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Abstract. In an earlier work, the authors proposed a non-self-
adjoint approach to the Hao-Ng isomorphism problem for the full
crossed product, depending on the validity of two conjectures stated
in the broader context of crossed products for operator algebras.
By work of Harris and Kim, we now know that these conjec-
tures in the generality stated may not always be valid. In this
paper we show that in the context of hyperrigid tensor algebras
of C∗-correspondences, each one of these conjectures is equiva-
lent to the Hao-Ng problem. This is accomplished by studying
the representation theory of non-selfadjoint crossed products of
C∗-correspondence dynamical systems; in particular we show that
there is an appropriate dilation theory. A large class of tensor alge-
bras of C∗-correspondences, including all regular ones, are shown
to be hyperrigid. Using Hamana’s injective envelope theory, we
extend earlier results from the discrete group case to arbitrary
locally compact groups; this includes a resolution of the Hao-Ng
isomorphism for the reduced crossed product and all hyperrigid C∗-
correspondences. A culmination of these results is the resolution of
the Hao-Ng isomorphism problem for the full crossed product and
all row-finite graph correspondences; this extends a recent result
of Bedos, Kaliszewski, Quigg and Spielberg.

1. Introduction

Let ((X, C),G, α) be a C∗-correspondence dynamical system where
G is a locally compact group and α is a generalized gauge action. This
action can be extended uniquely to the Cuntz-Pimsner algebra OX The
Hao-Ng isomorphism problem asks whether

OX oα G ' OXoαG

in the reduced or full crossed products. This problem is named after
Hao and Ng who proved the validity of this formula when G is amenable
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[13, Theorem 2.10]. However, this formula was first studied by Abadie
in the context of Takai duality for equivalence bimodules. Indeed, in
Abadie’s proof for the Takai duality, the Hao-Ng isomorphism forms the
crucial step of the proof and corresponds to the key isomorphism of [32,
Lemma 7.2] in the classical case. In general, the Hao-Ng isomorphism
has proved to be a significant stimulant to research as versions of it
appear in many different context, e.g. in Schafhauser’s work [31] on
AF-embedability, or in Deaconu’s work [7, 8] on group actions on graph
C∗-algebras. In its full generality, the problem remains open and under
investigation by several authors [3, 16, 17, 22, 25].

The authors initiated a study in [20, 18, 21] of non-selfadjoint
crossed products of operator algebra dynamical systems (A,G, α) where
α acts by completely isometric isomorphisms of A. The main thrust
of [20, Chapter 7] and [18] is that the Hao-Ng isomorphism problem
can and should be thought of as a non-selfadjoint problem. For the
reduced crossed product this kind of approach has been and continues
to be quite successful. For instance, we now know that the Hao-Ng iso-
morphism for the reduced crossed product holds for all discrete groups
[18], a fact that resolves an open problem from [3] (and more is ac-
complished in this paper).

The Hao-Ng isomorphism for the full crossed product seems to be a
much harder problem. In [20] we proposed the following line of attack.
(See just above Theorem 7.9 in [20].) First one verifies

(1) C∗env(Aoα G) ' C∗env(A) oα G

in the full crossed product case for an arbitrary non-selfadjoint dynami-
cal system (A,G, α); this is Problem 1 in [20]. Subsequently, one solves
Problem 2 in [20] by showing that all relative crossed products coin-
cide.1 Assuming that both problems have been resolved in the positive,
now one specializes on tensor algebra dynamical systems and obtains

(2) T +
X oα G ' T +

XoαG

by invoking the solution of Problem 2 and the remarks following [20,
Theorem 7.13]. Recalling that C∗env(T +

X ) = OX , one recovers now the
Hao-Ng isomorphism by combining equations (1) and (2). Note that
even though a positive answer for both Problems 1 and 2 leads to a
positive resolution for the Hao-Ng isomorshism, the exact relation of
each one of these problems with the Hao-Ng isomorphism was never
clarified in [20].

1This also establishes that (1) is valid for the relative crossed product
AoC∗

env(A),α G, as it coincides with Aoα G.
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The central result of this paper, Theorem 4.9, clarifies that rela-
tion and shows that the Hao-Ng problem actually leads to equivalent
statements in non-selfadjoint operator algebra theory, whose validity
or refutation will therefore resolve the isomorphism. Specifically, for
a large class of C∗-correspondences, including all regular ones, the va-
lidity of (1) for A = T +

X is equivalent to the validity of the Hao-Ng
isomorphism OX oα G ' OXoαG. In addition, we show that the valid-
ity of the Hao-Ng isomorphism OX oα G ' OXoαG is equivalent to the
fact that all relative crossed products for (T +

X ,G, α) coincide, where α
is a generalized gauge action. (For a general C∗-correspondence X we
show that the above statements are successively weaker.)

Theorem 4.9 relates to exciting new work by Harris and Kim [14].
Indeed these authors have answered both Problems 1 and 2 from [20,
Chapter 7] by producing finite dimensional, hyperrigid dynamical sys-
tems (A,G, α) with distinct relative crossed products and failing (1).
However the examples of Harris and Kim [14] do not concern tensor
algebras of C∗-correspondences and so the Hao-Ng problem remains
open. Theorem 4.9 shows now that the resolution of the Hao-Ng prob-
lem will lead to or will follow from the existence or the absence of
Harris-Kim type examples but in the realm of tensor algebras. Need-
less to say that the quest for such examples, or the refutation of their
existence, becomes now a project of high priority.

To test our new results, we study the Hao-Ng isomorphism for a
class of C∗-correspondences that plays a central role in the theory:
graph C∗-correspondences. In Theorem 5.4 we show that the Hao-Ng
isomorphism problem is true in the case of row-finite graph correspon-
dences, thus showing that the crossed product of such a Cuntz-Krieger
algebra is the Cuntz-Pimsner algebra of a crossed product (of a graph)
correspondence. This is done by showing that in the case of a dynam-
ical system (A,G, α) where A is the tensor algebra of any graph, G
any locally compact group and α a generalized gauge action, all rela-
tive crossed products coincide. Then, Theorem 4.9 finishes the proof
for row-finite graphs. Note that in the special case where G is dis-
crete, Theorem 5.4 has also been obtained independently by Bedos,
Kaliszewski, Quigg and Spielberg using different methods [4, Corol-
lary 6.8 and Remark 6.10]. It is worth mentioning here that Theorem
5.4 is essentially obtained by dilating representations in a wholly con-
structive manner and should prove of much interest to those who study
the representation theory of C∗-correspondences. At the moment, the
lack of a constructive dilation proof of C∗env(T +

X ) = OX seems to be a
barrier to establishing (2) for the full crossed product in general.
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On the way to proving the above theorems we obtain several results of
independent interest. First we resolve Problem 3 from our monograph
[20, Chapter 8]. Specifically, we show if (X, C) is a non-degenerate C∗-
correspondence and α : G → (X, C) is the generalized gauge action of a
locally compact group, then T +

X oα G is necessarily the tensor algebra
of some C∗-correspondence.

Another result of independent interest is Theorem 3.1, which identi-
fies a large class of hyperrigid C∗-correspondences, i.e., C∗-correspon-
dences whose tensor algebras are hyperrigid. Indeed our central Theo-
rem 4.9 actually applies to all hyperrigid C∗-correspondences. To make
that result usable, we show that any C∗-correspondence (X, C, ϕX) with
ϕX(JX)X = X is hyperrigid (here JX denotes Katsura’s ideal). This
includes all previous known examples of hyperrigid C∗-correspondences
and many more, e.g., all regular ones.

An interesting byproduct of our techniques on the full crossed prod-
uct version of the Hao-Ng problem, is the resolution of the same prob-
lem for the reduced crossed product and all hyperrigid C∗-correspon-
dences. In [18] the first named author verified the Hao-Ng isomorphism
for the reduced crossed product and all discrete groups. Because here
we are addressing locally compact groups which may not be discrete, we
have to use an approach different from that of [18]. In particular, the
algebra A does not embed in either Aoα G or Aor

α G and so restricting
a maximal map of the crossed product on the core algebra A (as we
did in [18]) is no longer an option. Instead we use Hamana’s injective
envelope theory, an approach towards the Hao-Ng isomorphism which
is used in this paper for the first time. This approach was adopted
after illuminating discussions with S. Echterhoff and we are grateful
for that.

2. Crossed products and C∗-covers

Let (A,G, α) be an operator algebra dynamical system, meaning
that A is an approximately unital operator algebra and G is a locally
compact (Hausdorff) group acting continuously on A by completely
isometric automorphisms, α : G → Aut(A). The aim of this section is
to better understand the relationship of α-admissible C∗-covers. Recall
that a C∗-cover (C, ι) of A is a C∗-algebra C and a complete isometry
ι : A → C such that C∗(ι(A)) = C.

The two nicest C∗-covers of A are the “biggest” and the “smallest”
covers C∗max(A) and C∗env(A). These are defined by their universal
properties. Namely, whenever (C, ι) is a C∗-cover there are (unique)
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surjective ∗-homomorphisms ϕ : C∗max(A) → C and ψ : C → C∗env(A)
such that ϕ(a) = ι(a) and ψ(ι(a)) = a, for all a ∈ A.

From [20], a C∗-cover (C, ι) is called α-admissible if there exists a
group representation β : G → Aut(C) acting on C by ∗-automorphisms
such that

βg(ι(a)) = ι(αg(a)), ∀g ∈ G, a ∈ A.

In [20, Lemma 3.3] we established that both C∗env(A) and C∗max(A) are
always α-admissible. However, in [20] we did not provide any examples
of C∗-covers which fail to be α-admissible. We thank David Sherman
for bringing this to our attention and asking us whether such covers do
exist.

Proposition 2.1. Not all C∗-covers are α-admissible.

Proof. Let C = C(T)⊕M2 and ι : A(D)→ C be given by z 7→ z⊕[ 0 0
1 0 ].

By von Neumann’s inequality it is straightforward that ι is a complete
isometry. Now

ι(z)− ι(z2)ι(z)∗ = (z ⊕ [ 0 0
1 0 ])− (z2 ⊕ [ 0 0

0 0 ])(z̄ ⊕ [ 0 1
0 0 ])

= 0⊕ [ 0 0
1 0 ] .

Thus, C∗(ι(A(D))) = C and (C, ι) is a C∗-cover of A(D).

Consider the Möbius transformation ϕ(z) =
z− 1

2

1− z
2

which gives ϕ ∈
Aut(D). From this define the dynamical system (A(D), α,Z) where
αn(f) = f ◦ ϕn which is the same as z 7→ ϕn(z). It is well known
that composition with a Möbius map is a completely isometric auto-
morphism of the disc algebra.

Suppose that there exists α̃ : Z → Aut(C) such that α̃n(i(f)) =
i(αn(f)),∀f ∈ A(D). Calculating

ϕ(z) =
z − 1

2

1− z
2

=

(
z − 1

2

)(
1 +

z

2
+
z2

4
+ · · ·

)
= −1

2
+

3

4
z +

3

8
z2 + · · ·

we get that

ι(ϕ(z)) = ϕ(z)⊕
[
− 1

2
0

3
4
− 1

2

]
.
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Hence,

α̃1 (0⊕ [ 0 0
1 0 ]) = α̃1(ι(z)− ι(z2)ι(z)∗)

= ι(α1(z))− ι(α1(z2))ι(α(z))∗

= ι(ϕ(z))− ι(ϕ(z))2ι(ϕ(z))∗

= ϕ(z)⊕
[
− 1

2
0

3
4
− 1

2

]
−
(
ϕ(z)2 ⊕

[
1
4

0

− 3
4

1
4

])(
ϕ(z)⊕

[
− 1

2
3
4

0 − 1
2

])
= 0⊕

[
− 3

8
− 3

16
3
8

3
16

]
.

But then∥∥∥0⊕
[
− 3

8
− 3

16
3
8

3
16

]∥∥∥ =
√

2
∥∥∥[ 3

8
3
16

]∥∥∥ =
3
√

10

16
< 1 = ‖0⊕ [ 0 0

1 0 ]‖ ,

a contradiction as ∗-automorphisms are isometric. Therefore, no such
α̃ exists and (C, ι) is a non α-admissible C∗-cover of (A(D), α,Z).

If we do have an α-admissible cover then we can abuse the notation
and call the group representation α again because of the next result.

Lemma 2.2. Let (A,G, α) be an operator algebra dynamical system.
If (C, ι) is an α-admissible C∗-cover then there is a unique group rep-
resentation of G on C acting by ∗-automorphisms extending α.

Proof. Let β1 and β2 be two such extensions. Then β1 ◦ β−1
2 = id

on A and we just need to prove this is the identity map. To this end
assume that β : G → Aut(C) extends the identity map on A. That is,
β(g)|A = idA, for all g ∈ G.

By the universal property of C∗max(A) there is a unique surjective ∗-
homomorphism ϕ : C∗max(A)→ C such that ϕ(a) = ι(a), for all a ∈ A.
Notice that β ◦ ϕ(a) = β ◦ ι(a) = ι(a), for all a ∈ A. Thus, β ◦ ϕ = ϕ
by uniqueness which implies that β = id on C.

Now we turn to crossed products of non-selfadjoint operator algebras.

Definition 2.3 ([20]). Let (A,G, α) be an operator algebra dynamical
system and let (C, ι) be an α-admissible C∗-cover. The relative reduced
and full crossed products are denoted by A or

(C,ι),α G and A o(C,ι),α G
and are defined to be the closure of Cc(G,A) in C or

α G and C oα G,
respectively.

All relative reduced crossed products are in fact completely isomet-
rically isomorphic [20, Theorem 3.12] and so we define the reduced
crossed product, denoted Aor

α G, to be this unique object. Lastly, we
define the full crossed product to be

Aoα G := AoC∗max(A),α G.
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In fact, this is the universal algebra for all covariant representations of
(A,G, α) [20, Proposition 3.7]. Finally, it should be noted that, as in
the selfadjoint case, if G is amenable then the full and reduced crossed
products coincide [20, Theorem 3.14].

Now we are able to state and prove the main theorem of this section.

Theorem 2.4. Let (A,G, α) be an operator algebra dynamical system.
Then for every α-admissible C∗-cover (C, ι) there are surjective com-
pletely contractive homomorphisms

Aoα G
qmax−−−→ Ao(C,ι),α G

qmin−−→ AoC∗env(A),α

such that they are just the identity on Cc(G,A).

Proof. Label the unique extensions of α to the C∗-covers C∗env(A), (C, ι)
and C∗max(A) respectively αenv, αC and αmax. By the universal proper-
ties there exists surjective ∗-homomorphisms

ϕenv : C → C∗env(A) and ϕmax : C∗max(A)→ C

such that ϕenv(ι(a)) = a and ϕmax(a) = ι(a), for all a ∈ A.
By uniqueness of the quotient maps and of the extensions we have

the following commutative diagram:

C∗max(A)
ϕmax−−−→ C ϕenv−−−→ C∗env(A)

αmax

y αC

y αenv

y
C∗max(A)

ϕmax−−−→ C ϕenv−−−→ C∗env(A)

Thus, kerϕmax is an αmax-invariant ideal and kerϕenv is an αC-invariant
ideal. By [32, Proposition 3.19], full C∗-crossed products preserve
exact sequences by α-invariant ideals. Hence, we have the following
surjective ∗-homomorphisms

C∗max(A) oαmax G
ϕmaxoid−−−−−→ C oαC G

ϕenvoid−−−−→ C∗env(A) oαenv G.

So

qmax = ϕmax o id|AoαG and qmin = ϕenv o id|Ao(C,ι),αG

are completely contractive homomorphisms which amount to the iden-
tity on Cc(G,A).

The benefit of this theorem, as will be used later, is that one needs
only to show that the map qmin ◦ qmax is a completely isometric isomor-
phism to establish that all relative crossed products are the same.
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3. Hyperrigidity and the Hao-Ng isomorphism

A not necessarily unital operator algebra A is said to be hyperrigid
if given any (non-degenerate) ∗-homomorphism

τ : C∗env(A) −→ B(H)

then τ is the only completely positive, completely contractive extension
of the restricted map τ|A. By adding an injective direct summand if
necessary, it is easy to see that in order to verify hyperrigidity, one
needs to consider only injective ∗-representations τ but this need not
concern us here. The term hyperrigid was coined by Arveson in [2] but
the concept had been floating around in various forms before this, e.g.
[9].

Our definition is slightly weaker than that of Duncan’s [9, Section 4]
as Duncan requests that τ be the only completely contractive extension
of the restricted map, i.e., no requirement of positivity in the non-unital
case. In any case [9, Proposition 4] shows that the graph algebra of any
row-finite graph is hyperrigid. Actually we are about to provide a much
stronger result but first we need to remind the reader the definition and
some of the basic notation regarding C∗-correspondences.

A C∗- correspondence (X, C, ϕX) (or just (X, C)) consists of a C∗-
algebra C, a Hilbert C-module (X, 〈 , 〉) and a (non-degenerate) ∗-
homomorphism ϕX : C → L(X) into the C∗-algebra of adjointable op-
erators on X.

A representation (ρ, t) of a C∗-correspondence into B(H), is a pair
consisting of a non-degenerate ∗-homomorphism ρ : C → B(H) and a
linear map t : X → B(H), such that

ρ(c)t(x) = t(ϕX(c)(x)),

for all c ∈ C and x ∈ X. It is called completely contractive when t
is a completely contractive map from the norm induced by the inner
product to the operator norm on B(H). Moreover, it is called an
isometric (Toeplitz) representation when

t(x)∗t(x′) = ρ(〈x, x′〉),

for all c ∈ C and x, x′ ∈ X. Note that an isometric representation is
necessarily completely contractive but not the other way around.

By the relations above, the C∗-algebra generated by an isometric
representation (ρ, t) equals the closed linear span of

t(x1) · · · t(xn)t(y1)∗ · · · t(ym)∗, xi, yj ∈ X.
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For any isometric representation (ρ, t) there exists a ∗-homomorphism
ψt : K(X)→ B, such that ψt(θx,y) = t(x)t(y)∗, where K(X) is the sub-
algebra of L(X) of so-called compact operators generated by θx,y(z) =
x〈y, z〉.

There exists a universal Toeplitz representation, denoted as (ρ∞, t∞),
so that any other representation of (X, C) is equivalent to a direct
sum of sub-representations of (ρ∞, t∞). The Cuntz-Pimsner-Toeplitz
C∗-algebra TX is defined as the C∗-algebra generated by the image of
(ρ∞, t∞).

The tensor algebra T +
X of a C∗-correspondence [26] (X, C) is the

norm-closed subalgebra of TX generated by all elements of the form
ρ∞(c), t∞(x), c ∈ C, x ∈ X.

Consider the ideal

JX ≡ kerϕ⊥X ∩ ϕ−1
X (K(X)).

(which we will call Katsura’s ideal.) An isometric representation (ρ, t)
of (X, C, ϕX) is said to be covariant (Cuntz-Pimsner) if and only if
ψt(ϕX(c)) = ρ(c), for all c ∈ JX . The universal C∗-algebra for all iso-
metric covariant representations of (X, C) is the Cuntz-Pimsner algebra
OX . The algebra OX contains (a faithful copy of) C and (a unitarily
equivalent) copy of X.

The first author and Kribs [19, Lemma 3.5] have shown that the
non-selfadjoint algebra of OX generated by these copies of C and X is
completely isometrically isomorphic to T +

X . Furthermore, C∗env(T +
X ) '

OX . See [19, 26] for more details.
Now to the hyperrigidity of tensor algebras.

Theorem 3.1. Let (X, C) be a C∗-correspondence with X countably
generated as a right Hilbert C-module. If ϕX(JX) acts non-degenerately
on X, then (X, C) is a hyperrigid C∗-correspondence, i.e., T +

X is a
hyperrigid operator algebra.

Proof. Let τ : OX −→ B(H) be a ∗-homomorphism and let τ ′ : OX −→
B(H) be a completely contractive and completely positive map that
agrees with τ on T +

X . We are to prove that τ ′ is multiplicative and so
it agrees with τ . Since τ ′ is a completely contractive and completely
positive map, we can use multiplicative domain arguments [6, Propo-
sition 1.5.7].

Let (ρ, t) be the universal Cuntz-Pimsner representation of (X, C).
Since ρ(C) ⊆ T +

X is a C∗-algebra, the multiplicative domain of τ ′ con-
tains ρ(C). We claim that it also contains t(X).
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Indeed, for any x ∈ X we have

(3)

τ ′(t(x))∗τ ′(t(x)) = τ(t(x))∗τ(t(x)) = τ(t(x)∗t(x))

= τ(ρ(〈x, x〉)) = τ ′(ρ(〈x, x〉))
= τ ′(t(x)∗t(x)),

where the equation on the second line holds because ρ(C) ⊆ T +
X and

the two maps agree there.
Since X is countably generated, Kasparov’s Stabilization Theorem

implies the existence of a sequence {xn}∞n=1 in X so that
∑k

n=1 θxn,xn ,
k = 1, 2, . . . , is an approximate unit for K(X). Let a ∈ JX . Then

ϕX(aa∗) = lim
k
ϕX(a)

( k∑
n=1

θxn,xn
)
ϕX(a)∗

=
∞∑
n=1

θϕX(a)xn,ϕX(a)xn ,

with the convergence in the norm topology. By the Schwarz inequality

(4) τ ′
(
t(ϕX(a)xn)t(ϕX(a)xn)∗

)
≥ τ ′(t(ϕX(a)xn))τ ′(t(ϕX(a)xn))∗,

for all n ∈ N, and so

τ ′(ρ(aa∗)) = τ ′(ψt(ϕX(aa∗))

=
∞∑
n=1

τ ′
(
t(ϕX(a)xn)t(ϕX(a)xn)∗

)
≥

∞∑
n=1

τ ′(t(ϕX(a)xn))τ ′(t(ϕX(a)xn))∗

=
∞∑
n=1

τ(t(ϕX(a)xn))τ(t(ϕX(a)xn))∗

= τ(ψt(ϕX(aa∗)) = τ(ρ(aa∗)) = τ ′(ρ(aa∗)).

Hence (4) is actually an equality. Combining this with (3), we conclude
that t(ϕX(a)xn) belongs to the multiplicative domain of τ ′, for all a ∈
JX and n ∈ N. Since ρ(C) is also contained in the multiplicative
domain of τ ′, we have that

t(ϕX(a)x) =
∞∑
n=1

t(ϕX(a)xn)ρ(〈xn, x〉)

belongs to the multiplicative domain of τ ′, for all a ∈ JX and x ∈ X.
Since ϕX(JX) acts non-degenerately on X, the multiplicative domain
of τ ′ contains t(X), as desired. This completes the proof.
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Recall that a C∗-correspondence (X, C) is said to be regular iff C acts
faithfully on X by compact operators, i.e., JX = C. The following is
immediate.

Corollary 3.2. A regular, countably generated C∗-correspondence is
necessarily hyperrigid.

We are about to see that the assumption of injectivity cannot be
removed from the Corollary above. But first we need criterion for the
failure of hyperrigidity.

Proposition 3.3. Let (X, C) be a C∗-correspondence with JX = {0}.
Then (X, C) fails to be hyperrigid.

Proof. Let (π, t) be any isometric representation of (X, C) on a Hilbert
space H. If V1, V2 are the unilateral and bilateral (forward) shift re-
spectively, then the associations

(5)
C 3 a −→ a⊗ I,
X 3 x −→ x⊗ Vi, i = 1, 2,

determine isometric representations of X, which are neccesarilly Cuntz-
Pimsner covariant, since JX = {0}. Therefore they promote to repre-
sentations ϕ1 and ϕ2 ofOX ' C∗env(T +

X ) onH⊗`2(Z+) andH⊗`2(Z) re-
spectively. Now notice that when ϕ2 is being compressed onH⊗`2(Z+),
it produces a completely positive contractive map ϕ̃2 6= ϕ1, which how-
ever agrees with ϕ1 on T +

X . Hence (X, C) is not hyperrigid.

Recall that if (A, α) is a (non-degenerate) C∗-dynamical system, then
the semicrossed product A oα Z+ is simply the tensor algebra of the
C∗-correspondence Aα, where the left action on A is coming from α. In
the case where both A and α are unital and α is injective, such algebras
are always hyperrigid. This has already been noted in the literature,
eg. [15], but it is also an immediate consequence of Corollary 3.2. It
is worth noting that the requirement of α being injective cannot be
dropped from neither Corollary 3.2 nor the discussion above.

Example 3.4. Let X be a connected, compact Hausdorff space and
x ∈ X. Let ϕ : X → X with ϕ(y) = x, for all y ∈ X . Then the
semicrossed product C(X ) oϕ Z+ is not hyperrigid.

Indeed, in that case, the kernel of the right action equals C0(X\{x}).
Hence Katsura’s ideal is trivial and Proposition 3.3 applies.

Finally recall that the C*-envelope of a non-unital operator alge-
bra can be computed from the C*-envelope of its unitization. More
precisely, as the pair (C∗env(A), ι) where C∗env(A) is the C*-subalgebra
generated by ι(A) inside the C*-envelope (C∗env(A1), ι) of the (unique)
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unitization A1 of A. By the proof of [5, Proposition 4.3.5] this C*-
envelope of an operator algebra A has the desired universal property,
that for any C*-cover (ι′,B′) of A, there exists a (necessarily unique
and surjective) ∗-homomorphism π : B′ → C∗env(A), such that π◦ι′ = ι.

We start with an elementary result regarding crossed products.

Lemma 3.5. Let (C,G, α) be a C∗-dynamical system and let D ⊆ C be
the C∗-subalgebra of C generated by some selfadjoint approximate unit
for C. Then

(i) CCc(G,D) is dense in C oα G.
(ii) If π : CoαG → B(H) is a non-degenerate representation, then

its restriction on Cc(G,D) is also non-degenerate.

Proof. Let {ei}i∈I be the selfadjoint approximate unit generating D.
Then any elementary tensor h⊗c ∈ Cc(G,D), where (h⊗c)(s) = h(s)c,
h ∈ Cc(G), c ∈ C, can be written as

h⊗ c = lim
i∈I

c (h⊗ ei) ∈ CCc(G,D).

This implies (i). For (ii) notice that by taking adjoints in (i), Cc(G,D)C
is also dense in C oα G. Hence

π (Cc(G,D))H = π (Cc(G,D))π(C)H = π (Cc(G,D)C)H
which is dense in π(C)H = H and the conclusion follows.

The following result has been established for all discrete groups in
[18]. Here we extend it to arbitrary locally compact groups provided
that the pertinent algebras are hyperrigid.

Theorem 3.6. Let A be a hyperrigid operator algebra which possesses a
contractive approximate unit {ei}i∈I consisting of selfadjoint operators.
Let α : G → AutA be a continuous action of a locally compact group.
Then

(6) C∗env (Aor
α G) ' C∗env(A) or

α G
and

(7) C∗env
(
AoC∗env(A),α G

)
' C∗env(A) oα G

via canonical embeddings.

Proof. Let ρ : C∗env(A) → B(H) be a faithful (non-degenerate) repre-
sentation and let

ρ̃ : C∗env(A) −→ B
(
H⊗ L2(G)

)
u : G −→ B

(
H⊗ L2(G)

)
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so that ρ̃o u (which we will denote as π) is the regular representation
induced by ρ. (See [32, Section 2.2] for notation and additional infor-
mation.) Since ρ is non-degenerate, [32, Lemma 2.17] implies that the
induced representation π = ρ̃⊗ u is also non-degenerate.

Let

ϕ : B
(
H⊗ L2(G)

)
−→ B

(
H⊗ L2(G)

)
be a contractive idempotent map whose range is the injective envelope
of π (Aor

α G)1. Let D be the closed (selfadjoint) subalgebra of A
generated by {ei}i∈I. Then Cc(G,D) is a selfadjoint subalgebra of Aor

α

G and so [5, 1.3.12] implies that

(8) ϕ (Sπ(f)) = ϕ(S)π(f),

for any S ∈ B
(
H⊗ L2(G)

)
and f ∈ Cc(G,D). In particular

ϕ
(
ρ̃(a)π(f)

)
= ϕ(ρ̃(a))π(f),

for all a ∈ A, f ∈ Cc(G,D). On the other hand,

ρ̃(a)π(f) = π(af) ∈ π(Aor
α G)

and so ϕ(ρ̃(a)π(f)) = ρ̃(a)π(f), a ∈ A, f ∈ Cc(G,D). Hence(
ϕ(ρ̃(a))− ρ̃(a)

)
π(f) = 0, for all f ∈ Cc(G,D).

By Lemma 3.5(ii), π
(
Cc(G,D)

)
acts non-degenerately on H ⊗ L2(G)

and so

(9) ϕ(ρ̃(a)) = ρ̃(a), for all a ∈ A.

Hence the mapping ϕ is a completely positive and completely contrac-
tive extension of the identity map on ρ̃(A). However ρ̃(A) is hyper-
rigid and according to the discussion in the beginning of the section,
the identity map on ρ̃(A) is the only such completely contractive and
completely positive extension to C∗env(ρ̃(A)) = ρ̃

(
C∗env(A)

)
. Therefore

ϕ(ρ̃(c)) = ρ̃(c), for all c ∈ C∗env(A).

Appealing again to (8), with S = ρ̃(c), we obtain

ϕ(π(cf)) = ϕ
(
ρ̃(c)π(f)

)
= ϕ(ρ̃(c))π(f) = ρ̃(c)π(f) = π(cf),

for all c ∈ C∗env(A) and f ∈ Cc(G,D). By Lemma 3.5(i) we have

ϕ(S) = S, for all S ∈ π
(
C∗env(A) or

α G
)
.

But this implies that the Choi-Effros product on

π
(
C∗env(A) or

α G
)1 ⊆ ϕ

(
B
(
H⊗ L2(G)

))
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is actually the one coming from B
(
H ⊗ L2(G)

)
and the C∗-algebra

generated by

π(Aor
α G)1 ⊆ ϕ

(
B
(
H⊗ L2(G)

))
equals π

(
C∗env(A) or

α G
)1

. Hence

C∗env

(
π(Aor

α G)1
)

= π
(
C∗env(A) or

α G
)1
.

Furthermore, the C∗-algebra generated by π(Aor
α G) ⊆ π

(
C∗env(A)or

α

G
)1

equals π
(
C∗env(A) or

α G
)
. This establishes (6).

In order to prove (7), let this time π := ρ̃ o u, where (ρ̃, u) is the
universal covariant representation of (C∗env(A),G, α). With this π, a
verbatim repetition of the proof of (6) establishes (7).

Now we turn to crossed product correspondences. Let G be a locally
compact group acting on a non-degenerate C∗-correspondence (X, C)
by a generalized gauge action α : G → Aut(TX). The reduced crossed
product correspondence (Xor

α G, Cor
α G) is the completion of Cc(G, X)

and Cc(G, C) in T +
X or

α G, which is usually thought of as living in
OX or

α G but equivalently can be considered as living in TX or
α G. The

left and right module actions are given by multiplication and 〈S, T 〉 =
S∗T , for S, T ∈ Cc(G, X).

In a similar manner, one defines the full crossed product corre-
spondence (X oα G, C oα G) by completing the spaces in TX oα G.
This was shown to be unitarily equivalent to the abstract characteri-
zation of the full crossed product correspondence in [20, Remark 7.8].
Lastly, we recall the definition of the crossed product correspondence
(Xôα G, Côα G) which is the completion of the spaces in OX oα G. In
general, it is unknown whether these two correspondences are unitarily
equivalent or not.

The following has been established in [20] in the case where G is
discrete. In [20] it was also noted that the proof carries over to the
general locally compact case. We now explain how this is done.

Theorem 3.7. Let G be a locally compact group acting on a non-
degenerate C∗-correspondence (X, C). Then

T +
X or

α G ' T +
Xorα G.

Therefore,

C∗env
(
T +
X or

α G
)
' OXorα G.

Proof. Let ρ : TX → B(H) be some faithful ∗-representation. Let Z+

denote the non-negative integers and let V ∈ B(`2(Z+)) be the forward
shift. Set Xn := X⊗n for n ≥ 1, X0 := C and for the rest of the proof
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let X denote the product system {Xn}∞n=0. (See [11] for the definition
and notation on product systems.) Then the map

Xn 3 x 7−→ ρ(x)⊗ V n ∈ B(H⊗ l2(Z+)), n ∈ Z+,

is a Toeplitz representation i.e., Nica-covariant representation, of the
product system X that satisfies the requirements of Fowler’s Theo-
rem [11, Theorem 7.2]. Therefore it establishes a faithful representa-
tion π : TX → B(H⊗ `2(Z+)).

Since Xor
α G ⊆ TXor

α G, we may consider the regular representation
Indπ, when restricted on X or

α G, as a Toeplitz representation of the
product system X or

α G, which we denote as ψ. We furthermore write
ψn := ψ |Xnorα G, n ∈ Z+.

We claim that ψ satisfies the requirements of Fowler’s Theorem [11,
Theorem 7.2]. Indeed let Qn ∈ l2(Z+) be the projection on the one
dimensional subspace corresponding to the characteristic function of
n ∈ Z+ and let Q̂n ≡ (I ⊗ Qn) ⊗ I ∈ B

(
H ⊗ l2(Z+) ⊗ L2(G)

)
be the

(constant) B(H⊗ l2(Z+))-valued function that assigns the value I⊗Qn

to any s ∈ G. Then given any f ∈ Cc(G, Xn), n ≥ 1, we have(
Q̂0Indπf

)
h(t) = Q̂0

∫
G
π
(
α−1
t (f(s))

)
h(s−1t)ds

= (I ⊗Q0)⊗ I
∫
G

(
ρ(α−1

t (f(s)))⊗ V n
)
h(s−1t)ds

=

∫
G

(
ρ(α−1

t (f(s)))⊗Q0V
n
)
h(s−1t)ds = 0

Therefore if Pψ
n denotes the range space of ψ(Xn or

α G), n ∈ Z+, then
the product

∏
n∈F\{0}(I − Pψ

n ), which in our case collapses to a single

factor of the form I − Pψ
n , always dominates Q̂0 and so

(10)
∥∥ψ0(f)

∏
n∈F\{0}

(I − Pψ
n )
∥∥ ≥ ∥∥ψ0(f)Q̂0

∥∥ =
∥∥Indπ(f)Q̂0

∥∥,
for any f ∈ Cc(G, C). However, each I ⊗Qn reduces π |C and therefore

π |C'
(
⊕n∈Z+ (I ⊗Qn)π

)
|C'

(
⊕ (I ⊗Q0)π

)
|C,

i.e., the restriction of π on C is unitarily equivalent to a direct sum
of countably many copies of (I ⊗ Q0)π restricted on C. From this we
obtain,

ψ0 = Indπ |Corα G ' ⊕IndQ0π |Corα G ' ⊕Q̂0Indπ |Corα G .



16 E.G. KATSOULIS AND C. RAMSEY

Combining the above with (10) we now obtain∥∥ψ0(f)
∏

n∈F\{0}

(I − Pψ
n )
∥∥ =

∥∥Indπ(f)Q̂0

∥∥ = ‖ψ0(f)‖

for any f ∈ Cc(G, C), which establishes the claim.
Since the claim is valid, Fowler’s Theorem shows now that the in-

duced representation ψ∗ is a faithful representation of TXorα G. Note
now that ψ∗(T +

Xorα G) ' T
+
Xorα G is equal to the closed linear span of

ψ∗(X or
α G) =

⋃
n∈Z+

ψn(Xn or
α G) =

⋃
n∈Z+

IndπCc(G, Xn).

However, T +
X or

α G is also isomorphic to the closed linear span of⋃
n∈Z+

IndπCc(G, Xn).

Hence, T +
X or

α G ' T +
Xorα G.

Finally

C∗env

(
T +
X or

α G
)
' C∗env(T +

Xorα G) ' OXorα G.

with the last identification following from [19, Theorem 3.7].

Remark 3.8. As the reader may have noticed, the proof of the previous
result was given in the language of product systems. This was done
intentionally because by switching from N to an arbitrary quasi-lattice
ordered group (G,P ), the same exact proof as above establishes the
more general result NT +

X or
α G ' NT +

Xorα G, where NT +
X denotes the

Nica tensor algebra of X. We are recording this fact here for future
reference.

In [18] the Hao-Ng isomorphism problem was resolved for the re-
duced crossed product and all discrete groups. In the next result we
address the case of an arbitrary locally compact group and we resolve
the Hao-Ng problem for the reduced crossed product provided that the
C∗-correspondence is hyperrigid. Note that our result subsumes an ear-
lier result of Kim [22, Proposition 5.5] which was posted on the arXiv
but has not appeared in print.

Theorem 3.9. Let G be a locally compact group acting on a non-
degenerate hyperrigid C∗-correspondence (X, C), e.g. X is countably
generated as a right C-module and ϕX(JX)X = X. Then

OX or
α G ' OXorα G.
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Proof. By Theorem 3.7 we have C∗env

(
T +
X or

α G
)
' OXorα G. On the

other hand, Theorem 3.6 implies that C∗env

(
T +
X or

α G
)
' C∗env(T +

X )or
α G.

Hence OX or
α G ' C∗env(T +

X ) or
α G ' OXorα G.

It is important to us that an analogous results holds for the full
crossed product.

Theorem 3.10. Let G be a locally compact group acting on a non-
degenerate hyperrigid C∗-correspondence (X, C). Then

OX oα G ' OXôα G.

Proof. In [20, Theorem 7.13] we proved that

T +
X oOX ,α G ' T +

Xôα G
and C∗env

(
T +
X oOX ,α G

)
' OXôα G.

Now (7) in Theorem 3.6 and the above imply that

OXôα G ' C∗env

(
T +
X oC∗env(T +

x ),α G
)
' C∗env(T +

X ) oα G ' OX oα G

and the conclusion follows.

At this point one might think that the above theorem is the final word
regarding the Hao-Ng isomorphism for hyperrigid correspondences. As
it turns out, this couldn’t be further from the truth. It is indeed the
case that we have expressed the crossed product OXoαG as the Cuntz-
Pimsner algebra of a C∗-correspondence, namely Xôα G, but this is
not the C∗-correspondence that the authors of [3] ask for. Is this a big
deal? Most definitely yes, and we devote the next section explaining
the reasons why.

4. Isometric coextensions

The goal of this section is to answer Problem 3 in Chapter 8 of [20]:
Is T +

X oα G the tensor algebra of some C∗-correspondence? The (affir-
mative) answer is one of the key ingredients in the proof of Theorem 4.9,
one of the central results of the paper.

Definition 4.1. Let (X, C) be a C∗-correspondence and G a locally
compact group. A generalized gauge action α : G → Aut((X, C)) is a
map from G into the completely isometric module automorphisms. In
particular, for each s ∈ G, αs is an isometric automorphism of X and
a ∗-automorphism of C such that

αs(ξc) = αs(ξ)αs(c), αs(ϕX(c)ξ) = ϕX(αs(c))αs(ξ)

and αs(〈ξ, η〉) = 〈αs(ξ), αs(η)〉
for all ξ, η ∈ X and c ∈ C.
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Alternatively, one says that α : G → Aut TX forms a generalized
gauge action of TX if αs(X) = X and αs(C) = C, for all g ∈ G. The
following was observed in [18, pg 5760]. (See also [13, Lemma 2.6] for
the analogous result with OX).

Proposition 4.2. Let (X, C) be a non-degenerate C∗-correspondence
and G a locally compact group. If α : G → Aut(TX) is a generalized
gauge action of TX then it restricts to a generalized gauge action of
(X, C). Conversely, a generalized gauge action α of (X, C) extends
uniquely to a generalized gauge action of TX .

The fundamental object of study in this section is the C∗-correspon-
dence dynamical system ((X, C),G, α) which is given by a non-degenerate
C∗-correspondence (X, C) and a generalized gauge action α of the lo-
cally compact group G acting on (X, C).
Definition 4.3. A representation of the C∗-correspondence dynami-
cal system ((X, C),G, α) is a quadruple (ρ, t, u,H) consisting of a com-
pletely contractive representation (ρ, t,H) of (X, C) and a strongly con-
tinuous unitary representation u : G → U(H) satisfying the covariance
relations

u(s)t(ξ) = t(αs(ξ))u(s) and u(s)ρ(c) = ρ(αs(c))u(s)

for all s ∈ G, ξ ∈ X and c ∈ C. Moreover, (ρ, t, u,H) is said to be
isometric if (ρ, t,H) is an isometric (Toeplitz) representation of (X, C).

The following theorem is an extension of [26, Theorem 2.12].

Theorem 4.4. Let ((X, C),G, α) be a C∗-correspondence dynamical
system. The isometric representations (ρ, t, u,H) of ((X, C),G, α) are
in bijective correspondence with the isometric representations (π, u,H)
of (TX ,G, α). Specifically, they are related by π = ρo t.

Proof. If (π, u,H) is an isometric representation of (TX ,G, α) then
[26, Theorem 2.12] proves that there exists an isometric representation
(ρ, t,H) of (X, C) such that ρo t = π. Proposition 4.2 gives that α is a
generalized gauge action of G on (X, C) and so the covariance relations
between ρ, t and u are automatic. Hence, (ρ, t, u,H) is an isometric
representation of ((X, C),G, α).

Conversely, suppose (ρ, t, u,H) is an isometric representation of
((X, C),G, α). Again by [26, Theorem 2.12] this gives that (ρ o t,H)
is an isometric representation of TX and by Proposition 4.2 α ex-
tends uniquely to a generalized gauge action of G on TX . Because
u(s)(ρo t(·))u(s)∗ and (ρ ◦αs)o (t ◦αs) = (ρo t) ◦αs agree on X and
C then the uniqueness of [26, Theorem 2.12] gives that

u(s)ρo t(a) = ρo t(αs(a))u(s)
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for all s ∈ G and a ∈ TX . Therefore, (ρ o t, u,H) is an isometric
representation of (TX ,G, α).

If (ρ, t, u,H) and (ρ1, t1, u1,H1) are completely contractive represen-
tations of ((X, C),G, α) we say that the latter is a dilation of the former
if H ⊆ H1 and

(i) H reduces π1 and u1 with π1(c)|H = π(c), c ∈ C and u1(g)|H =
u(g), g ∈ G, and

(ii) H is a semi-invariant subspace for t1 and PHt1(ξ)|H = t(ξ), ξ ∈
X.

We call such a dilation an extension if H is an invariant subspace for
t1 and a coextension if H is a coinvariant subspace for t1.

The dilation (ρ1, t1, u1,H1) is called minimal when H1 is the smallest
reducing subspace for t1 containing H.

Now we need a lemma relating to the step-by-step dilation tech-
niques of Muhly and Solel of [26, Section 3]. Their proof is modelled
after Popescu’s step-by-step dilation technique [28] using the Schaëffer
matrix construction [30]. The following is also a slight simplification
of the original proof in [26].

To this end suppose (ρ, t, u,H) is a completely contractive represen-
tation of the C∗-correspondence dynamical system ((X, C),G, α). The
ultimate goal is to prove that every such representation dilates to an
isometric representation.

As in [26], define the Hilbert space HX = X ⊗ρ H
〈·,·〉

where

ξc⊗ h = ξ ⊗ ρ(c)h and 〈ξ ⊗ h, η ⊗ k〉 = 〈h, ρ(〈ξ, η〉)k〉

for ξ, η ∈ X, c ∈ C and h, k ∈ H. As well, define σX : X → B(H,HX)
by σX(ξ)h = ξ ⊗ h and t̃ : HX → H by t̃(ξ ⊗ h) = t(ξ)h. From here
one defines the one step dilation to H1 = H⊕HX given by

t1(ξ) =

[
t(ξ) 0

(I − t̃∗t̃)1/2σX(ξ) 0

]
and

ρ1(c) =

[
ρ(c) 0

0 ρ̃(c)

]
where ρ̃ : C → B(HX) is given by ρ̃(c)(ξ ⊗ h) = ϕX(c)ξ ⊗ h.

Lemma 4.5. Consider

u1(s) =

[
u(s) 0

0 ũ(s)

]
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where ũ : G → B(HX) is given by ũ(s)(ξ ⊗ h) = αs(ξ)⊗ u(s)h, which
is well-defined. Then (ρ1, t1, u1,H1) is a completely contractive repre-
sentation of ((X, C),G, α) such that

t1(ξ)∗t1(η) =

[
ρ(〈ξ, η〉) 0

0 0

]
for all ξ, η ∈ H.

Proof. By [26, Lemma 3.7] (ρ1, t1) is a completely contractive repre-
sentation of (X, C) on H1 which satisfies the last two statements in the
lemma.

First note that ũ is in fact well-defined since it respects the internal
C-modularity of HX ,

ũ(s)(ξc⊗ h) = αs(ξc)⊗ u(s)h

= αs(ξ)αs(c)⊗ u(s)h

= αs(ξ)⊗ ρ(αs(c))u(s)h

= αs(ξ)⊗ u(s)ρ(c)h

= ũ(s)(ξ ⊗ ρ(c)h),

for all s ∈ G, c ∈ C, ξ ∈ X, h ∈ H.
Additionally, observe that ũ(s) is unitary since for all s ∈ G, ξ, η ∈ X

and h, k ∈ H we have that

〈ũ(s)(ξ ⊗ h), ũ(s)(η ⊗ k)〉 = 〈αs(ξ)⊗ u(s)h, αs(η)⊗ u(s)k〉
= 〈u(s)h, ρ(〈αs(ξ), αs(η)〉)u(s)k〉
= 〈u(s)h, ρ(αs(〈ξ, η〉))u(s)k〉
= 〈u(s)h, u(s)ρ(〈ξ, η〉)k〉
= 〈h, ρ(〈ξ, η〉)k〉
= 〈ξ ⊗ h, η ⊗ k〉.

Next we need to make the following calculations:

σX(αs(ξ))u(s)h = αs(ξ)⊗ u(s)h

= ũ(s)(ξ ⊗ h)

= ũ(s)σX(ξ)h
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and

〈t̃∗t̃σX(αs(ξ))u(s)h, η ⊗ k〉 = 〈t̃(αs(ξ)⊗ u(s)h), t̃(η ⊗ k)〉
= 〈t(αs(ξ))u(s)h, t(η)k〉
= 〈u(s)t(ξ)h, t(η)k〉
= 〈t(ξ)h, t(αs−1(η))u(s)∗k〉
= 〈t̃∗t̃(ξ ⊗ h), αs−1(η)⊗ u(s−1)k〉
= 〈ũ(s)t̃∗t̃(ξ ⊗ h), η ⊗ k〉
= 〈ũ(s)t̃∗t̃σX(ξ)h, η ⊗ k〉.

Combining these one gets

ũ(s)(I − t̃∗t̃)σX(ξ) = (I − t̃∗t̃)σX(αs(ξ))u(s)

= (I − t̃∗t̃)ũ(s)σX(ξ).

Hence,

ũ(s)(I − t̃∗t̃) = (I − t̃∗t̃)ũ(s)

and by a standard trick often attributed to Halmos

ũ(s)(I − t̃∗t̃)1/2 = (I − t̃∗t̃)1/2ũ(s).

Now, we need to establish the covariance relations between (ρ1, t1)
and u1. From the previous paragraph we have that

ũ(s)(I − t̃∗t̃)1/2σX(ξ) = (I − t̃∗t̃)1/2σX(αs(ξ))u(s)

and thus u1(s)t1(ξ) = t1(αs(ξ))u1(s).
Second, it is much more straightforward to calculate that

ũ(s)ρ̃(c)(ξ ⊗ h) = ũ(s)(ϕX(c)ξ ⊗ h)

= αs(ϕX(c)ξ)⊗ u(s)h

= ϕX(αs(c))αs(ξ)⊗ u(s)h

= ρ̃(αs(c))ũ(s)(ξ ⊗ h).

Therefore, u1(s)ρ1(c) = ρ1(αs(c))u1(s) and the conclusion follows.

Theorem 4.6. Every completely contractive representation of the non-
degenerate C∗-correspondence dynamical system ((X, C),G, α) has a
minimal isometric coextension. Moreover, the minimal isometric coex-
tension is unique up to unitary equivalence.

Proof. Let (ρ, t, u,H) be a completely contractive representation of
((X, C),G, α). Following the proof of [26, Theorem 3.3] repeatedly use
Lemma 4.5 to get a sequence of completely contractive representations
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(ρn, tn, un,Hn) of ((X, C),G, α) in the obvious manner: use (ρ, t, u,H)
to produce (ρ1, t1, u1,H1) and then recursively

(ρn, tn, un,Hn) = ((ρn−1)1, (tn−1)1, (un−1)1, (Hn−1)1)

from the previous lemma and the discussion preceding it.
Let H′ = ∪n≥1Hn and define ρ′ = lim−→ ρn, t

′ = lim−→ tn and u′ = lim−→un.
By [26, Theorem 3.3] (ρ′, t′,H′) is an isometric representation of (X, C).
Note that u′ is a strongly continuous unitary representation of G since
it is the direct sum of such representations.

Now to the covariance relations:

u′(s)ρ′(c)PHn = un(s)ρn(c)PHn

= ρn(αs(c))un(s)PHn

= ρ′(αs(c))u
′(s)PHn

for all s ∈ G, c ∈ C and n ∈ N. As well,

u′(s)t′(ξ)PHn = un+1tn+1(ξ)PHn

= tn+1(αs(ξ))un+1(s)PHn

= tn+1(αs(ξ))un(s)PHn

= t′(αs(ξ))u
′(s)PHn

for all s ∈ G, ξ ∈ X and n ∈ N. Therefore, the covariance relations are
satisfied and (ρ′, t′, u′,H′) is an isometric coextension of (ρ, t, u,H).

Now let

K = span{t′(ξ1) · · · t′(ξn)h : ξi ∈ X, h ∈ H, n ≥ 1} ⊂ H′.

Because of the covariance relations of (ρ′, t′, u′,H′) one can see that K is
a reducing subspace of (ρ′, t′, u′,H′) that containsH. Thus, (ρ′, t′, u′,K)
is a minimal isometric coextension of (ρ, t, u,H).

In regard to uniqueness, suppose that (ρ′′, t′′, u′′,H′′) is another iso-
metric coextension of (ρ, t, u,H). [26, Proposition 3.2] proves that
there exists a unitary W : K → H′′ such that Wρ′(·) = ρ′′(·)W ,
Wt′(·) = t′′(·)W and Wh = h, for all h ∈ H. Now

Wu′(s)t′(ξ1) · · · t′(ξn)h = Wt′(αs(ξ1)) · · · t′(αs(ξn))u′(s)h

= t′′(αs(ξ1)) · · · t′′(αs(ξn))Wu(s)h

= t′′(αs(ξ1)) · · · t′′(αs(ξn))u(s)h

= t′′(αs(ξ1)) · · · t′′(αs(ξn))u′′(s)Wh

= u′′(s)t′′(ξ1) · · · t′′(ξn)Wh

= u′′(s)Wt′(ξ1) · · · t′(ξn)h
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Therefore, by minimality Wu′(·) = u′′(·)W and so (ρ′, t′, u′,K) and
(ρ′′, t′′, u′′,H′′) are unitarily equivalent.

Theorem 4.7. Let (X, C) be a non-degenerate C∗-correspondence and
let α be a generalized gauge action of a locally compact group G. Then

T +
X oα G ' T +

X oTX ,α G ' T +
XoαG

Proof. It is already proven in [20], in a discussion following Theorem
7.13, that T +

X oTX ,α G ' T +
XoαG. (It also follows from [3, Theorem 3.1]

as the isomorphism Φ of that theorem maps generators to generators.)
Towards proving the remaining isomorphism, let ϕ : T +

X oα G →
B(H) be a completely contractive representation. In the same way as in
the proof of [20, Theorem 4.1] one can assume that ϕ is nondegenerate.
Now by [20, Proposition 3.8] there exists a representation (π, u,H) of
(T +
X ,G, α) so that ϕ = π o u.
By [26, Theorem 3.10] there is a completely contractive representa-

tion, (ρ, t), of (X, C) such that π = ρ o t. Hence, in the same way as
the first part of the proof of Theorem 4.4, (ρ, t, u,H) is a completely
contractive representation of ((X, C),G, α). By Theorem 4.6 (ρ, t, u,H)
has a unique minimal isometric coextension (ρ′, t′, u′,H′) and thus by
Theorem 4.4 (ρ′o t′, u′,H′) is an isometric representation of (TX ,G, α).

As discussed in the proof of [26, Theorem 3.10] H ⊂ H′ is sem-
invariant for ρ′ and t′ and thus PHρ

′ o t′|H is a completely contractive
representation of T +

X . Moreover, that same theorem gives that

π = ρo t = PHρ
′ o t′|H

because ρ(c) = PHρ
′(c)|H and t(ξ) = PHt

′(ξ)|H for all c ∈ C and ξ ∈ X.
Therefore, every completely contractive representation of T +

X oα G
dilates to a completely contractive representation of T +

X oTX ,α G and
thus they are completely isometrically isomorphic.

Corollary 4.8. Let ((X,A),G, α) be a C∗-correspondence dynamical
system and assume that JX = {0}. Then all relative crossed prod-
ucts for (T +

X ,G, α) are canonically isomorphic via completely isometric
maps.

In particular, the above applies to the non-commutative disc algebra
A∞ ⊆ O∞. To obtain the same conclusion for the non-commutative
disc algebras An, n <∞, we need to work much harder. (See the next
section.)

For the moment, we can put together all previous results to obtain
the following, which summarizes our knowledge on the Hao-Ng isomor-
phism problem for the full crossed product.
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Theorem 4.9. Let ((X,A),G, α) be a non-degenerate C∗-correspondence
dynamical system. Then the following statements are successively weaker

(i) C∗env(T +
X oα G) ' OX oα G via a ∗-isomorphism that sends

generators to generators.
(ii) OXoα G ' OXoα G via a ∗-isomorphism that sends generators

to generators. (Hao-Ng isomorphism)
(iii) all relative crossed products for (T +

X ,G, α) are completely iso-
metrically isomorphic via canonical maps.

If (X, C) is hyperrigid, e.g., X is countably generated and ϕX(JX)X =
X, then all of the above statements are equivalent.

Proof. Assume first that

(11) C∗env(T +
X oα G) ' OX oα G

canonically. Theorem 4.7 shows now that

T +
X oα G ' T +

X oTX ,α G ' T +
XoαG

canonically and so by taking C∗-envelopes we have a canonical isomor-
phism

(12) C∗env

(
T +
X oα G

)
' C∗env

(
T+
X oTX ,α G

)
' OXoαG.

By “equating” the right sides of (11) and (12), we obtain (ii).
Assume now that (ii) is valid, i.e., the Hao-Ng isomorphism is im-

plemented via a canonical map. The same map establishes

(13) T +
X oOX ,α G ' T +

Xoα G.

By Theorem 4.7 we also have

(14) T +
X oα G ' T +

Xoα G.

From (13) and (14), we obtain T +
X oα G ' T +

X oOX ,α G, or,

T +
X oα G ' T +

X oC∗env(T +
X ),α G

canonically. By Theorem 2.4, all relative crossed products for (T +
X ,G, α)

are canonically isomorphic, which is (iii).
Assume now that (X, C) is hyperrigid and all relative crossed prod-

ucts for (T +
X ,G, α) are canonically isomorphic. Therefore (7) in Theo-

rem 3.6 implies

C∗env

(
T +
X oOX ,α G

)
' OX oα G.

By assumption T +
X oOX ,α G ' T +

X oα G and so (i) is valid.
Finally recall that Theorem 3.1 shows that a countably generated

C∗-correspondence X with ϕX(JX)X = X is always hyperrigid.
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The importance of the previous result can not be understated. First,
according to condition (iii), the verification of the Hao-Ng isomorphism
for hyperrigid C∗-correspondences depends on the canonical identifica-
tion of two non-selfadjoint operator algebras. We pursue this direction
successfully in the next section where we verify the Hao-Ng isomor-
phism for all graph correspondences of row finite graphs. Furthermore,
unlike condition (ii) (Hao-Ng isomorphism), both conditions (i) and
(iii) are applicable to arbitrary dynamical systems (T +

X ,G, α), i.e., α
does not have to be a gauge action. Thus in a sense, a generalization of
the Hao-Ng isomorphism problem beyond the realm of gauge actions is
possible but only in the language of non-selfadjoint operator algebras.
In light of the recent results of Harris and Kim [14], this seems to be
a direction worth pursuing.

5. Graph correspondences

Following from the last section, we would like to prove that every iso-
metric (Toeplitz) representation of ((X, C),G, α) dilates to a covariant
(Cuntz-Pimsner) representation. However, the standard proofs that
the C∗-envelope of the tensor algebra is the Cuntz-Pimsner algebra
are non-constructive [19, 26] which at the moment is a barrier to our
method of proof. Significantly. in the case of graph correspondences
such a constructive dilation proof is shown to exist.

Let (E, V, s, r) be a directed graph, where both E and V are sepa-
rable, with associated graph correspondence (X, C, ϕX). Recall this is
where C = c0(V ), X is the completion of cc(E) under the right module
structure

〈αδe, βδf〉 =

{
αβδs(e), e = f
0, otherwise

δe · δv =

{
δe, s(e) = v
0, otherwise

,

and the left action of C on X is given by

ϕX(δv)δe =

{
δe, r(e) = v
0, otherwise

.

When (X, C) is the graph correspondence for a directed graph (V,E)
then OX is ∗-isomorphic to the Cuntz-Krieger algebra of the graph.

We wish to find Cuntz-Pimsner representations of these graph cor-
respondences. As usual, the main concern is looking at which elements
of C are mapped into K(X) by ϕX .

In the case of a graph correspondence, Raeburn [29, Proposition 8.8]
gives that ϕX(δv) ∈ K(X) if and only if |r−1(v)| < ∞. Furthermore,
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δv ∈ kerϕX if and only if r−1(v) = ∅. Thus, let

Vfin = {v ∈ V : 1 ≤ |r−1(v)| <∞}
be the set of vertices generating Katsura’s ideal JX and let

K = {(v, w) | ∃e ∈ E with s(e) = w, r(e) = v, v ∈ Vfin}.
For each pair (v, w) ∈ K, let E(v, w) be the collection of all edges

starting from w and ending on v and let [E((v, w)] = C|E(v,w)|. In
what follows we will identify the canonical basis of [E(v, w)] with the
elements of E(v, w) and use the same symbol for both.

Suppose α is a generalized gauge action of (X, C) then it is clear
that this induces a permutation of V and in particular that VK is in-
variant under this permutation. By abuse of notation we call this
permutation α : V → V . Furthermore, the action α maps [E(v, w)]
unitarily onto [E(α(v), α(w))]. Indeed, if E(v, w) = {e1, e2, . . . , en}
and ξ =

∑n
i=1 ciδei , then

〈α(ξ), α(ξ)〉 =
〈
α
( n∑
i=1

ciδei

)
, α
( n∑
j=1

deδej

)〉
= α

(〈 n∑
i=1

ciδei ,
n∑
j=1

cjδej

〉)
= α

( n∑
i=1

|ci|2δw
)

=
n∑
i=1

|ci|2δα(w) = 〈ξ, ξ〉 .

Proposition 5.1. Let (X, C) be the graph correspondence of (E, V )
and suppose (ρ, t, u,H) is a completely contractive representation of the
dynamical system ((X, C),G, α). There exists a dilation to a completely
contractive representation (ρ1, t1, u1,H1) such that for every v ∈ Vfin

ρ(δv) =
∑

e∈r−1(v)

t1(δe)t1(δe)
∗

Proof. By [26, Lemma 3.5] because (ρ, t,H) is completely contractive
then for v ∈ VK we have the matrix inequality

[t(e)∗t(f)]e,f∈r−1(v) ≤ [ρ(〈e, f〉]e,f∈r−1(v) = ⊕e∈r−1(v)ρ(δs(e))

and so [t(e) : e ∈ r−1(v)] is a row contraction. Hence,

ρ(δv) ≥
∑

e∈r−1(v)

t(δe)t(δe)
∗
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and so we can define

∆v :=
1√
|r−1(v)|

(
ρ(δv)−

∑
e∈r−1(v)

t(δe)t(δe)
∗
)1/2

.

Let Hw = ρ(δw)H and so we can assume H = ⊕w∈VHw. For each
pair (v′, w′) ∈ K let

Hv′,w′ := Hv′ ⊗ [E(v′, w′)].

Then for each w ∈ V we define

H+
w ≡

⊕
(v′,w)∈K

Hv′,w =
⊕

(v′,w)∈K

Hv′ ⊗ [E(v′, w)].

and

Hw,1 = Hw ⊕H+
w .

We combine these to define

H1 = ⊕w∈VHw,1.

Hence

ρ1(δw) = IHw,1 , w ∈ V,
extends to a ∗-homomorphism of C that dilates ρ.

We also have a continuous unitary representation u1 : G → B(H1)
dilating u : G → B(H) and defined as follows.

Given g ∈ G and h ∈ H, we let u1(g)h = u(g)h. Otherwise, on each
H+
w the operator u1(g) is defined by

H+
w ⊇ Hv′,w 3 h⊗ ξ 7−→ αg(h)⊗ αg(ξ) ∈ Hαg(v′),αg(w) ⊆ H+

α(w).

It is easy to see that u1 : G → B(H1) is a continuous unitary represen-
tation dilating u.

We are ready to dilate t : X → B(H). If r(e) /∈ Vfin, then we let
t1(e) = t(e). Otherwise, if e ∈ E with s(e) = w and r(e) = v ∈ Vfin,
then t1(e) ∈ B(H1) has cokernel contained in

Hw ⊕ (. . . 0⊕ 0⊕Hv,w ⊕ 0 . . . ) ⊆ Hw ⊕H+
w ≡ Hw,1

range contained in Hv ⊕ 0 ⊆ Hv ⊕H+
v and it is given by

t1(δe) = [t(δe) ∆vτ(e)] ∈ B(Hw ⊕Hv,w,Hv),

where

τ(e) : Hv,w −→ Hv ; h⊗ ξ 7−→ 〈e, ξ〉h.
(In general, for ζ ∈ [E(v, w)], τ(ζ) will be given by τ(ζ)(h ⊗ ξ) =
〈ζ, ξ〉h.)
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It is easy to see that τ(e)τ(e)∗ = IHv and so,∑
e∈r−1(v)

t1(δe)t1(δe)
∗ =

∑
e∈r−1(v)

t(δe)t(δe)
∗ + ∆vτ(e)τ(e)∗∆v

=
( ∑
e∈r−1(v)

t(δe)t(δe)
∗
)

+ |r−1(v)|∆2
v

= ρ(δv)

This establishes one of the main conclusions of this proposition and
gives that

[t1(e)∗t1(f)]e,f∈r−1(v) ≤ [ρ1(〈e, f〉]e,f∈r−1(v)

as in the start of the proof. Thus, by [26, Lemma 3.5] again, (ρ1, t1,H1)
is a completely contractive representation of (X, C).

Lastly we must establish the covariance relations. For any g ∈ G
recall that αg acts as a unitary between [E(v, w)] = [{e1, e2, . . . , en}]
and [E(αg(v), αg(w))] = [{f1, f2, . . . , fn}]. This implies that

n∑
i=1

t(αg(δei))t(αg(δei))
∗ =

n∑
i=1

t
( n∑
j=1

(αg)j,iδfj
)
t
( n∑
k=1

(αg)k,iδfk
)∗

=
n∑

j,k=1

(
n∑
i=1

(αg)j,i(αg)k,i

)
t(δfj)t(δfk)

∗

=
n∑
j=1

t(δfj)t(δfj)
∗

and so

u(g)(ρ(δv) −
∑

e∈r−1(v)

t(δe)t(δe)
∗)

=
(
ρ(δαg(v))−

∑
e∈r−1(v)

t(αg(δe))t(αg(δe))
∗)u(g)

=
(
ρ(δαg(v))−

∑
w∈s(r−1(v))

∑
e∈E(v,w)

t(αg(δe))t(αg(δe))
∗
)
u(g)

=
(
ρ(δαg(v))−

∑
w∈s(r−1(αg(v)))

∑
f∈E(αg(v),w)

t(δf )t(δf )
∗
)
u(g)

=
(
ρ(δαg(v))−

∑
f∈r−1(αg(v))

t(δf )t(δf )
∗
)
u(g).

By a standard functional analysis trick,

u(g)∆v = ∆αg(v)u(g).
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Furthermore, if h⊗ ξ ∈ Hv,w, then

τ(αg(e))u1(g)(h⊗ ξ) = τ(αg(e))(u(g)h⊗ αg(ξ)
= 〈αg(e), αg(ξ)〉u(g)h

= 〈e, ξ〉u(g)h = u(g)τ(e)(h⊗ ξ).
Hence,

t1(αg(δe))u1(g) =
[
t(αg(δe)) ∆αg(v)τ(αg(e))

] (
u1(g) |Hw⊕H+

w

)
=
[
u(g)t(δe) ∆αg(v)u(g)τ(e)

]
= [u(g)t(δe) u(g)∆vu(g)τ(e)]

= u1(g)t1(δe).

It is also immediate that

u1(g)ρ1(δv) = ρ1(δαg(v))u1(g).

Therefore, (ρ1, t1, u1,H1) is a completely contractive representation of
((X, C),G, α).

Theorem 5.2. Let (X, C) be the graph correspondence of (E, V ). Every
completely contractive representation of ((X, C),G, α) can be dilated to
a Cuntz-Pimsner representation.

Proof. Let (ρ0, t0, u0,H0) be a completely contractive representation
of ((X, C),G, α). Recursively use the previous proposition to gener-
ate a sequence of completely contractive representations (ρn, tn, un,Hn)
such that for each n ≥ 1, Hn−1 ⊂ Hn, (ρn, tn, un,Hn) is a dilation of
(ρn−1, tn−1, un−1,Hn−1) and for every v ∈ V such that 1 ≤ |r−1(v)| <∞
we have ∑

e∈r−1(v)

tn(δe)tn(δe)
∗ = ρn−1(δv).

Thus, define H′ = ∪∞n=0Hn and

ρ′(c)|Hn = ρn(c), t′(ξ)|Hn = tn(ξ), and u′(g)|Hn = un(g).

Hence, (ρ′, t′, u′,H′) is a dilation (ρ0, t0, u0,H0) to a completely con-
tractive representation such that for every v ∈ Vfin∑

e∈r−1(v)

t′(δe)t
′(δe)

∗ = sot− lim
n→∞

∑
e∈r−1(v)

t′(δe)IHnt
′(δe)

∗

= sot− lim
n→∞

∑
e∈r−1(v)

tn(δe)tn(δe)
∗

= sot− lim
n→∞

ρn−1(δv)

= ρ′(δv).
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According to [26, Definition 5.3] the representation (ρ′, t′,H′) is JX-
coisometric, i.e., Cuntz-Pimsner in the sense of Katsura but without
being isometric.

Lastly, by Theorem 4.6 there is a unique minimal isometric coex-
tension of (ρ′, t′, u′,H′) to (ρ′′, t′′, u′′,H′′). By [26, Corollary 5.21] this
coextension process preserves the property of being JX-coisometric.
Therefore, (ρ′′, t′′, u′′,H′′) is an isometric and JX-coisometric dilation
of (ρ0, t0, u0,H0). We have therefore obtained a Cuntz-Pimsner repre-
sentation of ((X, C),G, α).

We now obtain the following which is valid for arbitrary graph cor-
respondences.

Corollary 5.3. Let (X, C) be the graph correspondence of a directed
graph (E, V ) and ((X, C),G, α) a C∗-correspondence dynamical system,
that is, α is a generalized gauge action. Then all relative crossed prod-
ucts for (T +

X ,G, α) are canonically isomorphic via completely isometric
maps.

Proof. This is an immediate consequence of Theorem 5.2 and Theo-
rem 2.4.

With an added assumption we obtain a positive solution to the Hao-
Ng isomorphism problem.

Corollary 5.4. Let (X, C) be the graph correspondence of a row-finite
directed graph (E, V ) and ((X, C),G, α) a C∗-correspondence dynamical
system. Then

OXoαG ' OX oα G.

Proof. By the description of JX mentioned at the start of this section
and Theorem 3.1, the graph correspondence of a row-finite directed
graph (E, V ) is hyperrigid. The conclusion follows from Theorem 4.9.
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