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Abstract. Let (A, α) and (B, β) be C*-dynamical systems and
assume that A is a separable simple C*-algebra and that α and β
are ∗-automorphisms. Then the semicrossed products A×αZ+ and
B ×β Z+ are isometrically isomorphic if and only if the dynamical
systems (A, α) and (B, β) are outer conjugate.

1. introduction

The main objective of this paper is the classification of semicrossed
products of separable simple C*-algebras by an automorphism, up to
isometric isomorphism. It is easily seen (and well-known) that outer
conjugacy between automorphisms of arbitrary C* algebras is a suffi-
cient condition for the existence of an isometric isomorphism between
the associated semicrossed products. In this paper we show that for
separable simple C*-algebras, this is also a necessary condition. This
follows from the following general result: if α and β are automorphisms
of arbitrary C*-algebras A and B, then the presence of an isometric
isomorphism from A ×α Z+ onto B ×β Z+ implies the existence of a
C*-isomorphism γ : A → B so that α ◦ γ−1 ◦ β−1 ◦ γ is universally
weakly inner with respect to irreducible representations. The result for
simple C*-algebras follows then from a remarkable result of Kishimoto
[16] which shows that for a separable simple C*-algebra, all universally
weakly inner automorphisms are actually inner.

Let (A, α) be a (discrete) C*-dynamical system, i.e., a C*-algebra A
together with a ∗-endomorphism α of A. Motivated by a construction
of Arveson [3], Peters [24] introduced the concept of the semicrossed
product A×αZ+. This is the universal operator algebra for contractive
covariant representations of this system. In this paper, we will restrict
our attention to automorphisms.
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In the commutative case, the semicrossed product is an algebra
C0(X ) ×σ Z+ determined by a dynamical system (X , σ) given by a
proper continuous map σ acting on a locally compact Hausdorff space
X. Under the assumption that the topological spaces are compact
and the maps are aperiodic, Peters [24] showed that two such semi-
crossed products are isomorphic as algebras if and only if the corre-
sponding dynamical systems are conjugate, thus extending an earlier
classification scheme of Arveson [3] and Arveson and Josephson [4].
In spite of the subsequent interest in semicrossed products and their
variants [2, 5, 6, 13, 17, 18, 20, 23, 26, 27], the problem of clas-
sifying semicrossed products of the form C0(X )×σ Z+ remained open
in the generality introduced by Peters in [24] until our recent paper
[8], which established that the Arveson-Josephson-Peters classification
scheme holds with no restrictions on either X or σ. It was our desire
to apply the techniques of [8] and [9] to more general settings that
motivated the research of the present paper.

The present paper provides for the first time a classification scheme
for semicrossed products which is valid for a broad class of C*-algebras,
without posing any restrictions on the automorphisms involved. Our
result complements a similar result of Muhly and Solel [21, Theo-
rem 4.1] regarding semicrossed products with automorphisms having
full Connes spectrum. In Theorem 4.2, we give an alternative proof of
their result using representation theory. Both results seem to indicate
that outer conjugacy is a complete invariant for isometric isomorphisms
between arbitrary semicrossed products. They also suggest the problem
of establishing the validity of the conclusion under the weaker require-
ment of an algebraic isomorphism instead of an isometric isomorphism.

2. Preliminaries

Let A be a C*-algebra and α an endomorphism of A. The skew
polynomial algebra P (A, α) consists of all polynomials of the form
∑

n U
n
αAn, An ∈ A, where the multiplication of the “coefficientsÔ

A ∈ A with the “variableÔ Uα obeys the rule

AUα = Uαα(A)

Equip P (A, α) with the l1-norm
∥

∥

∑

n

Un
αAn

∥

∥

1
≡

∑

n

‖An‖

and let l1(A, α) be the completion of P (A, α) with respect to ‖ . ‖1.
An (isometric) covariant representation (π, V ) of (A, α) consists of

a C*-representation π of A on a Hilbert space H and an isometry V
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on H so that π(A)V = V π(α(A)), for all A ∈ A. Each covariant
representation induces a representation π × V in an obvious way.

Definition 2.1. For P ∈ l1(A, α) let

‖P‖ := sup
{

‖(π × V )(P )‖ : π × V is covariant
}

where π×V runs over all isometric covariant representations of (A, α).
The semicrossed product A×αZ+ ofA by α is the completion of l1(A, α)
with respect to this norm.

For an alternative description of A×α Z+, one may start by obtain-
ing a universal covariant representation (π × V ) of (A, α) and then
define A ×α Z+ to be the non-sefadjoint operator algebra generated
π(A) and V . The two constructions produce isomorphic algebras. For
each covariant representation (π, V ) of (A, α), the representation π×V
extends uniquely to a contractive representation of A×αZ+, which will
also be denoted as π × V .

In this paper, we will exclusively work with invertible C*-dynamical
systems, i.e., the endomorphism will actually be an automorphism.
Therefore we now drop the adjective “invertibleÔ, and by C*-dynamical
system we will mean an invertible one. Given an (invertible) dynamical
system (A, α), the unitary covariant representations for (A, α) suffice
to capture the norm for A ×α Z+. Therefore, A ×α Z+ is a natural
nonselfadjoint subalgebra of the crossed product C*-algebra A×α Z.

Definition 2.2. Two C*-dynamical systems (A, α) and (B, β) are said
to be outer conjugate if there exists a C*-isomorphism γ : A → B and
a unitary W ∈ M(A), the multiplier algebra of A, so that

α = adW γ−1 ◦ β ◦ γ.

The main issue in this paper is the classification of semicrossed prod-
ucts up to isometric isomorphism. The following elementary result
shows that the outer conjugacy of automorphisms provides a sufficient
condition for the existence of such an isomorphism.

Proposition 2.3. If the dynamical systems (A, α) and (B, β) are outer
conjugate, then the semicrossed products A ×α Z+ and B ×β Z+ are
isometrically isomorphic.

Proof. Without loss of generality assume that A = B and γ = id. Let
W ∈ M(A) so that α(A) = Wβ(A)W ∗. Observe that β has a unique
extension to an automorphism β̄ of M(A) such that

β̄(M)β(A) = β(MA) for all A ∈ A and M ∈ M(A),
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namely, β̄(M)A = β(Mβ−1(A)). Therefore A×β Z is naturally a sub-
algebra of M(A) ×β̄ Z generated by A and the universal unitary Uβ

satisfying UβMU∗
β = β(M) for M ∈ M(A).

Now notice that adWUβ
implements ᾱ, the extension of α to M(A)

because it is an automorphism which acts as α on A. Whence it carries
M(A) to itself, and is the unique extension of α to M(A). Therefore
C∗(A,WUβ) determines a representation σ of the C*-algebra crossed
product A ×α Z given by σ|A = id and σ(Uα) = UβW . Since this
representation is faithful on A, it follows from the gauge invariance
uniqueness theorem [15, Theorem 6.4] that this is a faithful represen-
tation of the crossed product.
Next observe that C∗(A,WUβ) = A×β Z. The point is that

A(UβW )n = A(UβWU∗
β)(U

2
βWU∗2

β ) · · · (Un
βWU∗n

β )Un
β

= Aβ̄(W )β̄2(W ) · · · β̄n(W )Un
β

= BUn
β

where B = Aβ̄(W )β̄2(W ) · · · β̄n(W ) belongs to A. It now follows that
A(UβW )n = AUn

β . Hence C∗(A,WUβ) = A ×β Z. Moreover, the
nonself-adjoint subalgebra A×β Z+ generated by A and AUβ coincides
with the algebra generated by A and AUβW . But this latter algebra is
canonically identified withA×αZ+ via the identification of C∗(A,WUβ)
with A×α Z.

Note that (A, α) and (B, β) are outer conjugate if and only if there
exists a C*-isomorphism γ : A → B so that the automorphism a◦γ−1 ◦
β−1 ◦ γ is inner. A notion weaker than that of outer congucacy arises
from the concept of a universally weakly inner automorphism. We say
an automorphism a of A is universally weakly inner with respect to
irreducible (resp. faithful) representations, if for any irreducible (resp.
faithful) representation π of A on H, there exists a unitary W ∈ π(A)

′′

so that π(α(A)) = W ∗π(A)W , A ∈ A. The concept of a universally
weakly inner automorphism with respect to faithful representations (or
π-inner automorphism) was introduced by Kadison and Ringrose [14]
and has been studied by various authors [10, 19]. Here we will be
making use of universally weakly inner automorphisms with respect to
irreducible representations. A direct integral decomposition argument
shows that the two concepts coincide for type I C*-algebras. Kishimoto
[16] has shown that for a separable simple C*-algebra all universally
weakly inner automorphisms with respect to irreducible representations
are actually inner. Therefore the two concepts coincide there as well.
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We also need to recall several facts for the various concepts of spec-
trum from C*-algebra theory. Let (A, α) be a dynamical system and let
PrimA be the primitive ideal space of A equipped with the hull-kernel
topology. For each cardinal i, we fix a Hilbert space Hi with dimension
i. Then, irred(A,Hi) is the collection of all irreducible representations
on Hi and irredA ≡ ∪i irred(A,Hi). If ρ ∈ irredA, then [ρ] denotes
its equivalence class, with respect to unitary equivalence ' between
representations on the same Hilbert space. Let the spectrum of A be

ÝA ≡
{

[ρ] | ρ ∈ irredA
}

and consider the canonical map

θ : ÝA −→ PrimA : [ρ] −→ ker ρ.

In what follows we always consider ÝA equiped with the smallest topol-
ogy that makes θ continuous. For any C*-isomorphism γ : A → B,
we define a map Ýγ : ÝA → ÝB between the corresponding spectra by the
formula Ýγ([ρ]) = [ρ ◦ γ].
The following result is straightforward.

Lemma 2.4. Let A be a C*-algebra and let X ⊆ ÝA have empty inte-
rior. Then,

⋂

x∈ ÝA\X

θ(x) = {0}.

Another notion of spectrum is the Connes spectrum. We do not give
the precise definition but instead state the fact [22, Theorem 10.4]
that for a separable C*-algebra, (A, α) has full Connes spectrum if and

only if there is a dense α-invariant subset ∆α ⊆ ÝA on which Ýα is freely
acting. This is equivalent to the fact that the periodic points of Ýα with
period n has no interior for any n ≥ 1.

3. The main result

We begin this section with a general result about isometric isomor-
phisms between arbitrary operator algebras which is well-known.

Proposition 3.1. Let φ : A → B be an isometric isomorphism between
operator algebras. Then φ(A ∩ A∗) = B ∩ B∗ and φ|A∩A∗ is a C*-
isomorphism.

Proof. The unitary operators in A∩A∗ are characterized as the norm 1
elements A ∈ A so that A−1 ∈ A and ‖A−1‖ = 1. From this it follows
that φ maps the unitary group of A ∩ A∗ onto the unitary group of
B ∩ B∗, and this proves the first assertion. The second follows from
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the fact that φ preserves inverses of unitaries in A ∩ A∗ and hence
adjoints.

In order to prove the main result, we need to use representation
theory. In light of Proposition 3.1, it suffices to consider representations
that preserve the diagonal. Hence, if A is an operator algebra, then
rep(A,H) will denote the collection of all contractive representations of
A on H whose restriction on the diagonal A∩A∗ is a ∗-homomorphism.

Definition 3.2. If A is an operator algebra andH a Hilbert space, then
rep2(A,H) will denote the collection of all (contractive) representations
ρ ∈ rep(A,H⊕H) of the form

ρ(A) =

[

ρ1(A) ρ3(A)
0 ρ2(A)

]

for all A ∈ A,

so that ρi|A∩A∗ ∈ irred(A ∩ A∗,H) for i = 1, 2 and ρ3(A) 6= {0}.

Lemma 3.3. Let (A, α) be a C*-dynamical system and let

ρ ∈ rep2(A×α Z+,H).

Then, ρ1|A ' ρ2|A ◦ α.

Proof. First note that ρ is a ∗-representation on the diagonalA. Hence
for each A ∈ A, ρ(A) necessarily has its (1, 2)-entry equal to zero, i.e.,
ρ(A) is in diagonal form.

Let{Ej}j be an approximate unit for A; and let X, Y, Z ∈ H so that
{ρ(UαEj)}j converges weakly to [X Y

0 Z ]. We claim that Y 6= 0. Indeed,
otherwise the equality

ρ(UαA) = lim
j

ρ(UαEjA) = lim
j

ρ(UαEj)ρ(A) for all A ∈ A

would imply that ρ(UαA) is diagonal; and therefore ρ(A ×α Z+) is in
diagonal form, contradicting the requirement ρ3(A×α Z+) 6= {0}.
Now notice that for any A ∈ A, we have

ρ(A) lim
j

ρ(UαEj) = lim
j

ρ(Uαα(A)Ej)

= lim
j
(UαEj)ρ(α(A)).

Hence in matricial form,
[

ρ1(A) 0
0 ρ2(A)

] [

X Y
0 Z

]

=

[

X Y
0 Z

] [

ρ1(α(A)) 0
0 ρ2(α(A))

]

.

By multiplying and comparing (1, 2)-entries, we obtain

ρ1(A)Y = Y ρ2(α(A)).
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Since Y 6= 0 and ρ1|A and ρ2|A are irreducible, this implies that ρ1|A '
ρ2|A ◦ α, as desired.

Lemma 3.4. Let (A, α) be a C*-dynamical system, and let σ belong to
irred(A,H). Then there exists a representation ρ ∈ rep2(A×α Z+,H)
so that ρ2|A = σ.

Proof. Let

ρ(A) =

[

σ ◦ α(A) 0
0 σ(A)

]

and ρ(UαA) =

[

0 σ(A)
0 0

]

.

It is easily verified that
(

ρ|A, [ 0 I
0 0 ]

)

is a covariant representation and
so ρ extends to a representation of A×α Z+.

Note that the representation ρ in Lemma 3.4 satisfies ρ1|A = σ ◦ α.
This is not just an artifact of our construction. By Lemma 3.3, any rep-
resentation in ρ ∈ rep2(A×αZ+,H) will satisfy that property, provided
that ρ2|A = σ.
The following general result relates the classification problem for

semicrossed products to the study of universally weakly inner auto-
morphisms for C*-algebras.

Theorem 3.5. Let (A, α) and (B, β) be C*-dynamical systems, and
assume semicrossed products A ×α Z+ and B ×β Z+ are isometrically
isomorphic. Then there exists a C*-isomorphism γ : A → B so that
α ◦ γ−1 ◦ β−1 ◦ γ is universally weakly inner with respect to irreducible
representations.

Proof. Assume that there exists an isometric isomorphism

γ : A×α Z+ −→ B ×β Z+.

By Proposition 3.1, γ|A is a ∗-isomorphism onto B, which we will also
denote by γ; this is the promised isomorphism. Indeed γ establishes a
correspondence

irred(A) 3 σ −→ σ ◦ γ−1 ∈ irred(B)
that preserves equivalence classes. To show that α ◦ γ−1 ◦ β−1 ◦ γ is
universally weakly inner with respect to irreducible representations, it
is enough to show that

σ ◦ α ◦ γ−1 ' σ ◦ γ−1 ◦ β
for any σ ∈ irred(A).

By Lemma 3.4, there exists ρ ∈ rep2(A×α Z+,H) so that ρ2|A = σ.
But then

ρ ◦ γ−1 ∈ rep2(B ×β Z+,H).
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Hence, Lemma 3.2 implies that

(ρ ◦ γ−1)1|B ' (ρ ◦ γ−1)2|B ◦ β
or, once again, σ ◦ α ◦ γ−1 ' σ ◦ γ−1 ◦ β .

We have arrived to the main result of the paper.

Theorem 3.6. Let (A, α) and (B, β) be C*-dynamical systems and
assume that A is a separable simple C*-algebra. The semicrossed prod-
ucts A×α Z+ and B ×β Z+ are isometrically isomorphic if and only if
the dynamical systems (A, α) and (B, β) are outer conjugate.

Proof. One direction follows from Proposition 2.3. Conversely assume
that A ×α Z+ and B ×β Z+ are isometrically isomorphic. Theorem
3.5 shows that there exists a C*-isomorphism γ : A → B so that
α ◦ γ−1 ◦ β−1 ◦ γ is universally weakly inner with respect to irreducible
representations. The conclusion follows now from Kishimoto’s result
[16, Corollary 2.3].

4. Representations and dynamics on the spectrum

As we mentioned in the introduction, an earlier result of Muhly and
Solel [21, Theorem 4.1] implies the validity of Theorem 3.6 for arbi-
trary C∗-algebras, provided that the automorphisms α and β have full
Connes spectrum. In what follows we present an alternative proof of
that result of Muhly and Solel, based on the ideas developed in this
paper.
Let Φα denote the canonical expectation from A×α Z+ onto A. The

following is the key step in their proof.

Lemma 4.1. Let (A, α) and (B, β) be separable C*-dynamical systems
and let γ : A×α Z+ → B×β Z+ be an isometric isomorphism. If α has
full Connes spectrum, then γ(kerΦα) = kerΦβ.

Proof. Let ∆α = {σj | j ∈ J} be the dense α-invariant set of ape-
riodic points described in the introduction. By Lemma 2.4, ⊕jσj is
a faithful representation of A and so (⊕jσj) ×α V defines a faithful
representation of A ×α Z+. Now notice that the compression on the
main diagonal of (⊕jσj) ×α V defines an expectation from A ×α Z+

onto A which coincides with Φα. Similarly, (⊕jσj ◦ γ−1) ×β V defines
a faithful representation of B ×β Z+ and Φβ is the compression on the
main diagonal.

Now γ(A) = B and kerΦα = Uα (A×α Z+). Hence it is enough
to show that γ(Uα) ∈ kerΦβ, i.e., the diagonal entries of γ(Uα) in
the representation (⊕jσj ◦ γ−1) ×β V of B ×β Z+ are equal to 0. To
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verify this examine these entries in light of the covariance equation as
in Lemma 3.3.

The rest of the proof follows the same arguments as in [21].

Theorem 4.2 ([21]). Let (A, α) and (B, β) be separable C*-dynamical
systems and assume that α has full Connes spectrum. The semicrossed
products A×αZ+ and B×β Z+ are isometrically isomorphic if and only
if the dynamical systems (A, α) and (B, β) are outer conjugate.

Proof. Assume that there is an isometric isomorphism γ of A ×α Z+

onto B ×β Z+. By the previous Lemma we have

γ(Uα) = BUβ + Y, where B ∈ B and Y ∈ U2
β(B ×β Z+),

γ−1(Uβ) = AUα + Z, where A ∈ A and Z ∈ U2
α(A×α Z+).

Since both γ and γ−1 are isometries, ‖A‖, ‖B‖ ≤ 1. Also,

Uα = γ−1(γ(Uα)) = γ−1(B)AUβ + γ−1(B)Z + γ−1(Y ),

which by the uniqueness of the Fourier expansion implies that
γ−1(B)A = I. Since A and γ−1(B) are contractions, they must both
be unitary. Hence B and γ(A) are also unitary. Therefore

Φβ(γ(Uα)
∗γ(Uα)) = Φβ(I + U∗

βB
∗Y + Y ∗BUβ + Y ∗Y )

= I + Φβ(Y
∗Y )

since

U∗
βB

∗Y ∈ U∗
βBU2

β(B ×β Z+) ⊂ Uβ(B ×β Z+) ⊂ kerΦβ;

and likewise Y ∗BUβ ∈ kerΦβ. So Φβ(Y
∗Y ) = 0; whence Y = 0.

Hence, γ(Uα) = BUβ which implies that (A, α) and (B, β) are outer
conjugate.

We finish the paper with a result of independent interest that asso-
ciates the fixed points of Ýα to a certain analytic structure in the space
of representations rep(A×α Z+,H).

Definition 4.3. Let A be an operator algebra. A map

Π : D ≡ {z ∈ C | |z| < 1} −→ (rep(A,H), point–sot)

is called analytic if for each A ∈ A and x, y ∈ H the map
z → 〈Π(z)(A)x | y〉, z ∈ D, is analytic in the usual sense.

Assume now that (A, α) is a C*-dynamical system, and let

Π : D −→ rep(A×α Z+,H)
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be an analytic map. Since Π(z), z ∈ D, is a ∗-homomorphism on the
diagonal, we may write

Π(z) = πz ×Kz, z ∈ D,

where πz = Π(z)|A and Kz = Π(z)(Uα). We claim that the map
z −→ πz, z ∈ D, is constant. Indeed, consider any selfadjoint operator
A ∈ A and notice that the map

D 3 z −→ 〈πz(A)x, x〉, x ∈ H,

is real analytic and therefore constant, which proves the claim.

Definition 4.4. Let A be an operator algebra. An analytic map Π :
D → rep(A,H) is said to be irreducible on the diagonal if for any z ∈ D,
the representation Π(z)|A∩A∗ is irreducible.

Proposition 4.5. Let (A, α) be a C*-dynamical system, and σ belong
to irred(A,H). Then σ ' σ◦α if and only if there exists a non-constant
analytic and irreducible on the diagonal map

Π : D −→ rep(A×α Z+,H)

so that
Π(z)|A = σ

for some z ∈ D.

Proof. First assume that σ ' σ ◦ α and let U be a unitary such that
σ(A)U = U(σ ◦ α)(A) for A ∈ A. Then

Π(z) = σ × zU for z ∈ D
has the desired properties.

Conversely, assume that such a map Π exists. By the discussion
above Π(z)|A = σ for all z ∈ D. Since Π is not constant, there exists
some z ∈ D so that K := Π(z)(Uα) 6= 0. Therefore,

σ(A)K = Π(z)(A)Π(z)(Uα)

= Π(z) (Uαα(A))

= Kσ(α(A)) for all A ∈ A.

Since both σ and σ ◦ α are irreducible and K 6= 0, we obtain that
σ ' σ ◦ α.

Remark 4.6. Note that if Π is as in the above Lemma, then the
operator K in the proof is necessarilly a scalar multiple of the (unique)
unitary operator U implementing the equivalence σ ' σ ◦α. Therefore
the range of Π is contained in

Dσ ≡ {σ × zU | z ∈ D}.
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In this fashion, we associate with each fixed point σ ∈ ÝA, a unique
maximal analytic set Dσ. Any representation of A×αZ+ not belonging
to the union of the maximal analytic sets is associated with a non-fixed
point of Ýα.
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