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Abstract. To a given multivariable C∗-dynamical system (A,α) con-
sisting of ∗-automorphisms, we associate a family of operator algebras
alg(A,α), which includes as specific examples the tensor algebra and
the semicrossed product. It is shown that if two such operator algebras
alg(A,α) and alg(B, β) are isometrically isomorphic, then the induced

dynamical systems (Â, α̂) and (B̂, β̂) on the Fell spectra are piecewise
conjugate, in the sense of Davidson and Katsoulis.

In the course of proving the above theorem we obtain several results
of independent interest. If alg(A,α) and alg(B, β) are isometrically iso-
morphic, then the associated correspondences X(A,α) and X(B,β) are
unitarily equivalent. In particular, the tensor algebras are isometrically
isomorphic if and only if the associated correspondences are unitarily
equivalent. Furthermore, isomorphism of semicrossed products implies
isomorphism of the associated tensor algebras.

In the case of multivariable systems acting on C∗-algebras with trivial
center, unitary equivalence of the associated correspondences reduces to
outer conjugacy of the systems. This provides a complete invariant for
isometric isomorphisms between semicrossed products as well.

1. Introduction

Apart from the strong interest of the non-selfadjoint operator algebra
community on dynamics [2, 3, 4, 9, 10, 11, 12, 22, 24, 25], additional
motivation for the present work comes from the recent number theoretic
papers of Cornelissen and Marcolli [5, 6] and also from their work in graph
theory [7]. In these papers Cornelissen and Marcolli make essential use of
the work of Davidson and Katsoulis [12] on non-selfadjoint operator alge-
bras associated with multivariable dynamics. As it turns out, the key link
with non-selfadjoint operator algebras is provided by the concept of piece-
wise conjugacy and the fact that piecewise conjugacy is an invariant for
isomorphisms between certain operator algebras associated with multivari-
able dynamical systems [12, Theorem 3.22].
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In [12], Davidson and Katsoulis consider only classical dynamical sys-
tems (dynamical systems over commutative C∗-algebras) and their notion
of piecewise conjugacy applies exclusively to such systems. The objective of
the present paper is to place piecewise conjugacy on a much broader frame-
work while preserving its status as an isomorphism invariant for operator
algebras. This is done as follows. Given an arbitrary C∗-algebra A and
a multivariable system α = (α1, α2, . . . , αn) consisting of ∗-automorphisms
of A, we associate operator algebras alg(A,α) that encode the dynamics of
α and include as specific examples the tensor algebra and the semicrossed
product of (A,α) (see Definition 2.1). Any automorphic multivariable sys-

tem (A,α) induces a homeomorphic multivariable dynamical system (Â, α̂)
on the Fell spectrum. The latter is a multivariable system of maps acting
on a locally compact space and so the concept of piecewise conjugacy from
[12] is applicable here. In Theorem 4.9 we show that for two multivari-
able systems (A,α) and (B, β), the existence of an isometric isomorphism
between two associated algebras alg(A,α) and alg(B, β) implies that the in-

duced dynamical systems (Â, α̂) and (B̂, β̂) on the Fell spectra are piecewise
conjugate.

The proof of Theorem 4.9 relies on some new techniques and depends
on the fact that our isomorphisms are isometric. Isometric isomorphisms
preserve diagonals. This allows us to associate to each such isomorphism a
matrix with coefficients in a C∗-algebra. A key result, Theorem 4.3, shows
that this matrix is always square and invertible. This invertibility result, a
form of Gaussian elimination (Lemma 3.3) and a convenient description of
the Fell spectrum due to Ernest [16] comprise the main ingredients for the
proof of Theorem 4.9.

In the course of proving Theorem 4.9, we obtain several results of in-
dependent interest, including complete isomorphism invariants. Indeed in
Theorem 4.5 we show that two tensor algebras T +(A,α) and T +(B, β) are
isometrically isomorphic if and only if the associated correspondences X(A,α)

and X(B,β) are unitarily equivalent (cf. [22]). Furthermore, the unitary
equivalence of the associated correspondences X(A,α) and X(B,β) is an in-
variant for isomorphisms between any algebras of the form alg(A,α) and
alg(B, β) that we consider here. The situation is much nicer for multivari-
able systems over C∗-algebras with trivial center. In Theorem 4.7 we show
that two multivariable systems acting on C∗-algebras with trivial centers
are outer conjugate if and only if their associated semicrossed products (or
tensor algebras) are isometrically isomorphic. This is quite pleasing because
for the first time we have complete isomorphism invariants for a large class
of semicrossed products of multivariable systems. Previously, complete iso-
morphism invariants for this class of operator algebras were thought to be
intractable.

The non-selfadjoint literature is always willing to accommodate non-
invertible dynamics and this paper is no exception. However there are
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limitations as to what can be achieved here if one moves beyond auto-
morphic systems. In the concluding section of the paper, we present two
multivariable systems (A,α) and (B, β), consisting of a different number
∗-monomorphisms, and yet they have isomorphic tensor algebras. Since
A = B = O2, this example shows that many of our results (in particular
the ones relating to outer or piecewise conjugacy) do not extend beyond
automorphic (actually ∗-epimorphic) systems without making any further
assumptions.

2. Preliminaries

A C∗-dynamical system (A,α) consists of a C∗-algebra A and a ∗- endo-
morphism α. (In the sequel all C∗-algebras and their ∗-homomorphisms are
assumed to be unital.) A multivariable C∗-dynamical system (A,α) (or sim-
ply, a multivariable system) consists of a C∗-algebra A and ∗-endomorphisms
α = (α1, α2, . . . , αnα) of A. If the α1, α2, . . . , αnα happen to be automor-
phisms, then (A,α) is said to be an automorphic multivariable system.

We denote by T +(A,α) the tensor algebra of the C∗-correspondence
⊕nαi=1Aαi . (The tensor algebras for C∗-correspondences were introduced in
[20, 21]. The correspondence ⊕nαi=1Aαi has been studied in [12, 18].) There
is also a related operator algebra, the semicrossed product A×α F+nα associ-
ated with (A,α), where F+nα denotes the free semigroup with nα generators.
This is the universal operator algebra generated by a copy of A and con-
tractions s1, s2, . . . snα satisfying asi = siαi(a), a ∈ A, i = 1, 2, . . . , nα.

The algebras T +(A,α) and A×α F+nα are not isomorphic in general [12,
Corollary 3.11] but they do share some common properties which are listed
below. As it turns out, there are other operator algebras satisfying these
properties and so we take an axiomatic approach in describing them.

Definition 2.1. Let (A,α) be a multivariable C∗-dynamical system. An
operator algebra alg(A,α) is said to be associated with the multivariable
system (A,α) if it satisfies the following conditions:

(i) There exists an idempotent mapping E0 : alg(A,α)→ alg(A,α) with
E0(alg(A,α)) = alg(A,α) ∩ alg(A,α)∗ ' A.

(ii) There exist elements s1, s2, . . . , snα ∈ alg(A,α), which are not right
divisors of 0, and satisfy the covariance relations asi = siαi(a), for
all a ∈ A, i = 1, 2, . . . , nα.

(iii) alg(A,α) is generated as a Banach space by monomials of the form
si1si2 . . . sika, where a ∈ A, k ∈ N and 1 ≤ il ≤ nα, for all l =
1, 2, . . . , ik .

(iv) For each 1 ≤ i ≤ nα there exist a bounded idempotent mapping
Fi : alg(A,α) → alg(A,α), 1 ≤ i ≤ nα, which annihilates all mono-
mials except from the ones of the form sia, a ∈ A, which are left
invariant.

Conditions (ii) and (iii) are immediate for both T +(A,α) and A ×α F+n .
The verification of conditions (i) and (iv) depends on an argument involving
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expectations and the Fejer kernel. This argument is by now routine in the
non-selfadjoint literature and we omit it (see for example [12, Section 3.1]).

We have not opted for maximum generality in the above definition. (That
perhaps should be investigated elsewhere.) Instead, we list the minimum re-
quirement so that our theory reaches beyond the tensor algebras or the
semicrossed products and includes certain examples that have already ap-
peared in the literature.

Examples. Let (A,α) be a multivariable system consisting of mutually
commuting ∗-endomorphisms α1, α2, . . . , αn. Let A ×α Z+

n denote the uni-
versal operator algebra generated by a copy of A and commuting contrac-
tions s1, s2, . . . , sn satisfying the covariance relations in Definition 2.1 (ii). It
is routine to verify that A×α Z+

n satisfies the requirements of Definition 2.1
and therefore A×αZ+

n is an example of an operator algebra associated with
(A,α). Algebras of this type were studied in [14, 15, 26]. If one further
asks that the generators s1, s2, . . . , sn are doubly commuting, then we obtain
the Nica-covariant semicrossed product studied in [17].

Alternatively, one may ask for the universal operator algebra generated
by a copy of A and a row contraction (s1, s2, . . . , sn) consisting of commuting
operators and satisfying the covariance relations in Definition 2.1 (ii). Note
that in that case, the generators s1, s2, . . . , sn are not partial isometries but
just contractions. In the case where A = C, this is the classical Drury-
Arveson space studied in [1, 3, 8] and elsewhere. Additional examples can
be formed by using as a prototype the operator algebras of [13] related to
analytic varieties.

3. Invertibility of matrices over C∗-algebras

This section contains a technical result (Theorem 3.4), which may be of
independent interest. It shows that if a right invertible rectangular matrix
[bij ] over a C∗-algebra B satisfies a natural intertwining condition, then [bij ]
is actually square and invertible. Just the fact that the matrix has to be
square, will allow us to conclude that multivariable dynamical systems with
isomorphic operator algebras have necessarily the same dimension. The
proof of Theorem 3.4 is algorithmic in nature and this is used in the proof
of Theorem 4.9.

Lemma 3.1. Let B, C be C∗-algebras and ϕ, ψ be representations of B
onto C. Assume that C has trivial center. If c ∈ C satisfies

(1) ϕ(b)c = cψ(b), for all b ∈ B,

then either c is invertible or c = 0.

Proof. By taking adjoints in (1), we have c∗ϕ(b) = ψ(b)c∗, for all b ∈ B.
Therefore, cc∗ ∈ ϕ(B)′ = C ′. By a similar argument c∗c ∈ ψ(B)′ = C ′. If
c 6= 0, then both cc∗ and c∗c are non-zero scalars. This implies that c is a
non-zero multiple of a unitary, hence invertible.
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Lemma 3.2. Let B, C be C∗-algebras and {ϕi}mi=1, {ψj}nj=1 be families of

representations of B onto C and let [cij ] ∈ Mm,n(C) which intertwines the
representations {ϕi}mi=1 and {ψj}nj=1, i.e.,

ϕi(b)cij = cijψj(b),

for all i = 1, 2, . . .m, j = 1, 2, . . . , n and b ∈ B.

(i) If Fπ is the unitary matrix corresponding to a permutation π ∈ Sn,
then [cij ]Fπ intertwines the representations {ϕi}mi=1 and {ψπ(j)}nj=1.

(ii) If ckk is invertible and Ehk is the matrix corresponding to the ele-
mentary row operation that adds the k-th row multiplied by −chkc−1kk
to the h-th row, then Ehk[cij ] intertwines the representations {ϕi}mi=1
and {ψj}nj=1.

Proof. The proof of (i) is straightforward. For proving (ii), we only need
to examine elements on the h-th row of Ehk[cij ]. Since [cij ] intertwines the
representations {ϕi}mi=1 and {ψj}nj=1, we have

(chj − chkc−1kk ckj)ψj(b) = ϕh(b)chj − chkc−1kk ϕk(b)ckj
= ϕh(b)chj − chkψk(b)c−1kk ckj
= ϕh(b)chj − ϕh(b)chkc

−1
kk ckj

= ϕh(b)(chj − chkc−1kk ckj),
for all b ∈ B and i = 1, 2, . . . ,m, as desired.

Lemma 3.3 (Gaussian Elimination). Let B, C be C∗-algebras and {ϕi}mi=1,
{ψj}nj=1 be families of representations of B onto C, with m ≥ n. Let [cij ] ∈
Mm,n(C) which intertwines the representations {ϕi}mi=1 and {ψj}nj=1. If

[cij ] is right invertible and C has trivial center, then m = n and [cij ] is
quasisimilar 1 in Mn(C) to a diagonal invertible matrix.

Proof. We will first produce invertible matrices E′ ∈ Mm(C) and F ′ ∈
Mn(C) so that the matrix E′[cij ]F

′ has invertible diagonal entries and all
entries below the diagonal equal to 0. Once this is done, m = n, or otherwise
E′[cij ]F

′ would have a zero row, a contradiction to the right invertibility of
[cij ]. We do this by using a variant of the Gaussian elimination on [cij ].

Start with the first column. Since [cij ] is right invertible, there exists at
least one entry on the first row, say c1j1 , which is non-zero. By Lemma 3.1,
c1j1 is invertible. Let F(1 j1) be as in Lemma 3.2, where (1 j1) is the trans-
position between 1 and j1. If the (i, 1)-entry of [cij ]F(1 j1) is not zero, then
let Ei1 be as in Lemma 3.1 (ii), but for the matrix [cij ]F(1 j1). Otherwise, set
Ei1 = I. Then the matrix

(2)

(
m∏
i=1

Ei1

)
[cij ]F(1 j1)

1Note that in our context, a quasi similarity is implemented by invertible operators.
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has its (1, 1)-entry invertible and all entries below the (1, 1)-entry equal to
0. Furthermore (2) is right invertible and by Lemma 3.2, it intertwines the
representations {ϕi}mi=1 and {ψπ(j)}nj=1, where π = (1 j1). Hence we can

continue the Gaussian elimination with the second column of (2) this time.
One of the entries on the second row, say the (2, j2)-entry will be non-zero,
and hence by Lemma 3.1 invertible. Multiply (2) from the right by F(2 j2)

and from the left by invertible matrices Ei2, coming from Lemma 3.2, in
order to zero all entries on the second column which are below the diago-
nal. Continuing in this fashion, we eventually produce the desired upper
triangular matrix E′[cij ]F

′.
Since the diagonal entries of E′[cij ]F

′ are invertible, an elementary appli-
cation of the Gaussian elimination produces an invertible matrix E′′ so that
E′′E′[cij ]F

′ is diagonal and the conclusion follows.

Theorem 3.4. Let B be a C∗-algebra and {βi}mi=1, {β′i}ni=1 be families of
∗-epimorphisms of B, with m ≥ n. Let [bij ] ∈ Mm,n(B) which intertwines
{βi}mi=1 and {β′i}ni=1.

(i) If [bij ] is right invertible, then m = n and [bij ] is invertible in Mn(B).
(ii) If [bij ] is right invertible and B has trivial center, then [bij ] is qua-

sisimilar to a diagonal matrix which intertwines {βi}ni=1 and
{β′π(i)}

n
i=1, for some permutation π ∈ Sn.

Proof. We have already proved (ii). For (i), let [dij ] ∈ Mm,n(B) be the
right inverse of [bij ]. If ρ is any irreducible representation of B, then [ρ(bij)]
intertwines the representations {ρβi}mi=1 and {ρβ′i}ni=1. Hence Lemma 3.3

implies that m = n and also that ρ(n)([dij ]) ≡ [ρ(dij)] is the inverse for
[ρ(bij)].

Let (ρs)s be a family of irreducible representations of B that separates
the points. By [23, Theorem 6.5.1], idn⊗ (⊕sρs) is a faithful representation
of Mn(C)⊗B and so ⊕

s

ρ(n)s '
⊕
s

(idn ⊗ ρs)

is a faithful representation for Mn(B). In that representation, the previous
paragraph shows that [dij ] is the inverse of [bij ].

4. The main results

Let alg(A,α) and alg(B, β) be operator algebras associated with the mul-
tivariable systems (A,α) and (B, β) respectively, and let γ : alg(A,α) →
alg(B, β) be an isometric isomorphism. Since γ is isometric, a similar argu-
ment as in [11, Proposition 2] implies that γ|A is a ∗-monomorphism that
maps A onto B. We will be denoting γ|A by γ as well.

Let s1, s2, . . . , snα and t1, t2, , . . . , tnβ be the generators in alg(A,α) and
alg(B, β) respectively, and let bij ≡ Fi(sj) so that

γ(sj) = b0j + t1b1j + t2b2j + · · ·+ tnβbnβj + Y



ISOMORPHISM INVARIANTS FOR MULTIVARIABLE C∗-DYNAMICS 7

with E0(Y ) = F1(Y ) = · · · = Fnβ (Y ) = 0. Since γ is a homomorphism,

γ(a)γ(sj) = γ(asj) = γ(sjαj(a)) = γ(sj)γα(a),

for all a ∈ A. Hence, βiγ(a)bij = bijγαj(a), a ∈ A, and so

(3) βi(b)bij = bijγαjγ
−1(b),

for all b ∈ B. Therefore, the matrix [bij ] associated with the isomorphism γ

intertwines {βi}
nβ
i=1 and {γαjγ−1}nαj=1.

Lemma 4.1. Let alg(A,α) be an operator algebra associated with the mul-
tivariable system (A,α). If a sequence (ak)k in A satisfies limk siak = 0, for
some 1 ≤ i ≤ nα, then limk ak = 0.

Proof. Since si is not a right divisor of zero, the C∗-algebra A equipped
with the seminorm ‖a‖i ≡ ‖sia‖, a ∈ A, becomes a Banach space. The iden-
tity map id: (A, ‖·‖)→ (A, ‖·‖i) is continuous, hence by the open mapping
theorem bicontinuous, and the conclusion follows.

Lemma 4.2. Let alg(A,α) and alg(B, β) be operator algebras associated
with the multivariable systems (A,α) and (B, β) respectively, and let γ :
alg(A,α)→ alg(B, β) be an isometric isomorphism. Then, for a given tuple
(y1, y2, . . . , ynβ ) ∈ ⊕nβ1 B there exist a sequence

(
(xk1, x

k
2, . . . , x

k
nα)
)
k

in ⊕nα1 B
such that

yi = lim
k
bi1x

k
1 + bi2x

k
2 + · · ·+ binαx

k
nα , i = 1, 2, , . . . , nβ,

where [bij ] is the matrix associated with γ.

Proof. Let ν = ν1 . . . νq be a word on ∅, 1, . . . , nα and let sν = sν1sν2 . . . sνq ,
with the understanding that s∅ denotes an element in A. Then

Fi(γ(sν)) = Fi(γ(sν1))E0(γ(sν2)) · · ·E0(γ(sνq)) + . . .

· · ·+ E0(γ(sν1)) · · ·E0(γ(sνq−1))Fi(γ(sνq))

= Fi(γ(sν1))E0(γ(sν2)) · · ·E0(γ(sνq)) + . . .

· · ·+ E0(γ(sν1)) · · ·E0(γ(sνq−1))Fi(γ(sνq))

=
∑
r

E0(γ(sν1)) · · ·E0(γ(sνr−1))Fi(γ(sνr))E0(γ(sνr+1)) · · ·E0(γ(sνq)).

By equation (3) and for suitable yr, y
′
r ∈ B we obtain,

Fi(γ(sν)) =
∑
r

yrtibiνry
′
r =

∑
r

tiβi(yr)biνry
′
r

=
∑
r

tibiνrγανrγ
−1(yr)y

′
r =

nα∑
r=1

tibirxr.

Therefore

Fi(γ(sν)) = ti(bi1x1 + bi2x2 + · · ·+ binαxnα).
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The same follows for linear combinations of the monomials γ(sν). For ex-
ample, for two words µ = µ1 · · ·µw and ν = ν1 · · · νq we obtain that

Fiγ(sµ + sν) = Fiγ(sµ) + Fiγ(sµ)

= ti(biν1xν1 + biν2xν2 + · · ·+ biνqxνq)+

+ ti(biµ1xµ1 + biµ2xµ2 + · · ·+ biµqxµq)

= ti(bi1x1 + bi2x2 + · · ·+ binαxnα)+

+ ti(bi1x
′
1 + bi2x

′
2 + · · ·+ binαx

′
nα)

= ti(bi1x
′′
1 + bi2x

′′
2 + · · ·+ binαx

′′
nα),

by introducing the appropriate zeros. Since t1y1 + t2y2 + · · · + tnβynβ is a

limit of such linear combinations, we obtain sequences
(
(xk1, x

k
2, . . . , x

k
nα)
)
k

such that

tiyi = lim
k
ti(bi1x

k
1 + bi2x

k
2 + · · ·+ binαx

k
nα)

for all 1 ≤ i ≤ nβ, and Lemma 4.1 finishes the proof.

Proposition 4.3. Let alg(A,α) and alg(B, β) be operator algebras associ-
ated with the multivariable systems (A,α) and (B, β) respectively, and let
γ : alg(A,α) → alg(B, β) be an isometric isomorphism. Then the matrix
[bij ] associated with γ is right invertible.

Proof. By Lemma 4.2, for any tuple (y1, . . . , ynβ ) there exists a sequence(
(xk1, x

k
2, . . . , x

k
nα)
)
k

such that

yi = lim
k
bi1x

k
1 + bi2x

k
2 + · · ·+ binαx

k
nα

for all 1 ≤ i ≤ nβ. Hence for the tuple (1, 0, . . . , 0) and for ε < 1
nαnβ

there

are xj1, for 1 ≤ j ≤ nα, such that

‖δi1 − bi1x11 + bi2x21 + · · ·+ binαxnα1‖ < ε,

for all i = 1, . . . , nβ. Repeating for (0, 1, . . . , 0), . . . , (0, 0 . . . , 1), we obtain
elements xij , for 1 ≤ i ≤ nα and 1 ≤ j ≤ nβ, such that∥∥∥∥∥δij −

nα∑
k=1

bikxkj

∥∥∥∥∥ < ε <
1

nαnβ
.

Hence,

‖In − [bij ][xij ]‖ =

∥∥∥∥∥[δij −
nα∑
k=1

bikxkj ]

∥∥∥∥∥
≤
∑
i,j

∥∥∥∥∥δij −
nα∑
k=1

bikxkj

∥∥∥∥∥ <∑
i,j

1

nαnβ
= 1.

Therefore [bij ][xij ] is invertible, hence [bij ] is right invertible.

From Proposition 4.3 and Theorem 3.4, we obtain the following key result.
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Theorem 4.4. Let alg(A,α) and alg(B, β) be operator algebras associated
with the automorphic multivariable systems (A,α) and (B, β) respectively,
and let γ : alg(A,α)→ alg(B, β) be an isometric isomorphism. Then nα =
nβ and the matrix [bij ] associated with γ is invertible in Mn(B).

As a first application of Theorem 4.4, we obtain that the unitary equiv-
alence class of X(A,α) is an isomorphism invariant for alg(A,α), which is
complete in the case of tensor algebras. Note that the unitary equivalence
class of X(A,α) is easy to describe here: X(A,α) and X(B,β) are unitarily
equivalent if and only if there is a ∗-isomorphism γ : A → B and a unitary
matrix [uij ] ∈Mnβ ,nα(B) that intertwines {βi}

nβ
i=1 and {γαjγ−1}nαj=1. (When

nα = nβ and [uij ] happens to be diagonal up to a permutation, then the
multivariable systems (A,α) and (B, β) are said to be outer conjugate.)

Theorem 4.5. Let (A,α) and (B, β) be two automorphic multivariable C∗-
dynamical systems.

(1) If alg(A,α) and alg(B, β) are isometrically isomorphic then nα = nβ
and the correspondences X(A,α) and X(B,β) are unitarily equivalent.

(2) T +(A,α) and T +(B, β) are isometrically isomorphic if and only if
the correspondences X(A,α) and X(B,β) are unitarily equivalent.

Proof. Let [bij ] be the matrix associated with an isometric isomorphism
γ : alg(A,α) → alg(B, β). By Theorem 4.4, [bij ] is invertible. If [bij ] =
w |[bij ]| is the polar decomposition of [bij ], then the unitary w intertwines

{βi}
nβ
i=1 and {γαjγ−1}nαj=1. Thus the pair (γ,w) induces the desired unitary

equivalence.
To end the proof, recall that when X(A,α) and X(B,β) (resp. (A,α) and

(B, β)) are unitarily equivalent (resp. outer conjugate) then the tensor alge-
bras (resp. the semicrossed products) are completely isometrically isomor-
phic.

Corollary 4.6. Let (A,α) and (B, β) be two automorphic multivariable C∗-
dynamical systems. If the semicrossed products A×α F+nα and B ×β F+nβ (or

some alg(A,α) and alg(B, β)) are isometrically isomorphic, then the tensor
algebras T +(A,α) and T +(B, β) are also isometrically isomorphic.

The converse of Corollary 4.6 does not hold. This follows from [12, Ex-
ample 3.24].

In the case where the multivariable system acts on a C∗-algebra with
a trivial center, we obtain that outer conjugacy is a complete invariant
for isomorphisms between semicrossed products, by combining Theorem 4.5
with Lemma 3.3.

Theorem 4.7. Let (A,α) and (B, β) be two automorphic multivariable C∗-
dynamical systems and assume that A has trivial center. Then the following
are equivalent:

(1) A×α F+nα and B ×β F+nβ are isometrically isomorphic.
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(2) T +(A,α) and T +(B, β) are isometrically isomorphic.
(3) X(A,α) and X(B,β) are unitarily equivalent.
(4) (A,α) and (B, β) are outer conjugate.

Furthermore, if there exist alg(A,α) and alg(B, β) which are isometrically
isomorphic, then any of the above conditions holds, and nα = nβ.

Let A be a unital C∗-algebra and let P (A) be its pure state space equipped

with the w∗-topology. The Fell spectrum Â of A is the space of unitary
equivalence classes of non-zero irreducible representations of A. (The usual
unitary equivalence of representations will be denoted as ∼.) The GNS

construction provides a surjection P (A) → Â and Â is given the quotient
topology. There is another more convenient description of the (Fell) spec-
trum of A due to Ernest [16]. Let HA be a fixed Hilbert space of dimension
equal the cardinal κ of a dense subset of A. A railway representation ρ of A
is a representation which is unitarily equivalent to the κ-ampliation of some
irreducible representation ρ0 of A. In particular, if ρ is a railway representa-
tion, then ρ(A) has trivial center. Let R(A) denote the space of all railway
representations of A acting on HA, equipped with the topology of pointwise
convergence relative to the strong operator topology. Ernest shows in [16]

that the canonical surjection R(A)→ Â, which associates with each railway
representation ρ ∈ R(A) the unitary equivalence class of the irreducible rep-
resentation ρ0 associated with ρ, is both open and continuous. Hence, the
space R(A)/ ∼ equipped with the quotient topology is homeomorphic in a
canonical way with the spectrum of A. (Indeed two railway representations
are unitarily equivalent if and only if their associated irreducible represen-
tations are unitarily equivalent.) For the sequel, we adopt Ernest’s picture

for the spectrum, i.e., Â = R(A)/ ∼. We require the following elementary

fact regarding the open sets in Â.

Proposition 4.8. Let A be a C∗-algebra, ρ ∈ R(A), a ∈ A and ξ ∈ HA.
Then the set

U(ρ | a, ξ, ε) ≡ {[ρ′] | ρ′ ∈ R(A), ‖(ρ− ρ′)(a)ξ‖ < ε}

is open in Â.

Proof. It is enough to show that the set

U ′ = {adw ρ
′ | w ∈ B(HA) unitary, ‖(ρ− ρ′)(a)ξ‖ < ε}

is open with respect to the topology of pointwise convergence in R(A).
Let adw ρ

′ ∈ U ′ arbitrary and let δ > 0 so that

(4) ‖(adw ρ
′ − adw ρ)(a)wξ‖ = ‖(ρ− ρ′)(a)ξ‖ = ε− δ

Consider now the open set

Oρ′,w = {ρ′′ ∈ R(A) | ‖(adw ρ
′ − ρ′′)(a)wξ‖ < δ}.
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If we show that Oρ′,w ⊆ U ′, then U ′ will be the union of open sets and the
conclusion will follow. Towards this end, let ρ′′ ∈ Oρ′,w. By (4), ‖(adw ρ −
ρ′′)(a)wξ‖ < ε and thus

‖(adw∗ ρ
′′ − ρ)(a)ξ‖ = ‖w(adw∗ ρ

′′ − ρ)ξ‖ = ‖(ρ′′ − adw ρ)(a)wξ‖ < ε.

Hence adw∗ ρ
′′ ∈ U ′ and so ρ′′ ∈ U ′, as desired.

Let X and Y be topological spaces and let σ = (σ1, σ2, . . . , σn) and τ =
(τ1, τ2, . . . , τn) be multivariable dynamical systems consisting of selfmaps of
X and Y respectively. Davidson and Katsoulis [12, Definition 3.16] define
(X,σ) and (Y, τ) to be piecewise conjugate if there exists a homeomorphism
ϕ : X → Y and an open cover {Ug | g ∈ Sn} of Y so that

τi = ϕσg(i) ϕ
−1, for each g ∈ Sn and 1 ≤ i ≤ n.

If A is a C∗-algebra, then any automorphism (resp. multivariable system)
α of A induces a homeomorphism (resp. multivariable dynamical system)

α̂ on its Fell spectrum Â, that maps the equivalence class [ρ] of a railway
representation to [ρα].

Theorem 4.9. Let (A,α) and (B, β) be automorphic multivariable C∗-
dynamical systems and assume that there exist associated operator algebras
alg(A,α) and alg(B, β) which are isometrically isomorphic. Then the mul-

tivariable systems (Â, α̂) and (B̂, β̂) are piecewise conjugate.

Proof. Let γ : alg(A,α)→ alg(B, β) be an isometric isomorphism. We will

show that the mapping γ̂−1 : Â → B̂ is the homeomorphism implementing
the desired piecewise conjugacy between (Â, α̂) and (B̂, β̂). In order to prove

that we will verify that around every point in B̂, there is an open set so that

the maps β̂i, i = 1, 2, . . . , nα, and γ̂−1α̂j γ̂ = γ̂αjγ−1, j = 1, 2, . . . , nβ, when
restricted there, they are conjugate.

Let ρ ∈ R(B) and pick one of the β̂1, β̂2, . . . , β̂nβ , say β̂1. Let

{β̂1, β̂2, . . . , β̂r, γ̂α1γ−1, γ̂α2γ−1, . . . , γ̂αdγ−1}

be the mappings from the collection

(5) {β̂1, β̂2, . . . , β̂nα , γ̂α1γ−1, γ̂α2γ−1, . . . , γ̂αnβγ
−1}

that “eventually” agree with β̂1 around [ρ] (the germ of β̂1). By that we

mean that there is an open set U ⊆ B̂ containing [ρ] so that

γ̂αjγ−1|U = β̂i|U ,

for all i = 1, 2, . . . , r and j = 1, 2, . . . , d. Furthermore, given any open set
U ′ ⊆ U ⊆ B̂ containing [ρ] and any i ≤ r, j > d, we have

(6) γ̂αjγ−1|U ′ 6= β̂1|U ′ = β̂i|U ′ .
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We are to show that r = d. Once this has been established, an easy
partitioning argument for the collection (5) into germs finishes the proof of
the theorem.

By way of contradiction we assume that r > d, or otherwise we exchange
the roles of A and B and their corresponding automorphisms. (We do not
exclude the possibility that d = 0.)

Claim. If [bij ] is the matrix associated with γ, then ρ(bij) = 0, for all i =
1, 2, . . . , r and j > d.
Proof of the Claim. Indeed, let ε > 0 and ξ ∈ HA and let

U(ρ | bij , ξ, ε) = {[ρ′] ∈ B̂ | ‖(ρ− ρ′)(bij)ξ‖ < ε}.
which is open by Proposition 4.8. Hence U(ρ | bij , ξ, ε)

⋂
U is also open and

so by (6) implies the existence of [ρ′] ∈ U(ρ | bij , ξ, ε)
⋂
U so that

γ̂αjγ−1(ρ
′) 6= β̂1(ρ

′) = β̂i(ρ
′).

Hence ρ′γαjγ
−1 � ρβi and so Lemma 3.1 implies that ρ′(bij) = 0. Therefore

‖ρ(bij)ξ‖ = ‖(ρ− ρ′)(bij)ξ‖ < ε,

for all ξ ∈ HA and ε > 0, which proves the claim.

By Theorem 4.4 the matrix [ρ(bij)] is invertible. It also intertwines the
representations {ρβi}ni=1 and {ργαjγ−1}nj=1 and so we can perform Gaussian
elimination as in Lemma 3.3. However, the claim above implies that when
we reach at the d+1 row, there will be no non-zero element on that particular
row. This contradicts the invertibility of [ρ(bij)].

The Fell topology on the spectrum of a simple C∗-algebra is the discrete
topology. Therefore for such C∗-algebras Theorem 4.9 says nothing more
than the invariance of dimension, i.e., nα = nβ. It turns out that an appro-
priate modification of the Fell spectrum, combined with the techniques of
Theorem 4.9 yields a finer invariant that can handle simple C∗-algebras and
actually a bit more.

Definition 4.10. Let A be a C∗-algebra and ρ, ρ′ be representations of A.

We say that ρ and ρ′ are strongly equivalent (denoted ρ
s∼ ρ′) if ρ(A) = ρ′(A)

and there exists a unitary operator w ∈ ρ(A) so that ρ′ = adw ρ.

Let S(A) be the space of all non-degenerate representations of A on HA
with trivial center. The equivalence

s∼ partitions S(A) into equivalence

classes and the collection of all these classes will be denoted as Ã. We equip
Ã with the smallest topology so that sets of the form

{[ρ′] | ρ′ ∈ S(A), ‖(ρ− ρ′)(a)ξ‖ < ε},
where ρ ∈ S(A), a ∈ A, ξ ∈ HA, ε > 0, are open. The topologized space

Ã gives a finer notion of spectrum than that of the Fell spectrum and it
coincides with the Gelfand spectrum in the commutative case. It is easy to
see that any automorphism (resp. multivariable system) α of A induces a
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homeomorphism (resp. multivariable dynamical system) α̃ on Ã, that maps
the equivalence class [ρ], ρ ∈ S(A) onto [ρα]. A verbatim repetition of the
proof of Theorem 4.9 (with hats replaced by tildes) yields the following.

Theorem 4.11. Let (A,α) and (B, β) be automorphic multivariable C∗-
dynamical systems and assume that there exist associated operator algebras
alg(A,α) and alg(B, β) which are isometrically isomorphic. Then the mul-

tivariable systems (Ã, α̃) and (B̃, β̃) are piecewise conjugate.

In certain cases Theorems 4.9 and 4.11 provide a complete invariant for
isometric isomorphism between tensor algebras, e.g., multivariable dynamics
with two generators over commutative C∗-algebras [12]. Nevertheless, none
of these results provides a complete invariant in general. This follows from
the work of Davidson and Kakariadis [9] and an example of Kadison and
Ringrose [19].

Example 4.12. In [19] Kadison and Ringrose show that there exists a (ho-
mogeneous) C∗-algebra A and an automorphism α of A which is universally
weakly inner but not inner. If the converse of Theorem 4.9 were valid for
tensor algebras, then A×αZ+ and A×idZ+ would be isomorphic and hence
outer conjugate by [9]. But this would imply that α is inner, a contradiction.

5. Concluding Remarks and open problems

One of the consequences of our theory is the invariance of dimension: if
(A,α) and (B, β) are multivariable systems consisting of ∗-automorphisms
and alg(A,α) and alg(B, β) are isometrically isomorphic as operator alge-
bras, then nα = nβ. Furthermore the invariance of dimension is implicit in
both the statements of piecewise conjugacy and outer conjugacy and there-
fore it is a corollary of both Theorem 4.9 and Theorem 4.7. The following
example shows that the invariance of dimension does not hold for arbitrary
multivariable systems.

Example 5.1. Let A = B = O2, α = (α1, α2), with α1 = α2 = id, and let

β(x) = S1xS
∗
1 + S2xS

∗
2 , x ∈ O2,

where S1, S2 are the canonical generators of O2. Then the tensor algebras
T +(A,α) and T +(B, β) are (completely) isometrically isomorphic.

Indeed, β(x)S1 = S1x and β(x)S2 = S2x, for all x ∈ O2. Hence, the
unitary matrix U =

[
S1 S2

]
intertwines {β} and {α1, α2} and so X(A,α)

and X(B,β) are unitarily equivalent.

The above example does not exclude the possibility that the C∗- corre-
spondence is an isomorphism invariant for arbitrary multivariable systems.

Question 1. Let (A,α) and (B, β) be multivariable dynamical systems con-
sisting of arbitrary ∗-endomorphisms. Assume that there exist associated op-
erator algebras alg(A,α) and alg(B, β) which are isometrically isomorphic.
Does it follow that the C∗-correspondences X(A,α) and X(B,β) are unitarily
equivalent?
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Question 1 has a positive answer when both multivariable systems consists
of ∗-epimorphisms. Indeed, Theorem 4.4 and its consequences are valid also
in this case, with the same proofs. Because of Example 5.1, we emphasize
the assumption that both families consist of ∗-epimorphisms. Question 1
also has a positive answer in the following case.

Theorem 5.2. Items (1) and (2) of Theorem 4.5 hold for multivariable
systems of stably finite C∗-algebras with arbitrary ∗-endomorphisms.

Proof. Without loss of generality we can assume that B is stably finite.
Let [bij ] be the matrix associated with the isomorphism γ : alg(A,α) →
alg(B, β). By Proposition 4.3 [bij ] is a right invertible nβ × nα rectangular
matrix and the finiteness condition for B implies that it is invertible.

When the C∗-algebras are commutative we obtain that unitary equiv-
alence implies piecewise conjugacy of the systems, by passing though the
isomorphism of the tensor algebras [12, Theorem 3.22]. In certain cases,
piecewise conjugacy implies also isometric isomorphism of the tensor alge-
bras [12, Theorem 3.25], thus in these cases piecewise conjugacy and unitary
equivalence of the C∗-correspondences coincide.

Question 2. Does piecewise conjugacy imply unitary equivalence of the C∗-
correspondences for classical dynamical systems in general?

We are also interested in piecewise conjugacy over the Jacobson spectra.

Question 3. Let (A,α) and (B, β) be multivariable dynamical systems and
assume that there exist associated operator algebras alg(A,α) and alg(B, β)
which are isometrically isomorphic. Does it follow that the multivariable
systems (A,α) and (B, β) are piecewise conjugate over their Jacobson spec-
tra?
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