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ABSTRACT. We revisit a central result of Muhly and Solel on operator
algebras of C*-correspondences. We prove that (possibly non-injective)
strongly Morita equivalent C*-correspondences have strongly Morita
equivalent relative Cuntz-Pimsner C*-algebras. The same holds for
strong Morita equivalence (in the sense of Blecher, Muhly and Paulsen)
and strong A-equivalence (in the sense of Eleftherakis) for the related
tensor algebras. In particular, we obtain stable isomorphism of the
operator algebras when the equivalence is given by a o-TRO. As an ap-
plication we show that strong Morita equivalence coincides with strong
A-equivalence for tensor algebras of aperiodic C*-correspondences.

1. INTRODUCTION

Introduced by Rieffel in the 1970’s [45,46], Morita theory provides an
important equivalence relation between C*-algebras. In the past 25 years
there have been fruitful extensions to cover more general (possibly nonselfad-
joint) spaces of operators. These directions cover (dual) operator algebras
and (dual) operator spaces, e.g. [3,4,6,7,16—22,34]. There are two main
streams in this endeavour. Blecher, Muhly and Paulsen [6] introduced a

strong Morita equivalence S%E, along with a Morita Theorem I, where the
operator algebras A and B are symmetrically decomposed by two bimodules
M and N, i.e.

A~M @ N and B~ N®y M.

Morita Theorems IT and III for *M" were provided by Blecher [3]. On the

other hand Eleftherakis [16] introduced a strong A-equivalence £ that is
given by a generalized similarity under a TRO M, i.e.

A>MoBo M* and B~M*"®@ AR M.

Although they coincide in the case of C*-algebras, relation S strictly
stronger than relation X Tndeed "X does not satisfy a Morita Theorem
IV, even when X and Y are unital [6, Example 8.2]. However a Morita

Theorem IV holds for & on o-unital operator algebras [19, Theorem 3.2].
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The Morita context can be modified to cover other classes as well. In their
seminal paper, Muhly and Solel [41] introduced a strong Morita equivalence
for C*-correspondences and formulate the following programme for the ten-
sor algebras of C*-correspondences:

Rigidity of SME. Let 7 and 77 be the tensor algebras of the C* -

correspondences F and F. When is it true that F SNE p s equivalent to
Ti SNE T
The origins of this programme can be traced in the work of Arveson [1] on
classifying dynamics by nonselfadjoint operator algebras. In this category

SNE is seen as a generalized similarity, rather than a decomposition'. Muhly
and Solel [41] provide an affirmative answer for injective and aperiodic C*-

correspondences. The main tool for the forward direction is to establish SAE
for the Toeplitz-Pimsner C*-algebras T and Tr. An elegant construction
of matrix representations for 7z and 7 is used in [41] to accomplish this.
Aperiodicity is used for the converse to ensure that an induced Morita is
implemented fiber-wise.

Our first motivation for the current paper was to remove the injectivity
assumption for the forward direction of SME-rigidity. In fact we accomplish
more by directly showing an equivalence implemented by the same TRO

between representations. As a consequence SNE on C*-correspondences im-
plies equivalence of all related operator algebras, i.e. their tensor algebras
and their J-relative Cuntz-Pimsner algebras, for J inside Katsura’s ideal
(Theorem 4.4). We highlight that the converse of the rigidity question has

been exhibited to be considerably difficult even when SNE s substituted
by honest isomorphisms. In this reduced form, it is better known as the
Conjugacy Problem and it has been answered in several major classes of
C*-correspondences, e.g. [10—13,15,31,32,47] to mention but a few.

We derive our motivation also from further researching SME and R . The
differences between these relations are subtle and it is natural to ask when
they actually coincide. We show that this is true for tensor algebras of
aperiodic non-degenerate C*-correspondences. In particular we prove that
E X" Fif and only if 7,7 & 7;% if and only if 7,7 *N° T (Corollary 5.4).

This is quite pleasing as we incorporate a big class of operator algebras with

approximate identities. Recall that SME and X are shown to be different

even for unital operator algebras.

Our results read the same if "% is substituted by stable isomorphisms
(Corollary 5.1). This follows directly from our analysis and the observation

that stable isomorphism coincides with SNE by a o¢-TRO. Notice that we
do not make a distinction between unitary equivalence and isomorphism

1 Decompositions in this category generalize the shift equivalences for matrices. This
stream of research follows a completely different path exploited by Muhly, Pask and Tom-
forde [39], and Kakariadis and Katsoulis [29].
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in the category of operator bimodules. In particular we show that they
coincide for C*-correspondences by viewing the linking algebra as the C*-
envelope of an appropriate subalgebra (Proposition 3.1). Our methods then
use a fundamental result of Blecher [2] which states that the stabilized
tensor product coincides with the balanced Haagerup tensor product for
non-degenerate C*-correspondences.

Although we include it in all statements, it worths mentioning here that
C*-correspondences (and thus all representations) are considered to be non-
degenerate. This is not an artifact for convenience. Strong Morita equiva-
lence automatically induces non-degeneracy of the C*-correspondences.

2. PRELIMINARIES

The reader should be well acquainted with the theory of operator alge-
bras [5,43]. For an exposition on the C*-envelope s/he may refer to [28].
Furthermore the reader should be familiar with the general theory of Hilbert
modules and C*-correspondences. For example see [37,38] for Hilbert mod-
ules and [35,40] for C*-correspondences. We will give a brief introduction
for purposes of notation and terminology.

2.1. C*-correspondences. A C*-correspondence 4 Xp is a right Hilbert
module X over B along with a *-homomorphism ¢x: A — L(X). It is called
injective (resp. mon-degenerate) if ¢x is injective (resp. non-degenerate).
It is called full if (X, X) := span{(x,y) | z,y € X} = B. It is called an
imprimitivity bimodule (or equivalence bimodule) if it is full, injective and
bx(4) = K(X).

A (Toeplitz) representation (m,t) of 4 X4 on a Hilbert space H, is a pair
of a *-homomorphism 7: A — B(H) and a linear map t: X — B(H), such
that

m(a)i(z) = t(¢x(a)(x)) and t(z)"t(y) = 7({z,y)x)
for all a € A and =,y € X. A representation (,t) automatically satisfies
t(x)m(a) = t(xa) for all z € X, a € A.

Moreover there exists a *-homomorphism :: K(X) — B(H) such that
Yi(Ozy) = t(x)t(y)* [26]. A representation (m,t) is said to be injective
if 7 is injective. If (7,t) is injective then ¢ is an isometry and v is injective.

A crucial remark made by Katsura [35] is that a € ker ¢% N o5 (K(X))
whenever 7(a) € ¥4 (K(X)) for an injective representation (m,t) of 4X4.
This completes the analysis of Muhly-Solel [40] on covariant representations,

by covering also the non-injective cases. In more details let J be an ideal in
o5 (K(X)). A representation (,t) is called J-covariant if

UYi(px(a)) =7(a) for all a € J.

The representations (7,t) that are Jx-covariant for Katsura’s ideal

Jx = ker ¢ N oy (K(X)),
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are called covariant representations. The ideal Jx is the largest ideal on
which the restriction of ¢ x is injective. An example of a covariant represen-
tation is given by taking the quotient map with respect to IC(F(X)Jx) on
the Fock representation [35].

The Toeplitz-Pimsner algebra Tx is the universal C*-algebra with respect
to the Toeplitz representations of 4 X 4. The J-relative Cuntz-Pimsner al-
gebra O(J, X) is the universal C*-algebra with respect to the J-covariant
representations of 4 Xa. The Cuntz-Pimsner algebra Ox is the universal
C*-algebra with respect to the covariant representations of 4 X 4. The ten-
sor algebra Ty in the sense of Muhly-Solel [40] is the algebra generated by
the copies of A and X inside Tx.

Due to the Fock representation, the copies of A and X inside Tx are
isometric. In addition T; is embedded completely isometrically in Oy, and
Cznv(T; ) ~ Ox. This was accomplished under certain conditions by Fowler-
Muhly-Raeburn [23]; all assumptions were finally removed by Katsoulis-
Kribs [33]. Furthermore Kakariadis-Peters [30] have shown that J C Jx if
and only if A — O(J, X) if and only if 7y < O(J, X). The proof follows
by [33] and the diagram

Tx Ox

\/

O(J, X)

where the arrows indicate canonical x-epimorphisms. Therefore the J-
relative algebras for J C Jx are the only Pimsner algebras that contain
an isometric copy of the C*-correspondences. Beyond this point we “lose”
information of the original data.

We say that a representation (7, t) admits a gauge action {3, }.cr if every
B is an automorphism of C*(7,¢) such that

(2.1) B.(n(a) = m(a) and B.(t(x)) = 2t(x)

for all @ € A and =z € X, and the family {f.}.er is point-norm contin-
uous. Since C*(m,t) is densely spanned by the monomials of the form
t(z1) - t(xn)t(ym)™ - t(y1)*, an e/3-argument implies that if {5,}.er is
a family of x-homomorphisms of C*(r,t) that satisfies equation (2.1) then
it is point-norm continuous.

The Gauge-Invariant-Uniqueness-Theorem (GIUT) is a fundamental re-
sult for lifting representations of the C*-correspondence to operator algebras.
This type of result was initiated by an Huef and Raeburn for Cuntz-Krieger
algebras [25, Theorem 2.3]. Generalizations (under certain assumptions on
the C*-correspondence) were given by Doplicher-Pinzari-Zuccante [14, The-
orem 3.3], Fowler-Muhly-Raeburn [23, Theorem 4.1], and Fowler-Raeburn
[24, Theorem 2.1]. All assumptions were removed by Katsura [35, The-
orem 6.2, Theorem 6.4] by using a sharp analysis of cores and a concep-
tual argument involving short exact sequences. Another proof for Ox was
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provided by Muhly-Tomforde [42] by using a tail adding technique. A re-
markable extension to the much broader class of pre-C*-correspondences is
given by Kwasniewski [36]. The second author [27] gave an alternative
proof of the GIUT that treats all J-relative Cuntz-Pimsner algebras with
J C Jx: a representation (mw,t) of aXa lifts to a faithful representation
of O(J,X) if and only if (w,t) admits a gauge action, w is injective and
J ={{a € Al r(a) € Y (K(X))}. Consequently if (7,¢) admits a gauge
action and 7 is injective then C*(w,t) ~ O(J, X) for

J={ae Afn(a) € ¢4(K(X))}.

We remark that when 4 X 4 is non-degenerate then it suffices to consider
just the representations (m,t) with 7 non-degenerate. Indeed it is easy to
check that m(A) carries a c.a.i. for C*(7,t) and we can pass to an appropriate
Hilbert subspace where 7 acts non-degenerately. This will always be the case
in the current paper.

2.2. Tensor products. Let us recall the following results of Blecher [2]
concerning tensor products. For this subsection let us fix a right A-module X
and a C*-correspondence 4 Zg. We further assume that Y is non-degenerate;
otherwise all that follow hold for the essential part [¢y (A)Yr”'H of Y.

Blecher [2, Theorem 3.1] has shown that the right Hilbert modules are
asymptotic summands of the free modules C,(A) = > | A, ie. for X4
there are completely contractive A-module maps

(;Sa: X — Cn(a)(A) and wa: Cn(a) (A) - X

such that ¥n¢, — idx strongly. One of the main consequences [2, Theorem
4.3] is that the stabilized Haagerup tensor product X ®’}1 Y is completely
isometrically isomorphic to the stabilized Hilbert-module tensor product
X ®4 Y. This is derived by following the diagonals in the diagram

Xehy i Xehy
\ T~
\ o ™ s %
‘ $ Cn(a)(y) "
‘ (o3 \\ e
X®4Y X®aY

and using the fact that Cp,(A) @4 Y ~ C,(Y) ~ Cp(A) ®4 Y completely
isometrically.

2.3. Ternary rings of operators. A ternary ring of operators (TRO) M
is a subspace of some B(H) such that MM*M C M. It then follows that
M is an imprimitivity bimodule over A = [MM*] "'l and B = [pr*n)7 1.
Every C*-correspondence X (on some A) is a TRO. However it gives an
equivalence between K(X) and (X, X) which may differ from A in principle.
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Moreover, for the TRO M there two nets

kx

It
a; = me(mf)* and by = Z(nf‘)*nf‘
=1 =1
for mf,n} € M such that all [mf, m}, ..., mj] and [(n})*, (n3)*,. .., (n} )*]

are row contractions and

lign agm =m and li)r\n mby =m

for all m € M; see for example the proof of [6, Theorem 6.1]. In partic-
ular the C*-algebras A = [MM*]” Il and B = [M*M]7I are o-unital if
and only if the nets (a;) and (b)) can be chosen to be sequences; see [8,
Lemma 2.3]. If any of the above happens then we will say that M is a o-
TRO. These approximate identities provide an efficient tool for the study of
strong Morita equivalence. We include the following well-known technique
for future reference.

Lemma 2.1. Let M C B(H,K) be a TRO and let A = [MM*] 7. Let
X C B(K) be an operator right module over A. Then X @ M ~ [XM]fH'”.

Proof. Let the completely contractive A-balanced bilinear map X x M —

(XM ]7”'H defined by (z,m) + xm. This induces a completely contractive
map

o: X WM~ XM 204 m — 2m.
Let n} = [(n})*, ..., (nzk)*] be a net provided by M;ie. n} € M, |ny] <1
and

li;\nmnf\n,\ =m for all m € M.

Fix z1,...,z, € X and my,...,m, € M. For £ > 0 there exists A such that

n

n n
1Y zi@mill —e < 1)z ® (minjn)| = || Y (zimin}) @ na|
i=1 i=1

i=1
n n

<UD mmani ) < 1>zl
i=1 i=1

Therefore ® is isometric. A similar argument holds for the matrix norms
and the proof is complete. [ |

2.4. Strong Morita equivalence for operator algebras. There is a rich
Morita theory for C*-algebras produced by Rieffel [45], Brown [8] and
Brown-Green-Rieffel [9]. Morita theory extends in various ways to non-
selfadjoint operator algebras. One of the main ingredients concerns the
form of the decomposition of two algebras. (Notice here that we do not
assume a priori that the operator algebras have an approximate unit.)
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Definition 2.2. Let A and B be operator algebras. We say that they

are decomposable (notation, A 9 B) if there are non-degenerate completely
isometric representations

a: A— B(H) and p:B— B(K)
and bimodules o4y Mgg) € B(K, H) and g)No(a) € B(H, K) such that
a(A) = [M - N]_”'” and ((B) =[N - M]—\HI )

By definition 4 implies a Morita context (A, B, M, N, (-,),[-,]) that sat-
isfies just property (A) in the sense of Blecher-Muhly-Paulsen [6]. It is

unclear (and probably not true) that L is transitive in general. Remark-

ably though L is an equivalence relation on unital operator algebras [6,
Proposition 3.3].
If a Morita context satisfies properties (A) and (G) of [6, Definition 3.1]

then A and B are strongly Morita equivalent (notation, A SE B). In fact
Blecher-Muhly-Paulsen [6] show that when A and B have c.a.i.’s then being
strongly Morita equivalent coincides with having

A~ M@EN and B~ N4 M.

This depends on an elegant decomposition of the approximate unit. Ap-
parently the existence of approximate units is necessary. It can be shown

that " is equivalent to having < and row contractions from M and N
that reconstruct c.a.i.’s for A and B. Strong Morita equivalence for ap-
proximately unital operator algebras satisfies the first three parts of Morita
Theory [3,6]. In particular, two approximately unital operator algebras
are strongly Morita equivalent if and only if their categories of left operator
modules are equivalent (via a completely contractive functor) [6].
Eleftherakis [19] introduced a stronger notion of equivalence. Two oper-

ator algebras A and B are strongly A-equivalent (notation, A S B) if there
are non-degenerate completely isometric representations

a: A— B(H) and f: B — B(K)
and a TRO M C B(K, H) such that
a(A) = (MEEB)M T and - 5(B) = [Mra(A)m] 7

In [19] it is shown that L is an equivalence relation. Even though R s

originally defined on approximately unital operator algebras in [19], the

elements we record here still hold for non-unital cases. This is exhibited in
A .

[20] where ~ is considered for operator spaces.

As noted ~ and "™ coincide with the usual strong Morita equivalence

when restricted to C*-algebras. However a fundamental difference between
A SME . . .
~ and "~ concerns stable isomorphisms when passing to general operator

spaces. Recall that A and B are stably isomorphic if A ® K ~ B® K by
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a completely isometric isomorphism, where K is the compacts on ¢ and
the tensor product is spatial. Morita Theorem IV of [9] implies that Morita
equivalence and stable isomorphism coincide when A and B are o-unital C*-

algebras. This is not true for SNE on nonselfadjoint operator algebras, even
when the operator algebras are unital [6, Example 8.2]. On the other hand

it is shown in [19, Theorem 3.2] that £ on operator algebras coincides

with stable isomorphism under the appropriate o-unital condition. As a

A . SME
consequence ~ is strictly stronger than "~

3. BIMODULE STRUCTURE

A key role in Morita Theory is played by the linking algebra. This con-
struction induces an operator bimodule structure on C*-correspondences.
In this section we use it to show that isomorphism of C*-correspondences
is preserved when passing to the category of operator bimodules, and vice
versa.

Every right Hilbert module X 4 comes with an operator module structure.
This can be verified by seeing X 4 inside its augmented linking algebra

A X* a y*
[X E(X)} = {L} u} lac A,z,y e X,ue L(X)}
where X* is the adjoint module (X, A) of X and the multiplication rule is
given by

a1 yi| fa2 wi| _ |arae + (yi,@2)  (y207)" + (us(y1))*
T1 ur| |T2 u x1a2 + ui(x2) Oz, ,ys + UUL

The augmented linking algebra becomes a C*-algebra over an operator norm
when the matrices are seen to act on the right Hilbert module A + X. The
linking algebra is defined as the C*-subalgebra
A X
2(x) = [X ,C(X)] |
When X is a C*-correspondence over A then it admits the operator bimodule
structure by viewing the left action as the matrix multiplication

0 o 10 0 100
dx(a)x 0 0 o¢x(a)| |z O]
Proposition 3.1. Let 4 X4 and gYp be C*-correspondences. Then s XA

and gYp are completely isometric as operator bimodules if and only if 4 X a
and gYp are unitarily equivalent as C*-correspondences.

The first observation is that if v € £(X,Y) is invertible then the polar
decomposition v = ulv| gives a unitary v € L(X,Y). If v is further a left
module map then so is u. Therefore we now restrict our attention just to
right Hilbert modules. We will use the following lemma.
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Lemma 3.2. Let X4 be a right Hilbert module. Then we have that

Cind |3 o) = 2000

Proof. For simplicity let us write A(X) for the operator algebra [; 8}
It is clear that £(X) is a C*-cover of A(X). Therefore there exists a unique
*-epimorphism ®: £(X) — C¥  (A(X)) such that

env
a 0

(I)([x O]) =i(a)+i(z) forallae A,z e X

for the embedding i: A(X) — C%,
Civ(A(X)) acts non-degenerately.
Since A acts non-degenerately on the right of X and K(X) acts non-
degenerately on the left of X we can choose a c.a.i. for £(X) of the form
(a;i @ k;) for a c.ad. (a;) of Aand a c.ai. (k;) for (X). Since ® is surjective
then (®(a;) + ®(k;)) is a c.ad. for Cf, (A(X)). Write

P :=sot-lim®(a;) and @ = sot-lim ®(k;).

(A(X)). Let H be a Hilbert space where

Therefore we obtain ®(z) = Q®(z)P for all x € X. We write
T=PO[aP, t=QP|xP, ¥ =QP[xx)Q-

Now P and @ are complementary projections and thus we get that

a y*i _ [7(a) t(y)”
@([m k:}) = [t(az) w(k‘)} :
It is clear that 7 and 1 are *-homomorphisms such that ¥ (k)t(x)m(a) =

) =
t(k(z)a) and that both 7 and t are complete isometries as A, X C A(X).
We want to show that ker ® = (0). To reach contradiction let

04 f= B yk] € ker .

By applying ® on f*f and restricting to the (1, 1)-entry we get that 7(a*a+
(x,z)) = 0. But 7 is a complete isometry as A C A(X) and thus a = 0 and
x = 0. Similarly applying to ff* gives that y = 0. By applying on fg for
any g € £(X) we also get that ¢(k(z)) = 0 for all z € X. Hence we have
that k(z) = 0 for all z € X, i.e. & = 0. This is a contradiction, and the
proof is complete. ]

Proof of Proposition 3.1. If there is a unitary equivalence (v, u) then it is
clear that £(X) and £(Y) are *-isomorphic. Hence X and Y are completely
isometric as operator bimodules.

Conversely suppose there is completely isometric right module map (v, u);
we need to show that u is adjointable. As in [5, Remark 3.6.1] we get the
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completely isometric isomorphism

it AX) = A(Y): B 8} ~ DEZ% 8] '

By Lemma 3.2 then the linking algebras are x-isomorphic by some ®. Let
v:Y — X such that
0 0 1,10 0
= .
[v@) 0] ([y 0})
Then we obtain

(@, 0(y)x) = ez, 0(y) x) = (2)"y = (u(@),y)y

where we omit the zero entries of the matrices. Then u* = v and the proof
is complete. ]

Remark 3.3. We remark that Proposition 3.1 does not hold for bounded
bimodule maps. Dor-On [15] illustrates this by examining a particular class
of C*-correspondences related to weighted partial systems. In particular it
is shown that unitary equivalence and bounded isomorphisms correspond to
different notions of equivalences of the original data. Even more they reflect
isometric and bounded, respectively, isomorphisms of the tensor algebras.

4. STRONG MORITA EQUIVALENCE FOR C*-CORRESPONDENCES

Muhly and Solel [41] initiated the study of strong Morita equivalence for
C*-correspondences. Namely 4E4 and gFp are strongly Morita equivalent

(notation, E e F) if there exists a TRO 4Mp such that
E@QasM~M@gpF and M*@QisE~F g M*.

Since the tensor norm is sub-multiplicative we have that strongly Morita
equivalent C*-correspondences must be non-degenerate. Furthermore strong
Morita equivalence coincides with having a TRO 4 Mp such that

E~M@pF®gM* and F~M"®4sFE ®4 M.

Again F and F must be non-degenerate. On the other hand if £ and F
are non-degenerate then it is easy to check that the E-equations give the
F-equations.

In analogy to SNE on C*-algebras, we obtain an equivalence between
representations of strongly Morita equivalent C*-correspondences.

Proposition 4.1. Let 4E4 and pFp be strongly Morita equivalent by a
TRO M. Then for every non-degenerate (injective) representation (m,t)
of AEA on a Hilbert space K there exists a non-degenerate (resp. injective)
representation (o, s) of pFp on a Hilbert space H and a TRO-representation
¢ of M in B(H,K) such that

t(E)] M = [p(M)s(F)p(ar)] I
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and
[s(F)] 1 = [p(M)*t(E)p(2)) I

If (mw,t) admits a gauge action then so does (o, s).

Proof. To avoid technical notation we show the dual statement. That is,
given a a non-degenerate (injective) representation (o, s) of pFp acting on
H, we will construct the required (,t) and ¢. Let K = M ®p H and define
the representation

¢: M — B(H, K) such that ¢(z){ =z ® .

Then ¢ is a TRO representation of M. Furthermore we have an induced
non-degenerate (resp. injective) representation

m: A — B(K) such that 7(a)r ® £ = (ax) ® £.
Since E ~ M ®p F ® g M* we can define
t: £ — B(K) such that {(m® f @ n")z @ =m® (s(f)o(n*z)§).
Existence of t follows once we show that
t(m1 ® fr@ny)*t(me ® fo @ny) = 7((m1 ® fL @ ni,ma ® fo @ny).

In this case t will be norm-decreasing on finite sums of m® f ®n* € F and
thus can be extended to the entire of E. A straightforward computation
reveals that

(t(m1 ® f1 ®@ni)r @ &1, t(me ® fo @ n5)ra ® &2) ) =
= (m1 ® (s(f1)o(niz1)81), me ® (s(f2)o(n3w2)&2))
= (s(f1)o(njz1)&1, o(mime)s(f2)o(nyz2)se) g
= (&1, o(zin1 (f1, mima fo) n5z2)82) o
and on the other hand we have that
(21 ® &, m((m1 ® fr ®@ni,me @ fo @n3)) (w2 ® &2)) i =
= (21 ® &1, m(na (fi, mime fa) ny) (w2 ® &2))
= (z1 ® &1, (n1 (f1, mimafa) n5w2) @ &2) i
= (&1, o(zina (f1, mima fo) n3x2)&2) yy -
By construction we have that ¢(m)s(f)o(n)* = t(m @ f ® n*) and that
d(n)*t(e)p(m) = s(n* ® e ® m). Consequently we obtain
[oM)s(F)p(M) I € e(e))
and
(o t(B)$(M)) I C sy I
Since A and B act non-degenerately we obtain equalities.

To avoid technical notation we will show the second item just when =
is injective (and thus ¢ is isometric). For the general case substitute E
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by [t(E)]""l and F by [s(F)]7Il in what follows. We will also make the
simplifications

t(E)=FE C £(E) C C*(m,1).
Suppose that (m,¢) admits a gauge action {f3,}. Then every §, induces a

representation (5,|4, 8:|g) on E. Since F ~ M* @4 E ®4 M we can define
the mapping

v, =idpy+ ® B, ®idpy: F — F

where for simplicity we don’t write the unitary of the equivalence. Then
(idp,~,) induces an injective representation of F. We have to show that it
induces a gauge action on the entire C*(o,s). For the TRO M fix the net
n} = [(n))",..., (ngx)*] such that

h{nmn’;\nA =m for all m € M.

Recall that every n) is a contraction. Let the completely contractive maps
¢x: C*(0,5) = My, (C*(m,t)) such that ¢\ = ad gy, -

and
Yt My, (C*(m,t)) — C*(0, s) such that ) = ady(,) -

Then for every f € C*(o, s) of the form

f=(my) (&) ... t(&)t(m)™ ... t(m)*d(m2)

with &;,n; € E and my, mg € M we get that limy ¢¥x¢(f) = f. By iterating
we can extend v, to be defined on all elements f of this form and so that

DoAY (f) = (B @ idk, )or(f).

Therefore we obtain

lv= (A1 = Tim [[¥adara () < limksup [oav=(H)l
= limsup 1(8: @ idr, )oa (I < 1imAsupH¢A(f)H < [IfIF-

Applying for vz gives ||v.(f)|| = || f]|. Linearity allows to use the same argu-
ments when we consider finite sums of elements of the form of f. However
such finite sums span a dense subspace of C*(o, s) and thus v, extends to a
«-isomorphism of C*(o, s). An ¢/3 argument shows that {7} is in particular
point-norm continuous and the proof is complete. ]

This construction respects J-covariance of the representations.

Proposition 4.2. Let 4FE4 and pFp be strongly Morita equivalent by a
TRO M. Let (m,t) be a non-degenerate representation of aEa and let
(0,s) be the non-degenerate representation constructed in Proposition 4.1.
If C*(m,t) ~ O(J,E) for J C Jg then M*JM C Jp and C*(o,s) ~
O(M*JM,F).
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Proof. First we show that M*JgM = Jr. One consequence of the Gauge-
Invariant-Uniqueness-Theorem, as presented in [27], is that

Jp={ae Aln(a) € (K(E))}
for any non-degenerate injective covariant (m,t) that admits a gauge action.
Fix such a (m,t), so that O = C*(w,t). Let (0, s) be as in Proposition 4.1.
By construction we get that

[¢(M)*t(E)t(E)*¢(M)]*H h_ ) M)*t(E)W(A)t(E)*qs(M)]*”'H

(
O(M) HE)$(M)$(M)*t(E)* ¢(M)] "]

=

=

= [t(F)t(F)7 I

As t(E)t(E)* is dense in ¢;(IC(E)), and likewise for F', we get that

Vs(K(F)) = [6(M) (K (E))$(M)] T

In a similar way we obtain the dual
U(K(E)) = [o(M)s(K(F))g(M)*] I
For b = m*an € M*JgM we then get
MbM* € [MM*JgM M+~ = Jg
as [MM*]~I'l = A. Therefore we have
S(M)o(b)p(M)* = w(MbM*) C (K (E)) = [¢(M)pa(K(F))p(M)*] .

Consequently we derive

0 (BbB) = [¢(M)*o(M)a(b)s(M)*e(M)] " €y (K(F)),

and hence o(b) € 1s(IC(F')). Since o is injective we then automatically get
that b € Jp; thus MJgM* C Jp. In a dual way we obtain M*JpM C Jg.
Combining those gives the required equality. Now for b € Jr we have
MbM* € Jg and thus m7(MbM*) € ¢ (K(FE)). Following the same ar-
guments as above we obtain that o(b) € ¥s(IC(F')) and therefore (o, s) is
covariant.

Once we deal with Jg we can run the same arguments to complete the
proof. This follows by a consequence of the Gauge-Invariant-Uniqueness-
Theorem, as presented in [27], i.e. if J C Jg then

J={aeAln(a) € y(K(E))}
for any non-degenerate injective J-covariant (7,t) that admits a gauge ac-
tion. The key is to notice that if J C Jg then M*JM C M*JgM = Jp
from the first part. Now the arguments follow mutatis mutandis. ]

The following corollary gives a necessary and sufficient condition for strong
Morita equivalence in the spirit of strong A-equivalence [19].

Corollary 4.3. Let sAE4 and gFp be non-degenerate C*-correspondences.
Then aE A and gFp are strongly Morita equivalent if and only if there is
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(i) @ non-degenerate faithful CES-representation (w,t,7) of AEA on a
Hilbert space K ;
(ii) a non-degenerate faithful CES-representation (o,s,0) of pFp on a
Hilbert space H; and
(iii) a« TRO M C B(H, K) (possibly not on A and B) such that

tE) = [Ms(F)M* M and  s(F) = [Me(B)M) I

and

m(A) = MoB)M* )M and o(B) = [M*x(A)M) I
SME

Proof. For the forward implication suppose that F "~~ F. Let £(F) act
non-degenerately and faithfully on some K. Then there is an induced non-
degenerate representation (m,t) of the C*-correspondence E which trivially
is a faithful CES-representation. An application of Proposition 4.1 finishes
this direction.

Conversely, notice that by substituting M with [r(A)Mao(B)] "l we get
an A-B-imprimitivity bimodule for which the relations continue to hold.
Therefore without loss of generality we may assume that M is an A-B-
imprimitivity bimodule. By Lemma 2.1 we then obtain

E~MehFeh M* and F~ M @4 Eel M

as operator spaces. However the Haagerup tensor product coincides with
the interior tensor product by [2, Theorem 4.3]. Therefore we get that

E~M@gFogM* and FoM"®@4FE Qs M

as operator spaces. Notice that the isomorphisms are completely isometric
isomorphisms in the operator modules category. Therefore Proposition 3.1
applies to give that the isomorphisms induce unitary equivalences, and the
proof is complete. ]

Theorem 4.4. Let 4E4 and gFp be strongly Morita equivalent C*-corre-
spondences. Then:

(i) Tp°~" Tr.
(i) O(J,E) SuE O(M*JM,F) for every J C Jg.
(iii) Og "X¥ Op.

T ~ T in the sense of Eleftherakis [19].
TE SUE T; in the sense of Blecher-Muhly-Paulsen [6].

(iv
(v

Proof. For items (i)-(iii) it suffices to show item (ii). Fix a non-degenerate
injective representation (m,t) of 4E4 such that C*(w,t) ~ O(J, E). By the
Gauge-Invariant-Uniqueness-Theorem then (7, ¢) is an injective J-covariant
representation that admits a gauge action. By Proposition 4.1 we get an in-
jective representation (o, s) for pFp that admits a gauge action. Proposition
4.2 implies that (o, s) is M*JM-covariant and therefore O(M*JM, F) ~

)
)
)
)
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C*(o,s) by the Gauge-Invariant-Uniqueness-Theorem. A direct computa-
tion gives that

[6(M) t(E2)p(M)] I = (o) t(B)m(A)t(E)p(ar)) I
*t

=
= [$(M)*t(E)$(M)(M)*t(E)p(M)]
= t(F®?).

Similarly we have this for all tensor powers and their adjoints. Since C*(o, s)
is generated by t(F@*)t(F®)* for k,1 € Z, we get that

C*(0,5) = [p(M)*C*(m, t)(M)] 1.

Likewise we get the dual C*(w,t) = [¢(M)*C* (o, s)qS(M)]_”’H. Therefore we

deduce that O(J, E) "X° O(M*JM, F).

Recall that T =~ alg{m(A),t(E)} and that T ~ alg{o(B),s(F)} since
J C Jg and M*JM C Jr. Notice that the algebraic relations above imply
also that

M
M

alg{o(B), s(F)} = [¢(M)*alg{r(A), t(E)}p(M)]

as well as the dual relation. Therefore we obtain 7'5 S 7'F+ as operator

algebras. By [19] we then get that Tg SAE 7’; since these algebras attain
approximate units. ]

Remark 4.5. An alternative proof of item (iii) of Theorem 4.4 can be given
by using the C*-envelope. Item (i) implies item (iv). In particular we have

that T, S T4 in the category of operator spaces [20]. Therefore [20,
Theorem 5.10] implies that ’TET and ’7? have strongly A-equivalent TRO
envelopes. However TRO envelopes for operator algebras coincide with their

C*-envelopes. Since strong A-equivalence for C*-algebras is Rieffel’s strong

Morita equivalence [20, Corollary 5.2], then [33] implies that Og NE 0.

5. APPLICATIONS

5.1. Stable isomorphism. Theorem 4.4 implies that the operator algebras

are equivalent by the same TRO that gives F SNE . By [20, Theorem 4.6]
if two operator spaces X and Y are strongly A-equivalent by a 0-TRO then
they are stably isomorphic. Hence we get the following corollary.

Corollary 5.1. Let sE4 and gFp be non-degenerate C*-correspondences.
If they are strongly Morita equivalent by a o-TRO, then their tensor al-
gebras, Toeplitz-Pimsner and (relative) Cuntz-Pimsner algebras are stably
isomorphic.

We provide a necessary and sufficient condition for SN to be induced
by a 0-TRO. Recall that K (FE) coincides with the spatial tensor product
of the compact operators K with E. Following Lance [37, Chapter 4], it
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becomes a right Hilbert module over K (A) with the inner product given
by the formula

(less], il ko) = [Z (eki, fkj>E]
k
and the obvious right action. It further becomes a C*-correspondence over

Koo(A) with the left action given by
Or.o () ([ais])eis] = [Z ¢E(@z‘kz)€kj] :
k

Proposition 5.2. Let 4E4 and gFg be non-degenerate C*-corresponden-

ces. Then ESXF F by a o-TRO if and only if Coo(E) ~ Koo (F) as operator
bimodules.

Proof. Suppose that £ NE by a 0-TRO M. Then Corollary 4.3 implies

that E & F by a 0-TRO. Therefore [20, Corollary 4.7] applies to give
that Koo(E) ~ Koo (F') as operator spaces. Since the strong A-equivalence
between E and F' respects the operator bimodule structure we have that the

isomorphism Ko (F) ~ Koo (F') extends to a bimodule isomorphism.

For the converse it suffices to show that £ “M" K (FE) by a o-TRO. For

convenience suppose that 4F 4 is represented isometrically in a B(K). Let
M = C®C acting on K ® C, where C denotes the column operators from C
to £2. Then we can check that

Koo(E) = [MEM*|7 I and B = [M* Koo (B) M)
and that
Koo(A) = [MAM*| I and - A = [M*Ko(A)M) I
The proof is then completed by Corollary 4.3. =

Remark 5.3. An alternative proof of Corollary 5.1 can be given through
Proposition 5.2. To this end one needs to check that there is a “canoni-
cal” isomorphism from T (g) to Koo (T (E)) that fixes the tensor algebras.
This follows by an application of the Gauge-Invariant-Uniqueness-Theorem.
Hence by [33] it also induces an isomorphism from O (g to Koo (OF). The
proof then follows by recalling that oo (E) =~ Koo (F') as operator bimodules
coincides with them being unitarily equivalent, due to Proposition 3.1.

5.2. Aperiodic C*-correspondences. We already discussed that L s
strictly stronger than SN of [6]. As an application of our results we show

that there is a large class of algebras where L and NF coincide. A C*
correspondence 4 E4 is aperiodic in the sense of Muhly-Solel [41, Definition
5.1] if for every n € Z,, for every £ € E®™ and every hereditary subalgebra
B of A we have

inf{{|¢n(a)éall | a > 0,a € B, [la]| =1} = 0.
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In their in-depth analysis, Muhly-Solel [41, Theorem 7.2] show that if
E and F are non-degenerate, injective and aperiodic then F NE B s

equivalent to 7};“ SNE TI;F . Injectivity is required only for the forward
implication whereas the converse reads through also for non-injective C*-
correspondences. Therefore we obtain the following corollary.

Corollary 5.4. Let E and F be non-degenerate and aperiodic. The follow-
ing are equivalent:

(i) E SNE Fin the sense of Muhly-Solel [41];
(i) T4 £ T in the sense of Eleftherakis [19];
(iil) T4 SHE T4 in the sense of Blecher-Muhly-Paulsen [6].

In particular if A and B are o-unital then every item above is equivalent to
stable isomorphism of T, with T .
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