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ABSTRACT. A higher rank numerical semigroup is a positive cone whose seminormalization is
isomorphic to the free abelian semigroup. We show that the induced nonselfadjoint semigroup
algebras form a complete isomorphic invariant for this class of semigroups.

1. INTRODUCTION

Semigroup C*-algebras, i.e., C*-algebras generated by left regular representations of left-
cancellative semigroups, form a natural class of C*-algebras which generalize (reduced)
group C*-algebras. They have been studied for various classes of semigroups, for instance
positive cones in totally ordered groups [2, 14, 22], examples coming from group theory
[4, 5, 21] or examples of number-theoretic origin [6, 7, 8]. We refer the reader to [9] and
the references therein.

Nonselfadjoint semigroup operator algebras are formed by considering the non-involu-
tive part of the left regular representation, or through families of representations. They are
trivially examples of semicrossed products, a construct introduced by Arveson [1] and for-
malized by Peters [23], that enraptures the properties of semigroup actions on C*-algebras.
Actions over Zd+ and Fd+ (the free semigroup on d generators) are by now well studied, with
a comprehensive list of pertinent papers being impossiblele to present here. We direct the
interested reader to the surveys [11, 12, 19] for more information. However less is known
for other semigroups, even at the level of the semigroup algebras, with only recent dilation
results obtained for lattice-ordered semigroups [10, 20].

In this paper we focus on a particular class, which we call higher rank numerical semi-
groups as they generalize classical numerical semigroups in a natural way. These are positive
cones in Zd whose seminormalization is isomorphic to Zd+. Our main result (Theorem 3.8)
says that two higher rank numerical semigroups are isomorphic if and only if their nonselfad-
joint operator algebras are isomorphic. In fact we show that being completely isometric
isomorphic coincides with being algebraic isomorphic.

This rigidity of nonselfadjoint operator algebras is another example of stark contrast with
the C*-algebra setting. The difference is particularly striking for classical numerical semi-
groups, i.e., subsemigroups of the natural numbers (with respect to addition) which have
finite complement. For such semigroups, it is straightforward to check that they all have iso-
morphic semigroup C*-algebras. However, the nonselfadjoint operator algebra remembers
the numerical semigroup completely.

The realm of semigroups is too vast to be treated in one stroke and it is appropriate to
reflect on a case-by-case study. The main tool we are using here is the canonical embedding
of a semigroup into Zd+, and its effect on the character spaces. We show that this embedding
is a homeomorphism exactly for the class of higher rank numerical semigroups. The meta-
mathematical conclusion is that this is the widest class this tool tackles.

2. POSITIVE CONES

We give some preliminary results for positive cones. We will write N = {1, 2, . . . } and
Z+ = {0, 1, 2, . . . }. The reader should be familiar with the general theory of nonselfadjoint

2010 Mathematics Subject Classification. 47L25, 46L07.
Key words and phrases: Numerical semigroups, C*-envelope, rigidity.

1



2 E.T.A. KAKARIADIS, E.G. KATSOULIS, AND X. LI

operator algebras and dilations of their representations, that we will avoid repeating here.
We just recall that the C*-envelope C∗env(A) of a nonselfadjoint operator algebra A is the
co-universal C*-algebra in the sense that: (i) there exists a completely isometric homomor-
phism i : A → C∗env(A) = C∗(i(A)); and (ii) for any other completely isometric homomor-
phism j : A → C∗(j(A)) there exists a unique ∗-epimorphism Φ: C∗(j(A)) → C∗env(A) such
that Φ ◦ j = i. It follows by [15] that C∗env(A) = C∗(ρ(A)) for any completely isometric
representation of A that does not admit non-trivial contractive dilations.

Recall that a positive cone S of an abelian group G is a unital sub-semigroup of G such that:
(i) S ∩ (−S) = (0); and (ii) for every g ∈ G there exist s, t ∈ S such that g = s− t. The Fock
representation V : S → B(`2(S)) is given by

Vset = es+t.

We define
A(S) := alg{Vs | s ∈ S} and C∗(S) := C∗(Vs | s ∈ S).

Since VsVt = Vs+t we get that A(S) is in fact densely spanned by the monomials Vs. Notice
that the Fock representation does not use any property of the positive cone and can be
defined for general semigroups, including groups of course. To allow comparisons however
we reserve the notation U : G → B(`2(G)) for the left regular group representation of an
abelian group G. In this case C∗(G) is the usual group C*-algebra.

The following proposition can be derived as an application of dilation results for C*-
dynamics that have appeared for example in [10, 17] when applied for trivial dynamical
systems. In the absence of the dynamics, a simpler proof can be given, included here.

Proposition 2.1. Let S be a positive cone of an abelian group G. Then the mapping Vs 7→ Us
extends to a completely isometric map ρ : A(S)→ C∗(G).

Proof. It suffices to show that the unique linear extension is isometric on polynomials, i.e.
we will show that

‖
∑
s∈F

λsVs‖ = ‖
∑
s∈F

λsUs‖ for all finite F ⊂ S.

Similar arguments at any matrix level yield that this mapping ρ is completely isometric. By
identifying `2(S) with the obvious subspace inside `2(G) we get that

‖
∑
s∈F

λsVs‖ = ‖P`2(S)

(∑
s∈F

λsUs

)
|`2(S)‖ ≤ ‖

∑
s∈S

λsUs‖.

For the reverse inequality fix ε > 0. Let ξ =
∑n

i=1 kiegi in the unit ball of `2(G) such that

‖
∑
s∈F

λsUs‖ − ε ≤ ‖
∑
s∈F

λsUsξ‖`2(G).

Since S is a positive cone we have that there are si, ti ∈ S such that gi = si − ti for all i =
1, . . . , n. Set t :=

∑n
i=1 ti ∈ S so that t+ gi + F ⊂ S for all i = 1, . . . , n. Then the vector

ξ′ := Utξ =

n∑
i=1

kiet+gi

is in the unit ball of `2(S). Therefore we obtain

‖
∑
s∈F

λsUs‖ − ε ≤ ‖Ut
∑
s∈F

λsUsξ‖`2(G) = ‖
∑
s∈F

λsUsUtξ‖`2(G)

= ‖
∑
s∈F

λsUsξ
′‖`2(G) = ‖

∑
s∈F

λsVsξ
′‖`2(S) ≤ ‖

∑
s∈F

λsVs‖.

As ε > 0 was arbitrary we have equality of the norms.

Corollary 2.2. Let S be a positive cone of an abelian group G. Then C∗(G) is the C*-envelope
of the semigroup algebra A(S).
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Proof. By Proposition 2.1 we have that A(S) ↪→ C∗(G) completely isometrically. As the copy
of A(S) contains the generators of C∗(G) we get that C∗(G) is a C*-cover of A(G) and it is
generated by unitaries. Since a contractive dilation of a unitary is trivial we get that this is a
maximal representation of A(S) and thus C∗(G) is the C*-envelope [15].

The completely contractive representations of A(S) are characterized in the following
theorem.

Theorem 2.3. Let S be a positive cone of an abelian group G. A representation ρ : A(S) →
B(H) is completely contractive if and only if there is a unitary representation U : G → B(K) for
K ⊇ H such that ρ(Vs) = PHUs|H for all s ∈ S.

Proof. By Proposition 2.1 we have that A(S) ⊂ C∗(G). If ρ is a completely contractive repre-
sentation of A(S) then it extends to a completely contractive map of C∗(G) and Stinespring’s
Theorem produces the required unitary representation. Conversely, if we have such a unitary
representation then its compression to H is a completely contractive map of C∗(G). Hence
the restriction ρ to A(S) is a completely contractive map.

Remark 2.4. There is a small subtlety as the above does not imply that commuting con-
tractions induce a completely contractive representation even when S ⊂ Z. One would
expect that starting with a contraction T we can build a representation of A(S) by assigning
Vn 7→ Tn. However, in [16] it is shown that there is a contraction that fails to induce a com-
pletely contractive representation for the semigroup S = {0, 2, 3, . . . }. The example given
fails to be 2-contractive.

Henceforth we will restrict our attention to G = Zd for some finite d. For a positive cone
S ⊂ Zd+ of Zd we make the following identifications

S 3 s ≡ Vs ≡ zs ∈ A(Dd).

By Corollary 2.2 we have a canonical identification A(S) ⊂ A(Zd+) ⊂ C∗(Zd). Hence we
can use on A(S) the Fourier transform inherited from C∗(Zd). A straightforward application
gives the following corollary.

Corollary 2.5. Let S ⊂ Zd+ be a positive cone in Zd and let f ∈ A(Zd+). Then f ∈ A(S) if and
only if {s ∈ S | f (s)(0) 6= 0} ⊂ S. Therefore, s ∈ S if and only if there exists an f ∈ A(S) such
that f (s)(0) 6= 0.

Corollary 2.6. Let S1 ⊂ Zd1+ and S2 ⊂ Zd2+ be positive coves in Zd1 and Zd2 respectively. If
A(S1) and A(S2) are completely isometrically isomorphic then d1 = d2.

Proof. Being completely isometrically isomorphic yields that the associated C*-envelopes
C∗(Zd1) and C∗(Zd2) are ∗-isomorphic.

If ρ : A → B is an algebraic epimorphism for the Banach algebras A and B, then the
discontinuity of ρ is quantified by the ideal

S(ρ) := {b ∈ B | ∃(an) ⊂ A such that an → 0 and ρ(an)→ b}.

By the closed graph theorem ρ is continuous if and only if S(ρ) = (0). Due to a result of
Sinclair [26], for any sequence (bn) in B there exists an N ∈ N such that

b1 · · · bNS(ρ) = b1 · · · bnS(ρ) and S(ρ)bn · · · b1 = S(ρ)bN · · · b1, for all n ≥ N.

Proposition 2.7. Let S ⊂ Zd+ be a positive cone in Zd. Then any algebraic epimorphism
ρ : A → A(S) for any Banach algebra A is automatically continuous.

Proof. Fix s ∈ S. The Fourier transform yields
⋂∞
n=0 V

n
s I = (0) for any ideal I ⊂ A(S).

Then by using the isometries bn = V n
s we get that S(ρ) =

⋂∞
n=0 V

n
s S(ρ) = (0).
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3. NUMERICAL SEMIGROUPS

Recall that a positive cone S of a group G is called seminormal if whenever 3s = 2t for s, t ∈
S then there exists a (necessarily unique) p ∈ S such that 2p = s and 3p = t [3, Definition
1.7]; equivalently if p = t− s is in S. Every positive cone admits a seminormalization which
by [3, Example 1.12] can be expressed as

Ssn := {g ∈ G | ng ∈ S eventually for all n ∈ N}.

Alternatively Ssn is the universal seminormal monoid that contains an injective copy of S [3,
Lemma 1.7]. The seminormalization of a positive cone is itself a positive cone (for the same
generating group).

Remark 3.1. Positive cones in Z are also known as numerical semigroups and have sev-
eral equivalent characterizations. For example S is a numerical semigroup, if and only if
gcd(S) = 1 if and only if there is an N ∈ S such that n ∈ S for all n > N , if and only
Ssn = Z+. We will consider their higher rank analogue.

Definition 3.2. A positive cone S of a group G is called a higher rank numerical semigroup if
Ssn ' Zd+. If d = 1 then S is called simply a numerical semigroup.

Remark 3.3. The above definition implies several items. First of all it is not hard to see that
an isomorphism σ : S1 → S2 between two positive cones induces an isomorphism σ̃ : G1 →
G2 of their generating groups given by σ̃(s − t) = σ(s) − σ(t). Moreover σ̃ restrics to an
isomorphism of the seminormalizations. Therefore if S ⊂ G is a higher rank numerical
semigroup then S ↪→ Zd+ and G ' Zd.

We will thus restrict to positive cones of Zd with seminormalization equal to Zd+. For
notational purposes we write {1, . . . ,d} for the usual generators in Zd. We will also use the
multivariable notation zs = zs1 · · · zsd for z = (z1, . . . , zd) ∈ Cd and s = (s1, . . . , sd) ∈ Zd.

Let S ⊂ Zd+ be a positive cone of Zd. By Corollary 2.2 the algebra A(Zd+) contains A(S)

and so there is a continuous map between their character spaces Dd and MS ; namely

ι∗ : Dd →MS : ζ 7→ evζ |A(S).

The next proposition shows that this map is injective exactly when Ssn = Zd+.

Proposition 3.4. Let S ⊂ Zd+ be a positive cone of Zd. Let ι∗ : Dd → MS be the continuous
map induced by the embedding A(S) ↪→ A(Zd+). Then the following are equivalent:

(i) Ssn = Zd+;
(ii) the intersection of S with all axes is a non-trivial positive cone of Z;

(iii) ι∗ is injective.
In particular, ι∗ is a homeomorphism when it is injective.

Proof. [(i) ⇔ (ii)]: For simplicity let us write S(i) := S ∩ {ni | n ∈ Z+}. If Zd+ = Ssn then
ni ∈ S eventually for every n ∈ N. Hence gcd(S(i)) = 1 giving that S(i) is a positive cone in
Z. Conversely if S(i) is a positive cone then

i ∈ Ni ⊂ (S(i))sn ⊂ Ssn,

and thus Zd+ = Ssn.
[(ii) ⇔ (iii)]: Suppose that ι∗ is injective. First we show that S intersects with all axes.
Assume without loss of generality that S(1) = {0}. Then for λ 6= 0 we would have that

ev(λ,0,...,0)(z
s) = 0s2 · · · 0sd = ev(0,...,0)(z

s)

for all s ∈ S as s1 = 0. Hence ev(λ,0,...,0) = ev(0,...,0) which contradicts injectivity of ι∗.
Secondly we show that every S(i) is a positive cone in Z. Without loss of generality assume
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that S(1) is not such and set k := gcd(S(1)) 6= 1. Let λ, µ be two distinct non-trivial k-th
roots of the unit. If s ∈ S(1) then

ev(λ,0,...,0)(z
s) = λs1 = µs1 = ev(µ,0,...,0)(z

s).

If s ∈ S \ S(1) then there is at least one j ∈ {2, . . . , d} such that sj 6= 0 and so

ev(λ,0,...,0)(z
s) = 0 = ev(µ,0,...,0)(z

s).

Therefore ev(λ,0,...,0) = ev(µ,0,...,0) which again contradicts injectivity of ι∗.
For the converse recall that a semicharacter on S is a semigroup homomorphism h : S →

D. By [18, Theorem 4.2.1] the character space of A(S) is homeomorphic to the semicharac-
ter space of S. We will show that every semicharacter of S extends uniquely to a semichar-
acter of Ssn. This will give that the character spaces of A(S) and A(Ssn) are homeomorphic,
and so if Ssn = Zd+ then ι∗ is a homeomorphism. To this end for h : S → D we define
h̃ : Ssn → D by

h̃(t) :=

{
h((n+ 1)t)/h(nt) if (n+ 1)t, nt ∈ S and h(nt) 6= 0 for some n ∈ N,
0 if h(nt) = 0 for every n ∈ N.

To see that h̃ is well defined first suppose that h(nt) = 0 for some n ∈ N. Then for every
m ∈ N with mt ∈ S we have that

h(mt)n = h(mnt) = h(nt)m = 0.

Thus h(mt) = 0 for every m ∈ N. Moreover if there are n,m ∈ N such that (n + 1)t, nt ∈ S
and (m+ 1)t,mt ∈ S then we have

h((n+ 1)t)h(mt) = h((n+m+ 1)t) = h((m+ 1)t)h(nt)

showing that h̃(t) does not depend on the choice of n.

Remark 3.5. Contrary to [18, Proposition 3.5.6], we use that semicharacters of S extend
uniquely to the seminormalization of S rather than to the normalization Sn := {g ∈ G | ∃n ∈
N such that ng ∈ S}.

Remark 3.6. It is worth noticing that the equivalence of items (ii) and (iii) of Proposition
3.4 follows by the universal property of seminormalizations, by applying [3, Lemma 1.11]
for the pointed monoid D. Therein ι∗ follows by applying a Zorn’s Lemma. However it is the
analytic form of ι∗ that we will be requiring and wish to make explicit here.

Suppose that S ⊂ Zd+ is a positive cone with Ssn = Zd+. For every i ∈ Zd+ let ni ∈ N
such that both (ni + 1)i and nii are in S. Proposition 3.4 then asserts that if χ ∈ MS with
χ = evζ |A(S) then ζ is uniquely given by

(3.1) ζi =

{
χ(zni+1

i )/χ(zni
i ) if χ(zni

i ) 6= 0,

0 if χ(zni
i ) = 0.

Recall that if S1 ' S2 and are both positive cones of Z then S1 = S2. This property passes
also to higher ranks.

Proposition 3.7. Let S1 ⊂ Zd1 and S2 ⊂ Zd2 be positive cones such that (S1)sn = Zd1+ and
(S2)sn = Zd2+ . Then S1 ' S2 if and only if d1 = d2 and S1 = S2 up to a permutation of the
co-ordinates.

Proof. Let σ : S1 → S2 be a semigroup isomorphism. Since it defines an isomorphism be-
tween their generating groups we get that d1 = d2, which we name as d from now on.
Moreover the induced group isomorphism is given by a unitary map, say U ∈ GLd(Z). For
every i ∈ {1, . . . , d}, choose ni ∈ N so that nii ∈ S1(i). Then the i-th column σ(nii) of niU is
in S2 ⊂ Zd+ and so it has non-negative entries. Hence all entries of U are non-negative. As
the same holds for U−1 we get that U is a permutation matrix.
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We now have arrived to the main rigidity result. We will be using an idea of [13] for
rotating isomorphisms to vacuum preserving isomorphisms. From the proof it will become
apparent that rotations are the only vacuum preserving isomorphisms (up to a permutation
of the co-ordinates) for this class of semigroup algebras.

Theorem 3.8. Let S1 ⊂ G1 and S2 ⊂ G2 be higher rank numerical semigroups. Then the
following are equivalent:

(i) S1 ' S2;
(ii) A(S1) ' A(S2) by a completely isometric isomorphism;

(iii) A(S1) ' A(S2) by an algebraic isomorphism.

Proof. First we remark that semigroup isomorphisms induce completely isometric isomor-
phisms. Indeed for an isomorphism σ : S1 → S2 we can define U : `2(S1)→ `2(S2) to be the
permutation unitary Uet = eσ(t). It then follows that UVsU∗ = Vσ(s) for all s ∈ S1. Therefore
it suffices to show that item (iii) implies item (i). In particular the isomorphism in item (iii)
is automatically bounded by Proposition 2.7.

Combining the above with Remark 3.3, without loss of generality we may assume that
S1 ⊂ Zd1+ with (S1)sn = Zd1+ , and likewise for S2. Thus by Proposition 3.7 it suffices to show
that item (iii) implies that d1 = d2 and that S1 = S2 up to a permutation of the variables.

An algebraic isomorphism ρ between A(S1) and A(S2) implements a homeomorphism ρ∗

of their character spaces Dd1 and Dd2 . Therefore d1 = d2, which we name as d henceforth.
For convenience we will treat the cases d = 1 and d > 1 separately.
The one-variable case. For d = 1 we have MS1 ' MS2 ' D. We will employ an idea from
[13] to rotate the isomorphism to one that matches the zeroes of the character space. To
this end let the maps

ρϑ = aduϑ , ϑ ∈ [0, 2π] for uϑ : `2(Z+)→ `2(Z+) : en 7→ eiϑnen.

It is immediate that ρϑ gives an automorphism of A(Z+) that sends every generator to a
scalar multiple of the same generator. Hence the restriction to A(S1) and to A(S2) gives
complete isometric automorphisms such that

(ρϑ)∗(ζ) = eiϑζ for all ζ ∈ D.
Suppose that ρ∗(0) = ζ 6= 0 and so (ρ−1)∗(0) = η 6= 0. Then ρ∗ϑ(η) defines a circle of radius
|η| around the origin in MS2 . By applying ρ∗ we can implement a closed curve (ρϑ ◦ ρ)∗(η)
that has ζ in its interior and passes through 0 ∈MS1 . Likewise we can form a circle ρ∗ϑ(ζ) of
radius |ζ| around the origin in MS1 and move it to the closed curve (ρϑ ◦ρ−1)∗(ζ) that passes
through 0 ∈ MS2 with η in its interior. By construction ρ∗ϑ(η) intersects with (ρϑ ◦ ρ−1)∗(ζ)
at least in one point, say η′. By applying ρ∗ we thus derive that (ρϑ ◦ ρ)∗(η) intersects ρ∗ϑ(ζ)
at ζ ′ = ρ∗(η′). Choose ϑ1 that rotates ζ to ζ ′ and ϑ2 that rotates η′ to η. Then we can define
the isomorphism

π := ρ ◦ ρϑ1 ◦ ρ−1 ◦ ρϑ2 ◦ ρ : A(S1)→ A(S2)
for which

π∗(0) = ρ∗ ◦ ρ∗ϑ2 ◦ (ρ−1)∗ ◦ ρ∗ϑ1 ◦ ρ
∗(0) = ρ∗ ◦ ρ∗ϑ2(η′) = ρ∗(η) = 0.

This transformation is depicted in the figure of the next page. Hence without loss of gener-
ality we may assume that A(S1) ' A(S2) by an isomorphism ρ such that ρ∗(0) = 0.

Now we use the explicit construction of equation (3.1). Recall here that we identify
elements in A(S) with their corresponding holomorphic functions. Fix 0 6= n ∈ S1 such that
n+ 1 ∈ S1 and set

f := ρ(zn+1) and g := ρ(zn).

Then ρ∗(ζ) = f(ζ)/g(ζ) whenever g(ζ) 6= 0. However f/g is holomorphic in D \ g−1({0})
and continuously extendable at any w ∈ g−1({0}) by ρ∗(w). By Riemann’s Theorem on
removable singularities f/g is holomorphically extendable to D, and thus its extension ρ∗ is
holomorphic on D.
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Clearly ρ∗ is not constant. Thus by the open mapping theorem for holomorphic functions
we have that ρ∗(D) ⊂ D. By symmetry we have the same for its inverse. Hence ρ∗ is a
biholomorphism of D with ρ∗(0) = 0. Thus by Schwarz Lemma it follows that ρ∗(ζ) = eiϑζ
for ϑ ∈ [0, 2π]. Hence we get (ρ−ϑ ◦ ρ)∗ = id. As rotations are automorphisms we may work
with ρ−ϑ ◦ ρ instead of ρ. Thus without loss of generality we may assume that ρ∗ = id on D;
and hence on D.

To finish the first part, let s ∈ S1 and write ρ(zs) = h(z). Then for every D 3 ζ ≡ evζ ∈
MS2 we have that ρ∗(evζ) = evζ ∈MS1 and so

(3.2) ζs = evζ(z
s) = ρ∗(evζ)(z

s) = evζ(ρ(zs)) = h(ζ).

As this holds for all ζ ∈ D we derive that zs = h(z) = ρ(zs). Since s ∈ S1 was arbitrary we
get that ρ = id|S1 giving that S1 ⊂ S2. By symmetry on ρ−1 we have equality.

•0

•η

•η′ •0

•ζ

•ζ′

ρ∗ϑ(η) ρ∗ϑ(ζ)

(ρϑ ◦ ρ−1)∗(ζ)

(ρϑ ◦ ρ)∗(η)

MS2

MS1

(ρϑ1)
∗

(ρϑ2)
∗

ρ∗

(ρ−1)∗
ρ∗

Figure. Matching zeroes of the character spaces.

The multi-variable case. Let the continuous functions ρ∗i : Dd → D so that the homeomor-
phism ρ∗ : MS2 →MS1 is written as

ρ∗(ζ) = (ρ∗1(ζ), . . . , ρ∗d(ζ)).

First we show that every ρ∗i is holomorphic on Dd. Fix ni ∈ N so that nii and (ni + 1)i are
both in S1(i). Set fi := ρ(zni+1

i ) and gi := ρ(zni
i ). By using equation (3.1) we can write

ρ∗i (ζ) =
fi(ζ)

gi(ζ)
for all ζ ∈ Dd \ g−1i ({0}).

Zero sets of analytic functions are thin sets, and by [24, Theorem 3.4] the set g−1i ({0}) can
be removed so that ρ∗i is holomorphic on Dd.

Now we have that ρ∗1 cannot be constant as in that case we would have the contradiction
Dd = ρ∗(Dd) ⊂ {ρ∗1(0, . . . , 0)} × Dd−1. By applying the open mapping theorem for holo-
morphic functions on several variables, e.g. [24, Theorem 1.21], we get that ρ∗1(Dd) ⊂ D.
Likewise it follows that

ρ∗i (Dd) ⊂ D for all i = 1, . . . , d.

Hence we have that ρ∗(Dd) ⊂ Dd, and thus by symmetry on (ρ∗)−1, we conclude that
ρ∗(Dd) = Dd. Therefore ρ∗ restricts to a biholomorphism of the polydisc. Recall that

Aut(Dd) ' (×di=1 Aut(D)) o Sd,
e.g. [25, Theorem 2, pp. 48]. Hence ρ∗ is the product of automorphisms of D up to
a permutation of the variables, say σ. As every permutation on the variables implies a
completely isometric isomorphism, without loss of generality, we may substitute S2 by σ(S2)
so that the ρ∗i depends only on ζi.
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Notice that rotating co-ordinatewise on A(Zd+) restricts to automorphisms on A(S1) and
on A(S2). Therefore we rotate ρ appropriately so that ρ∗i (0) = 0 for all i = 1, . . . , d. That
is, every ρ∗i restricts to a biholomorphism of D fixing the zero. By using the one-variable
arguments we derive that every ρ∗i |D is a rotation. Hence without loss of generality ρ∗ = id

on Dd and thus on Dd. A computation as in equation (3.2) shows that ρ = id and the proof
is complete.
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