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Abstract. We study several notions of shift equivalence for C*- cor-
respondences and the effect that these equivalences have on the corre-
sponding Pimsner dilations. Among others, we prove that non- degen-
erate, regular, full C∗-correspondences which are shift equivalent have
strong Morita equivalent Pimsner dilations. We also establish that the
converse may not be true. These results settle open problems in the
literature.

In the context of C∗-algebras, we prove that if two non-degenera-
te, regular, full C*- correspondences are shift equivalent, then their cor-
responding Cuntz-Pimsner algebras are strong Morita equivalent. This
generalizes results of Cuntz and Krieger and Muhly, Tomforde and Pask.
As a consequence, if two subshifts of finite type are eventually conjugate,
then their Cuntz-Krieger algebras are strong Morita equivalent.

Our results suggest a natural analogue of the Shift Equivalence Prob-
lem in the context of C*-correspondences. Even though we do not re-
solve the general Shift Equivalence Problem, we obtain a positive answer
for the class of imprimitivity bimodules.

1. Introduction

In [19] Williams introduced three relations for the class of matrices with
non-negative integer entries, which are successively weaker. Two matrices E
and F with non-negative integer entries are said to be elementary strong shift

equivalent (symb. E
s∼ F ) if there exist matrices R and S with non-negative

integer entries such that E = RS and F = SR. The transitive closure of
the elementary strong equivalence is called strong shift equivalence (symb.
SSE∼ ) and requires that E

SSE∼ F if there is a finite sequence of matrices Ti,

i = 0, . . . , n, such that E = T0, F = Tn and Ti
SSE∼ Ti+1. Williams also

defined a third more manageable relation: E is shift equivalent to F (symb.

E
SE∼ F ) if there exist matrices R,S with non-negative integer entries such

that En = RS, Fn = SR and ER = SF , FR = SE for some n ∈ N.
The main goal of Williams was to characterize the topological conjugacy

of subsifts of finite type using algebraic criteria. In [19], he proved that two
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subsifts σE and σF of finite type are topologically conjugate if and only if

their associated matrices are strong shift equivalent, i.e., E
SSE∼ F . Williams

also claimed that the relations
SSE∼ and

SE∼ are equivalent, thus providing a
more manageable criterion for the conjugacy of shifts. Unfortunately, an
error in [19] made invalid the proof of that last assertion, and the equiv-

alence of
SSE∼ and

SE∼ remained an open problem for over than 20 years,
known as Williams’ Conjecture. The breakthrough came with the work of
Kim and Roush [8] who proved that the Williams Conjecture for the en-
tire class of non-negative integral matrices is false. Their work reshaped
the Williams’ Conjecture into what is known today as the Shift Equivalence
Problem, which for a particular class S of matrices with entries in a certain

ring R asks whether
SSE∼ is equivalent to

SE∼ within S.
Williams’ notions of shift equivalence carry over to the class of C*- corre-

spondences if one replaces in the above definitions the matrices E and F with
C*-correspondences and the multiplication of matrices with the internal ten-
sor product. (See Section 4 for the precise definitions). This introduces three
notions of relation between C∗-correspondences, which will be denoted again

as
s∼, SSE∼ and

SE∼ . There exists also a fourth equivalence relation, named

strong Morita equivalence (symb.
SME∼ ), which generalizes the concept of

unitary conjugacy for matrices to the realm of C∗-correspondences.
The concept of strong Morita equivalence for C∗-correspondences was first

developed and studied by Abadie, Eilers and Exel [1] and Muhly and Solel
[15]. Among others these authors show that if two C∗-correspondences are
strong Morita equivalent then the associated Cuntz-Pimsner algebras OE
and OF are (strong) Morita equivalent as well. The notion of elementary
and strong shift equivalence for C∗-correspondences was first studied by
Muhly, Tomforde and Pask [13]. These authors also prove that strong
shift equivalence of C∗-correspondences implies the Morita equivalence of
the associated Cuntz-Pimsner algebras, thus extending classical results of
Cuntz and Krieger [3], Bates [2] and Drinen and Sieben [5] for graph C∗-
algebras. In their study of strong shift equivalence [13], Muhly, Tomforde
and Pask raise two conjectures, which turn out to be important for the
further development of the theory [13, Remark 5.5].

Conjecture 1. Let E and F be two non-degenerate, regular
C∗-correspondences and let E∞ and F∞ be their associated

Pimsner dilations. If E
SSE∼ F , then E∞

SME∼ F∞.

Conjecture 2. Let E and F be two non-degenerate, regular
C∗-correspondences and let E∞ and F∞ be their associated

Pimsner dilations. If E∞
SME∼ F∞, then E

SSE∼ F .

The concept of shift equivalence has been studied extensively from both
the dynamical and the ring theoretic viewpoint. (See [18] for a comprehen-
sive exposition.) In general, shift equivalence has been recognized to be a
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more manageable invariant than strong shift equivalence, as it is decidable
over certain rings [9]. Unlike strong shift equivalence, the study of shift
equivalence, from the viewpoint of C∗-correspondences, has been met with
limited success [12]. (Other operator theoretic viewpoints however have
been quite successful [11].)

There are three major objectives that are being met in this work. First
we complete the study of strong shift equivalence of Muhly, Tomforde and
Pask [13] by settling both of their conjectures: with the extra requirement
of fullness, Conjecture 1 is settled in the affirmative (Theorem 5.3 and the
remarks preceding it), while Conjecture 2 has a negative answer (Theorem
5.13).

A second objective is the detailed study of the shift equivalence for C∗-
correspondences. First, we raise the analogues of Conjectures 1 and 2 for
shift equivalence (instead of strong shift equivalence) and we discover that
the answers are the same as in the case of strong shift equivalence. Us-
ing that information we prove Theorem 5.10, which states that if two non-
degenerate, regular, full C*-correspondences E and F are shift equivalent,
then their corresponding Cuntz-Pimsner algebras OE and OF are (strong)
Morita equivalent. This generalizes results of Cuntz and Krieger [3], and
Muhly, Pask and Tomforde [13] and appears to be new even for Cuntz-
Krieger algebras, where the two notions of shift and strong shift equivalence
are known to be different. Combined with the work of Williams our result
says that if two subshifts of finite type are eventually conjugate [18], then
their Cuntz-Krieger algebras are strong Morita equivalent. In other words,
strong Morita equivalence of Cuntz-Krieger C∗-algebras is an invariant for
shift equivalence.

Our final goal in this paper is the introduction of the Shift Equivalence
Problem in the context of C∗-correspondences. In light of our previous dis-
cussion, it seems natural to ask whether strong shift equivalence and shift
equivalence are two different notions of equivalence for C∗-correspondences.
We coin this problem as the Shift Equivalence Problem for C∗- correspon-
dences. The work of Kim and Roush [8] shows that the Shift Equivalence
Problem has a negative answer within the class of graph correspondences,
but it leaves open the option for a positive answer within the whole class
of C∗-correspondences. In general, we do not know the answer even though
the work of Kim and Roush hints that it should be negative. In spite of
this, we show that the Shift Equivalence Problem has a positive answer for
imprimitivity bimodules: all four notions of “equivalence” described in this
paper coincide for imprimitivity bimodules, Theorem 6.1.

There are more things accomplished in this paper, and we describe each
of them within the appropriate sections. Most notably, we settle a third con-
jecture of Muhly, Pask and Tomforde coming from [13] by showing that [13,
Theorem 3.14] is valid without the assumption of non-degeneracy (Theorem
7.1).
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The paper is organized as follows. In Section 2 we establish the notation
and terminology to be used throughout this paper. In Section 3 we explore
the concept of a dilation for a C∗-correspondence. In Sections 4, 5 and 6 we
present the main results of this paper.

2. Preliminaries

We use [10] as a general reference for Hilbert C∗-modules and C∗- cor-
respondences. An inner-product right A-module over a C∗-algebra A is a
linear space X which is a right A-module together with an A-valued inner

product. For ξ ∈ X we define ‖ξ‖X := ‖〈ξ, ξ〉A‖
1/2
A . The A-module X will

be called a right Hilbert A-module if it is complete with respect to the norm
‖·‖X . In this case X will be denoted by XA. It is straightforward to prove
that if (ai) is an approximate unit in A or in the closed ideal 〈X,X〉X , then
(ai) is also a right contractive approximate unit (c.a.i.) for X.

Dually we call X a left Hilbert A-module if it is complete with respect to
the norm induced by a left A-module inner-product [·, ·]X . The term Hilbert
module is reserved for the right Hilbert modules, whereas the left case will
be clearly stated.

Given a Hilbert A-module X over A, let X∗ = {ξ∗ ∈ L(X,A) | ξ∗(ζ) =
〈ξ, ζ〉X} be the dual left Hilbert A-module, with

a · ξ∗ = (ξa∗)∗ and [ξ∗, ζ∗]X∗ = 〈ξ, ζ〉X ,

for all ξ, ζ ∈ X and a ∈ A.
For X,Y Hilbert A-modules let L(X,Y ) be the (closed) linear space of

the adjointable maps. For ξ ∈ X and y ∈ Y , let Θy,ξ ∈ L(X,Y ) such that
Θy,ξ(ξ

′) = y 〈ξ, ξ′〉X , for all ξ′ ∈ X. We denote by K(X,Y ) the closed linear
subspace of L(X,Y ) spanned by {Θy,ξ : ξ ∈ X, y ∈ Y }. If X = Y then
K(X,X) ≡ K(X) is a closed ideal of the C∗-algebra L(X,X) ≡ L(X).

Lemma 2.1. Let X,Y, Z be Hilbert A-modules. If 〈X,X〉X provides a right

c.a.i. (ai) for Y , then K(X,Y )K(Z,X) = K(Z, Y ).

Proof. The existence of the right c.a.i. (ai) implies that Y 〈X,X〉 is dense

in Y , hence K(X,Y )K(Z,X) = K(Z, Y 〈X,X〉) = K(Z, Y ).

Definition 2.2. An A-B-correspondence X is a right Hilbert B-module
together with a ∗-homomorphism φX : A→ L(X). We denote this by AXB.
When A = B we refer to X as a C∗-correspondence over A.

A submodule Y of X is a subcorrespondence of AXB, if it is a C-D-
correspondence for some C∗-subalgebras C and D of A and B, respectively.

A C∗-correspondenceX is called non-degenerate (resp. strict) if the closed
linear span of φX(A)X is equal to X (resp. complemented in X). We say
that X is full if 〈X,X〉X is dense in A. Finally, X is called regular if both
it is injective, i.e., φX is injective, and φX(A) ⊆ K(X).
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Two A-B-correspondences X and Y are called unitarily equivalent (symb.
X ≈ Y ) if there is a unitary u ∈ L(X,Y ) such that u(φX(a)ξb) = φY (a)(uξ)b,
for all a ∈ A, b ∈ B, ξ ∈ X.

Example 2.3. Every Hilbert A-module X is a K(X)-A-correspondence
when endowed with the left multiplication φX ≡ idK(X) : K(X) → L(X).
A left inner product over K(X) can be defined by [ξ, η]X = Θξ,η, for all
ξ, η ∈ X. Also X∗ is an A-K(X)-correspondence, when endowed with the
following operations

〈ξ∗, η∗〉X∗ = [ξ, η]X , ξ
∗ · k = (k∗ξ)∗, and φX∗(a)ξ∗ = a · ξ∗ = (ξ · a∗)∗,

for all ξ, η ∈ X, k ∈ K(X) and a ∈ A.

Example 2.4. For Hilbert A-modules X and Y , L(X,Y ) becomes an L(Y )-
L(X)-correspondence by defining 〈s, t〉 := s∗t, t · a := ta and b · t := bt, for
every s, t ∈ L(X,Y ), a ∈ L(X) and b ∈ L(Y ).

Trivially, K(X,Y ) is a K(Y )-K(X)-subcorrespondence of L(X,Y ). Note
that, when 〈X,X〉X provides a right c.a.i. for Y , then K(Y ) acts faithfully
on K(X,Y ). When X = Y this is automatically true.

For two C∗-correspondences AXB and BYC , the interior or stabilized ten-
sor product, denoted by X ⊗B Y or simply by X ⊗ Y , is the quotient of the
vector space tensor product X⊗algY by the subspace generated by elements
of the form

ξb⊗ y − ξ ⊗ φ(b)y, for all ξ ∈ X, y ∈ Y, b ∈ A.

It becomes a Hilbert C-module when equipped with

(ξ ⊗ y)c := ξ ⊗ (yc), (ξ ∈ X, y ∈ Y, c ∈ C),

〈ξ1 ⊗ y1, ξ2 ⊗ y2〉X⊗Y := 〈y1, φ(〈ξ1, ξ2〉X)y2〉Y , (ξ1, ξ2 ∈ X, y1, y2 ∈ Y ).

For s ∈ L(X) we define s⊗ idY ∈ L(X ⊗ Y ) be the map ξ ⊗ y 7→ (sξ)⊗ y.
Then X ⊗B Y becomes an A-C-correspondence by defining φX⊗Y (a) :=
φX(a) ⊗ idY . The interior tensor product plays the role of a generalized
associative multiplication of C∗-correspondences and the following lemmas
will be useful in the sequel.

Lemma 2.5. Let the C∗-correspondences AXB and BYC . If (ci) is an ap-
proximate identity of 〈Y, Y 〉Y , then (ci) is a right c.a.i. for the interior
tensor product X ⊗B Y .

Proof. The norm on X ⊗B Y is a submultiplicative tensor norm, i.e.,
‖ξ ⊗ y‖ ≤ ‖y‖ ‖ξ‖ for all ξ ∈ X, y ∈ Y . Thus limi yci = y implies limi(ξ ⊗
y)ci = limi ξ ⊗ (yci) = ξ ⊗ y, for a c.a.i. (ci) as above.

Lemma 2.6. Let AXB and BYC be two C∗-correspondences. If AXB is
non-degenerate then X ⊗B Y is non-degenerate.

Proof. Immediate since the tensor norm is submultiplicative.
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Lemma 2.7. Let X,Y be Hilbert A-modules and AZB be a regular C∗-
correspondence. Then the mapping

⊗idZ : L(X,Y )→ L(X ⊗A Z, Y ⊗A Z) : t 7→ t⊗ idZ

is isometric and maps K(X,Y ) inside K(X ⊗A Z, Y ⊗A Z).

Proof. Set

Ψ ≡ ⊗idZ : L(X,Y )→ L(X ⊗A Z, Y ⊗A Z),

ψ ≡ ⊗idZ : L(X)→ L(X ⊗A Z).

The exact analogue of [10, Equation 4.6] shows that the mapping Ψ is well
defined and contractive. Since

Ψ(t1)
∗Ψ(t2) = ψ(t∗1t2), for all t1, t2 ∈ L(X,Y ),

and ψ is isometric [10, Proposition 4.7], we obtain that Ψ is also isometric.
Finally, let (si) be a right approximate unit for K(X,Y ) inside K(X). Then
by the previous, k ⊗ idZ = limi(k ⊗ idZ) · ψ(si). However, [10, Proposition
4.7] shows that ψ(si) ∈ K(X ⊗A Z) and the conclusion follows by noting
that (k ⊗ idZ) · K(X ⊗A Z) ⊆ K(X ⊗A Z, Y ⊗A Z).

Example 2.8. When a Hilbert A-module X is considered as the K(X)-A-
correspondence, then X ⊗A X∗ ≈ K(X) as C∗-correspondences over K(X),
via the mapping u1 : ξ ⊗ ζ∗ 7→ Θξ,ζ , and X∗ ⊗K(X) X ≈ 〈X,X〉X , as C∗-
correspondences over A, via the mapping u2 : ξ∗ ⊗ ζ 7→ 〈ξ, ζ〉 . In particular
X∗ ⊗K(X) X ≈ A, when X is full.

Definition 2.9. A Hilbert A-B-bimodule is a C∗-correspondence AXB to-
gether with a left inner product [·, ·]X : X ×X → A, which satisfies

[ξ, η]X · ζ = ξ · 〈η, ζ〉X , (ξ, η, ζ ∈ X).

An A-B-imprimitivity bimodule or equivalence bimodule is an A-B- bi-
module M which is simultaneously a full left and a full right Hilbert A-
module, i.e., [M,M ]M = A and 〈M,M〉M = B.

An imprimitivity bimodule AMB is automatically non-degenerate and reg-
ular because A 'φM K(M). It is immediate that M is an imprimitivity
bimodule if and only if M∗ is a B-A-imprimitivity bimodule and Example
2.8 induces the following.

Lemma 2.10. If M is an A-B-imprimitivity bimodule, then M⊗BM∗ ≈ A
and M∗⊗AM ≈ B, where A and B are the trivial C∗-correspondences over
themselves.

There is a number of ways of considering a direct sum of Hilbert mod-
ules and a direct sum of C∗-correspondences; these constructions are sub-
correspondences of the matrix C∗-correspondence. Given AEA, ARB, BSA

and BFB, the matrix C∗-correspondence X =

[
E R
S F

]
over A ⊕ B is the
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Hilbert (A ⊕ B)-module of the linear space of the “matrices”

[
e r
s f

]
,

e ∈ E, r ∈ R, s ∈ S, f ∈ F , with[
e r
s f

]
· (a, b) :=

[
ea rb
sa fb

]
,〈[

e1 r1
s1 f1

]
,

[
e2 r2
s2 f2

]〉
X

:=
(
〈e1, e2〉E + 〈s1, s2〉S , 〈r1, r2〉R + 〈f1, f2〉F

)
,

and the ∗-homomorphism φ : A⊕B → L
([

E R
S F

])
is defined by

φ(a, b)

[
e r
s f

]
:=

[
φE(a)e φR(a)r
φS(b)s φF (b)f

]
.

The E,R, S and F imbed naturally as subcorrespondences in

[
E R
S F

]
,

since the latter is exactly the exterior direct sum C∗-correspondence of the

two interior direct sum C∗-correspondences

[
E
S

]
and

[
R
F

]
.

The following Lemma explains the use of the terminology “matrix C∗-
correspondence”, as tensoring is really “matrix multiplication”.

Lemma 2.11. Let E,F,R, S be C∗-correspondences as above. Then

[
E R
S F

]
⊗A⊕B

[
E R
S F

]
≈


[
E ⊗A E
R⊗B S

] [
E ⊗A R
R⊗B F

]
[
S ⊗A E
F ⊗B S

] [
S ⊗A R
F ⊗B F

]
 .

Proof. Note that all entries in the second matrix make sense. It is a matter
of routine calculations to show that the mapping

[
e1 r1
s1 f1

]
⊗
[
e2 r2
s2 f2

]
7→


[
e1 ⊗ e2
r1 ⊗ s2

] [
e1 ⊗ r2
r1 ⊗ f2

]
[
s1 ⊗ e2
f1 ⊗ s2

] [
s1 ⊗ r2
f1 ⊗ f2

]
 .

defines the unitary element that gives the equivalence.

It will be convenient to omit the zero entries, when possible. For example,

we write K(E,S) instead of K
([

E 0
0 0

]
,

[
0 0
S 0

])
.

A (Toeplitz ) representation of AXA into a C∗-algebra B, is a pair (π, t),
where π : A → B is a ∗-homomorphism and t : X → B is a linear map,
such that π(a)t(ξ) = t(φX(a)(ξ)) and t(ξ)∗t(η) = π(〈ξ, η〉X), for a ∈ A and
ξ, η ∈ X. An application of the C∗-identity shows that t(ξ)π(a) = t(ξa) is
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also valid. A representation (π, t) is said to be injective if π is injective; in
that case t is an isometry.

The C∗-algebra generated by a representation (π, t) equals the closed lin-
ear span of tn(ξ̄)tm(η̄)∗, where for simplicity ξ̄ ≡ ξ1 ⊗ · · · ⊗ ξn ∈ X⊗n

and tn(ξ̄) ≡ t(ξ1) . . . t(ξn). For any representation (π, t) there exists a ∗-
homomorphism ψt : K(X)→ B, such that ψt(Θ

X
ξ,η) = t(ξ)t(η)∗.

Let J be an ideal in φ−1X (K(X)); we say that a representation (π, t) is
J-coisometric if ψt(φX(a)) = π(a), for any a ∈ J . Following [7], the JX -
coisometric representations (π, t), for

JX = kerφ⊥X ∩ φ−1X (K(X)),

are called covariant representations.
The Toeplitz-Cuntz-Pimsner algebra TX is the universal C∗-algebra for

“all” representations of X, and the Cuntz-Pimsner algebra OX is the univer-
sal C∗-algebra for “all” covariant representations of X. The tensor algebra
T +
X is the norm-closed algebra generated by the universal copy of A and X

in TX .
If X is an A-B-correspondence, then we may identify X with the (A⊕B)-

correspondence

[
0 X
0 0

]
and thus define the Toeplitz-Cuntz-Pimsner, the

Cuntz-Pimsner and the tensor algebra of X as the corresponding algebras

of the (A⊕B)-correspondence

[
0 X
0 0

]
.

If X is a C∗-correspondence, then X∗ may not be a C∗-correspondence
(in the usual right-side sense) but it can be described as follows: if (πu, tu)
is the universal representation of AXA, then X∗ is the closed linear span of
t(ξ)∗, ξ ∈ X with the left multiplication and inner product inherited by the
correspondence C∗(πu, tu). Nevertheless, X∗ is an imprimitivity bimodule,
whenever X is.

Example 2.12. If XG is the C∗-correspondence coming from a graph G,
then XG is an imprimitivity bimodule if and only if G is either a cycle or
a double-infinite path. In that case, X∗G is the correspondence coming from
the graph having the same edges as G but its arrows reversed.

If α : A→ B is a ∗-homomorphism, then the induced correspondence Bα
is an imprimitivity bimodule if and only if α is a ∗-isomorphism. In that
case, B∗α = Aα−1 .

3. Dilations of C∗-correspondences

For C∗-correspondences AXA and BYB we write X . Y when X is uni-
tarily equivalent to a subcorrespondence of Y . In other words there is a
∗-injective representation π : A → B, a π(A)-π(A)- subcorrespondence Y0
of Y and a unitary u ∈ L(X,Y0) such that u : X → Y0, where X is (now)
considered a C∗-correspondence over π(A).
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Here we do not impose u to be an isometry in L(X,Y ), i.e., that u has a
complemented range in Y [10, Theorem 3.2]. What we ask is that u is an
isometric map and X ≈(π,u) Y0 ⊆ Y , in terms of the representation theory
of C∗-correspondences.

Definition 3.1. A C∗-correspondence BYB is said to be a dilation of the
correspondence AXA, if AXA . BYB and the associated Cuntz-Pimsner
algebras OX and OY are ∗-isomorphic.

Given an injective C∗-correspondence X there is a natural way to pass to
an injective Hilbert bimodule X∞, such that X∞ is a dilation of X. This
construction was first introduced by Pimsner in [16]. In [6, Appendix A]
we revisited this construction by using direct limits, as follows.

Define the isometric mapping τ : X → L(X,X⊗2), such that τξ(η) = ξ⊗η,
and consider the direct limits

X
τ−→ L(X,X⊗2)

⊗idX−→ . . . −→ lim−→(L(X⊗n, X⊗n+1),⊗idX) =: Y

A
φX−→ L(X)

⊗idX−→ L(X⊗2)
⊗idX−→ . . . −→ lim−→(L(X⊗n),⊗idX) =: B

If r ∈ L(X⊗n), s ∈ L(X⊗n, X⊗n+1) and [r], [s] are their equivalence classes
in B and Y respectively, then we define [s] · [r] := [sr]. From this, it is easy
to define a right B-action on Y . Similarly, we may define a B-valued right
inner product on Y by setting〈

[s′], [s]
〉
Y
≡ [(s′)∗s] ∈ B.

for s, s′ ∈ L(X⊗n, X⊗n+1), n ∈ N, and then extending to Y × Y . Finally,
we define a ∗-homomorphism φY : B → L(Y ) by setting

φY ([r])([s]) ≡ [rs], r ∈ L(X⊗n), s ∈ L(X⊗n−1, X⊗n), n ≥ 0,

and extending to all of B by continuity. We therefore have a left B-action
on Y and thus Y becomes a C∗-correspondence over B.

Let X∞ be the Banach subalgebra of Y = lim−→(L(X⊗n, X⊗n+1), σn) gen-

erated by the copies of K(X⊗n, X⊗n+1), for n ∈ Z+ and A∞ be the C∗-
subalgebra of B = lim−→(L(X⊗n), ρn) that is generated by the copies of

K(X⊗n), for n ∈ Z+. Then X∞ is an A∞-subcorrespondence of Y , that
contains AXA. In particular, when φX(A) ⊆ K(X) then τ(X) ⊆ K(X,X⊗2)
and Lemma 2.7 implies that

X∞ = lim−→(K(X⊗n, X⊗n+1), σn) and A∞ = lim−→(K(X⊗n), ρn).

Theorem 3.2. [16, Theorem 2.5], [6, Theorem 6.6] Let X be an injective
C∗-correspondence and let X∞ be the A∞-correspondence constructed above.
Then X∞ is an essential Hilbert bimodule and the Cuntz-Pimsner algebras
OX∞ and OX coincide.

In the sequel, the A∞-correspondence X∞ appearing in the Theorem
above will be called the Pimsner dilation of X.
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Example 3.3. Let (A,α) denote a dynamical system where α is a unital
∗-injective endomorphism of A. We can define the direct limit dynamical
system (A∞, α∞) by

A
α //

α

��

A
α //

α

��

A
α //

α

��

· · · // A∞

α∞
��

A
α // A

α // A
α // · · · // A∞

The limit map α∞ is an automorphism of A∞ and extends α (note that A
imbeds in A∞ since α is injective). Then the A∞-A∞-correspondence Xα∞ ,
is the Pimsner dilation of Xα.

When X is non-degenerate and full, then its Pimsner dilation X∞ is also
full, hence an imprimitivity bimodule. Indeed, it suffices to prove that

K(X⊗n+1, X⊗n)K(X⊗n, X⊗n+1) = K(X⊗n),

for all n ≥ 1. By Lemma 2.1, it suffices to show that
〈
X⊗n+1, X⊗n+1

〉
provides a c.a.i. for X⊗n. For n = 2,〈

X⊗2, X⊗2
〉

= 〈X,φX(〈X,X〉)X〉 = 〈X,φX(A)X〉 = 〈X,X〉 = A,

and an inductive argument completes the claim.
The construction of the Pimsner dilation applies to more general settings.

Indeed, let X,Y be Hilbert A-modules and let AZB be a regular correspon-
dence. By Lemma 2.7, one can form the following directed systems

K(X,Y )
⊗idZ−→ K(X ⊗ Z, Y ⊗ Z)

⊗idZ−→ . . . −→ lim−→(K(X ⊗ Z⊗n, Y ⊗ Z⊗n),⊗idZ)

K(X)
⊗idZ−→ K(X ⊗ Z)

⊗idZ−→ . . . −→ lim−→(K(X ⊗ Z⊗n),⊗idZ)

K(Y )
⊗idZ−→ K(Y ⊗ Z)

⊗idZ−→ . . . −→ lim−→(K(Y ⊗ Z⊗n),⊗idZ).

For simplicity, we will write (K(X,Y ), idZ)∞ for the direct limit

lim−→
(
K(X ⊗ Z⊗n, Y ⊗ Z⊗n), idZ

)
.

By imitating the proofs in [6, Appendix A] and Lemma 2.7, we see that
(K(X,Y ), idZ)∞ is a K(Y )∞-K(X)∞-correspondence, which will be called
the dilation of K(X,Y ) by Z, or more simply the Z-dilation of K(X,Y ).
If, in addition, 〈X ⊗ Z⊗n, X ⊗ Z⊗n〉 provides a right c.a.i. for Y ⊗ Z⊗n,
for every n ≥ 0, then by Example 2.4 and Lemma 2.1 (K(X,Y ), idZ)∞ is a
regular C∗-correspondence. In the case of a regular C∗-correspondence AXA,
the Pimsner dilation X∞ is simply the X-dilation of K(X,X⊗2), which is
always regular.

Proposition 3.4. Let X,Y be Hilbert A-modules and Z,W be regular C∗-
correspondences over A. If Z ⊗AW ≈W ⊗A Z, then

(K(X,Y ), idZ)∞ . (K(X ⊗AW,Y ⊗AW ), idZ)∞.
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Proof. We will identify Z ⊗W with W ⊗ Z. Since Z commutes with W
the diagram

K(X,Y )

idK(X,Y )

��

idK(X,Y ) // K(X,Y )

⊗idW

��

⊗idZ // K(X ⊗ Z, Y ⊗ Z)

⊗idW

��

⊗idZ // . . .

K(X,Y )
⊗idW // K(X ⊗W,Y ⊗W )

⊗idZ // K(X ⊗W ⊗ Z, Y ⊗W ⊗ Z)
⊗idZ // . . .

is commutative and defines a linear map

s : (K(X,Y ), idZ)∞ → (K(X ⊗AW,Y ⊗AW ), idZ)∞.

That is, if [k] ∈ (K(X,Y ), idZ)∞, such that k ∈ K(X ⊗Z⊗n, Y ⊗Z⊗n) then

k ⊗ idW ∈ K(X ⊗ Z⊗n ⊗W,Y ⊗ Z⊗n ⊗W ) = K(X ⊗W ⊗ Z⊗n, Y ⊗ Z⊗n),

and we define s[k] = [k⊗ idW ]. Note that s is defined on (K(X), idZ)∞ and
on (K(Y ), idZ)∞ in the analogous way. For example we get the commutative
diagram

K(X)

idK(X)

��

idK(X) // K(X)

⊗idW

��

⊗idZ // K(X ⊗ Z)

⊗idW

��

⊗idZ // . . .

K(X)
⊗idW// K(X ⊗W )

⊗idZ // K(X ⊗W ⊗ Z)
⊗idZ // . . .

It is a matter of routine computations to show that s is a (K(Y ), idZ)∞-
(K(X), idZ)∞-mapping. What is left to show is that s is also a unitary onto
its range.

It suffices to prove this at the n-th level. For k1, k2 ∈ K(X ⊗ Z⊗n, Y ⊗
Z⊗n), then

〈s[k1], s[k2]〉 = 〈[k1 ⊗ idW ], [k2 ⊗ idW ]〉 = [k1 ⊗ idW ]∗[k2 ⊗ idW ]

= [(k∗1 ◦ k2)⊗ idW ] = [(k∗1 ◦ k2)] = 〈[k1], [k2]〉 ,
where we have identified (K(X), idZ)∞ with its image via s.

For the proof of the following Proposition, recall that there is a major
difference between isometric mappings of C∗-correspondences and mappings
of C∗-correspondences that are isometries (of Hilbert modules). However,
when an isometric mapping is also onto then it is a unitary between Hilbert
modules.

Proposition 3.5. Let X,Y,W be Hilbert A-modules and Z be a regular C∗-
correspondence over A. If the ideal 〈X ⊗ Z⊗n, X ⊗ Z⊗n〉 of A provides a
right c.a.i. for Y ⊗ Z⊗n, for all n ≥ 0, then

(K(X,Y ), idZ)∞ ⊗(K(X),idZ)∞ (K(W,X), idZ)∞ ≈ (K(W,Y ), idZ)∞.

Proof. In order to “visualize” the proof, imagine that we multiply “verti-
cally” and term by term the correspondences

K(X,Y )
⊗idZ−→ K(X ⊗A Z, Y ⊗A Z)

⊗idZ−→ . . . −→ (K(X,Y ), idZ)∞

K(W,X)
⊗idZ−→ K(W ⊗A Z,X ⊗A Z)

⊗idZ−→ . . . −→ (K(W,X), idZ)∞
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in the order K(X ⊗A Z⊗n, Y ⊗A Z⊗n) · K(W ⊗A Z⊗n, X ⊗A Z⊗n).
We consider K(X⊗Z⊗n), K(Y ⊗Z⊗n) and K(W⊗Z⊗n) as C∗-subalgebras

of (K(X), idZ)∞, (K(Y ), idZ)∞ and (K(W ), idZ)∞, respectively, for every
n ∈ Z+. The proof is divided into two parts.

For the first part of the proof note that for every n ∈ Z+, the Banach
space K(X ⊗A Z⊗n, Y ⊗A Z⊗n) (resp. K(W ⊗A Z⊗n, X ⊗A Z⊗n)) is an
injective K(Y ⊗AZ⊗n)-K(X⊗AZ⊗n)-correspondence (resp. a K(X⊗AZ⊗n)-
K(W ⊗A Z⊗n)-correspondence) in the obvious way. Set

An := K(X ⊗A Z
⊗n, Y ⊗A Z

⊗n)⊗K(X⊗AZ⊗n) K(W ⊗A Z
⊗n, X ⊗A Z

⊗n)

For every n ∈ Z+, the mapping

ρn : An → An+1 : k ⊗ t 7→ (k ⊗ idZ)⊗ (t⊗ idZ),

is isometric on sums of elementary tensors and therefore extends to the clo-
sures. Thus An . An+1, and we can form the direct limit C∗-correspondence

A0
ρ0−→ A1

ρ1−→ A2
ρ2−→ . . . −→ lim−→(An, ρn),

which is a (K(Y ), idZ)∞-(K(W ), idZ)∞-correspondence. Now the mappings

φn : An → (K(X,Y ), idZ)∞ ⊗(K(X),idZ)∞ (K(W,X), idZ)∞ : k ⊗ t 7→ [k]⊗ [t]

are compatible with the directed system and define a C∗-correspondence
mapping

φ : lim−→(An, ρn)→ (K(X,Y ), idZ)∞ ⊗(K(X),idZ)∞ (K(W,X), idZ)∞,

which is isometric since every φn+1 is. Thus

lim−→(An, ρn) . (K(X,Y ), idZ)∞ ⊗(K(X),idZ)∞ (K(W,X), idZ)∞,

via φ. However (K(X,Y ), idZ)∞ ⊗(K(X),idZ)∞ (K(W,X), idZ)∞ is spanned
by the elements [k]⊗ [t] for k ⊗ t ∈ An. Therefore φ is onto and so

lim−→(An, ρn) ≈ (K(X,Y ), idZ)∞ ⊗(K(X),idZ)∞ (K(W,X), idZ)∞

For the second part of the proof we construct an isometric map from
lim−→(An, ρn) onto (K(W,Y ), idZ)∞. Start by defining the maps

un : An → (K(W,Y ), idZ)∞ : k ⊗ t 7→ [kt].

These are well defined since kt ∈ K(W ⊗ Z⊗n, Y ⊗ Z⊗n) and

un((k · a)⊗ t) = [(k · a)t] = [k(a · t)] = un(k ⊗ (a · t)),

due to the associativity of the multiplication. Also, the maps un are iso-
metric and compatible with the direct sequence. Therefore the family {un}
defines an isometric map u from the direct limit into (K(W,Y ), idZ)∞, which
extends to a mapping of C∗-correspondences. Thus An . (K(W,Y ), idZ)∞
and so lim−→(An, ρn) . (K(W,Y ), idZ)∞. Finally note that the assumption

that the ideals 〈X ⊗ Z⊗n, X ⊗ Z⊗n〉 provide a c.a.i. for each Y ⊗Z⊗n, com-
bined with Lemma 2.1, implies that the isometric maps un are onto and
hence u is onto.
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4. Relations associated with C∗-correspondences

In [15] Muhly and Solel introduced the notion of Morita equivalence of
C∗-correspondences. This concept generalizes the notion of outer conjugacy
for C∗-dynamical systems [15, Proposition 2.4].

Definition 4.1. The C∗-correspondences AEA and BFB are called strong
Morita equivalent if there is an imprimitivity bimodule AMB such that E⊗A
M ≈M ⊗B F . In that case we write E

SME∼ F .

Muhly and Solel [15] examined this relation under the assumption that
the C∗-correspondences are both non-degenerate and injective. Neverthe-

less, non-degeneracy is automatically implied. Indeed, if E
SME∼ F via M ,

then

E ≈ E ⊗A A ≈ E ⊗AM ⊗B M∗ ≈M ⊗B F ⊗B M∗ ≈M ⊗B (F ⊗B M∗),

and Lemma 2.6 implies that E is non-degenerate. A symmetrical argument
applies for F .

Remark 4.2. In contrast to non-degeneracy, injectivity is not automatically

implied by
SME∼ . For example, pick your favorite non-degenerate and non-

injective C∗-correspondence AEA and let E = F . Then E
SME∼ E via the

trivial imprimitivity bimodule AAA, but both E and F are not injective.

In [13] Muhly, Pask and Tomforde introduced the notion of elementary
strong shift equivalence between C∗-correspondences that generalizes the
corresponding notion for graphs.

Definition 4.3. Let AEA and BFB be C∗-correspondences. Then E and F

will be called elementary strong shift equivalent (symb. E
s∼ F ) if there are

C∗-correspondences ARB and BSA such that E ≈ R⊗B S and F ≈ S ⊗A R
as C∗-correspondences.

Elementary strong shift equivalence is obviously symmetric. Moreover it

is reflexive for non-degenerate C∗-correspondences; indeed, E
s∼ E via E and

A. But, it may not be transitive as [19, Example 2] shows1. Nevertheless,
we have the following proposition.

Proposition 4.4. Let AEA,BFB and CGC be C∗-correspondences. Assume

that E
s∼ F via R,S and F

s∼ G via T,Z. If either Z or R is an imprimitivity

bimodule, then E
s∼ G.

Proof. For E,F and G as above we have that

E ≈ R⊗B S , F ≈ S ⊗A R ,F ≈ T ⊗C Z ,G ≈ Z ⊗B T.

1 Note that [19, Example 2] shows that
s∼ is not transitive when restricted to the class

of non-negative integral matrices, which doesn’t mean that
s∼ is not transitive for the

whole class of C*-correspondences.
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Assume that Z is an imprimitivity bimodule (a symmetric argument can be
used if R is an imprimitivity bimodule). Then by Lemma 2.10 Z∗⊗C Z ≈ B
and Z ⊗B Z∗ ≈ C. Hence,

(Z ⊗B S)⊗A (R⊗B Z∗) ≈ Z ⊗B (S ⊗A R)⊗B Z∗ ≈ Z ⊗B F ⊗B Z∗

≈ Z ⊗B T ⊗C Z ⊗B Z∗ ≈ Z ⊗B T ⊗C C
≈ Z ⊗B (T · C) = Z ⊗B T ≈ G.

On the other hand,

(R⊗B Z∗)⊗C (Z ⊗B S) ≈ R⊗B B ⊗B S = (R ·B)⊗B S = R⊗B S ≈ E,

hence E
s∼ G, which completes the proof.

Following Williams [19] we denote by
SSE∼ the transitive closure of the

relation
s∼. That is, E

SSE∼ F if there are n C∗-correspondences Ti, i = 0, . . . , n

such that T0 = E, Tn = F and Ti
s∼ Ti+1.

There is also another relation between C∗-correspondences inspired by
Williams’ work [19].

Definition 4.5. Let AEA and BFB be C∗-correspondences. Then E and F

will be called shift equivalent (symb. E
SE∼ F ) if there are C∗-correspondences

ARB and BSA and a natural number m so that

(i) E⊗m ≈ R⊗A S, F⊗m ≈ S ⊗B R,
(ii) S ⊗A E ≈ F ⊗ S, E ⊗A R ≈ R⊗B F.

The number m is called the lag of the equivalence.

If E
SE∼ F with lag m, then by replacing S with S ⊗A E⊗k we obtain

another shift equivalence of lag m+k, i.e., there is a shift equivalence of lag
L for every L ≥ m.

In contrast to elementary strong shift equivalence, shift equivalence is an
equivalence relation for the class of arbitrary C∗-correspondences.

Proposition 4.6. Shift equivalence is an equivalence relation.

Proof. Note that E
SE∼ E with lag 2 and R = S = E, and it is clear that

shift equivalence is symmetric. If E
SE∼ F with lag m via R,S and F

SE∼ G

with lag n via V,U , then E
SE∼ G with lag mn+m via

R⊗ V ⊗ U ⊗ · · · ⊗ V︸ ︷︷ ︸
V is repeated m times

and U ⊗ S,

which shows that
SE∼ is transitive.

Theorem 4.7. Let AEA and BFB be C∗-correspondences. Then

E
SME∼ F ⇒ E

s∼ F ⇒ E
SSE∼ F ⇒ E

SE∼ F.
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Proof. Recall that when E
SME∼ F then E,F are non-degenerate. Let R ≡

E ⊗M and S ≡M∗. By Lemma 2.11,

R⊗B S ≈ E ⊗AM ⊗B M∗ ≈ E ⊗A A ≈ E,

and

S ⊗A R ≈M∗ ⊗A E ⊗AM ≈M∗ ⊗AM ⊗B F ≈ B ⊗B F ≈ F.

Hence
SME∼ implies

s∼. Trivially
s∼ implies

SSE∼ . To complete the proof assume

that E
SSE∼ F , i.e., there are Ti, i = 0, . . . , n, such that Ti

s∼ Ti+1, where

T0 = E and Tn = F . Then one can directly verify that E
SE∼ F with lag n,

via R = R1 ⊗ · · · ⊗Rn and S = Sn ⊗ · · · ⊗ S1.

Muhly, Pask and Tomforde [13] provide a number of examples to show
that strong Morita equivalence differs from elementary strong shift equiva-
lence. In Theorem 4.7 above we prove that in fact it is stronger. Neverthe-
less, the following result shows that under certain circumstances, the two
notions coincide.

Proposition 4.8. Let AEA and BFB be C∗-correspondences and assume

that E
s∼ F via R,S. If either R or S is an imprimitivity bimodule, then

E
SME∼ F .

Proof. When E
s∼ F via R,S then E ⊗A R ≈ R ⊗B S ⊗A R ≈ R ⊗B F

(analogously S ⊗B E ≈ F ⊗B S).

5. Passing to Pimsner Dilations

In this section we show that if ∼ is any of the four relations defined
in the previous section, then E ∼ F implies E∞ ∼ F∞, under the standing
hypothesis that E and F are regular C∗-correspondences. Our study is based
on the concept of a bipartite inflation, an insightful construct originating in
the work of Muhly, Pask and Tomforde [13].

Assume that AEA and BFB are C∗-correspondences which are elementary

strong shift equivalent via ARB and BSA. LetX =

[
0 R
S 0

]
be the bipartite

inflation of S by R. By Lemma 2.11, we obtain2

X⊗2 =

[
R⊗B S 0

0 S ⊗A R

]
=

[
E 0
0 F

]
.

By induction and Lemma 2.11,

X⊗2k =

[
E⊗k 0

0 F⊗k

]
, X⊗2k+1 =

[
0 E⊗k ⊗A R

F⊗k ⊗B S 0

]
,

2 In order to ease notation, unitary equivalence of C∗-correspondences will be simply
denoted as equality in this section.
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for all k ∈ Z+. In particular, if E and F are regular (resp. non-degenerate)
then R and S, and consequently X and X⊗2, are regular (resp. non-
degenerate) as shown in [13].

Proposition 5.1. Let E
s∼ F via R,S. Then, for k ∈ Z+,

(1)
〈
E⊗k ⊗R,E⊗k ⊗R

〉
provides a right c.a.i. for F⊗k+1,

(2)
〈
F⊗k ⊗ S, F⊗k ⊗ S

〉
provides a right c.a.i. for E⊗k+1.

Proof. Let X be the bipartite inflation of S by R and let k ∈ Z+. By
Lemma 2.5 we have that

〈
X⊗2k+1, X⊗2k+1

〉
provides a right c.a.i. for

X⊗2k+2 = X ⊗X⊗2k+1. However,

X⊗2k+2 =

[
E⊗k+1 0

0 F⊗k+1

]
and 〈

X⊗2k+1, X⊗2k+1
〉

=

=

〈[
0 E⊗k ⊗A R

F⊗k ⊗B S 0

]
,

[
0 E⊗k ⊗A R

F⊗k ⊗B S 0

]〉
=
〈
F⊗k ⊗ S, F⊗k ⊗ S

〉
⊕
〈
E⊗k ⊗R,E⊗k ⊗R

〉
.

This completes the proof.

We will make use of the dilation X∞ of the bipartite inflation of S by R.
Let (A⊕B)∞ be the direct limit C∗-algebra of the following directed system[

A 0
0 B

]
ρ0−→ K

([
0 R
S 0

])
ρ1−→ K

([
E 0
0 F

])
ρ2−→

ρ2−→ K
([

0 E ⊗R
F ⊗ S 0

])
ρ3−→ K

([
E⊗2 0

0 F⊗2

])
ρ4−→ · · · ,

where

ρ0 = φX : A = L(A) −→ L(X),

ρn = ⊗idX : L(X⊗n) −→ L(X⊗n+1) : r 7−→ r ⊗ idX , n ≥ 1.

Note that, since X and X⊗2 are regular, (A ⊕ B)∞ is ∗-isomorphic to the
direct limit C∗-algebra of the following directed system

K
([

A 0
0 B

])
ρ1◦ρ0−→ K

([
E 0
0 F

])
ρ3◦ρ2−→ K

([
E⊗2 0

0 F⊗2

])
ρ5◦ρ4−→ · · · .

Since E and F are orthogonal subcorrespondences of X⊗2 we get that (A⊕
B)∞ = A∞ ⊕ B∞ and we can write A∞ and B∞ via the following directed
systems

A∞ : K
([

A 0
0 0

])
ρ1◦ρ0−→ K

([
E 0
0 0

])
ρ3◦ρ2−→ K

([
E⊗2 0

0 0

])
ρ5◦ρ4−→ · · · ,

B∞ : K
([

0 0
0 B

])
ρ1◦ρ0−→ K

([
0 0
0 F

])
ρ3◦ρ2−→ K

([
0 0
0 F⊗2

])
ρ5◦ρ4−→ · · · ,
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The C∗-correspondence X∞ is defined by the directed system[
0 R
S 0

]
τ−→ K

([
0 R
S 0

]
,

[
E 0
0 F

])
σ1−→

σ1−→ K
([

E 0
0 F

]
,

[
0 E ⊗R

F ⊗ S 0

])
σ2−→

σ2−→ K
([

0 E ⊗R
F ⊗ S 0

]
,

[
E⊗2 0

0 F⊗2

])
σ3−→ · · ·

where τξ(η) = ξ ⊗ η, and

σn = ⊗idX : L(X⊗n, X⊗n+1)→ L(X⊗n+1, X⊗n+2) : s 7→ s⊗ idX , n ≥ 1,

Let R∞ be the subcorrespondence of X∞ that is generated by the copies of

R ,K
([

0 0
0 F⊗k

]
,

[
0 E⊗k ⊗R
0 0

])
,

and

K
([

0 0
S 0

]
,

[
E 0
0 0

])
, K
([

0 0
F⊗k ⊗ S 0

]
,

[
E⊗k+1 0

0 0

])
,

for k ≥ 1. Because of Lemma 2.7, R∞ can be written alternatively as a
direct limit in the following two forms

(i) R
τ◦(⊗idX)−→ K (F,E ⊗R)

⊗idX⊗2−→ K
(
F⊗2, E⊗2 ⊗R

) ⊗idX⊗2−→ · · · ,

(ii) R
τ−→ K (S,E)

⊗idX⊗2−→ K
(
F ⊗ S,E⊗2

) ⊗idX⊗2−→ · · · ,
where we omit the zero entries for convenience. The first form of R∞ shows
that it is a Hilbert B∞-module, whereas the second form shows that the left
multiplication by elements of A∞ defines a left action of A∞ on R∞. Hence
R∞ is a A∞-B∞-correspondence.

In a dual way we define S∞ as the subcorrespondence of X∞ generated
by the copies of

S ,K
([

E⊗k 0
0 0

]
,

[
0 0
0 F⊗k ⊗ S

])
and

K
([

0 R
0 0

]
,

[
0 0
0 F

])
, K
([

0 E⊗k ⊗R
0 0

]
,

[
0 0
0 F⊗k+1

])
,

for k ≥ 1. By using Lemma 2.7 and writing S∞ as a direct limit in the
following two forms

(i) S
τ◦(⊗idX)−→ K (E,F ⊗ S)

⊗idX⊗2−→ K
(
E⊗2, F⊗2 ⊗ S

) ⊗idX⊗2−→ · · · ,

(ii) S
τ−→ K (R,F )

⊗idX⊗2−→ K
(
E ⊗R,F⊗2

) ⊗idX⊗2−→ · · · ,
we get that S∞ becomes a B∞-A∞-correspondence.

We must remark here on our use of the subscript ∞. For the correspon-
dences E,F we denote by E∞, F∞ their Pimsner dilations, whereas for R,S
we denote by R∞, S∞ the subcorrespondences in the Pimsner dilation X∞
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of the (injective) bipartite inflation X of S by R. Nevertheless, when the
correspondences are non-degenerate, R∞ is the X-dilation (K(B,R), idX)∞
and S∞ is the X-dilation (K(A,S), idX)∞.

Remark 5.2. Note that R∞ and S∞ are both full left Hilbert bimodules
(thus injective). In order to prove this for, say S∞, it is enough (by its
second form) to show that

K(E⊗n ⊗R,F⊗n+1)K(E⊗n ⊗R,F⊗n+1)∗ = K(F⊗n+1, F⊗n+1)

for all n ≥ 1. By Lemma 2.1 it suffices to show that 〈E⊗n ⊗R,E⊗n ⊗R〉
contains a right c.a.i. for F⊗n+1, for all n ≥ 1, a fact established in Propo-
sition 5.1. A symmetrical argument can be used for R∞.

Moreover, if S is an imprimitivity bimodule, then S∞ is also right full,
hence an imprimitivity bimodule as well. Indeed, by the first form of S∞ it
suffices to show that

K(E⊗n, F⊗n ⊗ S)∗K(E⊗n, F⊗n ⊗ S) = K(E⊗n, E⊗n),

for all n. By Lemma 2.1, it is enough to show that 〈F⊗n ⊗ S, F⊗n ⊗ S〉
provides a right c.a.i. for E⊗n. Note that F ⊗S = S⊗E, hence F⊗n⊗S =
S ⊗ E⊗n, thus E⊗n is non-degenerate. Therefore〈

F⊗n ⊗ S, F⊗n ⊗ S
〉

=
〈
S ⊗ E⊗n, S ⊗ E⊗n

〉
=
〈
E⊗n, φE⊗n(〈S, S〉)E⊗n

〉
=
〈
E⊗n, φE⊗n(A)E⊗n

〉
=
〈
E⊗n, E⊗n

〉
,

and the latter ideal provides a right c.a.i. for E⊗n.

Theorem 5.3. Let AEA,BFB be regular C∗-correspondences. If E
s∼ F ,

then E∞
s∼ F∞.

Proof. Assume that E,F are elementary strong shift equivalent via R,S.
It suffices to prove that the interior tensor product S∞⊗A∞R∞ is (unitarily
equivalent to) F∞. Then, by duality, R∞ ⊗B∞ S∞ is (unitarily equivalent

to) E∞, hence E∞
s∼ F∞. Towards this end we view S∞ as the X⊗2-dilation

of K(E ⊗R,F⊗2), i.e.,

K
(
E ⊗R,F⊗2

) ⊗idX⊗2−→ K
(
E⊗2 ⊗R,F⊗3

) ⊗idX⊗2−→ · · · ,

and R∞ as the X⊗2-dilation of K(F,E ⊗R), i.e.,

K (F,E ⊗R)
⊗idX⊗2−→ K

(
F⊗2, E⊗2 ⊗R

) ⊗idX⊗2−→ · · · .

Note that A∞ can be written as (K(E ⊗ R), idX⊗2)∞. By Proposition 5.1,
the ideal

〈
E⊗k ⊗R,E⊗k ⊗R

〉
provides a right c.a.i. for F⊗k+1, for every

k ≥ 0. Therefore,
〈
E ⊗R⊗ (X⊗2)⊗n, E ⊗R⊗ (X⊗2)⊗n

〉
provides a right

c.a.i. for F⊗2 ⊗ (X⊗2)⊗n, for every n ≥ 0. Thus, Proposition 3.5 applies,
and we obtain that S∞ ⊗A∞ R∞ is (K(F, F⊗2), idX⊗2)∞ = F∞.
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Remark 5.4. In the above proof we have actually shown that

(R⊗B S)∞ = E∞ = R∞ ⊗B∞ S∞, and

(S ⊗A R)∞ = F∞ = S∞ ⊗A∞ R∞.

An immediate consequence of Theorem 5.3 is the following.

Theorem 5.5. Let AEA,BFB be regular C∗-correspondences. If E
SSE∼ F ,

then E∞
SSE∼ F∞.

Proof. Assume that E
SSE∼ F via a sequence of Ti, for i = 0, . . . , n. Then

Ti
s∼ Ti+1, for i = 0, . . . , n. By Theorem 5.3, we get that (Ti)∞

s∼ (Ti+1)∞

for i = 0, . . . , n. Since T0 = E and Tn = F , then E∞
SSE∼ F∞.

We use Theorem 5.3 to understand the passage to dilations for the strong
Morita equivalence.

Theorem 5.6. Let AEA,BFB be regular C∗-correspondences. If E
SME∼ F ,

then E∞
SME∼ F∞.

Proof. Assume that E
SME∼ F ; then E and F are non-degenerate and E

s∼
F via E ⊗A M∗ and M (see Theorem 4.7). Therefore, by Theorem 5.3,

E∞
s∼ F∞ via (E ⊗M∗)∞ and M∞. Since M is assumed an imprimitivity

bimodule, then M∞ is also an imprimitivity bimodule by Remark 5.2. By

Proposition 4.8 we conclude that E∞
SME∼ F∞.

Remark 5.7. An alternative and more direct way of proving Theorem 5.6

would be to show that E∞
SME∼ F∞ via the imprimitivity bimodule X =

A∞⊗AX⊗BB∞. It may take no effort to show that E⊗AA∞ = A∞⊗AE,
as sets, and conclude that E∞ ⊗A∞ X = X ⊗B∞ F∞. However there is a
problem with the definition of X. It is easy to define a left and right action
of A on A∞ (simply by multiplication), but in order to get the tensor product
A∞ ⊗A X (and so X) an inner product of A∞ taking values in A is needed.
The existence of such an inner product is not obvious to us.

We have arrived to the last relation to be examined when passing to
Pimsner dilations. Our next Theorem is one of the central results in this
paper and will enable us to obtain new information even for concrete classes
of operator algebras, i.e., Cuntz-Krieger C∗-algebras.

Theorem 5.8. Let AEA,BFB be regular C∗-correspondences. If E
SE∼ F

with lag m, then E∞
SE∼ F∞ with lag m.

Proof. Let R,S such that

(i) E⊗m = R⊗A S, F⊗m = S ⊗A R,
(ii) S ⊗A E = F ⊗B S, E ⊗A R = R⊗B F.
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Thus E⊗m
s∼ F⊗m. Since E is regular, we have

E∞ = (K(E,E⊗2), idE)∞ = (K(E⊗2, E⊗3), idE)∞.

Proposition 3.5 implies that

(E∞)⊗2 = (K(E⊗2, E⊗3), idE)∞ ⊗A∞ (K(E,E⊗2), idE)∞

= (K(E,E⊗3), idE)∞ = (E⊗2)∞.

A repetitive use of this argument shows that (E⊗m)∞ = (E⊗m−1)∞⊗E∞ =
(E∞)⊗m. Thus, by the remark following Theorem 5.3, we obtain

(E∞)⊗m = (E⊗m)∞ = (R⊗B S)∞ = R∞ ⊗B∞ S∞,

and in a similar fashion (F∞)⊗m = S∞ ⊗A∞ R∞.
What remains to be proved, in order to complete the proof, is that

E∞ ⊗A∞ R∞ = R∞ ⊗B∞ F∞.

Since E is regular, we get that E∞ coincides with (K(E⊗m, E⊗m+1), idE)∞ =
(K(E⊗m, E⊗m+1), idX⊗2)∞, so

E∞ = (K(E⊗m, E⊗m+1), idX⊗2)∞ , R∞ = (K(S,E⊗m), idX⊗2)∞,

where X is the bipartite inflation of R and S.
Now E⊗m+mn = E⊗m ⊗ (X⊗2)n, n ≥ 0, and, by Lemma 2.5, the ideal

〈E⊗m+mn, E⊗m+mn〉 =
〈
E⊗m ⊗ (X⊗2)n, E⊗m ⊗ (X⊗2)n

〉
provides a right

c.a.i. for E⊗E⊗m+mn = E⊗1+m+mn = E⊗m+1⊗(X⊗2)n. Hence Proposition
3.5 implies that

E∞ ⊗A∞ R∞ = (K(S,E⊗m+1), idX⊗2)∞.

Similarly, we express

R∞ = (K(F⊗m, E⊗m ⊗R), idX⊗2)∞ , F∞ = (K(F⊗m−1, F⊗m), idX⊗2)∞;

then

R∞ ⊗B∞ F∞ = (K(F⊗m−1, E⊗m ⊗R), idX⊗2)∞,

since F⊗m+mn = F⊗m ⊗ (X⊗2)n and 〈F⊗m+mn, F⊗m+mn〉 provides a right
c.a.i. for R⊗ F⊗m+mn = E⊗m ⊗R⊗ F⊗mn = E⊗m ⊗R⊗ (X⊗2)n.

To prove that E∞ ⊗ R∞ = R∞ ⊗ F∞ we show that each one is unitarily
equivalent to a submodule of the other. First we observe that for U =[

0 E ⊗R
F ⊗ S 0

]
we get

X ⊗ U =

[
0 R
S 0

]
⊗
[

0 E ⊗R
F ⊗ S 0

]
=

[
R⊗ F ⊗ S 0

0 S ⊗ E ⊗R

]
=

[
E ⊗R⊗ S 0

0 F ⊗ S ⊗R

]
= U ⊗X,
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Thus X⊗2 ⊗ U = U ⊗ X⊗2 and, by Proposition 3.4, we have that the
correspondence

R∞ ⊗B∞ F∞ = (K(F⊗m−1, E⊗m ⊗R), idX⊗2)∞

is unitarily equivalent, via some unitary u, to a submodule of

(K(F⊗m−1 ⊗ U,E⊗m ⊗R⊗ U), idX⊗2)∞ =

= (K(F⊗m−1 ⊗ F ⊗ S,E⊗m+1 ⊗R⊗ S), idX⊗2)∞

= (K(S ⊗R⊗ S,E⊗m+1 ⊗R⊗ S), idX⊗2)∞

= (K(S ⊗X⊗2, E⊗m+1 ⊗X⊗2), idX⊗2)∞

= (K(S,E⊗m+1), idX⊗2)∞

= E∞ ⊗R∞.

Also define V =

[
0 E⊗m−1 ⊗R

F⊗m−1 ⊗ S 0

]
and verify that X ⊗ V =

V ⊗X. Thus, again by Proposition 3.4, the correspondence

E∞ ⊗R∞ = (K(S,E⊗m+1), idX⊗2)∞

is unitarily equivalent, via some unitary v, to a submodule of

(K(S ⊗ V,E⊗m+1 ⊗ V ), idX⊗2) =

= (K(F⊗2m−1, E⊗2m ⊗R), idX⊗2)∞

= (K(F⊗m−1 ⊗X⊗2, E⊗m ⊗X⊗2 ⊗R), idX⊗2)∞

= (K(F⊗m−1 ⊗X⊗2, E⊗m ⊗R⊗X⊗2), idX⊗2)∞

= (K(F⊗m−1, E⊗m ⊗R), idX⊗2)∞

= R∞ ⊗ F∞.

It remains to show that uv = id and vu = id. Note that uv maps an element
[q] of any compact shift considered above (either it is in a C∗-algebra, either
it is an element of the module) to [q ⊗ idU⊗V ] = [q ⊗ idX⊗4 ], since

U ⊗ V =

[
0 E ⊗R

F ⊗ S 0

]
⊗
[

0 E⊗m−1 ⊗R
F⊗m−1 ⊗ S 0

]
=

[
E ⊗R⊗ F⊗m−1 ⊗ S 0

0 F ⊗ S ⊗ E⊗m−1 ⊗R

]
=

[
E ⊗ E⊗m−1 ⊗R⊗ S 0

0 F ⊗ F⊗m−1 ⊗ S ⊗R

]
=

[
E⊗m ⊗ E⊗m 0

0 F⊗m ⊗ F⊗m
]

= X⊗4.

However, throughout the proof we have used exclusively X⊗2-dilations and
so [q ⊗ idX⊗4 ] = [q]. Therefore uv = id. In a similar way vu = id, since
V ⊗ U = X⊗4, and the proof is complete.
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As mentioned in the Introduction, we were strongly motivated by [13,
Remark 5.5] and one of our aims was to check whether the alternative way
proposed there to prove [13, Theorem 3.14] could be achieved, i.e., to show

that if E
s∼ F then E∞

SME∼ F∞. There is, though, a delicate point in this ap-
proach. In [13, Remark 5.5] the authors claim that if E is a non-degenerate
and regular C∗-correspondence, then the dilation E∞ as introduced by Pim-
sner [16] is an imprimitivity bimodule. This is true, but only in the context
of [16], because the C∗-correspondences there are always assumed full [16,
Remark 1.2(3)]. This is a consequence of another delicate point in Pim-
sner’s theory, as his version of C∗-algebras, unfortunately denoted by the
same symbols TE and OE , are not what have eventually become the usual
C∗-algebras generated by the images of X and A, but they are only gen-
erated by the image of X; hence there is no reason to make a distinction
between full and non-full correspondences in Pimsner’s theory. Note that
when X is regular one can recover A in Pimsner’s C∗-algebra OE , but this
is not the case for TE .

Of course, if one adds this extra element, then the scheme in [13, Remark
5.5] can be implemented, as we are about to show. Note that the previ-
ous discussion and the next results settles Conjecture 1 appearing in the
Introduction.

Theorem 5.9. Let AEA and BFB be full, non-degenerate and regular C∗-
correspondences. Then the following scheme holds

E
SME∼ F

��

+3 E
s∼ F

��

+3
E

SSE∼ F

��

+3
E

SE∼ F

��

E∞
SME∼ F∞

ks +3 E∞
s∼ F∞

ks +3
E∞

SSE∼ F∞
ks +3

E∞
SE∼ F∞

Proof. E and F are full and non-degenerate, thus E∞ and F∞ are imprim-
itivity bimodules, and Theorem 6.1 (that will follow) applies.

An immediate consequence of Theorem 5.9 and Theorem 3.2 is the fol-
lowing.

Theorem 5.10. Let AEA and BFB be full, non-degenerate and regular C∗-

correspondences. If E
SE∼ F , then the corresponding Cuntz-Pimsner algebras

are strong Morita equivalent.

Proof. Suppose that E
SE∼ F . Then by Theorem 5.9 we have that E∞

SME∼
F∞. Therefore [15, Theorem 3.5] implies that OE∞

SME∼ OF∞ and the
conclusion follows from Theorem 3.2.

In particular we obtain the following result for Cuntz-Krieger C∗-algebras
mentioned in the Introduction.

Corollary 5.11. Let G and G′ be finite graphs with no sinks or sources

and let AG and AG′ be their adjacent matrices. If AG
SE∼ AG′, in the sense of
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Williams, then the Cuntz-Krieger C∗-algebras OG and OG′ are strong Morita
equivalent.

There is also an application to unital injective dynamical systems.

Corollary 5.12. Let (A,α) and (B, β) be unital injective dynamical sys-

tems. If Xα
SE∼ Xβ, then Xα∞

SE∼ Yβ∞ and the crossed products A∞ oα∞ Z
and B oβ∞ Z are strong Morita equivalent.

We close this section by settling Conjecture 2 of the Introduction. This
conjecture asserts that the vertical arrows in Theorem 5.9 are actually equiv-
alences. We will use the following.

Theorem 5.13. Let AEA be a full, non-degenerate and regular C∗- corre-

spondence. If E
SE∼ E∞ then E is an imprimitivity bimodule.

Proof. By assumption there exist non-degenerate, regular C∗- correspon-
dences ARA∞ ,A∞SA and a positive integer m such that

E⊗m = R⊗ S, (E∞)⊗m = (E⊗m)∞ = S ⊗R
and E ⊗R = R⊗ E∞, S ⊗ E = E∞ ⊗ S. Then

A =
〈
E⊗m, E⊗m

〉
= 〈R⊗ S,R⊗ S〉 = 〈S, 〈R,R〉S〉 ⊆ 〈S, S〉 ⊆ A,

since E⊗m is also full. Hence S is full. Now, let k ∈ K(S). Then k ⊗ idR ∈
K((E∞)⊗m), and since (E∞)⊗m is an imprimitivity bimodule, there is an x ∈
A∞ such that k ⊗ idR = φ(E∞)⊗m(x) = φS(x)⊗ idR. Thus φS(x) = k, since
R is regular; therefore A∞ ' K(S), hence S is an imprimitivity bimodule.

Going back to the definition of E
SE∼ E∞, we see that S ⊗ E = E∞ ⊗ S,

hence E = S∗ ⊗ E∞ ⊗ S. The fact that S, S∗ and E∞ are imprimitivity
bimodules implies that E is also an imprimitivity bimodule.

Let us see now why Conjecture 2 has a negative answer. Let E be any full,
non-degenerate and regular C∗-correspondence, which is not an imprimitiv-

ity bimodule. If Conjecture 2 was true, then E
SE∼ E∞, since both E and E∞

have unitarily equivalent Pimsner dilations. But then Theorem 5.13 would
imply that E is an imprimitivity bimodule, a contradiction.

6. Imprimitivity Bimodules and the Shift Equivalence Problem

Our work on shift equivalences suggests the following generalization of
the Williams Problem in the context of C∗-correspondences.

Shift Equivalence Problem for C∗-correspondences. If E,F are non-

degenerate, regular C∗-correspondences and E
SE∼ F , then E

SSE∼ F .

One might be tempted to say that the work of Kim and Roush [8] readily
shows that the answer to the above conjecture is negative. However, it is not
known to us whether two graph C∗-correspondences which fail to be strong
shift equivalent via non-negative integral matrices remain inequivalent if
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one considers arbitrary C∗-correspondences in order to implement the strong
shift equivalence. In other words, we do not know the answer to the Williams
Problem even for the class of graph C∗-correspondences. If it does have a
positive answer then it will provide an alternative route for proving our
Corollary 5.11, but we conjecture that it doesn’t in general.

Nevertheless, in our next result we show that Shift Equivalence Problem
has an affirmative answer for the class of imprimitivity bimodules. Recall
that this result is essential for the proof of Theorem 5.9.

Theorem 6.1. Strong Morita equivalence, elementary strong shift equiva-
lence, strong shift equivalence and shift equivalence are equivalent for the
class of imprimitivity bimodules.

Proof. In view of Theorem 4.7, it suffices to show that if AEA and BFB

are imprimitivity bimodules such that E
SE∼ F , then E

SME∼ F . Assume that

E
SE∼ F via R,S with lag m. Then E⊗m = R⊗ S and F⊗m = S ⊗R. Since

E,F are imprimitivity bimodules, then E⊗m and F⊗m are also imprimitivity

bimodules. Hence S is regular and, due to
SE∼ , intertwines E and F . It

suffices to prove that S is an imprimitivity bimodule. First, it is full right
since

A =
〈
E⊗m, E⊗m

〉
= 〈R⊗ S,R⊗ S〉 = 〈S, 〈R,R〉 · S〉 ⊆ 〈S, S〉 ⊆ A,

thus 〈S, S〉 = A. In order to prove that it is full left, it suffices to prove
that φS : B → L(S) is onto K(S) (since φS(B) ⊆ K(S), by regularity of S).
To this end, let k ∈ K(S). Then, due to regularity of R, we obtain that
k ⊗ idR ∈ K(S ⊗ R) = K(F⊗m). Since F⊗m is an imprimitivity bimodule,
there is a b ∈ B such that φF⊗m(b) = k ⊗ idR; in particular φS(b) ⊗ idR =
k ⊗ idR. Thus φS(b) = k, since R is regular.

Combining [15, Theorem 3.2, Theorem 3.5] with Theorem 6.1 we obtain
the following corollary.

Corollary 6.2. If AEA,BFB are imprimitivity bimodules and E
SME∼ F,E

s∼
F,E

SSE∼ F or E
SE∼ F , then the corresponding Toeplitz-Cuntz-Pimsner al-

gebras and Cuntz-Pimsner algebras are strong Morita equivalent as C∗-
algebras, and the corresponding tensor algebras are strong Morita equivalent
in the sense of [4].

7. Other Applications

7.1. Extension of [13, Theorem 3.14]. A natural question raised in [13]
was whether [13, Theorem 3.14] is valid without the extra assumption of
non-degeneracy. This can be established now with the theory we have devel-
oped in Section 5. However, one cannot dispose of regularity, as mentioned
explicitly in [13] and [2, Example 5.4].
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Theorem 7.1. Let AEA and BFB be regular C∗-correspondences. If E
SSE∼ F

then OE
SME∼ OF .

Proof. First suppose that E
s∼ F . By Theorem 5.3 we have E∞

s∼ F∞. But
E∞ and F∞ are regular Hilbert bimodules hence they are non-degenerate.

Therefore [13, Theorem 3.14] implies OE∞
SME∼ OF∞ and Theorem 3.2 com-

pletes the proof in the case of elementary strong shift equivalence.

Let E
SSE∼ F via a sequence of Ti, i = 0, . . . , n. Then OTi

SME∼ OTi+1 , by the
previous arguments, for every i = 0, . . . , n − 1. Strong Morita equivalence

of C∗-algebras is transitive, hence OE = OT0
SME∼ OTn = OF .

7.2. [13, Proposition 4.2] Revisited. The results in [13] and here, con-
cerning strong Morita equivalence of the Cuntz-Pimsner algebras, can be
generalized for degenerate correspondences over unital C∗- algebras because
of [13, Proposition 4.2], i.e., if X is a correspondence over a unital C∗-

algebra A, then OXess is a full corner of OX , where Xess := φX(A)X. In
fact the proofs in [13, Proposition 4.2] apply in general for strict correspon-
dences X. The key observation is that, if (ai) is a c.a.i. in A, then φX(ai)
converges in the s*-topology to a projection, say p, in L(X). As a conse-
quence JX = JXess and, if X is regular, then so is Xess, in the same way as
in [13, Proposition 4.1].

Theorem 7.2. Let AXA be a strict C∗-correspondence. Then OXess is a
full corner of OX .

Proof. Fix a covariant injective representation (π, t) of X (that admits a
gauge action); then (π, t|Xess) is a covariant injective representation of Xess

(that admits a gauge action). Let P be the projection in M(OX) that is
defined by limi π(ai) for a c.a.i. (ai) of A; for example

Pt(ξ) := lim
i
π(ai)t(ξ) = t(lim

i
φ(ai)ξ) = t(pξ), for all ξ ∈ X.

Then, the rest of the proof goes as the proof of [13, Proposition 4.2].
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