›

›

›

`

n
ÿ

k“0

Sk b U
k
˘

|IbP0

›

›

›

“ }

n
ÿ

k“0

Sk b V
k}

as desired. An analogous argument establishes the matricial version of (7.4), thus
establishing the equivalence of (ii) and (iii).

In order to complete the proof, we need to establish the equivalence of (i) and
(iii).

Let pπ, tq be the representation of the C˚-correspondence pX, Cq, with πpCq “
CbI, C P C and tpXq “ SbV , S P X. It is easy to see that the presence of the factor
V guarantees that the representation pπ, tq admits a gauge action. Furthermore,
pπ, tq satisfies (2.4) and so by the Gauge-Invariant Uniqueness Theorem (Theo-
rem 2.4) it extends to a faithful representation Φ of the Toeplitz-Cuntz-Pimsner
algebra TX . We therefore obtain a completely isometric representation Φ of the
tensor algebra T `X satisfying Φpt8pSqq “ S b V , S P X and Φpρ8pCqq “ C b I,
C P C.

If (i) is valid and Ψ : A Ñ T `X is the completely isometric isomorphism that
maps generators to generators, then Φ ˝ Ψ is the map that implements (7.3). On
the other hand, if (iii) is valid and (7.3) is implemented by a completely contractive
homomorphism Ψ, then (the matricial version of) Lemma 7.4 implies that Ψ is a
complete isometry and Ψ´1 ˝ Φ implements the isomorphism desired in (i) �
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Remark 7.6. If in Theorem 7.5 one makes the assumption that C contains a
contractive approximate unit for X, then the correspondence pX, Cq turns out to
be non-degenerate.

We now examine the full crossed product C˚-algebras OX ¸α G and TX ¸α G
and we consider the non-selfadjoint operator algebras T `X ¸OX ,α G and T `X ¸TX ,α G
sitting inside them. Are any of these two algebras the tensor algebra of some C˚-
correspondence? What are their C˚-envelopes? Are these relative crossed products
isomorphic? The following provides answers to these questions.

Theorem 7.7. Let pX, Cq be a non-degenerate C˚-correspondence and let α :
G Ñ pX, Cq be the generalized gauge action of a discrete group G. Then

(i) T `X ¸OX ,α G » T `
X ˆ̧

α G and C˚env
`

T `X ¸OX ,α G
˘

» OX ˆ̧
α G

(ii) T `X ¸TX ,α G » T `
X ˇ̧

αG
and C˚env

`

T `X ¸TX ,α G
˘

» OX ˇ̧
αG

Proof. (i) Let pπ8, u8,Hq be the universal covariant representation of pOX ,G, αq
and let U be the forward shift acting on l2pZq. Any representation of OX is the
integrated representation of some covariant representation of pX, Cq; this applies in
particular to π8 and so

C Qc ÞÝÑ π8pcq P BpH8q
X Qx ÞÝÑ π8pxq P BpH8q

is a covariant representation of pX, Cq. Hence

C Qc ÞÝÑ π8pcq b I P BpH8 b l2pZqq
X Qx ÞÝÑ π8pxq b U P BpH8 b l2pZqq

is also a covariant representation of pX, Cq and therefore integrates to a represen-
tation of OX denoted as π. Set upsq “ u8psq b I, s P G, and notice that the triple
pπ, u,H8bl2pZqq is a covariant representation for the system pOX ,G, αq. Therefore
it integrates to a completely contractive ˚-representation

π ¸ u : OX ¸α G ÝÑ BpH8 b l2pZqq.

Consider now the C˚-correspondence X ˆ̧α G as defined in the beginning of the
chapter, with the understanding that formal (finite) sums of the form

ř

s xsUs P
`

X¸α G
˘

0
are identified with their images inside OX¸α G under the map π8¸u8.

First notice that

pX ˆ̧α Gq˚pX ˆ̧α Gq Ď C ˆ̧
αG.

Furthermore the identities
´

ÿ

s

π8pcsqu8psq
¯

b I “ pπ ¸ uq
`

ÿ

s

csUs
˘

, cs P C, s P G

and
´

ÿ

s

π8pxsqu8psq
¯

b U “ pπ ¸ uq
`

ÿ

s

xsUs
˘

, xs P X, s P G
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show that the map

C ˆ̧
αG Q

ÿ

s

csUs ÞÝÑ
´

ÿ

s

csUs

¯

b I

X ˆ̧α G Q
ÿ

s

xsUs ÞÝÑ
´

ÿ

s

xsUs

¯

b U

extends to a completely contractive map on alg
`

X ˆ̧α G Y C ˆ̧
αG

˘

. Hence by The-
orem 7.5 (Extension Theorem) we have that

T `X ¸OX ,α G “ alg
`

X ˆ̧α G Y C ˆ̧
αG

˘

» T `
X ˆ̧

α G

as desired.
The identification C˚env

`

T `X ¸OX ,α G
˘

» OX ˆ̧
α G follows from [54, Theorem

3.7].
(ii) We just repeat the proof of part (i) modified accordingly. Actually here the

proof can be made more elementary as we do not really need to use the forward
shift U P l2pZq. Instead we can use the forward shift V P l2pNq. In that case, the
Extension Theorem is just a straightforward application of Theorem 2.4.

Indeed let pπ8, u8,Hq be the universal covariant representation of pTX ,G, αq
and let V be the forward shift acting on l2pNq. The representation

C Qc ÞÝÑ π8pcq b I P BpH8 b l2pNqq
X Qx ÞÝÑ π8pxq b V P BpH8 b l2pNqq

is also a Toeplitz representation of pX, Cq and therefore integrates to a representa-
tion of TX denoted as π. Set upsq “ u8psq b I, s P G, and notice that the triple
pπ, u,H8 b l2pNqq is a covariant representation for the system pTX ,G, αq. There-
fore it integrates to a completely contractive ˚-representation π ¸ u : TX ¸α G Ñ
BpH8 b l2pNqq. Using π ¸ u we can show as before that the assignment

C ˇ̧
αG Q

ÿ

s

csUs ÞÝÑ
´

ÿ

s

csUs

¯

b I

X ˇ̧αG Q
ÿ

s

xsUs ÞÝÑ
´

ÿ

s

xsUs

¯

b V

extends to a completely contractive map on alg
`

X ˇ̧αG Y C ˆ̧
αG

˘

. Hence by Theo-
rem 7.5 (Extension Theorem), we have that

T `X ¸TX ,α G “ alg
`

X ˇ̧αG Y C ˇ̧
αG

˘

» T `
X ˇ̧

αG

as desired.
The identification C˚env

`

T `X ¸TX ,α G
˘

» OX ˇ̧
αG follows once again from [54,

Theorem 3.7]. �

Remark 7.8. It turns out that Theorem 7.7 (ii) can be refined even further.
Indeed, in [7, Theorem 3.1] it is shown that TX¸α G » TX¸α G via a ˚-isomorphism
that maps generators to generators. This implies that C ¸α G » C ˇ̧αG canonically
and so the correspondences X ¸α G and X ˇ̧αG are unitarily equivalent via an
association that sends generators to generators. Hence one can recast Theorem 7.7
(ii) as

T `X ¸TX ,α G » T `X¸αG and C˚envpT `X ¸TX ,α Gq » OX¸αG .
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The previous result shows that the problem of deciding whether all relative full
crossed products are isomorphic seems to be a delicate issue. In this particular case,
the presence of an isomorphism between T `X ¸TX ,α G and T `X ¸OX ,α G is equivalent
to the isomorphism between the tensor algebras T `X¸αG and T `

X ˆ̧
α G . Currently

there are no criteria for verifying an isomorphism between tensor algebras. The
standing conjecture is that the obvious sufficient condition, i.e., unitary equiva-
lence of the corresponding correspondences, is also necessary for the existence of
an isomorphism.

In light of Theorem 7.7, we offer the following modified version of the Hao-Ng
isomorphism problem

Hao-Ng Isomorphism Conjecture for full crossed products. Let pX, Cq be a
non-degenerate C˚-correspondence and let α : G Ñ pX, Cq be the generalized gauge
action of a discrete group G. Then

OX ¸α G » OX ˆ̧
α G » OX¸αG

Note that if (1.1) was valid for the relative crossed product T `X ¸OX ,α G, i.e.,

C˚env

`

T `X ¸OX ,α G
˘

» C˚envpT `X q ¸α G » OX ¸α G,
then Theorem 7.7(i) would imply the first half of the Hao-Ng isomorphism con-
jecture. The other half of the conjecture would follow from a similar argument
involving Theorem 7.7(ii) and [7, Theorem 3.1]. However the validity of (1.1) is
one of the main problems left open in this monograph. Nevertheless, in the case of
a Hilbert bimodule X or an abelian group G, it turns out that this is the case; see
the end of this chapter for more on this.

One can also formulate an analogue of the Hao-Ng isomorphism conjecture for
Toeplitz algebras. As we explained earlier, the validity of the analogous conjecture

TX ¸α G » TX ˇ̂
αG » TX¸α G

has already been established in [7, Theorem 3.1] .
Now we deal with the reduced crossed product and wonder whether T `X ¸rα G is

a tensor algebra, provided that α is a generalized gauge action of G. Unfortunately
the strategy of the proof of Theorem 7.7 does not work here as it is not clear
whether the representation π ¸ u appearing in the proof can be modified to give
a representation of the reduced crossed product OX ¸

r
α G. Instead we adopt a

different approach.

Theorem 7.9. Let pX, Cq be a non-degenerate C˚-correspondence and let α :
G Ñ pX, Cq be a generalized gauge action of a discrete group G. Then

T `X ¸rα G » T `X¸rα G .

Therefore,

C˚env
`

T `X ¸rα G
˘

» OX¸rα G .

Furthermore, TX ¸rα G » TX¸rα G.

Proof. Because of Corollary 3.16 all relative reduced crossed products coin-
cide and so we have flexibility in choosing which manifestation of T `X ¸rα G to work
with. We choose the “natural” one T `X ¸rTX ,α G Ď TX ¸rα G.

Notice that the C˚-algebra TX contains a unitarily equivalent copy of the C˚-
correspondence pX, Cq and for the rest of the proof we envision pX, Cq as a subset
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of TX . Similarly the C˚-algebra TX ¸rα G contains a (unitarily equivalent) copy of
pX ¸rα G, C ¸rα Gq. Indeed TX ¸rα G contains naturally a faithful copy of C ¸rα G
and so the map

OX ¸
r
α G Ě pX ¸rα Gq0 Q

ÿ

g

xgug ÞÝÑ
ÿ

g

xgug P TX ¸rα G

extends to a unitary equivalence of C˚-correspondences that embeds pX¸rα G, C¸rα
Gq inside TX ¸rα G.

Let ρ : TX Ñ BpHq be some faithful ˚-representation and let V be the forward
shift acting on l2pNq. The map

C Qc ÞÝÑ ρpcq b I P BpHb l2pNqq
X Qx ÞÝÑ ρpxq b V P BpHb l2pNqq

is a Toeplitz representation of pX, Cq that admits a gauge action and and satisfies
the requirements of Theorem 2.4. Therefore it establishes a faithful representation
π : TX Ñ BpHb l2pNqq.

Now view the regular representation π ¸ λHbl2pNq as a representation of the
C˚-correspondence pX ¸rα G, C ¸rα Gq. Since

`

C ¸rα G
˘

0
Q
ÿ

g

cgug ÞÝÑ pπ ¸ λq
`

ÿ

g

cgug
˘

“
ÿ

g

ÿ

h

ρ
`

α´1
h pcgq

˘

b I b eh,g´1h

`

X ¸rα G
˘

0
Q
ÿ

g

xgug ÞÝÑ pπ ¸ λq
`

ÿ

g

xgug
˘

“
ÿ

g

ÿ

h

ρ
`

α´1
h pxgq

˘

b V b eh,g´1h,

(ep,q denotes the rank-one isometry on l2pGq that maps ξq on ξp, p, q P G) the
above extends to an isometric representation of pX ¸rα G, C ¸rα Gq that admits a
gauge action (because of the middle factor V ) and satisfies the requirements of
Theorem 2.4. Hence its integrated form is a canonical faithful representation of the
Toeplitz-Cuntz-Pimsner algebra TX¸rα G . In other words, if pπ8, t8q is the universal
Toeplitz representation of pX ¸rα G, C ¸rα Gq, then there exists ˚-isomorphism

ϕ : C˚pπ8, t8q ÝÑ π ¸ λ
`

TX ¸rα G
˘

satisfying

ϕ
´

π8
`

ÿ

g

cgug
˘

¯

“ pπ ¸ λq
`

ÿ

g

cgug
˘

, for all
ÿ

g

cgug P
`

C ¸rα G
˘

0

and

ϕ
´

t8
`

ÿ

g

xgug
˘

¯

“ pπ ¸ λq
`

ÿ

g

xgug
˘

, for all
ÿ

g

xgug P
`

X ¸rα G
˘

0

Since π is faithful, π¸λ is a faithful representation of TX¸rα G and so pπ¸λq´1 ˝ϕ
establishes a ˚-isomorphism from C˚pπ8, t8q » TX¸rα G onto TX ¸rα G that maps

T `X¸rα G onto T `X ¸rα G in a canonical way. Hence T `X ¸rα G » T `X¸rα G .

Finally the isomorphism C˚env

`

T `X ¸rα G
˘

» OX¸rα G follows from [54, Theorem

3.7], which implies the identification C˚envpT `X¸rα Gq » OX¸rα G . �
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Let us import yet another result from the C˚-algebra theory and use it to our
advantage.

Corollary 7.10. Let pX, Cq be a non-degenerate C˚-correspondence and let
α : G Ñ AutOX be a generalized gauge action of a discrete and exact group G.
Then

C˚env
`

T `X ¸rα G
˘

» OX ¸
r
α G.

Proof. This follows directly from [7, Theorem 5.5 (i)]. �

7.2. The general case of a locally compact group.

In Section 7.1 we focused our attention on discrete groups for two reasons. First,
the prerequisites for understanding our theory are not as many as in the general
case of a locally compact group. If someone is just interested in using the crossed
product in order to obtain new examples of tensor algebras, then this chapter gives
an easy access. One can actually read all previous results in Chapter 7 with only
minimal understanding of the previous chapters. On the other hand, one of the
major open problems in this area, the Hao-Ng isomorphism problem, is open even
for discrete groups with all its difficulties present even in that special case.

Nevertheless, with the exception of Corollary 7.10, all previous results in Chap-
ter 7.1 hold for arbitrary locally compact groups. In what follows we demonstrate
how to obtain one such result, Theorem 7.7, in the generality of a locally compact
group.

We start by defining the correspondence pX ˆ̧α G, C ˆ̧α Gq. Let pX, Cq be a
non-degenerate C˚-correspondence and let pρ̄8, t8q be the universal covariant rep-
resentation of pX, Cq, acting on some Hilbert space H8. Let C ˆ̧α G be the com-
pletion of Cc

`

G, ρ̄8pCq
˘

Ď OX ¸α G and similarly let X ˆ̧α G be the completion of

Cc
`

G, t̄8pXq
˘

Ď OX ¸α G.

Lemma 7.11. If C ˆ̧α G and X ˆ̧α G are as above, then

(i) pX ˆ̧α Gq˚pX ˆ̧α Gq Ď C ˆ̧α G
(ii) pC ˆ̧α GqpX ˆ̧α GqpC ˆ̧α Gq Ď X ˆ̧α G.

Proof. If x, y P t̄8pXq and z, w P CcpGq, then

`

pz b xq˚pw b yq
˘

psq “

ż

∆pr´1qzpr´1qαrpx
˚qwpr´1sqαrpyqdµprq

“

ż

∆pr´1qzpr´1qαrpx
˚yqwpr´1sqdµprq.

However,

x˚y P
`

t̄8pXq
˘˚`

t̄8pXq
˘

Ď ρ̄8pCq
and so

pz b xq˚pw b yq P Cc
`

G, ρ̄8pCq
˘

Ď C ˆ̧α G.
Since elementary tensors are dense in X ˆ̧α G, this proves (i).

For (ii), let c P π̄8pCq, x P t̄8pXq and z, w P CcpGq. Then,

`

pz b cqpw b xq
˘

psq “

ż

zprqcαr
`

wpr´1sqx
˘

dµprq

“

ż

zprqwpr´1sqαr
`

α´1
r pcqx

˘

dµprq
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However G acts by gauge automorphisms and so

α´1
r pcqx P π̄8pCqt̄8pXq Ď t̄8

`

ϕXpCqX
˘

Ď t̄8pXq.

Hence pC ˆ̧α GqpX ˆ̧α Gq Ď X ˆ̧α G and similarly pX ˆ̧α GqpC ˆ̧α Gq Ď X ˆ̧α G. This
establishes (ii). �

Allow C ˆ̧α G to act on the left and right of X ˆ̧α G simply by multiplication.
Then Lemma 7.11 shows that X ˆ̧α G equipped with that action and the C ˆ̧α G-
valued inner product x¨, ¨y defined by xS, T y ” S˚T , S, T P X ˆ̧α G, becomes a
C˚-correspondence over C ˆ̧α G.

Lemma 7.12. Let pX, Cq be a non-degenerate C˚-correspondence and let pX ˆ̧α G, C ˆ̧α Gq
be as above. Then

alg
`

X ˆ̧α G, C ˆ̧α G
˘

“ T `X ¸OX ,α G.

Proof. Let z P CcpGq and a P T `X . If a “ c `
ř8

n“1 xn with c P ρ̄8pCq and
xn P t̄pX

bnq, n P N, then we have

(7.5) z b a “ z b c`
8
ÿ

n“1

z b xn.

Since elementary tensors are dense in Cc
`

G, T `X
˘

, it suffices by (7.5) to prove that

z b x P alg
`

X ˆ̧α G, C ˆ̧α G
˘

for any z P CcpGq and x P t̄pXbnq, n P N.
We will show this by induction. The case n “ 1 is obvious. Assume that

the result is true for all k ď n ´ 1. Let x “ x1y P t̄pXbnq with x1 P t̄pXq and
y P t̄pXbn´1q.

Claim: If twiuiPI are as in Lemma 3.5, then

z b x “ lim
iPI
pwi b x

1qpz b yq.

Indeed, let i : OX ÑMpOX ¸α Gq be as in [98, Proposition 2.34]. Then,

(7.6) pwi b x
1qpz b yq “ ipx1q

`

pwi b Iqpz b yq
˘

.

However, by Lemma 3.5, the net twi b IuiPI is a contractive approximate identity.
Hence by taking limits in (7.6) we obtain

lim
iPI
pwi b x

1qpz b yq “ ipx1qpz b yq “ z b x1y “ z b x

as desired.

The claim and the inductive hypothesis show now that

z b x P alg
`

X ˆ̧α G, C ˆ̧α G
˘

and the proof of the lemma is complete. �

Theorem 7.13. Let pX, Cq be a non-degenerate C˚-correspondence and let α :
G Ñ pX, Cq be the generalized gauge action of a locally compact group G. Then

T `X ¸OX ,α G » T `
X ˆ̧

α G and C˚env
`

T `X ¸OX ,α G
˘

» OX ˆ̧
α G
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Proof. If pρ̄8, t8q is the universal covariant representation of pX, Cq, then the
representation

ρ̄8pCq Qc ÞÝÑ cb I P B
`

H8 b `2pZq
˘

t̄8pXq Qx ÞÝÑ xb U P B
`

H8 b `2pZq
˘

,

is also covariant, where U denotes the forward shift on `2pZq. Therefore it integrates
to a ˚-representation π : OX Ñ OX b CpTq. Clearly π is equivariant with respect
to the dynamical systems pOX ,G, αq and

`

OX b CpTq,G, α b id
˘

. Therefore, [98,
Corollary 2.48] implies the existence of a ˚-homomorphism

π ¸ id : OX ¸α G ÝÑ
`

OX b CpTq
˘

¸αbid G

satisfying π ¸ idpfqpsq “ π
`

fpsq
˘

, s P G, for all f P CcpG,OXq. By [98, Corollary
2.75] there exists a ˚-isomorphism

ϕ :
`

OX b CpTq
˘

¸αbid G ÝÑ
`

OX ¸α G
˘

b CpTq

which carries z b pa b dq ÞÑ pz b aq b d, with a P OX , d P CpTq and z P CcpGq.
Hence, the completely contractive mapping ϕ ˝ pπ¸ idq implements the assignment

Cc
`

G, ρ̄8pCq
˘

Q z b c ÞÝÑ pz b cq b I

Cc
`

G, t̄8pXq
˘

Q z b x ÞÝÑ pz b cq b U.

This implies that the requirements of the Extension Theorem are satisfied for the
C ˆ̧α G-bimodule X ˆ̧α G. Hence

alg
`

X ˆ̧α G, C ˆ̧α G
˘

» T `
X ˆ̧

α G .

The conclusion follows now from Lemma 7.12. �

A similar approach works for pX ˇ̧αG, C, ˇ̧αGq. This C˚-correspondence is built
with the aid of the universal Toeplitz representation pρ8, t8q. We define C ˇ̧αG to
be the completion of Cc

`

G, ρ8pCq
˘

Ď TX ¸α G and similarly we let X ˇ̧αG to be

the completion of Cc
`

G, t8pXq
˘

Ď TX ¸α G. By repeating our previous arguments,
we obtain the other half of Theorem 7.7, i.e.,

T `X ¸TX ,α G » T `
X ˇ̧

αG
and C˚env

`

T `X ¸TX ,α G
˘

» OX ˇ̧
αG

As we mentioned in Remark 7.8, the C˚-correspondences pX ˇ̧αG, C ˇ̧αGq and pX¸α
G, C¸α Gq are unitarily equivalent via a canonical map. However it is not clear to us
whether or not pX ˆ̧α G, C ˆ̧α Gq and the C˚- correspondence pX ¸α G, C,¸α Gq, as
defined in [7, pg. 1082], are unitarily equivalent. This issue is resolved affirmatively
by the Hao-Ng Theorem in the case where G is amenable. In what follows we verify
this in another important case by offering a resolution to the Hao-Ng isomorphism
problem in that case as well.

7.3. Hilbert C˚-bimodules

A C˚-correspondence pX, C, ϕXq is said to be a Hilbert C-bimodule, if there
exists a right C-valued inner product r¨, ¨s which satisfies

ϕX
`

rξ, ζs
˘

η “ ξ xζ, ηy , for all ξ, ζ, η P X.

There are many useful characterizations of Hilbert bimodules. For instance, by [57,
Proposition 5.18 (iii)] pX, C, ϕXq is a Hilbert C-bimodule iff the restriction of ϕX
on JX maps onto KpXq.
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The following settles the Hao-Ng conjecture for Hilbert bimodules.

Theorem 7.14. Let pX, Cq be a non-degenerate Hilbert bimodule and let α :
G Ñ pX, Cq be the generalized gauge action of a locally compact group G. Then

OX ¸α G » OX ˆ̧
α G » OX¸α G .

Proof. Kakariadis has proven [47, Theorem 2.2] that a C˚-correspondence
pX,Cq is a Hilbert bimodule iff the tensor algebra T `X is Dirichlet. Therefore we
can apply Theorem 5.5 and Theorem 7.13 to show that

OX ¸α G » C˚envpT `X q ¸α G » C˚envpT `X ¸OX ,α Gq » OX ˆ̧
α G

as desired. It remains to verify that OX ˆ̧
α G » OX¸α G . Let Φ be the conditional

expectation appearing in (2.6). Since pX, Cq is a Hilbert bimodule, Φ projects
onto C [57, Proposition 5.18 (i)]. Furthermore Φ commutes with α. Hence the
requirements of [13, Section 10, Proposition] or [45] are satisfied and so C ¸α G »
C ˆ̧α G via a map that sends generators to generators. This completes the proof. �

It is instructive to recast Theorem 7.14 in the language of Abadie [1].

Corollary 7.15. Let pβ, γq be a covariant action of a locally compact group
G on a Hilbert C-bimodule X. If α is the strongly continuous action of G on C ¸X
induced by pβ, γq, then pC ¸Xq ¸α G » pC ¸β Gq ¸ pX ¸γ Gq.

Abadie’s [1] “covariant pair” and its “induced strongly continuous action” con-
stitute the same framework of study as the ”generalized gauge action of a locally
compact group” of this monograph. What Abadie defines as C ¸X is isomorphic
to the Cuntz-Pimsner algebra OX and so the above corollary is indeed a recasting
of Theorem 7.14.

Corollary 7.15 was obtained by Abadie as Proposition 4.5 but only in the case
where G is amenable. It is a technical result with a rather long proof. Hao and Ng
[42] considered Abadie’s result as a motivating force for their theory. They gave
a very short proof of it [42, Corollary 2.12] as an application of their theory, but
again, only in the case where G is amenable. It is quite pleasing to see that our
“non-selfadjoint” approach removes the requirement of G being amenable from all
previous considerations.

In [42], Hao and Ng give a second application of their theorem, this time
involving the generalized gauge action of an abelian group G. Actually using the
results of this monograph, we can give an alternative proof of the Hao-Ng Theorem
for the case where G is abelian. Indeed combining Theorem 3.23 and [54, Theorem
3.7] we obtain

OX ¸α G » C˚envpT `X q ¸α G » C˚envpT `X ¸α Gq.
However the amenability of G and Theorem 7.13 imply

C˚envpT `X ¸α Gq » C˚envpT `X ¸OX ,α Gq » OX ˆ̧
α G » OX¸α G

as desired. It is worth mentioning that even the case G “ T of the Hao-Ng Theorem
is being used in current research.





CHAPTER 8

Concluding Remarks and Open Problems

We close the monograph with a brief discussion of various open problems that
have appeared throughout and we consider them important for the further devel-
opment of the theory.

Problem 1. If pA,G, αq is a dynamical system, then verify the identity

C˚env
`

A¸α G
˘

» C˚envpAq ¸α G.

Without any doubt this is the most important problem left open in the mono-
graph. At the end of the previous chapter we indicated that a positive resolution of
Problem 1 will also imply a positive resolution of the Hao-Ng isomorphism problem.
We have verified Problem 1 in the case where G is a locally compact abelian group
(Theorem 3.23) and in the case where A is Dirichlet (Theorem 5.3).

Problem 2. Give an example of a dynamical system pA,G, αq and two α-
admissible C˚-covers pCi, jiq for A, j “ 1, 2, so that

A¸C1,j1,α G fi A¸C2,j2,α G

Theorem 3.14 shows that for such a (counter)example, G will have to be non-
amenable. This problem also relates to the various crossed product C˚-correspondences
appearing in Chapter 7 and our recasting of the Hao-Ng isomorphism problem.

Problem 3. Let pX, Cq be a non-degenerate C˚-correspondence and let α :
G Ñ pX, Cq be the generalized gauge action of a locally compact group. Is T `X ¸α G
the tensor algebra of some C˚-correspondence?

In Chapter 7 we did not deal with the full crossed product T `X ¸α G as it
is not relevant to the Hao-Ng isomorphism problem. Nevertheless it is important
to know the answer. Note that this problem too is open only for non-amenable
groups. If Problem 2 has a negative answer, i.e., all relative full crossed products
are isomorphic, then Theorem 7.13 will imply a positive answer for this problem.

Problem 4. If A is semisimple does it follow that A¸αR is also semisimple?
What about the converse?

This problem is motivated by Theorems 6.2 and 6.14 which treat the cases
where G is either discrete and abelian or compact and abelian respectively. What
about other groups? It would also be interesting to have a characterization of
semisimplicity for algebras of the form A¸α G where A is a strongly maximal TAF
algebra and G “ T or R.

Problem 5. Characterize the diagonal for either A¸α G or A¸rα G.

Of course the “right” answer is that the diagonal of A¸α G is pAXA˚q ¸α G,
while the diagonal of A¸rα G is pAXA˚q ¸rα G. Theorem 5.11 verifies that in the

77
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case where G is a discrete amenable group. Also algebras of the form A ¸α G or
A ¸rα G that happen to be tensor algebras for some correspondence pX, Cq have
diagonal equal to C. So we can characterize the diagonal of the crossed products
appearing in Chapter 7. We know nothing beyond these two cases.

Problem 6. When are two algebras of the form ApDq ¸α Z isomorphic as
algebras?

Of course there is nothing special about the disc algebra ApDq but this seems
to be the simplest case of the isomorphism problem for non-selfadjoint crossed
products and yet we know very little even in that special case. Note that if α is an
elliptic Möbius automorphism of the disc, then ApDq ¸α Z » CpTq ˆα Z` and so
the theory of Davidson and Katsoulis [18] applies.

Problem 7. Give complete isomorphism invariants for algebras of the form
A¸α Z, where A is a strongly maximal TAF algebra and α an isometric automor-
phism.

The TAF algebras have been classified up to isometric isomorphism through
the use of the the fundamental groupoid. (See [84] and the references therein.) We
wonder whether one can develop an analogous theory for crossed products of such
algebras. There is nothing special for G “ Z; a broader theory would be welcome
as well.
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Note added in proof. In a recent paper [51] the first named author has resolved
Problem 1 for all discrete amenable groups by verifying the identity C˚envpA¸rα Gq »
C˚envpAq¸rα G, for any discrete group G. This has also consequences for the Hao-Ng
isomorphism problem. See [51] for more details.
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