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ON SQUARE-INTEGRABLE REPRESENTATIONS
OF CLASSICAL p-ADIC GROUPS II

CHRIS JANTZEN

Abstract. In this paper, we continue our study of non-supercuspidal discrete
series for the classical groups Sp(2n, F ), SO(2n+ 1, F ), where F is p-adic.

1. Introduction

This paper is a continuation of [Jan4].
Suppose ρ is an irreducible, unitary supercuspidal representation of GLn(F ) and

σ an irreducible, supercuspidal representation of Sr(F ) = Sp2r(F ) or SO2r+1(F ).
Then, if ρ 6∼= ρ̃ (self-contragredient), we have Ind(|detn|xρ⊗ σ) is irreducible for all
x ∈ R. Otherwise, there is a unique α ≥ 0 such that Ind(|detn|xρ⊗ σ) is reducible
for x = ±α and irreducible for all x ∈ R \ {±α} (cf. [Sil2], [Tad5]). Assuming
certain conjectures, Mœglin [Mœ2] and Zhang [Zh] have shown that α ∈ 1

2Z (also,
cf. [M-R], [Re], [Sha1], [Sha2]). In [Jan4], we showed that the problem of classifying
non-supercuspidal discrete series could be reduced to classifying discrete series with
supercuspidal support in

S((ρ, α);σ) = {νxρ, ν−xρ}x∈α+Z ∪ {σ}
(though most of this result is from [Jan2] and [Tad4]).

In [Jan4], to an irreducible representation π supported on S((ρ, α);σ), we associ-
ated an element χ0(π) in the minimal Jacquet module for π (minimal meaning with
respect to the smallest parabolic subgroup admitting a nonzero Jacquet module for
π). We note that there is an order � on the components of the (semisimplified)
minimal Jacquet module of π such that χ0(π) is minimal with respect to �. From
χ0(π), we can read off a representation δ0(π) having the form

δ0(π) = δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ,
where δ([ν−biρ, νaiρ]) denotes the generalized Steinberg (for a general linear group)
which has νaiρ ⊗ νai−1ρ ⊗ · · · ⊗ ν−biρ as its (minimal) Jacquet module. We have
π ↪→ Ind(δ0(π)). Further, one can determine whether π is square-integrable just
from δ0(π). Our goal is then to constrain the candidates for δ0 for square-integrable
representations, thereby constraining where one needs to look for square-integrable
representations. Of course, the ultimate goal is exhaustion: if the constraints are
strong enough, every possible δ0 listed will actually occur as δ0(π) for some discrete
series π. That is the case for the theorem below when ρ = 1F× , σ = 1S0(F ) (cf.
[Mœ1]); we expect it holds in general.
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In a sense, our point-of-view may be regarded as an extension of that of [B-Z]
and [Zel]. Their descriptions of representations of general linear groups are given
in combinatorial terms, with the combinatorial descriptions essentially independent
of which particular supercuspidal representations appear in the support. Here, we
work with discrete series for symplectic and odd-orthogonal groups in an analogous
setting; while our results are not independent of the ρ, σ which appear, they depend
on ρ, σ only insofar as ρ, σ determine α. (Roughly speaking, α = 1 for the GL coun-
terpart, so this issue does not arise.) Thus, from our point-of-view, α is essentially
treated as input data, with discrete series characterizations as the output.

The main result in this paper is the following:

Theorem 1.1. Suppose ρ is an irreducible, unitary, supercuspidal representation of
GLn(F ) and σ an irreducible, supercuspidal representation of Sr(F ). Also, suppose
Ind(|detn|xρ⊗ σ) is reducible for x = ±α and irreducible for x ∈ R \ {±α}, where
α ≥ 0 has α ∈ 1

2Z. If π is an irreducible, square-integrable representation supported
on S((ρ, α);σ) with

δ0(π) = δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ,
the following conditions must be satisfied:

1. basic conditions:
(a) ak ≥ ak−1 ≥ · · · ≥ a1 > 0.
(b) ai > bi for all i.
(c) There is a β with α+ 1 ≥ β > 0 such that each of {−β,−β − 1, . . . ,−α}

appears exactly once among b1, b2, . . . , bk and there are no other negative
bi’s.

2. ai ≥ β for all i; bi ≥ β − 1 for all bi ≥ 0.
3. a1, a2, . . . , ak, b1, b2, . . . , bk are all distinct.
4. We do not have ai > aj > bi > bj for any i > j.

Remarks 1.2. 1. Coupled with Theorem 3.2.1 of [Jan4], Theorem 1.1 above ap-
plies to any irreducible, square-integrable representation if we assume the
half-integrality hypothesis in Theorem 1.1 holds in general. That is, for any
such (ρ, σ), the value of x ∈ R, x ≥ 0 which makes Ind(|det|xρ⊗ σ) reducible
(if any) lies in 1

2Z. (The half-integrality hypothesis follows from [Mœ2] or
[Zh] if certain conjectures are assumed.)

2. We make two remarks concerning converse directions.
(a) If π is an irreducible representation and δ0(π) = δ([ν−b1ρ, νa1ρ]) ⊗ · · · ⊗

δ([ν−bkρ, νakρ]) ⊗ σ has a1, . . . , ak, b1, . . . , bk satisfying 1–4 of Theorem
1.1, then π is square-integrable. (In fact, condition 1 of Theorem 1.1 is
sufficient; cf. Theorem 4.2.1, [Jan4].)

(b) If a1, . . . , ak, b1, . . . , bk satisfy 1–4 of Theorem 1.1, one can ask whether
there exists an irreducible representation π having δ0(π)=δ([ν−b1ρ, νa1ρ])
⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗σ. We expect that this is the case, but it is not
proved. (Note that in the case where ak > · · · > a1 > b1 > · · · > bk,
such a π is constructed in section 7; in the case where ak > bk > ak−1 >
bk−1 > · · · > a1 > b1, the existence of such a π follows from the results
in [Tad5].)

3. We note that we can have irreducible, square-integrable representations π1, π2

which have π1 6∼= π2 but δ0(π1) = δ0(π2) (cf. Theorem 7.7; examples may also
be easily obtained from [Tad5]).
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The basic proof is by induction on the parabolic rank (cf. 0.3.4 [B-W]) of the su-
percuspidal support; the whole paper is essentially one large inductive proof. Thus,
we establish Theorem 1.1 and complementary results (Theorem 7.7 and Corol-
laries 7.8 and 7.9) for a fixed parabolic rank p.r. assuming they all hold when
the parabolic rank of the supercuspidal support is less than p.r. We note that if
δ0(π) = δ([ν−b1ρ, νa1ρ])⊗· · ·⊗δ([ν−bkρ, νakρ])⊗σ, then the supercuspidal support
of π has parabolic rank (a1 + b1 + 1) + · · ·+ (ak + bk + 1). To avoid repeating the
hypotheses of Theorem 1.1 in the rest of the theorems in this paper, let us simply
let (H) denote the hypotheses of Theorem 1.1.

We now discuss the contents section by section. The next section reviews nota-
tion and some background results. We also record Theorem 2.4, which says that
the first condition in Theorem 1.1 holds (it is a combination of results from [Jan4]).

In the third section, we verify condition 2 of the theorem. The basic idea in
proving this is to show that should condition 2 fail, there must be something in the
Jacquet module of π lower than the χ0(π) we started with, a contradiction. For the
most part, this can be done with a simple string of embeddings and equivalences;
there is one subtler case which occupies most of this section.

The fourth and fifth sections verify that conditions 3 and 4 hold. Conditions
3 and 4 are essentially conditions on pairs of segments, and are treated as such.
In the fourth section, we assume that bi > ai−1 for some i. Roughly speaking,
such segments can be removed from consideration. What remains then has lower
parabolic rank and the inductive hypothesis allows us to finish this case. The
fifth section deals with the case where bi ≤ ai−1 for all i. Here we need to show
conditions 3 and 4 directly. The basic idea is to show that if 3 or 4 fails, then π may
be embedded into an induced representation where the inducing representation is
lower than δ0(π), a contradiction. To do this, we use Jacquet module arguments
to compare certain induced representations. We note that in the case where σ is
generic, condition 3 may be deduced from [Mu].

In order to do the comparisons for section 5, we need to know the existence
of square-integrable representations with certain properties. The last two sections
are geared toward this. In the sixth section, we prove a technical result which is
needed in the seventh section. In the seventh section, we show the existence of
square-integrable representations with certain specific δ0’s, in particular, δ0 having
bi < ai−1 for all i. This is done by analyzing the induced representation

δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t,

where δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t is a square-integrable representation (by
the inductive hypothesis, already constructed) which has δ([ν−b2ρ, νa2ρ]) ⊗ · · · ⊗
δ([ν−bkρ, νakρ])⊗ σ as its δ0.

2. Notation and preliminaries

We retain the notation introduced in section 1.2, [Jan4] and will forgo reviewing
it here. We will also forgo reviewing certain standard results already discussed in
[Jan4]. The Langlands classification and Casselman criteria for Sr(F ) ([B-W], [Sil1],
[Cas] and [Tad1]) are discussed in section 3.1, [Jan4]. The Langlands classification
for GLn(F ) is discussed in section 2.4, [Jan4]. For clarity, we use L (resp. L)
when the Langlands subrepresentation is for a general linear group (resp., classical
group). We briefly review some of the notation and results from the remainder of
[Jan4], and we introduce a few additional items needed for this paper.
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Let ρ be an irreducible unitary supercuspidal representation of GLn(F ), σ an
irreducible supercuspidal representation of Sr(F ). Also, suppose νxρoσ is reducible
for x = ±α and irreducible for x ∈ R \ {±α}, where α ≥ 0 has α ∈ 1

2Z.

Definition 2.1. Let π be an irreducible representation supported on S((ρ, α);σ).
Set

X(π) =
{
χ ≤ smin(π)

∣∣∣∣ χ = νx1ρ⊗ · · · ⊗ νxmρ⊗ σ has x1 + · · ·+ xm
minimal for smin(π)

}
.

Then, let χ0(π) ∈ X(π), which is minimal in the lexicographic ordering.

The following is Lemma 4.1.2, [Jan4] with a minor change of notation. (As in
section 5, [Jan4], it is more convenient to incorporate a negative into the bi’s.)

Lemma 2.2. χ0(π) has the form

χ0(π) = (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ ν−b1ρ)⊗ · · · ⊗ (νakρ⊗ νak−1ρ⊗ · · · ⊗ ν−bkρ)⊗ σ,
with a1 ≤ a2 ≤ · · · ≤ ak.

Definition 2.3. With notation as above, if

χ0(π) = (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ ν−b1ρ)⊗ · · · ⊗ (νakρ⊗ νak−1ρ⊗ · · · ⊗ ν−bkρ)⊗ σ,
set

δ0(π) = δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.
We also recall that if χ0(π), δ0(π) as above, M = GL(a1−b1+1)n(F ) × · · · ×

GL(ak−bk+1)n(F )× Sr(F ), then

π ↪→ iGM (δ0(π))

(cf. Lemma 4.1.4, [Jan4]).
We also note the following, a consequence of Theorem 4.2.1 of [Jan4], Lemma

4.4.1 of [Jan4], and Lemma 4.4.2 of [Jan4].

Theorem 2.4. Suppose (H). Then, condition 1 in Theorem 1.1 holds.

We now introduce a bit of notation which will be used in the rest of this paper. In
Definition 2.1 above, let t.e.(χ0(π)) denote the minimal value of x1 + · · ·+xm which
arises. More generally, we let t.e.(π) = t.e.(δ0(π)) denote the same value. Implicit
in Definition 2.1 is an ordering: χ1 � χ2 if t.e.(χ1) > t.e.(χ2) or t.e.(χ1) = t.e.(χ2)
and χ1 is lexicographically higher than χ2. We extend this ordering as follows:
π1 � π2 if χ0(π1) � χ0(π2). (Typically, π1 and π2 will be representations of Levi
factors of standard parabolic subgroups.)

We introduce one other piece of notation. At times, it will be convenient to
write sapp when the Jacquet module of Sm is taken with respect to the appropriate
standard parabolic subgroup. This will only be used when what constitutes the
appropriate parabolic subgroup is clear from context.

We now recall Definition 5.2.1 of [Jan4]. It uses the Jacquet module structures
developed in [Tad2]. Since a summary of the notation and results needed from
[Tad2] was given in section 3.1 of [Jan4], we will forgo a discussion here.

Definition 2.5. Suppose τ is an irreducible representation of GLm(F ) and π a
representation of Sn(F ). Write

µ∗(π) =
∑
i

miξi ⊗ θi,
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where ξi ⊗ θi is irreducible and mi is its multiplicity. Let Iτ = {i|ξi = τ}. We set

µ∗τ (π) =
∑
i∈Iτ

miξi ⊗ θi =
∑
i∈Iτ

miτ ⊗ θi.

Similarly, if ξ is a representation of GLr(F ) and

M∗(ξ) =
∑
j

njξ
(1)
j ⊗ ξ

(2)
j ,

let Jτ = {j|ξ(1)
j = τ}. We set

M∗τ (ξ) =
∑
j∈Jτ

njξ
(1)
j ⊗ ξ

(2)
j =

∑
j∈Jτ

njτ ⊗ ξ(2)
j .

It will be convenient to extend this definition to the case where τ = τ1⊗· · ·⊗ τj.
In this case, we write sτ1⊗···⊗τj rather than µ∗τ1⊗···⊗τj (since sτ1⊗···⊗τj ≤ sapp not
µ∗).

We close with a lemma which will expedite certain calculations.

Lemma 2.6. 1. Suppose η ≤ δ([ν−b1ρ, νa1ρ]) × · · · × δ([ν−bkρ, νakρ]) o σ. As-
sume τ is an irreducible representation of a general linear group such that
{νb1ρ, . . . , νbkρ, νa1ρ, . . . , νakρ}∩ supp(τ) = ∅. Then for any representation ξ
of a general linear group, we have

µ∗τ (ξ o η) = M∗τ (ξ)o (1⊗ η).

2. Suppose {x|M∗νxρ(ξ) 6= 0} ∩ support(τ) = ∅. Then,

µ∗τ (ξ o η) = (1⊗ ξ)o µ∗τ (η).

Further, we note that M∗νxρ(τ) 6= 0 if and only if the following holds: either
rmin(τ) contains a term of the form νxρ⊗ . . . or rmin(τ) contains a term of
the form · · · ⊗ ν−xρ.

Proof. Write M∗(ξ) =
∑
i τ

(1)
i ⊗ τ (2)

i and µ∗(η) =
∑
j τj ⊗ θj . Then,

µ∗(ξ o η) =
∑
i,j

τ
(1)
i × τj ⊗ τ (2)

i o θj .

Observe that if τj 6= 1, we must have rmin(τj) =
∑

h ν
αhρ ⊗ . . . with αh ∈

{b1, . . . , bk, a1, . . . , ak} for all h. But, for τj to contribute to µ∗τ , we must have
ναhρ ∈ supp(τ). Since this is not the case, we must have τj = 1. Part 1 of the
lemma follows.

The proof of 2 is straightforward and essentially the same as that of Lemma
5.2.2, [Jan4]; we omit it.

3. Condition 2

The main result in this section is Theorem 3.7, which says that condition 2 in
Theorem 1.1 must be satisfied. This condition is interesting only when β ≥ 2. We
note that when β > 2, the proof is fairly straightforward. The case β = 2 occupies
most of this section.

In this section, we begin the inductive proof. Note that by the inductive hypoth-
esis, we may assume Theorem 1.1, Theorem 7.7 (and Corollaries 7.8 and 7.9) hold
when the parabolic rank of the supercuspidal support is less than p.r. By Theorem
2.4, we actually know that condition 1 of Theorem 1.1 holds in general.
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Suppose π is an irreducible subquotient of δ([ν−b1ρ, νa1ρ])×· · ·×δ([ν−bkρ, νakρ])
o σ. For c ≥ 0, let m(c) denote the number of copies of ν±cρ which appear in an
element of smin(π). We note that m(c) is well-defined and independent of the
particular subquotient π (it is simply a matter of supercuspidal support). Set

n+(c) = number of ai or bi which equal c,

n−(c) = number of ai or bi which equal − c.
For c = 0, we simply write n(0). If

δ0(π) = δ([ν−b
′
1ρ, νa

′
1ρ])⊗ · · · ⊗ δ([ν−b

′
kρ, νa

′
kρ])⊗ σ,

we similarly define

n′+(c) = number of a′i or b′i which equal c,

n′−(c) = number of a′i or b′i which equal − c.
Again, for c = 0, we simply write n′(0). The lemma below then follows from
supercuspidal support considerations (it is essentially an extension of Proposition
5.3.2, [Jan4]):

Lemma 3.1. For c ≥ 1, we have the following:
1. For c > 1,

n′+(c− 1)− n′−(c) = m(c− 1)−m(c) = n+(c− 1)− n−(c).

2. For c = 1,

n′(0)− n′−(1) = 2m(0)−m(1) = n(0)− n−(1).

(At times, it will be convenient to let n+(0) = n(0), n′+(0) = n′(0) and just write
n′+(c− 1)− n′−(c) = n+(c− 1)− n−(c) for c ≥ 1.)

Proof. Consider the contribution of δ([ν−biρ, νaiρ]). Suppose ai, bi ≥ 0. Then
δ([ν−biρ, νaiρ]) contributes 1 to both n+(ai)− n−(ai + 1) and n+(bi)− n−(bi + 1).
Also, δ([ν−biρ, νaiρ]) contributes 1 to both m(ai)−m(ai+1) (resp., 2m(0)−m(1) if
ai = 0) and m(bi)−m(bi+1) (resp., 2m(0)−m(1) if bi = 0). The cases ai ≥ 0, bi < 0
and ai < 0, bi ≥ 0 may be done similarly (ai, bi < 0 is not possible). Combining
these and the corresponding observations for δ([ν−b

′
iρ, νa

′
iρ]) gives the lemma.

We now note the following observation:

Lemma 3.2. Suppose π is an irreducible representation with

δ0(π) = δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.
Then, there is an irreducible representation θ having

δ0(θ) = δ([ν−b2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

Proof. Choose θ irreducible such that
1. µ∗(π) ≥ δ([ν−b1ρ, νa1ρ])⊗ θ,
2. sapp(θ) ≥ δ([ν−b2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

Since sapp(π) ≥ δ([ν−b1ρ, νa1ρ])⊗ δ0(θ), we see that

δ0(θ) � δ([ν−b2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.
The lemma then follows immediately.
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Lemma 3.3. If β > 2, then condition 2 of Theorem 1.1 holds.

Proof. By the preceding lemma, Theorem 4.2.1, [Jan4], and the inductive hypothe-
sis, [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ] satisfy the conditions of Theorem 1.1. If b1 < 0,
we must have b1 = −β by Remark 4.4.3, [Jan4], and therefore a1 ≥ β as well. Thus,
the only way condition 2 could fail for δ0(π) is to have β−2 ≥ b1 ≥ 0 (noting that if
a1 ≤ β−1, then b1 ≤ β−2). In particular, this also means β ∈ {−b2, . . . ,−bk, α+1},
and therefore bi ≥ β − 1 for i ≥ 2.

First, we check that a1 ≥ β − 1. If not, we would have δ([ν−b1ρ, νa1ρ]) ×
δ([ν−biρ, νaiρ]) irreducible for all i ≥ 2 (if bi < 0, then ai ≥ −bi ≥ β > a1 + 1; if
bi ≥ 0, then ai > bi ≥ β−1 ≥ a1 > b1). Then, we could “commute” δ([ν−b1ρ, νa1ρ])
to the right to get

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ

∼= δ([ν−b2ρ, νa2ρ])× δ([ν−b1ρ, νa1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ
...

∼= δ([ν−b2ρ, νa2ρ])× δ([ν−b3ρ, νa3ρ])× · · · × δ([ν−bkρ, νakρ])
×δ([ν−b1ρ, νa1ρ])o σ

∼= δ([ν−b2ρ, νa2ρ])× δ([ν−b3ρ, νa3ρ])× · · · × δ([ν−bkρ, νakρ])
×δ([ν−a1ρ, νb1ρ])o σ,

by the irreducibility of δ([ν−a1ρ, νb1ρ]) o σ (cf. Theorem 13.2, [Tad3]). However,
by Frobenius reciprocity, this contradicts the minimality of δ0(π) (just by t.e. con-
siderations). Thus, a1 ≥ β − 1.

For the moment, let us assume α ∈ Z. Then,

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])o σ

↪→ δ([ρ, νa1ρ])× δ([ν−b1ρ, ν−1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])o σ.

Now, δ([ν−b1ρ, ν−1ρ]) × δ([ν−biρ, νaiρ]) is irreducible for all i ≥ 2 (if bi < 0, then
ai ≥ −bi ≥ β > 1; if bi ≥ 0, then ai > bi ≥ β − 1 > b1). Thus, commuting
δ([ν−b1ρ, ν−1ρ]) to the right, we get

π ↪→ δ([ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])× δ([ν−b1ρ, ν−1ρ])o σ
∼= δ([ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])× δ([νρ, νb1ρ])o σ

by the irreducibility of δ([ν−b1ρ, ν−1ρ])o σ (since b1 < α). Since δ([ν−biρ, νaiρ])×
δ([νρ, νb1ρ]) is irreducible for all i ≥ 2 (if bi < 0, then ai ≥ −bi ≥ β > b1 + 1; if
bi ≥ 0, then ai > b1 and bi ≥ β − 1 > −1), we have

π ↪→ δ([ρ, νa1ρ])× δ([νρ, νb1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])o σ

∼= δ([νρ, νb1ρ])× δ([ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])o σ

↪→ δ([νρ, νb1ρ])× δ([νβ−1ρ, νa1ρ])× δ([ρ, νβ−2ρ])× δ([ν−b2ρ, νa2ρ])
× · · · × δ([ν−bkρ, νakρ])o σ
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(noting that a1 > β − 2 ≥ b1). Now, the same sort of argument as above, applied
to δ([ρ, νβ−2ρ]) this time, gives

π ↪→ δ([νρ, νb1ρ])× δ([νβ−1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])
× δ([ρ, νβ−2ρ])o σ

∼= δ([νρ, νb1ρ])× δ([νβ−1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bkρ, νakρ])
× δ([ν−β+2ρ, ρ])o σ

∼= δ([νρ, νb1ρ])× δ([ν−β+2ρ, ρ])× δ([νβ−1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])
× · · · × δ([ν−bkρ, νakρ])o σ,

noting that β>2 is required for the irreducibility of δ([νβ−1ρ, νa1ρ])×δ([ν−β+2ρ, ρ]).
By Frobenius reciprocity and the Casselman criteria, this contradicts the square-
integrability of π.

The case α ∈ 1
2 + Z is essentially the same.

Lemma 3.4. Suppose

δ0(π) = δ([ρ, νa1ρ])⊗ δ([ν2ρ, νa2ρ])⊗ · · · ⊗ δ([ναρ, νaαρ])⊗ σ.
Then we must have a1 < a2.

Proof. Of course, we automatically have aα > · · · > a2 ≥ a1. Thus we only need
to show that a1 6= a2. Suppose a1 = a2. Then,

π ↪→ δ([ρ, νa1ρ])× δ([ν2ρ, νa1ρ])× δ([ν3ρ, νa3ρ])× · · · × δ([ναρ, νaαρ])o σ

∼= δ([ν2ρ, νa1ρ])× δ([ρ, νa1ρ])× δ([ν3ρ, νa3ρ])× · · · × δ([ναρ, νaαρ])o σ

↪→ δ([ν2ρ, νa1ρ])× δ([ν2ρ, νa1ρ])× δ([ρ, νρ])× δ([ν3ρ, νa3ρ])
× · · · × δ([ναρ, νaαρ])o σ

∼= δ([ν2ρ, νa1ρ])× δ([ν2ρ, νa1ρ])× δ([ν3ρ, νa3ρ])× · · · × δ([ναρ, νaαρ])
×δ([ρ, νρ])o σ

∼= δ([ν2ρ, νa1ρ])× δ([ν2ρ, νa1ρ])× δ([ν3ρ, νa3ρ])× · · · × δ([ναρ, νaαρ])
×δ([ν−1ρ, ρ])o σ,

contradicting the minimality of δ0(π) (t.e. considerations are enough).

Lemma 3.5. Suppose k = α and aα > · · · > a1 > 0. Suppose

π ↪→ δ([ρ, νa1ρ])o δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ)

(noting that the inducing representation exists by Theorem 7.7 and the inductive
hypothesis). Then,

π ↪→ ρo δ([νρ, νa1ρ], [ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ).

Proof. Let

π′ = δ([ρ, νa1ρ])o δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ)

π′′ = ρo δ([νρ, νa1ρ], [ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ)

and

π∗ = ρ× δ([νρ, νa1ρ])o δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ).
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Then, π′, π′′ ≤ π∗. Next, we claim

µ∗δ([ρ,νa1ρ])(π
′) = µ∗δ([ρ,νa1ρ])(π

′′) = µ∗δ([ρ,νa1ρ])(π
∗)

= 2 · δ([ρ, νa1ρ])⊗ δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ).

For π′, π∗, this follows from Lemma 2.6. For π′′, it is enough to show µ∗(π′′) ≥
2 · δ([ρ, νa1ρ]) ⊗ δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ) (since π′′ ≤ π∗). This follows
immediately from the observation that M∗(ρ) ≥ 2ρ ⊗ 1 and µ∗(δ([νρ, νa1ρ]) o
δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ)) ≥ δ([νρ, νa1ρ]) ⊗ δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ).
By Frobenius reciprocity, one then has that π must be a subquotient, and therefore
(by unitarity) a subrepresentation, of π′′, as needed.

Corollary 3.6. Suppose

π ≤ δ([ρ, νa1ρ])o δ([ν2ρ, νa2ρ], . . . , [ναρ, νaαρ];σ)

with π irreducible and aα > · · · > a2 > a1 > 0. Then, either

δ0(π) = ρ⊗ δ([νρ, νa1ρ])⊗ δ([ν2ρ, νa2ρ])⊗ · · · ⊗ δ([ναρ, νaαρ])⊗ σ
or there are terms of the form νxρ with x < 0 which appear in χ0(π).

Proof. We consider three cases based upon Lemma 3.1.
Case 1: n′−(1) = 1.
We note the following:

n′−(x) = 0 for all x > α.

The proof of this is fairly simple: for x > α, νxρ does not appear as a lower segment
end by Lemma 4.4.1, [Jan4]. Also, ν−xρ does not appear as an upper segment end
since smin(π) ≥ νyρ ⊗ . . . has y ∈ {b1, . . . , bk, a1, . . . , ak}, which implies c1 ≥ −α,
and therefore ci ≥ −α for all i. (Alternatively, the assumption that no negative
exponents occur in χ0(π) rules out the possibility that ν−xρ appears as an upper
segment end.) Now, from

n′(0)− n′−(1) = n(0)− n−(1),

we see that since n(0) = 1, n−(1) = 0, and n′−(1) = 1, we must have n′(0) = 2. For
c > 1, we have n′−(c) = n−(c), which implies n′+(c− 1) = n+(c− 1). Thus,

δ0(π) = δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−dα+1ρ, νcα+1ρ])⊗ σ
with d1, . . . , dα+1, c1, . . . , cα+1 equal to −α, . . . ,−1, 0, 0, a1, . . . , aα up to permuta-
tion. In order to have no negative exponents in χ0(π), we must have −α, . . . ,−1
as di’s and a1, . . . , aα as ci’s. This accounts for everything but the two zeros, one
of which must be the remaining di, the other the remaining ci. Thus,

δ0(π) = δ([ν−d1ρ, ρ])⊗ δ([ν−d2ρ, νa1ρ])⊗ · · · ⊗ δ([ν−dα+1ρ, νaαρ])⊗ σ.
Next, observe that we must have d1 = 0; if d1 = −1, we do not have n′−(1) = 1.

By Lemma 3.2, there is an irreducible θ having

δ0(θ) = δ([ν−d2ρ, νa1ρ])⊗ · · · ⊗ δ([ν−dα+1ρ, νaαρ])⊗ σ.
By Theorem 4.2.1, [Jan4], θ is square-integrable. By the inductive hypothesis,
the conditions of Theorem 1.1 are satisfied. The only way this can happen (cf.
conditions 3 and 4 of that theorem) is if d2 > · · · > dα+1. Thus d2 = −1, . . . , dα+1 =
−α. Thus

δ0(π) = ρ⊗ δ([νρ, νa1ρ])⊗ · · · ⊗ δ([ναρ, νaαρ])⊗ σ
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is the only possibility remaining in Case 1.
Case 2: n′−(1) = 0 and n′−(2) = 1.
By Lemma 3.1, one easily gets

δ0(π) = δ([ν−d1ρ, νc1ρ])⊗ δ([ν−d2ρ, νc2ρ])⊗ · · · ⊗ δ([ν−dαρ, νcαρ])⊗ σ

with d1, . . . , dα, c1, . . . , cα equal to −α, . . . ,−2, 0, a1, . . . , aα up to permutation.
Again, to avoid picking up any negative exponents, we must have a1, . . . , aα as
ci’s, and therefore −α, . . . ,−2, 0 as di’s. Thus,

δ0(π) = δ([ν−d1ρ, νa1ρ])⊗ δ([ν−d2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−dαρ, νaαρ])⊗ σ.

As in Case 1, there is an irreducible θ with

δ0(θ) = δ([ν−d2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−dαρ, νaαρ])⊗ σ.

As in Case 1, θ is square-integrable and the inductive assumption and Theorem 1.1
tell us we must have d2 > · · · > dα. Further, condition 2 of Theorem 1.1 also tells
us we cannot have one of d2, . . . , dα equal to 0. Thus the only possibility remaining
in Case 2 is

δ0(π) = δ([ρ, νa1ρ])⊗ δ([ν2ρ, νa2ρ])⊗ · · · ⊗ δ([ναρ, νaαρ])⊗ σ.

However, by Lemma 3.5, this cannot occur. Thus Case 2 can be eliminated.
Case 3: n′−(1) = n′−(2) = 0.
In this case, let β′ be the minimal value having n′−(β′) = 1. If n′−(x) = 0 for all x,

we take β′ = α+1. Then, n′−(1) = · · · = n′−(β′−1) = 0, n′−(β′) = · · · = n′−(α) = 1,
and n′−(x) = 0 for all x > α. Since n′−(1) = n−(1) = 0, n′(0)−n′−(1) = n(0)−n−(1)
tells us n′(0) = n(0) = 1.

Next, we check that ax = x for 1 ≤ x ≤ β′ − 2. First, n′+(1) − n′−(2) =
n+(1) − n−(2) has n−(2) = 0 and n−(2) = 1. Since n+(1) ≤ 1 and n′+(1) ≥ 0,
we see that n+(1) = 1 and n′+(1) = 0. To have n+(1) = 1, we must have a1 = 1.
We iterate this argument until we get to the following: n′+(β′ − 2)− n′−(β′ − 1) =
n+(β′ − 2) − n−(β′ − 1) has n′−(β′ − 1) = 0 and n−(β′ − 1) = 1. Therefore,
n+(β′−2) = 1 and n′+(β′−2) = 0. For n+(β′−2) = 1, we must have aβ′−2 = β′−2.

Finally, observe that for x ≥ β′, we have n′−(x) = n−(x). Therefore, since
n′+(x − 1) − n′−(x) = n+(x − 1) − n−(x), we have n′+(y) = n+(y) for y ≥ β′ − 1.
Thus, if

δ0(π) = δ([ν−d1ρ, νc1ρ])⊗ δ([ν2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−djρ, νcjρ])⊗ σ,

we must have d1, . . . , dj , c1, . . . , cj equal to −α, . . . ,−β′, 0, aβ′−1, . . . , aα up to per-
mutation. In order that no negative exponents appear, aβ′−1, . . . , aα must be ci’s
and therefore −α, . . . ,−β′, 0 must be di’s. An argument like that used in the pre-
vious case then allows us to conclude that

δ0(π) = δ([ρ, νaβ′−1ρ])⊗ δ([νβ
′
ρ, νaβ′ρ])⊗ · · · ⊗ δ([ναρ, νaαρ])⊗ σ.

However, since β′ > 2, this is in contradiction to Theorem 2.4. Thus we can also
eliminate Case 3. The corollary now follows.

Theorem 3.7. Suppose (H). Suppose that Theorems 1.1 and 7.7 (and Corollaries
7.8 and 7.9) hold when the parabolic rank of the supercuspidal support is less than
p.r. Then, condition 2 in Theorem 1.1 holds.
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Proof. By Lemma 3.3, we may assume β = 2 (which means α must be an integer).
As in the proof of Lemma 3.3 (first paragraph), if b1 < 0, we have b1 = −β and
can easily deduce that condition 2 of Theorem 1.1 holds. Also, as in the proof of
Lemma 3.3 (first paragraph), if b1 ≥ 0, the only way condition 2 of Theorem 1.1
could fail is if β − 2 ≥ b1 ≥ 0, i.e., b1 = 0. Therefore, all we need to do is show
b1 6= 0. So, let us suppose b1 = 0. Then,

δ0(π) = δ([ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

Next, let [ν−d1ρ, νc1ρ], . . . , [ν−dkρ, νckρ] denote a permutation of [ν−b1ρ, νa1ρ],
. . . , [ν−bkρ, νakρ] satisfying d1 ≥ · · · ≥ dk. To make it unique, note that only di = 0
can occur for more than one value of i, and then only for two. If we should have
bi = 0 for some i > 1, then [ρ, νaiρ] should appear before [ρ, νa1ρ] in the above list.
We claim that

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dkρ, νckρ])o σ

which we may write as

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−djρ, νcjρ])× δ([ρ, νa1ρ])× δ([ν2ρ, νcj+2ρ])
×δ([ναρ, νckρ])o σ.

Suppose [ν−d1ρ, νc1ρ] = [ν−bjρ, νajρ]. Observe that for i < j,

[ν−biρ, νaiρ] ⊂ [ν−bjρ, νajρ]

so

δ([ν−biρ, νaiρ])× δ([ν−d1ρ, νc1ρ])
∼= δ([ν−d1ρ, νc1ρ])× δ([ν−biρ, νaiρ]) (irreducible).

Thus, we may commute δ([ν−d1ρ, νc1ρ]) to the left:

π ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bj−2ρ, νaj−2ρ])× δ([ν−bj−1ρ, νaj−1ρ])
×δ([ν−d1ρ, νc1ρ])× δ([ν−bj+1ρ, νaj+1ρ])× · · · × δ([ν−bkρ, νakρ])o σ

∼= δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bj−2ρ, νaj−2ρ])× δ([ν−d1ρ, νc1ρ])
×δ([ν−bj−1ρ, νaj−1ρ])× δ([ν−bj+1ρ, νaj+1ρ])× · · · × δ([ν−bkρ, νakρ])o σ
...

∼= δ([ν−d1ρ, νc1ρ])× δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bj−2ρ, νaj−2ρ])
×δ([ν−bj−1ρ, νaj−1ρ])× δ([ν−bj+1ρ, νaj+1ρ])× · · · × δ([ν−bkρ, νakρ])o σ.

Iterating this argument, we next commute δ([ν−d2ρ, νc2ρ]) to the left, etc., and we
get the result claimed.

Now, by Lemma 5.5, [Jan2],

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−djρ, νcjρ])× δ([ρ, νa1ρ])× δ([ν2ρ, νcj+2ρ])
× · · · × δ([ναρ, νckρ])o σ

⇓
π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−djρ, νcjρ])o θ

for some irreducible θ ≤ δ([ρ, νa1ρ]) × δ([ν2ρ, νcj+2ρ]) × · · · × δ([ναρ, νckρ]) o σ.
Since

sapp(π) ≥ δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−djρ, νcjρ])⊗ δ0(θ)
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we must have

t.e.(δ0(θ)) ≥ t.e.(δ([ρ, νa1ρ])⊗ δ([ν2ρ, νcj+2ρ])⊗ · · · ⊗ δ([ναρ, νckρ])⊗ σ).

By Corollary 3.6,

δ0(θ) = ρ⊗ δ([νρ, νa1ρ])⊗ δ([ν2ρ, νcj+2ρ])⊗ δ([ναρ, νckρ])⊗ σ.
Then,

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−djρ, νcjρ])o θ

↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−djρ, νcjρ])× ρ× δ([νρ, νa1ρ])
× δ([ν2ρ, νcj+2ρ])× · · · × δ([ναρ, νckρ])o σ

∼= ρ× δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−djρ, νcjρ])× δ([νρ, νa1ρ])
× δ([ν2ρ, νcj+2ρ])× · · · × δ([ναρ, νckρ])o σ,

contradicting the square-integrability of π. The theorem follows.

4. Conditions 3 and 4—the first part of proof

In this section, we begin the proof that conditions 3 and 4 in Theorem 1.1 hold.
We will view conditions 3 and 4 of Theorem 1.1 as conditions on pairs of segments.
By Lemma 3.2, Theorem 4.2.1, [Jan4], and the inductive hypothesis, we know that
[ν−biρ, νaiρ], [ν−bjρ, νajρ] satisfy these conditions when i, j > 1 with i 6= j. Thus,
our goal is to show [ν−b1ρ, νa1ρ], [ν−biρ, νaiρ] satisfy these conditions for i > 1. In
this section, we address the case where bi > a1 for some i ≥ 2. For any such i, we
have ai > bi > a1 > b1, so conditions 3 and 4 of Theorem 1.1. certainly hold for
[ν−b1ρ, νa1ρ], [ν−biρ, νaiρ]. Roughly speaking, we show that there is an irreducible
representation θ, where δ0(θ) is essentially δ0(π) with such δ([ν−biρ, νaiρ]) removed.
We can then use the inductive hypothesis to show δ0(θ) satisfies conditions 3. and
4. of Theorem 1.1, which is enough to finish this case.

Let us take a moment to review where we stand with respect to the inductive
hypothesis. Of course, we may assume Theorems 1.1 and 7.7 (and Corollaries
7.8 and 7.9) hold when the parabolic rank of the supercuspidal support is less
than p.r. In addition, we may assume that condition 1 of Theorem 1.1 holds in
general (Theorem 2.4) and that condition 2 of Theorem 1.1 holds when the parabolic
rank of the supercuspidal support is equal to p.r. (Theorem 3.7 and the inductive
hypothesis).

The proof of the following proposition is essentially the same as that used in the
proof of Theorem 3.7; we will not go through the details.

Proposition 4.1. Suppose δ0(π) = δ([ν−b1ρ, νa1ρ]) ⊗ · · · ⊗ δ([ν−bkρ, νakρ]) ⊗ σ.
Then there exist (unique) `,m, `+m+ 1 = k and permutation

[ν−b
′
1ρ, νa

′
1ρ], . . . , [ν−b

′
`ρ, νa

′
`ρ], [ν−b1ρ, νa1ρ], [ν−b

′′
1 ρ, νa

′′
1 ρ], . . . , [ν−b

′′
mρ, νa

′′
mρ]

of [ν−b1ρ, νa1ρ], . . . , [ν−bkρ, νakρ] satisfying the following conditions:
1. b′1 > b′2 > · · · > b′` > a1,
2. a′′1 < a′′2 < · · · < a′′m with b′′i ≤ a1 for all i.

Furthermore,

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`ρ, νa′`ρ])× δ([ν−b1ρ, νa1ρ])

×δ([ν−b′′1 ρ, νa′′1 ρ])× · · · × δ([ν−b′′mρ, νa′′mρ])o σ.
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The proof for conditions 3 and 4 of Theorem 1.1 will be broken into two parts—
we address the case ` ≥ 1 here; the case ` = 0 will be addressed in the next section.
So, for the remainder of this section, we assume ` ≥ 1.

Observe that by Lemma 3.2, Theorem 4.2.1, [Jan4], and the inductive hypothesis,
conditions 3 and 4 of Theorem 1.1 hold for [ν−b

′′
1 ρ, νa

′′
1 ρ], . . . , [ν−b

′′
mρ, νa

′′
mρ]. By

construction, we cannot have a′′i > b′′i > a′′j > b′′j for i > j. Therefore, we have
a′′m > a′′m−1 > · · · > a′′1 > b′′1 > b′′2 > · · · > b′′m. Then, by Lemma 5.5, [Jan2],

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`ρ, νa′`ρ])× δ([ν−b1ρ, νa1ρ])

× δ([ν−b
′′
1 ρ, νa

′′
1 ρ])× · · · × δ([ν−b

′′
m−1ρ, νa

′′
m−1ρ])o (δ([ν−b

′′
mρ, νa

′′
mρ])o σ)

⇓

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`ρ, νa′`ρ])× δ([ν−b1ρ, νa1ρ])

× δ([ν−b
′′
1 ρ, νa

′′
1 ρ])× · · · × δ([ν−b

′′
m−1ρ, νa

′′
m−1ρ])o ξ

for some irreducible ξ ≤ δ([ν−b
′′
mρ, νa

′′
mρ]) o σ. By the inductive hypothesis, ξ is

one of the representations from Theorem 7.7; by t.e. (and Frobenius reciprocity), to
avoid contradicting the minimality of δ0(π), we must have ξ = δ([ν−b

′′
mρ, νa

′′
mρ];σ)t.

Then,

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b

′
`ρ, νa

′
`ρ])× δ([ν−b1ρ, νa1ρ])× δ([ν−b

′′
1 ρ, νa

′′
1 ρ])

× · · · × δ([ν−b′′m−2ρ, νa
′′
m−2ρ])o (δ([ν−b

′′
m−1ρ, νa

′′
m−1ρ])o δ([ν−b

′′
mρ, νa

′′
mρ];σ)t)

⇓

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b

′
`ρ, νa

′
`ρ])× δ([ν−b1ρ, νa1ρ])

× δ([ν−b′′1 ρ, νa′′1 ρ])× · · · × δ([ν−b′′m−1ρ, νa
′′
m−1ρ])o ξ

for some irreducible ξ ≤ δ([ν−b′′m−2ρ, νa
′′
m−2ρ])o δ([ν−b′′mρ, νa′′mρ];σ)t. Again, by the

inductive hypothesis, ξ is one of the representations from Theorem 7.7; again, by
t.e. considerations, we get ξ = δ([ν−b

′′
m−1ρ, νa

′′
m−1ρ], [ν−b

′′
mρ, νa

′′
mρ];σ)t. Iterating

this argument, we get

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b

′
`ρ, νa

′
`ρ])o θ

for some irreducible θ ≤ δ([ν−b1ρ, νa1ρ])o δ([ν−b′′1 ρ, νa′′1 ρ], . . . , [ν−b
′′
mρ, νa

′′
mρ];σ)t.

Lemma 4.2. With notation as above,

s
δ([ν−b

′
1ρ,νa

′
1ρ])⊗···⊗δ([ν−b

′
`ρ,νa

′
`ρ])

(π) = c · δ([ν−b′1ρ, νa′1ρ])⊗ · · · ⊗ δ([ν−b′`ρ, νa′`ρ])⊗ θ

for some nonzero integer c.

Proof. First, by Lemma 5.5, [Jan2], there is an irreducible θ′` ≤ δ([ν−b
′
`ρ, νa

′
`ρ])o θ

such that

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`−1ρ, νa

′
`−1ρ])o θ′`.

Iterating this argument, we obtain θ′`−1, θ
′
`−2, . . . , θ

′
2 such that each is irreducible,

θ′i ≤ δ([ν−b
′
iρ, νa

′
iρ])oθ′i+1, and π ↪→ δ([ν−b

′
1ρ, νa

′
1ρ])×· · ·×δ([ν−b′i−1ρ, νa

′
i−1ρ])oθ′i.

First, consider δ([ν−b
′
1ρ, νa

′
1ρ])o θ′2. We claim

µ∗
δ([ν−b

′
1ρ,νa

′
1ρ])

(δ([ν−b
′
1ρ, νa

′
1ρ])o θ′2) = 2 · δ([ν−b

′
1ρ, νa

′
1ρ])⊗ θ′2.
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Write µ∗(θ′2) =
∑

h τh ⊗ ξh. Then,

µ∗(δ([ν−b
′
1ρ, νa

′
1ρ])o θ′2) =

∑
h

a′1+1∑
i=−b′1

a′1+1∑
j=i

δ([ν−i+1ρ, νb
′
1ρ])

× δ([νjρ, νa′1ρ])× τh ⊗ δ([νiρ, νj−1ρ])o ξh.

We now need an observation (the importance of which was underscored for the au-
thor by [Mœ3]). Suppose δ([ν−bsρ, νasρ]) appears to the left of δ([ν−b

′
1ρ, νa

′
1ρ])

in the original δ0(π). For s = 1, we have a′1 > b′1 > a1 > b1 by construc-
tion. For s > 1, we have that [ν−b

′
1ρ, νa

′
1ρ], [ν−bsρ, νasρ] satisfy the conditions

of Theorem 1.1 (by Lemma 3.2, Theorem 4.2.1, [Jan4], and the inductive hypoth-
esis). Therefore, either a′1 > b′1 > as > bs or a′1 > as > bs > b′1; we can rule
out the latter since b′1 is known to be larger than bs by construction. Now, sup-
pose δ([ν−bsρ, νasρ]) appears to the right of δ([ν−b

′
1ρ, νa

′
1ρ]) in the original δ0(π).

Again, since [ν−b
′
1ρ, νa

′
1ρ], [ν−bsρ, νasρ] satisfy the conditions of Theorem 1.1, ei-

ther as > bs > a′1 > b′1 or as > a′1 > b′1 > bs; we can rule out the former since b′1
is known to be larger than bs by construction. In particular, the observation we
need is the following: there is no element of {a1, . . . , ak, b1, . . . , bk} \ {b′1, a′1} in the
interval [b′1, a

′
1]. Therefore, to contribute to µ∗

δ([ν−b
′
1ρ,νa

′
1ρ])

, we must have j ≤ b′1 +1
in the displayed equation above.

Suppose j = b′1 + 1. Then, τh = δ([ν−b
′
1ρ, ν−iρ]). If i 6= b′1 + 1, then by central

character considerations,

θ′2 ↪→ ν−iρ× ν−i−1ρ× · · · × ν−b
′
1ρo ξh

⇓
π ↪→ δ([ν−b

′
1ρ, νa

′
1ρ])× ν−iρ× ν−i−1ρ× · · · × ν−b1ρo ξh

∼= ν−iρ× ν−i−1ρ× · · · × ν−b′1ρ× δ([ν−b′1ρ, νa′1ρ])o ξh,

contradicting the square-integrability of π. Thus, i = b′1 +1, so τh = 1 and ξh = θ′2.
This contributes one copy of δ([ν−b

′
1ρ, νa

′
1ρ])⊗ θ′2 (and nothing else) to

µ∗
δ([ν−b

′
1ρ,νa

′
1ρ])

(δ([ν−b
′
1ρ, νa

′
1ρ])o θ′2).

If j 6= b′1 + 1, then we must have i = −b′1 (since νb
′
1ρ appear only once in

rmin(δ([ν−b
′
1ρ, νa

′
1ρ]))). A similar argument tells us we must again have τh = 1,

ξh = θ′2. So, j = −b′1 contributes a second copy of δ([ν−b
′
1ρ, νa

′
1ρ]) ⊗ θ′2 to

µ∗
δ([ν−b

′
1ρ,νa

′
1ρ])

(δ([ν−b
′
1ρ, νa

′
1ρ])o θ′2). Thus,

µ∗
δ([ν−b

′
1ρ,νa

′
1ρ])

(δ([ν−b
′
1ρ, νa

′
1ρ])o θ′2) = 2 · δ([ν−b′1ρ, νa′1ρ])⊗ θ′2,

as claimed.
Let us briefly discuss the first iteration of this argument. Our claim is that

µ∗
δ([ν−b

′
2ρ,νa

′
2ρ])

(δ([ν−b
′
2ρ, νa

′
2ρ])o θ′3) = 2 · δ([ν−b′2ρ, νa′2ρ])⊗ θ′3.

The analogue to the observation above is that there is nothing in {a1, . . . , ak, b1,
. . . , bk} \ {a′1, b′1} which is strictly between b′2 + 1 and a′2. Again, let us write
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µ∗(θ′3) =
∑

h τh ⊗ ξh. Then,

µ∗(δ([ν−b
′
2ρ, νa

′
2ρ])o θ′3) =

∑
h

a′2+1∑
i=−b′2

a′2+1∑
j=i

δ([ν−i+1ρ, νb
′
2ρ])

× δ([νjρ, νa
′
2ρ])× τh ⊗ δ([νiρ, νj−1ρ])o ξh.

Again, to contribute to µ∗
δ([ν−b

′
2ρ,νa

′
2ρ])

, we must have j ≤ b′2 + 1. If j = b′2 + 1, we

get i = b′2 + 1 as before: if i 6= b′2 + 1, then central character considerations tell us

θ′3 ↪→ ν−iρ× ν−i−1ρ× · · · × ν−b′1ρo ξh
⇓

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× δ([ν−b′2ρ, νa′2ρ])× ν−iρ× ν−i−1ρ× · · · × ν−b′2ρo ξh

∼= ν−iρ× ν−i−1ρ× · · · × ν−b′2ρ× δ([ν−b′1ρ, νa′1ρ])× δ([ν−b′2ρ, νa′2ρ])o ξh,
which contradicts the square-integrability of π. When i = b′2 +1, we get a contribu-
tion of one copy of δ([ν−b

′
2ρ, νa

′
2ρ]) ⊗ θ′3 to µ∗

δ([ν−b
′
2ρ,νa

′
2ρ])

(δ([ν−b
′
2ρ, νa

′
2ρ]) o θ′3).

If j < b′2 + 1, then we must have i = −b′2 and τh = δ([ν−b
′
2ρ, νj−1ρ]). The

same argument as before tells us we must have j = −b′2. Therefore, τh = 1
and ξh = θ′3, giving a contribution of one more copy of δ([ν−b

′
2ρ, νa

′
2ρ]) ⊗ θ′3 to

µ∗
δ([ν−b

′
2ρ,νa

′
2ρ])

(δ([ν−b
′
2ρ, νa

′
2ρ])o θ′3), as claimed.

The lemma follows by iterating.

It follows immediately from properties of Jacquet functors that there is an irre-
ducible representation θ′′ satisfying

1. sapp(π) ≥ δ([ν−b′1ρ, νa′1ρ])⊗ · · · ⊗ δ([ν−b′`ρ, νa′`ρ])⊗ θ′′,
2. sapp(θ′′) ≥ δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b′′1 ρ, νa′′1 ρ])⊗ · · · ⊗ δ([ν−b′′mρ, νa′′mρ])⊗ σ.

The corollary below then follows immediately from Lemma 4.2.

Corollary 4.3. With notation as above, θ = θ′′.

Theorem 4.4. Suppose (H). Suppose that Theorems 1.1 and 7.7 (and Corollaries
7.8 and 7.9) are proved when the parabolic rank of the supercuspidal support is less
than p.r. and that condition 2 of Theorem 1.1 is also proved when the parabolic rank
of the supercuspidal support is equal to p.r. Then, if ` ≥ 1, conditions 3 and 4 of
Theorem 1.1 hold (` as in Proposition 4.1).

Proof. By the inductive hypothesis, Lemma 3.2, and Theorem of 4.2.1 [Jan4], we
have that [ν−biρ, νaiρ], [ν−bkρ, νajρ] satisfy conditions 3 and 4 of Theorem 1.1 when
i > j ≥ 2. Therefore, it is enough to show that [ν−b1ρ, νa1ρ], [ν−biρ, νaiρ], i ≥
2 satisfy conditions 3 and 4. Further, by construction [ν−b

′
iρ, νa

′
iρ], [ν−b1ρ, νa1ρ]

satisfy conditions 3 and 4 Thus, it remains to show that [ν−b1ρ, νa1ρ], [ν−b
′′
i ρ, νa

′′
i ρ]

satisfy conditions 3 and 4.
To show [ν−b1ρ, νa1ρ], [ν−b

′′
i ρ, νa

′′
i ρ] satisfy conditions 3 and 4, it is enough (by

the inductive hypothesis) to show the following:

δ0(θ) = δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b
′′
1 ρ, νa

′′
1 ρ])⊗ · · · ⊗ δ([ν−b

′′
mρ, νa

′′
mρ])⊗ σ

(θ as above). The theorem then follows immediately.
Consider the permutation of [ν−b

′
1ρ, νa

′
1ρ], . . . , [ν−b

′
`ρ, νa

′
`ρ] where a′1, . . . , a

′
`

appear in increasing order of size. Since it is this permutation we need for the
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remainder of this proof, let us abuse notation somewhat and simply denote it by
[ν−b

′
1ρ, νa

′
1ρ], . . . , [ν−b

′
`ρ, νa

′
`ρ], where a′1 < · · · < a′`. Then,

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`ρ, νa′`ρ])× δ([ν−b1ρ, νa1ρ])

×δ([ν−b′′1 ρ, νa′′1 ρ])× · · · × δ([ν−b′′mρ, νa′′mρ])o σ

(as in the proof of Theorem 3.7, any δ([ν−b
′
iρ, νa

′
iρ]), δ([ν−b

′
i+1ρ, νa

′
i+1ρ]) which has

a′i+1 < a′i can be transposed by an irreducibility argument; a sequence of such
transpositions suffices to rearrange terms in the order described).

First, observe that by construction,

δ0(θ′′) � δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b′′1 ρ, νa′′1 ρ])⊗ · · · ⊗ δ([ν−b′′mρ, νa′′mρ])⊗ σ.

Also, since

sapp(π) ≥ δ([ν−b′1ρ, νa′1ρ])⊗ · · · ⊗ δ([ν−b′`ρ, νa′`ρ])⊗ δ0(θ′′),

we see that

t.e.(δ0(θ′′))≥ t.e.(δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b′′1 ρ, νa′′1 ρ])⊗ · · · ⊗ δ([ν−b′′mρ, νa′′mρ])⊗ σ).

Therefore,

t.e.(δ0(θ′′))= t.e.(δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b
′′
1 ρ, νa

′′
1 ρ])⊗ · · · ⊗ δ([ν−b

′′
mρ, νa

′′
mρ])⊗ σ).

Now, suppose

δ0(θ′′) = δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−csρ, νcsρ])⊗ σ.

If we assume δ0(θ′′) � δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b′′1 ρ, νa′′1 ρ])⊗· · ·⊗ δ([ν−b′′mρ, νa′′mρ])⊗
σ, we must have δ([ν−d1ρ, νc1ρ]) ⊗ · · · ⊗ δ([ν−csρ, νcsρ]) ⊗ σ lower than δ0(θ′′) �
δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b′′1 ρ, νa′′1 ρ])⊗ · · · ⊗ δ([ν−b′′mρ, νa′′mρ])⊗ σ lexicographically.

Suppose δ([ν−d1ρ, νc1ρ]) is less than δ([ν−b1ρ, νa1ρ]) lexicographically. Then,
a′j > b′j > a1 ≥ c1. If d1 ≤ b′`, then δ([ν−b

′
jρ, νa

′
jρ])× δ([ν−d1ρ, νc1ρ]) is irreducible

for all j. By Corollary 4.3,

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`ρ, νa′`ρ])× δ([ν−d1ρ, νc1ρ])

× · · · × δ([ν−dsρ, νcsρ])o σ

∼= δ([ν−d1ρ, νc1ρ])× δ([ν−b′1ρ, νa′1ρ])× · · · × δ([ν−b′`ρ, νa′`ρ])
× · · · × δ([ν−dsρ, νcsρ])o σ,

contradicting the minimality of δ0(π).
If d1 > b′`, then

δ([ν−b
′
`ρ, νa

′
`ρ])× δ([ν−d1ρ, νc1ρ]) = δ([ν−b

′
`ρ, νc1ρ])× δ([ν−d1ρ, νa

′
`ρ])

+ L(δ([ν−d1ρ, νc1ρ]), δ([ν−b
′
`ρ, νa

′
`ρ]))

(noting that c1 ∈ {b1, b′′1 , . . . , b′′m, a1, a
′′
1 , . . . , a

′′
m} forces c1 > −b′`). Therefore, by

Lemma 5.5, [Jan4],

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`−1ρ, νa

′
`−1ρ])× δ([ν−b′`ρ, νc1ρ])

× δ([ν−d1ρ, νa
′
`ρ])× δ([ν−d2ρ, νc2ρ])× · · · × δ([ν−dsρ, νcsρ])o σ
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or

π ↪→ δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b′`−1ρ, νa

′
`−1ρ])× δ([ν−d1ρ, νc1ρ])

× δ([ν−b
′
`ρ, νa

′
`ρ])× δ([ν−d2ρ, νc2ρ])× · · · × δ([ν−dsρ, νcsρ])o σ.

In the first case, we now argue as we did when d1 ≤ b′` to obtain

π ↪→ δ([ν−b
′
`ρ, νc1ρ])× δ([ν−b′1ρ, νa′1ρ])× · · · × δ([ν−b′`−1ρ, νa

′
`−1ρ])

×δ([ν−d1ρ, νa
′
`ρ])× δ([ν−d2ρ, νc2ρ])× · · · × δ([ν−dsρ, νcsρ])o σ,

again contradicting the minimality of δ0(π). In the second case, we can iterate
the argument above: if d1 ≤ b′`−1, we can again commute δ([ν−d1ρ, νc1ρ]) forward
to get a contradiction. If d1 > b′`−1, we can again look at δ([ν−b`−1ρ, νb

′
`−1ρ]) ×

δ([ν−d1ρ, νc1ρ]) and repeat the argument above. In either case, we eventually get

π ↪→ δ([ν−xρ, νc1ρ])× . . . ,
with x = d1 or b′j for some j. In any case, we contradict the minimality of δ0(π).
Therefore, we could not have had δ([ν−d1ρ, νc1ρ]) less than δ([ν−b1ρ, νa1ρ]) lexico-
graphically. Thus c1 = a1 and d1 = b1.

Since δ([ν−d1ρ, νc1ρ]) = δ([ν−b1ρ, νa1ρ]), let us now suppose δ([ν−d2ρ, νc2ρ]) is
lexicographically lower than δ([ν−b

′′
1 ρ, νa

′′
1 ρ]). We can easily see that

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b′1ρ, νa′1ρ])× · · · × δ([ν−b′`ρ, νa′`ρ])

× δ([ν−d2ρ, νc2ρ])× · · · × δ([ν−dsρ, νcsρ])o σ.

Now, take i such that a′i < a′′1 < a′i+1 (subject to the obvious convention if a′′1 < a′1
or a′′1 > a′`). Then, [ν−b

′
jρ, νa

′
jρ] = [ν−bj+1ρ, νaj+1ρ] for 1 ≤ j ≤ i. Further,

[ν−b
′′
1 ρ, νa

′′
1 ρ] = [ν−bi+2ρ, νai+2ρ]. Repeating the argument above, we get

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b
′
1ρ, νa

′
1ρ])× · · · × δ([ν−b

′
iρ, νa

′
iρ])

× δ([ν−xρ, νc2ρ])× . . .
= δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi+1ρ, νai+1ρ])

× δ([ν−xρ, νc2ρ])× . . .
for x = d2 or b′j some j > i. Again, this contradicts the minimality of δ0(π). Thus
we must have d2 = b′′1 and c2 = a′′1 .

We can now iterate this argument to see that

δ0(θ′′) = δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b′′1 ρ, νa′′1 ρ])⊗ · · · ⊗ δ([ν−b′′mρ, νa′′mρ])⊗ σ,
as claimed. This finishes the proof.

5. Conditions 3 and 4—the second part of proof

In this section, we address the second part of the proof of conditions 3 and 4, the
case where ` = 0. The basic idea here is this: we assume δ0(π) fails to satisfy these
conditions, then show that π can be embedded into another induced representation,
one which corresponds to a δ0 lower than assumed.

Let us review where we stand with respect to the inductive hypothesis. Of
course, we may assume Theorems 1.1 and 7.7 (and Corollaries 7.8 and 7.9) hold
when the parabolic rank of the supercuspidal support is less than p.r. In addition,
we may assume that condition 1 of Theorem 1.1 holds in general (Theorem 2.4) and
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that condition 2 of Theorem 1.1 holds when the parabolic rank of the supercuspidal
support is equal to p.r. (Theorem 3.7 and the inductive hypothesis). We are also
free to assume that conditions 3 and 4 of Theorem 1.1 hold when the parabolic
rank of the supercuspidal support is equal to p.r. and ` ≥ 1, but we do not actually
use this in dealing with the case ` = 0.

Again, by Lemma 3.2, Theorem 4.2.1 of [Jan4], and the inductive hypothesis,
[ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ] satisfy the conditions of Theorem 1.1. Therefore, for
i > j ≥ 2, we must have either ai > bi > aj > bj or ai > aj > bj > bi. However,
to have ` = 0, the former cannot occur. Thus, ai > aj > bj > bi for i, j ≥ 2.
Therefore, ak > · · · > a2 > b2 > · · · > bk. Further, we must have b2 ≤ a1.

By construction, we have a1 ≤ a2. We now show that the inequality is strict.

Lemma 5.1. a1 6= a2.

Proof. Suppose not. Let us use a1 for both a1 and a2. Since

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ

∼= δ([ν−b2ρ, νa1ρ])× δ([ν−b1ρ, νa1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ,

we see that in order for δ0(π) to be minimal lexicographically, we must have b1 ≥ b2.
First, suppose b1 < 0. By Theorem 2.4, we have b1 6= b2. Then,

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ

∼= δ([ν−b2ρ, νa1ρ])× δ([ν−b1ρ, νa1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ

↪→ δ([ν−b2ρ, νa1ρ])× δ([ν−b1+1ρ, νa1ρ])× ν−b1ρ× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ

∼= δ([ν−b2ρ, νa1ρ])× δ([ν−b1+1ρ, νa1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])× ν−b1ρo σ

∼= δ([ν−b2ρ, νa1ρ])× δ([ν−b1+1ρ, νa1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])× νb1ρo σ,

where ν−b1ρ × δ([ν−biρ, νaiρ]) is irreducible for i ≥ 3 since −b1 < −bi − 1. This
contradicts the minimality of δ0(π) (by Frobenius reciprocity and total exponent
considerations). Thus, we are now free to assume b1 ≥ 0.

Next, we note that if b2 < 0, then by Theorem 3.7 we have b1 ≥ |b2|− 1 = β− 1.
Thus (whether b2 < 0 or b2 ≥ 0), Theorem 7.7 and the inductive hypothesis allow
us to define

πt = δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

π′t = δ([ν−a1ρ, νa1ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

π∗t = δ([ν−b1ρ, νa1ρ])× δ([νb1+1ρ, νa1ρ])
o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t
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(noting that [ν−b2ρ, νb1ρ] = ∅ is possible). By Corollary 7.8, we see that πt ≤ π∗t .
By Lemma 5.4, [BDK],

π∗t = δ([ν−b1ρ, νa1ρ])× δ([ν−a1ρ, ν−b1−1ρ])
o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

so π′t ≤ π∗t as well. It follows fairly easily from Lemma 2.6 that

µ∗
δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa1ρ])

(π∗t ) = µ∗
δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa1ρ])

(π′t)

= δ([νb1+1ρ, νa1ρ])× δ([νb1+1ρ, νa1ρ])
⊗ δ([ν−b1ρ, νb1ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

Since π ↪→ πt, we have µ∗
δ([ν−b1ρ,νa1ρ])×δ([ν−b2ρ,νa1ρ])

(π) 6= 0. Now,

m∗
δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa1ρ])

(δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa1ρ])) 6= 0
⇓

µ∗
δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa1ρ])

(π) 6= 0.

From above, this implies π ≤ π′t. By unitarity, π ↪→ π′t, contradicting the square-
integrability of π. Thus we could not have had a1 = a2, as claimed.

If b1 > b2, we have ak > · · · > a2 > a1 > b1 > b2 > · · · > bk, which certainly
satisfies conditions 3 and 4 of Theorem 1.1. So, let us assume b1 ≤ b2. Then,
a2 > a1 ≥ b2 ≥ b1. Consider the possibility that b2 = a1; write a1 for both.
Observe that
π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−a1ρ, νa2ρ])o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t

∼= δ([ν−a1ρ, νa2ρ])× δ([ν−b1ρ, νa1ρ])o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t
⇓

π ↪→ δ([ν−a1ρ, νa2ρ])o θ,

for some irreducible θ ≤ δ([ν−b1ρ, νa1ρ]) o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t
(Lemma 5.5, [Jan2]).

Now, consider µ∗δ([ν−a1ρ,νa2ρ])(π). Write µ∗(θ) =
∑
h τh ⊗ θh. Then,

µ∗(δ([ν−a1ρ, νa2ρ])o θ) =
∑
h

a2+1∑
i=−a1

a2+1∑
j=i

[δ([ν−i+1ρ, νa1ρ])

× δ([νjρ, νa2ρ])× τh]⊗ δ([νiρ, νj−1ρ])o θh.

To contribute to µ∗
δ([ν−a1ρ,νa2ρ])

, we must pick up a ν−a1ρ. There are three possible
sources. If the ν−a1ρ comes from δ([νjρ, νa2ρ]), we must have j = −a1. Then i =
−a1 and τh = 1, giving a contribution of one copy of δ([ν−a1ρ, νa2ρ])⊗ θ. Suppose
δ([ν−i+1ρ, νa1ρ]) contributes the ν−a1ρ. Then, i = a1 + 1. By Lemma 2.6, we then
have τh = 1. Therefore, j = a1 + 1. Thus we get a contribution of one more copy
of δ([ν−a1ρ, νa2ρ]) ⊗ θ. Finally, suppose τh contributes the ν−a1ρ. Since anything
in rmin(τh) has the form νxρ ⊗ . . . with x ∈ {b1, b3, . . . , bk, a1, a3, . . . , ak}, we see
that rmin(τh) must contain something of the form (νxρ⊗νx−1ρ⊗· · ·⊗ν−a1ρ)⊗ . . .
for such an x. Further, since a3, . . . , ak > a2, we must have x ≤ a1. Now, we have
that smin(θ) contains something of the form (νxρ ⊗ νx−1ρ ⊗ · · · ⊗ ν−a1ρ) ⊗ . . . .
Therefore, by central character considerations,

θ ↪→ νxρ× · · · × νx−1ρ× · · · × ν−a1ρo θ′
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for some irreducible θ′. Then,

π ↪→ δ([ν−a1ρ, νa2ρ])o θ

↪→ δ([ν−a1ρ, νa2ρ])× νxρ× νx−1ρ× · · · × ν−a1ρo θ′

∼= νxρ× νx−1ρ× · · · × ν−a1ρ× δ([ν−a1ρ, νa2ρ])o θ′.

However, by Frobenius reciprocity, this contradicts the square-integrability of π.
Thus we cannot have τh contributing the ν−a1ρ. It follows immediately that we
must have

µ∗δ([ν−a1ρ,νa2ρ])(π) = c · δ([ν−a1ρ, νa2ρ])⊗ θ
for some c ≤ 2.

On the other hand, from properties of the Jacquet functors, we know that there
is an irreducible θ′′ such that

1. µ∗(π) ≥ δ([ν−a1ρ, νa2ρ])⊗ θ′′,
2. sapp(θ′′) ≥ δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b3ρ, νa3ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

From the above calculations, it follows that θ = θ′′. We now claim δ0(θ) =
δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b3ρ, νa3ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ. As the argument is
similar to the proof of Theorem 4.4 (but easier), we will be somewhat brief. First, it
follows easily from θ = θ′′ that t.e.(δ0(θ)) = t.e.(δ([ν−b1ρ, νa1ρ])⊗δ([ν−b3ρ, νa3ρ])⊗
· · · ⊗ δ([ν−bkρ, νakρ])⊗ σ). Suppose

δ0(θ) = δ([ν−d1ρ, νc1ρ])⊗ δ([ν−d2ρ, νc2ρ])⊗ · · · ⊗ δ([ν−dhρ, νchρ])⊗ σ
is lower than δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b3ρ, νa3ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ lexico-
graphically. Observe that δ([ν−a1ρ, νa2ρ])× δ([ν−d1ρ, νc1ρ]) is either irreducible or
is equal to δ([ν−a1ρ, νc1ρ])× δ([ν−d1ρ, νa2ρ]) +L(δ([ν−d1ρ, νc1ρ]), δ([ν−a1ρ, νa2ρ])).
In any case, we get either

π ↪→ δ([ν−a1ρ, νa2ρ])× δ([ν−d1ρ, νc1ρ])× δ([ν−d2ρ, νc2ρ])× . . .
⇓ (Lemma 5.5, [Jan2])

π ↪→ δ([ν−d1ρ, νc1ρ])× δ([ν−a1ρ, νa2ρ])× δ([ν−d2ρ, νc2ρ])× . . .

or

δ([ν−a1ρ, νc1ρ])× δ([ν−d1ρ, νa2ρ])× δ([ν−d2ρ, νc2ρ])× . . . .

Whichever holds, if [ν−d1ρ, νc1ρ] is lexicographically lower than [ν−b1ρ, νa1ρ] we get
a contradiction to the minimality of δ0(π). Therefore, d1 = b1 and c1 = a1. But,
in that case,

π ↪→ δ([ν−a1ρ, νa2ρ])× δ([ν−b1ρ, νa1ρ])× δ([ν−d2ρ, νc2ρ])× . . .

∼= δ([ν−b1ρ, νa1ρ])× δ([ν−a1ρ, νa2ρ])× δ([ν−d2ρ, νc2ρ])× . . . ,

so δ([ν−d2ρ, νc2ρ]) ⊗ · · · ⊗ δ([ν−dhρ, νchρ]) ⊗ σ cannot be lexicographically lower
than δ([ν−b3ρ, νa3ρ]) ⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ. The claim follows. By Theorem
4.2.1, [Jan4], θ is square-integrable; by the inductive hypothesis, the conditions of
Theorem 1.1 must be satisfied. Since b3 < b2 ≤ a1 (from the assumption ` = 0),
we can easily conclude that ak > · · · > a3 > a1 > b1 > b3 > · · · > bk. We are now
ready to prove the following:
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Lemma 5.2. a1 > b2.

Proof. Suppose b2 = a1. Observe that

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−a1ρ, νa2ρ])o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t
∼= δ([ν−a1ρ, νa2ρ])× δ([ν−b1ρ, νa1ρ])o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t

⇓ (Lemma 5.5, [Jan2])

π ↪→ δ([ν−a1ρ, νa2ρ])o θ

for some irreducible θ ≤ δ([ν−b1ρ, νa1ρ]) o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.
By Theorem 7.7 (and the inductive hypothesis), we know the possibilities for δ0(θ).
Since sapp(π) ≥ δ([ν−a1ρ, νa2ρ]) ⊗ δ0(θ), we see that only θ = δ([ν−b1ρ, νa1ρ],
[ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′ does not contradict the minimality of δ0(π).
Note that if k > 2, we have t′ = t automatically. (If k = 2, we could argue that
t′ = t, but it is not needed.)

Since b1 > b3, we may now define

π′t = δ([ν−a1ρ, νa2ρ])o δ([ν−b1ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′ ,

π′′t = δ([ν−a1ρ, νa1ρ])o δ([ν−b1ρ, νa2ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′ ,

π∗t = δ([ν−a1ρ, νa1ρ])× δ([νa1+1ρ, νa2ρ])

o δ([ν−b1ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′ .

By Corollary 7.8 (and the inductive hypothesis), π′t′ , π
′′
t′ ≤ π∗t′ . By Lemma 2.6 (and

Corollary 7.8)

µ∗δ([νa1+1ρ,νa2ρ])(π
′
t′ ) = µ∗δ([νa1+1ρ,νa2ρ])(π

′′
t′) = µ∗δ([νa1+1ρ,νa2ρ])(π

∗
t′ )

= δ([νa1+1ρ, νa2ρ])⊗ δ([ν−a1ρ, νa1ρ])

o δ([ν−b1ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′ .

Now, µ∗δ([ν−a1ρ,νa2ρ])(π) 6= 0 implies µ∗δ([νa1+1ρ,νa2ρ])(π) 6= 0. Therefore, π ≤ π′′t′ ;
by unitarity, π ↪→ π′′t′ . However, this contradicts the square-integrability of π (or
minimality of δ0(π)). Thus, we could not have had b2 = a1.

We now show the following:

Lemma 5.3. Assuming a2 > a1 > b2 ≥ b1, we have b1 6= b2.

Proof. Suppose b1 = b2. By Theorem 2.4, we must have b1 = b2 ≥ 0.
As in the beginning of section 4 (the argument immediately preceding the state-

ment of Lemma 4.2), if δ0(π) is as assumed, we have

π ↪→ δ([ν−b1ρ, νa1ρ])o δ([ν−b1ρ, νa2ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

for some t. By Theorem 7.7 and the inductive hypothesis, we may define

πt = δ([ν−b1ρ, νa1ρ])o δ([ν−b1ρ, νa2ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

π′t = δ([ν−b1ρ, νb1ρ])o δ([ν−a1ρ, νa2ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

π∗t = δ([νb1+1ρ, νa1ρ])× δ([ν−b1ρ, νb1ρ])

o δ([ν−b1ρ, νa2ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.
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It follows easily from Corollary 7.8 that πt, π′t ≤ π∗t . Further, a straightforward
calculation like that in Lemma 5.2.5, [Jan4] gives

µ∗δ([νb1+1ρ,νa1ρ])(πt) = µ∗δ([νb1+1ρ,νa1ρ])(π
′
t) = µ∗δ([νb1+1ρ,νa1ρ])(π

∗
t )

= δ([νb1+1ρ, νa1ρ])⊗ δ([ν−b1ρ, νb1ρ])

o δ([ν−b1ρ, νa2ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

Now, π ↪→ πt implies µ∗
δ([νb1+1ρ,νa1ρ])

(π) 6= 0. It now follows from the equalities on
µ∗
δ([νb1+1ρ,νa1ρ])

above that π ≤ π′t. By unitarity, π ↪→ π′t. However, by Frobenius
reciprocity, this contradicts the minimality of δ0(π). Thus we could not have had
b1 = b2.

Theorem 5.4. Suppose (H). Suppose that Theorems 1.1 and 7.7 (and Corollaries
7.8 and 7.9) are proved when the parabolic rank of the supercuspidal support is less
than p.r. and that condition 2 of Theorem 1.1 is also proved when the parabolic rank
of the supercuspidal support is equal to p.r. Then, if ` = 0 (` as in Proposition 4.1),
[ν−b1ρ, νa1ρ], [ν−biρ, νaiρ] satisfy conditions 3 and 4 of Theorem 1.1 for i ≥ 2.

Proof. It suffices to show b1 > b2; then Lemma 5.1 tells us ak > · · · > a2 > a1 >
b1 > b2 > · · · > bk, which certainly satisfies conditions 3 and 4. Note that if b2 < 0,
one already has b1 > b2: if b1 ≥ 0 it is automatic; if b1 < 0 it follows from Remark
4.4.3, [Jan4]. Thus, we assume b2 ≥ 0.

Suppose b2 ≥ b1. By Lemma 5.3, b2 > b1. We have

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ

↪→ δ([νb2+1ρ, νa1ρ])× δ([ν−b1ρ, νb2ρ])× δ([ν−b2ρ, νa2ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ.

The same argument used to prove Lemma 3.2 tells us there is an irreducible π0

with the following properties:

1. µ∗(π) ≥ δ([νb2+1ρ, νa1ρ])⊗ π0,
2. δ0(π0) = δ([ν−b1ρ, νb2ρ])⊗ δ([ν−b2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

By Theorem 4.2.1, [Jan4], we see that π0 is square-integrable. However, having
δ0(π0) as above is then a contradiction to Lemma 5.2. Thus, we could not have
had b1 ≤ b2.

6. A technical result

The purpose of this section is to prove a technical result (Proposition 6.3). It is
essentially a generalization of Proposition 5.3.2, [Jan4] (cf. Remark 6.2 below).

Let us pause to recall where we are with respect to the inductive argument. By
the inductive hypothesis, we may assume Theorem 7.7 (and Corollaries 7.8 and
7.9) hold when the parabolic rank of the supercuspidal support is less than p.r.
The inductive hypothesis coupled with Theorems 2.4, 3.7, 4.4, and 5.4 allow us to
assume Theorem 1.1 holds when the parabolic rank is less than or equal to p.r.
(again noting condition 1 of Theorem 1.1 holds in general).

An easy calculation gives the following:
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Lemma 6.1.

t.e.(δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])) =
k∑
i=1

ai(ai + 1)
2

−
k∑
i=1

bi(bi + 1)
2

.

Remark 6.2. In the case where α ≤ 1
2 , the following proposition is an immediate

consequence of Theorem 2.4 and Lemma 3.1. (In fact, in the notation of the propo-
sition, one can take weaker conditions on the segment ends and still get the stronger
result that h = k.)

Proposition 6.3. Suppose ak > · · · > a1 > b1 > · · · > bk satisfy conditions 1–4 of
Theorem 1.1. Suppose

π ≤ δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

is irreducible. Write

δ0(π) = δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−dhρ, νchρ])⊗ σ.

Then, h ≤ k.

Proof. First, suppose b1 < 0. We start by showing that n′−(c) ≤ n−(c) for all c > 0.
Observe that

n−(c) =


0 if c < β,
1 if β ≤ c ≤ α,
0 if c > α.

If c < β, then n′−(c) = 0 since ν±c does not appear in the supercuspidal support.
If c = β = 1

2 , the fact that ν±
1
2 ρ appears only once in the supercuspidal support

implies n′−(1
2 ) ≤ 1. If c = β ≥ 1, Lemma 3.1 gives

n′+(β − 1)− n′−(β) = n+(β − 1)− n−(β).

Since n′+(β−1) = n+(β−1) = 0 (again, ν±(β−1)ρ does not appear in the supercus-
pidal support), we have n′−(β) = n−(β) = 1. Thus n′−(c) ≤ n−(c) for c = β. For
β + 1 ≤ c ≤ α, Lemma 4.4.2, [Jan4] and the fact that there is nothing of the form
ν−cρ⊗ . . . in smin(δ([ν−β+1ρ, νa2ρ], . . . , [ναρ, νakρ];σ)) tells us n′−(c) ≤ 1. When
c > α, Lemma 4.4.1, [Jan4] implies n′−(c) = 0. Combining these observations, we
see that n′−(c) ≤ n−(c) for c ≥ 1

2 .
It now follows from Lemma 3.1 that n′+(c) ≤ n+(c) for c ≥ 0. Since n′±(c) ≤

n±(c) for all c, we see that h ≤ k. This finishes the case b1 < 0.
We may now assume b1 ≥ 0. Suppose h > k. First, since there are no

terms of the form νxρ ⊗ . . . in smin(δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) with
x ≤ 0 (by the Casselman criteria), we can conclude that if νxρ ⊗ . . . appears in
smin(δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t), then x ∈ {b1, . . . , bk,
a1, . . . , ak} \ {−β,−β − 1, . . . ,−α}. Therefore, c1 ≥ 0. Further, since the non-
negative values of bi are all greater than or equal to β − 1 (cf. Theorem 3.7), we
also have c1 ≥ β − 1. Since the ci’s are all non-negative, Lemma 4.4.2, [Jan4]
tells us the negative values in {d1, . . . , dk, c1, . . . , ck} (all di’s) may be written as
{−β′,−β′ − 1, . . . ,−α}. If β′ ≥ β, then n′−(c) ≤ n−(c) for all c > 0. By Lemma
3.1, n′+(c) ≤ n+(c) for all c ≥ 0. This forces h ≤ k. Thus, we must have β′ < β.
In this case, for β′ ≤ c < β, we have n′−(c) = 1 and n−(c) = 0. Therefore,
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n′+(c) = n+(c) + 1 for β′ − 1 ≤ c < β − 1 with c ≥ 0; it follows easily from Lemma
3.1 that n′+(c) = n+(c) for all other values of c. Therefore, h− k = β′ − β, so

{c1, . . . , ch, d1, . . . , dh} = {b1, . . . , bk, a1, . . . , ak}
∪ {−β + 1,−β + 2, . . . ,−β + (h− k)}
∪ {β − 2, β − 3, . . . , β − (h− k)− 1}.

Observe that x in the last set has 0 ≤ x ≤ β − 2, bi for any bi > 0. So d1, . . . , dh,
c1, . . . , ch are distinct. Note that if β is not large enough, this automatically cannot
occur. We also remark that the arguments above imply

|{ci}| ≤ |{b1, . . . , bk, a1, . . . , ak} \ {−β,−β − 1, . . . ,−α}|,
or h− k ≤ |{i|bi ≥ 0}|.

Claim 1: ch = ak when k ≥ 2.
Of course, if ak = ci for some i, we must have i = h. So, suppose ak = dm. Then,

since [ν−akρ, νcmρ] ⊃ [ν−diρ, νciρ] for all i < m, we can commute δ([ν−akρ, νcmρ])
to the left:

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dm−1ρ, νcm−1ρ])× δ([ν−akρ, νcmρ])
× δ([ν−dm+1ρ, νcm+1ρ])× · · · × δ([ν−dhρ, νchρ])o σ

∼= δ([ν−akρ, νcmρ])× δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dm−1ρ, νcm−1ρ])
× δ([ν−dm+1ρ, νcm+1ρ])× · · · × δ([ν−dhρ, νchρ])o σ

⇓
µ∗
δ([ν−akρ,νcmρ])

(π) 6= 0.

Now,

µ∗(π) ≤ µ∗(δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bk−1ρ, νak−1ρ])o δ([ν−bkρ, νakρ];σ)t)

= M∗(δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bk−1ρ, νak−1ρ]))o µ∗(δ([ν−bkρ, νakρ];σ)t).

Now, ν−akρ does not appear in M∗(δ([ν−b1ρ, νa1ρ]) × · · · × δ([ν−bk−1ρ, νak−1ρ])).
Therefore, to have µ∗

δ([ν−akρ,νcmρ])
(π) 6= 0, we must have

µ∗δ([ν−akρ,νxρ])(δ([ν
−bkρ, νakρ];σ)t) 6= 0

for some x ≥ −ak. However, since x ≤ bk, this contradicts the Casselman criteria
for the square-integrability of δ([ν−bkρ, νakρ];σ)t. Thus we could not have had
ak = dm, and the claim follows.

Claim 2: cm+h−k = am for m ≥ 2.
Of course, the first claim takes care of the case m = k.
Suppose Claim 2 does not hold. Let m be the largest value for which it fails.

Then, cm+h−k+1 = am+1, . . . , ch = ak. As above, if am = ci for some i, we would
need to have i = m. So, we have am = dr for some r.

As above,

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dr−1ρ, νcr−1ρ])× δ([ν−amρ, νcrρ])
× δ([ν−dr+1ρ, νcr+1ρ])× · · · × δ([ν−dhρ, νchρ])o σ

∼= δ([ν−amρ, νcrρ])× δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dr−1ρ, νcr−1ρ])
× δ([ν−dr+1ρ, νcr+1ρ])× · · · × δ([ν−dhρ, νchρ])o σ

⇓
µ∗δ([ν−amρ,νcrρ])(π) 6= 0.
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Now, noting that m ≥ 2,

µ∗(π) ≤ µ∗(δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bm−1ρ, νam−1ρ])
oδ([ν−bmρ, νamρ], . . . [ν−bkρ, νakρ];σ)t)

= M∗(δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bk−1ρ, νak−1ρ]))
o µ∗(δ([ν−bmρ, νamρ], . . . [ν−bkρ, νakρ];σ)t).

As in Claim 1, since µ∗δ([ν−amρ,νcrρ])(π) 6= 0, we must have

µ∗δ([ν−amρ,νxρ])(δ([ν
−bmρ, νamρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0,

for some x ≥ −am. In order to avoid contradicting the Casselman criteria for the
square-integrability of δ([ν−bmρ, νamρ], . . . , [ν−bkρ, νakρ];σ)t, we must have x >
am. Since any term in rmin(δ([ν−bmρ, νamρ], . . . , [ν−bkρ, νakρ];σ)t) has the form
νxρ⊗ . . . with x ∈ {bm, . . . , bk, am, . . . , ak}, we see that x = as for s ≥ m+ 1.

Finally,

µ∗(δ([ν−bmρ, νamρ], . . . , [ν−bkρ, νakρ];σ)t)

≤ µ∗(δ([ν−bmρ, νamρ])× · · · × δ([ν−bs−2ρ, νas−2ρ])
o δ([ν−bs−1ρ, νas−1ρ], . . . [ν−bkρ, νakρ];σ)t)

= M∗(δ([ν−bmρ, νamρ])× · · · × δ([ν−bs−2ρ, νas−2ρ]))
o µ∗(δ([ν−bs−1ρ, νas−1ρ], . . . [ν−bkρ, νakρ];σ)t).

Since bm, . . . , bs−2, am, . . . , as−2 < as−2 + 1, in order to have µ∗δ([ν−amρ,νasρ]) 6= 0,
we must have

µ∗
δ([νas−2+1ρ,νasρ])

(δ([ν−bs−1ρ, νas−1ρ], . . . [ν−bkρ, νakρ];σ)t) 6= 0,
⇓

µ∗
δ([νas−1+1ρ,νasρ])

(δ([ν−bs−1ρ, νas−1ρ], . . . [ν−bkρ, νakρ];σ)t) 6= 0.

However, by the inductive hypothesis, this contradicts Corollary 7.9. Thus Claim
2 holds.

Claim 3: a1 6= di for any i.
Suppose this were not the case—say dr = a1. As before,

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dr−1ρ, νcr−1ρ])× δ([ν−a1ρ, νcrρ])
× δ([ν−dr+1ρ, νcr+1ρ])× · · · × δ([ν−dhρ, νchρ])o σ

∼= δ([ν−a1ρ, νcrρ])× δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dr−1ρ, νcr−1ρ])
× δ([ν−dr+1ρ, νcr+1ρ])× · · · × δ([ν−dhρ, νchρ])o σ

⇓
µ∗
δ([ν−a1ρ,νcrρ])

(π) 6= 0.

Now, cr ∈ {b1, . . . , bk, a2, . . . , ak}. Suppose cr ≤ b2. Then, cr ≤ b1, a1. Therefore,
since

µ∗(π) ≤ µ∗(δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t),

it follows from Lemma 2.6 that

µ∗δ([ν−a1ρ,νcrρ])(δ([ν
−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0,

which is in contradiction to the Casselman criteria for the square-integrability of
δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t. Thus cr > b2.
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Next, suppose cr = b1. Then, µ∗
δ([ν−a1ρ,νb1ρ])

(π) 6= 0. A straightforward calcula-
tion (or Lemma 3.4, [Jan2]) tells us

µ∗
δ([ν−a1ρ,νb1ρ])

(δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)
= δ([ν−a1ρ, νb1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Therefore,

µ∗
δ([ν−a1ρ,νb1ρ])

(π) = δ([ν−a1ρ, νb1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

We claim that this contradicts the minimality of δ0(π); in particular, that it has
t.e. lower than t.e.(δ0(π)). To see this, observe that by Lemma 6.1, a1, a2, . . . , ak
contribute the same amount to t.e.(δ([ν−a1ρ, νb1ρ]) ⊗ δ([ν−b2ρ, νa2ρ]) ⊗ . . . ⊗
δ([ν−bkρ, νakρ])) as to δ0(π) (since am = cm+h−k form ≥ 2 appear as upper segment
ends in both and a1 = dr appears as a lower segment end in both). The same holds
for b1 = cr, which is an upper segment end in both. Denote the total contribution of
these terms to the t.e. for both by T . Let N = {−β+1,−β+2, . . . ,−β+(h−k)}∪
{β−2, β−3, . . . , β− (h−k)−1}. Also, let L = {i ≥ 2|bi appears as dj for some j}
and U = {i ≥ 2|bi appears as cj for some j}. Then comparing t.e., we want

T −
∑

i∈L∪U

bi(bi + 1)
2

< T +
∑
i∈U

bi(bi + 1)
2

−
∑
i∈L

bi(bi + 1)
2

−
∑
x∈N

x(x + 1)
2

or

2
∑
i∈U

bi(bi + 1)
2

>
∑
x∈N

x(x+ 1)
2

.

An easy calculation gives |N | = 2|U |. Since bi ≥ x for all i ∈ U and x ∈ N with
at most one equality, the t.e. claim holds. Since this contradicts the minimality of
δ0(π), we could not have had cr = b1. Thus, cr = ai for some i ≥ 2. By Lemma
3.2, there is an irreducible θ such that

1. sapp(θ) = δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−dh−kρ, νch−kρ])⊗ θ.
2. δ0(θ) = δ([ν−dh−k+1ρ, νa2ρ])⊗ · · · ⊗ δ([ν−dhρ, νakρ])⊗ σ.

By Theorem 4.2.1, [Jan4], θ is square-integrable. Therefore, by the inductive hy-
pothesis, [ν−dh−k+1ρ, νa2ρ], . . . , [ν−bhρ, νakρ] must satisfy condition 4 of Theorem
1.1. In particular, this forces ak > · · · > a2 > dh−k+1 > · · · > dh. Thus, cr = a2.

Next, we show that

µ∗δ([ν−a1ρ,νa2ρ])(π) = δ([ν−a1ρ, νa2ρ])

⊗ δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

To do this, we first show µ∗
δ([ν−a1ρ,νa2ρ])

(δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) = 0.
Write µ∗(δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t) =

∑
f τf ⊗ θf . Then,

µ∗(δ([ν−b2ρ, νa2ρ])o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t)

=
∑
f

a2+1∑
i=−b2

a2+1∑
j=i

δ([ν−i+1ρ, νb2ρ])× δ([νjρ, νa2ρ])× τf ⊗ δ([νiρ, νj−1ρ])o θf .

Observe that for τf 6= 1, any term in rmin(τf ) has the form νxρ ⊗ . . . with x ∈
{b3, . . . , bk, a3, . . . , ak}. Since none of these is between b2 and a2, to contribute
to µ∗δ([ν−a1ρ,νa2ρ]), we must have j ≤ b2 + 1. Therefore, i ≤ b2 + 1. In particular,
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−i+1, j ≥ −b2 > −a1, which implies that the copies of ν−a1ρ, . . . , ν−b2−1ρ required,
if we are to have µ∗δ([ν−a1ρ,νa2ρ]) 6= 0, must come from τf . Thus,

µ∗δ([ν−a1ρ,νxρ])(δ([ν
−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0

for some a2 ≥ x ≥ −b2−1. Again, x ∈ {b3, . . . , bk, a3, . . . , ak}; certainly, we cannot
have x ∈ {a3, . . . , ak}. If x ∈ {b3, . . . , bk}, then this is in violation of the Casselman
criteria for the square-integrability of δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t. Thus,
we must have

µ∗δ([ν−a1ρ,νa2ρ])(δ([ν
−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) = 0,

as claimed.
Now we are ready to check that

µ∗δ([ν−a1ρ,νa2ρ])(π) = δ([ν−a1ρ, νa2ρ])

⊗ δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

Recycling the notation from the preceding paragraph in a slightly different context,
write µ∗(δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) =

∑
f τf ⊗ θf . Then,

µ∗(π) ≤
∑
f

a1+1∑
i=−b1

a1+1∑
j=i

δ([ν−i+1ρ, νb1ρ])× δ([νjρ, νa1ρ])× τf ⊗ δ([νiρ, νj−1ρ])o θf .

To calculate the contribution to µ∗
δ([ν−a1ρ,νa2ρ])

, we focus on the ν−a1ρ which must
appear. Now, τf cannot contribute a copy of ν−a1ρ. If it did, in order to avoid
contradicting the Casselman criteria, we would need to have τf = δ([ν−a1ρ, νa2ρ]).
However, we just showed that this is not the case. Therefore, to have a copy of
ν−a1ρ, we must have i = a1 + 1. This implies τh = δ([νb1+1ρ, νa2ρ]). By Corollary
7.8 and the inductive hypothesis, we then have θh = δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ],
. . . , [ν−bkρ, νakρ];σ)t. Thus µ∗δ([ν−a1ρ,νa2ρ])(π) is as claimed.

In a moment, we shall show b1 is not one of the di’s. Once we have established
this, we are done: t.e.(δ([ν−a1ρ, νa2ρ]) ⊗ δ([ν−b2ρ, νb1ρ])⊗ δ([ν−b3ρ, νa3ρ]) ⊗ · · · ⊗
δ([ν−bkρ, νakρ]) ⊗ σ) < t.e.(δ0(π)) as above. Thus we get a contradiction; Claim 3
then follows immediately.

First, suppose b1 = di with i < h− k+ 1. Then, the usual commuting argument
tells us µ∗

δ([ν−b1ρ,νciρ])
(π) 6= 0. Since ci < b1, Lemma 2.6 implies

µ∗δ([ν−b1ρ,νciρ])(δ([ν
−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0,

contradicting the Casselman criteria. Of course, we cannot have b1 = dh−k+1 (it is
a1). Suppose b1 = di for i > h−k+1. It then follows easily from Lemma 3.1, Theo-
rem 4.2.1, [Jan4], and the inductive hypothesis that dh−k+2 > · · · > dh. Therefore,
b1 = dh−k+2. Note that ch−k+2 = a3. Then, since [ν−b1ρ, νa3ρ], [ν−a1ρ, νa2ρ] ⊃
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[ν−djρ, νcjρ] for j < h− k + 1, a commuting argument gives

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dh−kρ, νch−kρ])× δ([ν−a1ρ, νa2ρ])
× δ([ν−b1ρ, νa3ρ])× δ([ν−dh−k+3ρ, νa4ρ])× . . .

∼= δ([ν−a1ρ, νa2ρ])× δ([ν−b1ρ, νa3ρ])× δ([ν−d1ρ, νc1ρ])
× · · · × δ([ν−dh−kρ, νch−kρ])× δ([ν−dh−k+3ρ, νa4ρ])× . . .

⇓
sδ([ν−a1ρ,νa2ρ])⊗δ([ν−b1ρ,νa3ρ])(π) 6= 0

⇓
µ∗
δ([ν−b1ρ,νa3ρ])

(δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0,

contradicting Corollary 7.9. Thus, we do not have b1 = di for any i, finishing Claim
3.

Claim 4: a1 does not appear as a ci.
Suppose a1 did appear as ci for some i. Then, i = h− k + 1.
We begin by showing that b1 = ch−k. Since the argument is fairly similar to the

argument that a1 = ch−k+2 (Claim 3), we will be somewhat sketchy here. First,
we argue that b1 6= dh−k+1, . . . , dh. As above, since dh−k+1 > · · · > dh, if b1 were
one of these, it would have to be dh−k+1. Then, the usual commuting argument
would tell us µ∗

δ([ν−b1ρ,νa1ρ])
(π) 6= 0. However, the same argument as in the proof

of Lemma 4.2 then tells us
µ∗
δ([ν−b1ρ,νa1ρ])

(π) ≤ µ∗
δ([ν−b1ρ,νa1ρ])

(δ([ν−b1ρ, νa1ρ])
o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

= c · δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

As in the proof of Claim 3 above, we have t.e.(δ([ν−b1ρ, νa1ρ])⊗· · ·⊗δ([ν−bkρ, νakρ])
⊗ σ) < t.e.(δ0(π)), contradicting the minimality of δ0(π). Thus we cannot have
b1 = dh−k+1, . . . , dh. Next, we argue that b1 6= d1, . . . , dh−k. If we had b1 = di
with i ≤ h− k, the usual commuting argument would tell us µ∗

δ([ν−b1ρ,νciρ])
(π) 6= 0.

Note that ci = bj for some j ≥ 2. But, by Lemma 2.6, this requires

µ∗
δ([ν−b1ρ,νbj ρ])

(δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0,

in contradiction to the Casselman criteria. Therefore, b1 6= d1, . . . , dh−k. It follows
that b1 = ch−k, as needed.

We now finish the proof of Claim 4 in three cases. For the first case, suppose
h = k + 1 and b2 ≥ 0 (since β ≥ 2, we must then have b2 > 0). Then,

δ0(π) = δ([ν−d1ρ, νb1ρ])⊗ δ([ν−d2ρ, νa1ρ])⊗ · · · ⊗ δ([ν−dk+1ρ, νakρ])⊗ σ.
By Theorem 4.2.1, [Jan4], this π is square-integrable. By the results of the preceding
two sections, we know that conditions 3 and 4 of Theorem 1.1 must be satisfied.
Since b1 > max(d1, . . . , dk+1), the only way this can happen is if d1 > · · · >
dk+1. Since b2 ≥ 0, we have b2 ≥ d1, . . . , dk+1. Therefore, b2 = d1. Since π ↪→
Ind(δ0(π)), it follows that easily sδ([ν−b2ρ,νb1ρ])⊗δ([νb2+1ρ,νa1ρ])(π) 6= 0. Let us start
by considering µ∗

δ([ν−b2ρ,νb1ρ])
(π). Writing

µ∗(π) ≤
∑
f

a1+1∑
i=−b1

a1+1∑
j=i

δ([ν−i+1ρ, νb1ρ])× δ([νjρ, νa1ρ])× τf ⊗ δ([νiρ, νj−1ρ])o θf
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as in Claim 3 above, we see that to contribute to µ∗
δ([ν−b2ρ,νb1ρ])

(π), we must have
j = a1 + 1. Therefore, τf = δ([ν−b2ρ, ν−i−1ρ]). If τf 6= 1, we must have b2 <
−i− 1 ≤ b1 (to avoid contradicting the Casselman criteria for δ([ν−b2ρ, νa2ρ], . . . ,
[ν−bkρ, νakρ];σ)t). Since this cannot happen, we have τf = 1, i = b2 + 1, and

µ∗δ([ν−b2ρ,νb1ρ])(π) ≤ δ([ν−b2ρ, νb1ρ])

⊗ δ([νb2+1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t
⇓

sδ([ν−b2ρ,νb1ρ])⊗δ([νb2+1ρ,νa1ρ])(π) = δ([ν−b2ρ, νb1ρ])

⊗ δ([νb2+1ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

This, as above, gives rise to a t.e. lower than that of δ0(π), a contradiction. Thus
we have eliminated this case.

The case h = k+ 1 with b2 < 0 is covered by Lemma 6.5 (note that in this case,
β = α − k + 2 > 1). The case h = k + 1 and no b2 (i.e., k = 1) is also covered by
Lemma 6.5.

The last case is h > k + 1 (which forces β > 2 and b2 > 0). We first argue that
b2 = ch−k−1. If b2 were one of dh−k, . . . , dh, it would have to be dh−k. We could then
commute δ([ν−b2ρ, νb1ρ]) forward as above to conclude that µ∗

δ([ν−b2ρ,νb1ρ])
(π) 6= 0.

However, we have already ruled out this possibility in our discussion of the case
b2 ≥ 0 with h = k + 1. Having b2 equal to one of d1, . . . , dh−1 would require
µ∗
δ([ν−b2ρ,νciρ])

(δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0, in contradiction to the
Casselman criteria. Therefore, b2 = ch−k−1.

Next, arguing as above, we see that either b3 = ch−k−2 or dh−k−1. If b3 =
dh−k−1, we take i = 2. Otherwise, we look at b4; in this case, either b4 = ch−k−3 or
dh−k−2. If b4 = dh−k−2, we set i = 3; otherwise we continue iteratively. Eventually,
one of the following happens:

(a) there is an i ≥ 2 such that δ([ν−bi+1ρ, νbiρ]), bi+1 > 0 appears in δ0(π),
(b) every bi > 0 appears as a cj .
In case (a), the usual commuting argument tells us µ∗

δ([ν−bi+1ρ,νbiρ])
(π) 6= 0.

However, since bi−1 > bi > bi+1, we also get (noting that µ∗
δ([ν−bi+1ρ,νbiρ])

(π) 6= 0
implies µ∗

δ([νbi+1+1ρ,νbiρ])
(π) 6= 0)

µ∗
δ([νbi+1+1ρ,νbiρ])

(δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bi−1ρ, νai−1ρ])
oδ([ν−biρ, νaiρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0

⇓
µ∗
δ([νbi+1+1ρ,νbiρ])

(δ([ν−biρ, νaiρ], . . . , [ν−bkρ, νakρ];σ)t) 6= 0

by Lemma 2.6. However, by Corollary 7.9 and the inductive hypothesis, this is not
the case. Thus, we can rule out (a). If (b) occurs,

δ0(π) = δ([ν−d1ρ, νbiρ])⊗ · · · ⊗ δ([ν−diρ, νb1ρ])⊗ δ([ν−di+1ρ, νa1ρ])

⊗ · · · ⊗ δ([ν−dhρ, νakρ])⊗ σ.

By Theorem 4.2.1, [Jan4], π is square-integrable. Therefore, by the previous
section, we know that conditions 3 and 4 of Theorem 1.1 hold. Again, since
a1, . . . , ak, b1, . . . , bi ≥ β − 1 > d1, . . . , dh, the only way for this to happen is to
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have d1 > · · · > dh. Therefore, d1 = β − 2. Corollary 6.7 below then finishes the
proof.

Lemma 6.4. With notation as above, suppose b1 ≥ 0 and α− k + 2 > 1. Let

π′ = δ([ν−α+kρ, νb1ρ])o δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ),

π′′ = δ([ν−b1ρ, νa1ρ])o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ)

(if k = 1, we take δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ) = σ). Then, there is a
unique irreducible representation π0 such that both of the following conditions hold:
π0 ≤ π′, π′′ and µ∗

δ([να−k+1ρ,νb1ρ])×δ([να−k+1ρ,νa1ρ])
(π0) 6= 0. Further, π0 ↪→ π′, π′′.

Proof. Let

π∗ = δ([ν−α+kρ, νb1ρ])× δ([να−k+1ρ, νa1ρ])
o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ)

= δ([ν−b1ρ, να−kρ])× δ([να−k+1ρ, νa1ρ])
o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ).

Then π′, π′′ ≤ π∗. We claim

µ∗
δ([να−k+1ρ,νb1ρ])×δ([να−k+1ρ,νa1ρ])

(π′)

= µ∗
δ([να−k+1ρ,νb1ρ])×δ([να−k+1ρ,νa1ρ])

(π′′)

= µ∗
δ([να−k+1ρ,νb1ρ])×δ([να−k+1ρ,νa1ρ])

(π∗)

= δ([να−k+1ρ, νb1ρ])× δ([να−k+1ρ, νa1ρ])
⊗ δ([ν−α+kρ, να−kρ])o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ).

The argument is similar to the calculations in Lemma 5.2.5, [Jan4] (and follows
from Lemma 2.6 for π′′ and π∗); we omit the details.

Next, we claim δ([ν−α+kρ, να−kρ]) o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ) is ir-
reducible. Suppose θ0 is an irreducible subrepresentation. Then,

θ0 ↪→ δ([ν−α+kρ, να−kρ])o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ)

↪→ δ([ν−α+kρ, να−kρ])× δ([να−k+2ρ, νa2ρ])× · · · × δ([ναρ, νakρ])o σ

∼= δ([να−k+2ρ, νa2ρ])× · · · × δ([ναρ, νakρ])× δ([ν−α+kρ, να−kρ])o σ
⇓

sapp(θ0) ≥ δ([να−k+2ρ, νa2ρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ (δ([ν−α+kρ, να−kρ])o σ)

noting that this is irreducible (Theorem 13.2, [Tad3]). By Corollary 7.8 and Lemma
2.6, we see that

µ∗δ([να−k+2ρ,νa2ρ])(δ([ν
−α+kρ, να−kρ])o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ))

=δ([να−k+2ρ, νa2ρ])⊗ δ([ν−α+kρ, να−kρ])o δ([να−k+3ρ, νa3ρ], . . . , [ναρ, νakρ];σ).
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Iterating this argument, we get

sδ([να−k+2ρ,νa2ρ])⊗···⊗δ([ναρ,νakρ])(δ([ν
−α+kρ, να−kρ])

o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ))

= δ([να−k+2ρ, νa2ρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ (δ([ν−α+kρ, να−kρ])o σ).

Thus, θ0 is the only irreducible subrepresentation, hence (by unitarity) we have
irreducibility, as claimed.

At this point, it is clear that there is a unique irreducible π0 such that π0 ≤ π′, π′′
and µ∗

δ([να−k+1ρ,νb1ρ])×δ([να−k+1ρ,νa1ρ])
(π0) 6= 0.

Next, we argue that π0 ↪→ π′. Observe that µ∗
δ([να−k+1ρ,νb1ρ])

(π0) 6= 0. Now,
π0 ≤ π′ and

µ∗δ([να−k+1ρ,νb1ρ])(π
′) = δ([να−k+1ρ, νb1ρ])

⊗ δ([ν−α+kρ, να−kρ])o δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ).

Therefore, µ∗
δ([να−k+1ρ,νb1ρ])

(π0) ≥ δ([να−k+1ρ, νb1ρ])⊗ S for some irreducible S ≤
δ([ν−α+kρ, να−kρ])o δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ) (cf. Lemma 5.5, [Jan2]).
By unitarity, S ↪→ δ([ν−α+kρ, να−kρ]) o δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ).
Thus, by central character considerations,

π0 ↪→ νb1ρ× · · · × να−k+1ρo S

for some such S. Therefore, by Lemma 5.5, [Jan2], π0 ↪→ τ oS for some irreducible
τ ≤ νb1ρ × · · · × να−k+1ρ. Any subquotient of νb1ρ × · · · × να−k+1ρ other than
δ([να−k+1ρ, νb1ρ]) would give rmin(τ), and therefore smin(π0), containing a term
of the form νxρ⊗ . . . with α− k + 1 ≤ x < b1, a contradiction. Thus,

π0 ↪→ δ([να−k+1ρ, νb1ρ])o S

↪→ δ([να−k+1ρ, νb1ρ])× δ([ν−α+kρ, να−kρ])
o δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ)

⇓ (Lemma 5.5, [Jan2])
π0 ↪→ δ([ν−α+kρ, νb1ρ])o δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ)

or
L(δ([ν−α+kρ, να−kρ]), δ([να−k+1ρ, νb1ρ]))

o δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ).

The latter would give smin(π0) ≥ να−kρ ⊗ . . . , a contradiction. Thus the former,
which says π ↪→ π′–holds, as claimed.

Finally, we show π ↪→ π′′. Write

δ([ν−b1ρ, νb1ρ])o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ) =
⊕
i

Si,

where the Si’s are inequivalent by [Gol]. (It will turn out that i = 1, 2 (cf. Lemma
7.4 below), though that is not needed for the argument.) By Lemma 2.6,

µ∗δ([νb1+1ρ,νa1ρ])(δ([ν
b1+1ρ, νa1ρ])o Si) = δ([νb1+1ρ, νa1ρ])⊗ Si.

Thus δ([νb1+1ρ, νa1ρ]) o Si has a unique irreducible subrepresentation; denote it
πSi . If we set

π∗∗ = δ([νb1+1ρ, νa1ρ])× δ([ν−b1ρ, νb1ρ])o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ),
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we have πSi , π′′ ≤ π∗∗ and µ∗
δ([νb1+1ρ,νa1ρ])

(π′′) = µ∗
δ([νb1+1ρ,νa1ρ])

(π∗∗). Therefore,
πSi ≤ π′′ for all i. Further, πSi appears with multiplicity one in π′′. Since πSi , π′′ ↪→
π∗∗, we get πSi ↪→ π′′. (To see this, consider the subspace Vπ′′ + VπSi ⊂ Vπ∗∗ .)
Therefore, any irreducible subquotient of π′′ with µ∗

δ([νb1+1ρ,νa1ρ])
6= 0 is a πSi ,

hence a subrepresentation. In particular, π0 ↪→ π′′, as needed.

Lemma 6.5. With notation as above, suppose b1 ≥ 0 and

π ≤ δ([ν−b1ρ, νa1ρ])o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ),

with α− k + 2 > 1. Then,

δ0(π) 6= δ([ν−α+kρ, νb1ρ])⊗ δ([να−k+1ρ, νa1ρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ.

Proof. Suppose δ0(π) had this form.
First, with π′, π′′ as in the preceding lemma, Lemma 2.6 tells us

µ∗δ([ν−α+kρ,νb1ρ])(π
′) = c · δ([ν−α+kρ, νb1ρ])⊗ δ([να−k+1ρ, νa1ρ], . . . , [ναρ, νakρ];σ),

where c = 1 if α − k < 0; c = 2 if α− k ≥ 0. Consider µ∗
δ([ν−α+kρ,νb1ρ])

(π′′). Write
µ∗(δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ)) =

∑
h τf ⊗ θf . Then,

µ∗(π′′) =
∑
f

a1+1∑
i=−b1

a1+1∑
j=i

[δ([ν−i+1ρ, νb1ρ])

× δ([νjρ, νa1ρ])× τf ]⊗ δ([νiρ, νj−1ρ])o θf .

To contribute to µ∗
δ([ν−α+kρ,νb1ρ])

, we must have j = a1 + 1. Also, if τf 6= 1, the
rmin(τf ) consists of terms of the form νxρ⊗ . . . with x ∈ {a2, . . . , ak}. Therefore,
τf = 1. Thus,

µ∗δ([ν−α+kρ,νb1ρ])(π
′′) = δ([ν−α+kρ, νb1ρ])⊗ δ([να−k+1ρ, νa1ρ])

o δ([να−k+2ρ, νa2ρ], . . . , [ναρ, νakρ];σ).

Therefore, µ∗
δ([ν−α+kρ,νb1ρ])

(π′′) contains δ([ν−α+kρ, νb1ρ])⊗ δ([να−k+1ρ, νa1ρ], . . . ,
[ναρ, νakρ];σ) with multiplicity exactly one (by Theorem 7.7 and the inductive
hypothesis). Therefore, by Frobenius reciprocity, there is at most one irreducible
subrepresentation of π′ which is also a subquotient of π′′; by the preceding lemma,
there is at least one, namely π0. Thus, π = π0. However, by the preceding lemma,

π0 ↪→ δ([ν−b1ρ, νa1ρ])× δ([να−k+2ρ, νa1ρ])× · · · × δ([ναρ, νakρ])o σ,
which (by Frobenius reciprocity) contradicts the minimality of δ0(π). The lemma
follows.

Lemma 6.6. We continue to assume ak > · · · > a1 > b1 > · · · > bk satisfy
conditions 1–4 of Theorem 1.1. We also assume β > 2 and b2 ≥ 0. We take i so
that bi+1 = −β (and bi ≥ 0). Let

δt = δ([ν−b2ρ, νa2ρ], . . . , [ν−biρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)t,

noting that t = 1 unless i = k. Then,
1. if t = 1,

µ∗δ([ν−β+2ρ,νbiρ])(δ1) ≤ 2 · δ([ν−β+2ρ, νbiρ])

⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bi−1ρ, νai−1ρ], [νβ−1ρ, νaiρ], . . . , [ναρ, νakρ];σ)1.
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2. if t = 2,

µ∗δ([ν−β+2ρ,νbiρ])(δ2) = 0.

Proof. Let us verify 2 first. Since t = 2, we must have i = k, and therefore β = α+1.
We have

δ2 ↪→ δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bk−1ρ, νak−1ρ])o δ([ν−bkρ, νakρ];σ)2.

Since b2, . . . , bk−1, a2, . . . , ak−1 > bk, Lemma 2.6 tells us that

µ∗
δ([ν−α+1ρ,νbkρ])

(δ2) 6= 0
⇓

µ∗
δ([ν−α+1ρ,νbkρ])

(δ([ν−bkρ, νakρ];σ)2) 6= 0.

This is not the case (cf. Theorem 4.5, [Tad6], noting that β > 2 requires α > 1); 2
follows.

We now turn to 1. By Theorem 7.7 and the inductive hypothesis, we have

δ([ν−biρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)1

↪→ δ([ν−β+2ρ, νbiρ])o δ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)t.

If i = 2, then 1 now follows immediately from Lemma 2.6. Suppose i ≥ 3. Then,
we have

δ1 ↪→ δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−1ρ, νai−1ρ])
oδ([ν−biρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)1

↪→ δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−1ρ, νai−1ρ])× δ([ν−β+2ρ, νbiρ])
oδ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)

∼= δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−1ρ, νai−1ρ])
oδ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ).

Write δ([ν−bi−1ρ, νai−1ρ]) o δ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)
= θi−1 + θ′i−1 + θ′′i−1, where (by Theorem 7.7 and the inductive hypothesis)

δ0(θi−1) = δ([ν−bi−1ρ, νai−1ρ])⊗ δ([νβ−1ρ, νaiρ])⊗ δ([νβρ, νai+1ρ])

⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ

δ0(θ′i−1) = δ([νβ−1ρ, νbi−1ρ])⊗ δ([ν−ai−1ρ, νaiρ])⊗ δ([νβρ, νai+1ρ])

⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ

δ0(θ′′i−1) = δ([ν−ai−1ρ, νbi−1ρ])⊗ δ([νβ−1ρ, νaiρ])⊗ δ([νβρ, νai+1ρ])

⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ.

By Lemma 5.5, [Jan2],

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−2ρ, νai−2ρ])o θ

for some θ ∈ {θi−1, θ
′
i−1, θ

′′
i−1}. We show that θ = θi−1 is the only possibility.
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Suppose θ = θ′i−1. Then

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−2ρ, νai−2ρ])o θ′i−1

↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−2ρ, νai−2ρ])
×δ([ν−β+2ρ, νbi−1ρ])× δ([ν−ai−1ρ, νaiρ])
oδ([νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)

∼= δ([ν−ai−1ρ, νaiρ])× δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])
× · · · × δ([ν−bi−2ρ, νai−2ρ])× δ([ν−β+2ρ, νbi−1ρ])
oδ([νβρ, νai+1ρ], . . . [ναρ, νakρ];σ)

⇓
µ∗
δ([ν−ai−1ρ,νaiρ])

(δ1) 6= 0.

Now, since

δ1 ↪→ δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−2ρ, νai−2ρ])
o δ([ν−bi−1ρ, νai−1ρ], [ν−biρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)1,

we have
µ∗
δ([ν−ai−1ρ,νaiρ])

(δ1) 6= 0
⇓

µ∗
δ([νai−2+1ρ,νaiρ])

(δ([ν−bi−1ρ, νai−1ρ], [ν−biρ, νaiρ],
[νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)1) 6= 0,

contradicting Corollary 7.9. Thus we cannot have θ = θ′i−1.
Suppose θ = θ′′i−1. Then

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−2ρ, νai−2ρ])o θ′′i−1

↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−2ρ, νai−2ρ])
×δ([ν−ai−1ρ, νbi−1ρ])o δ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . [ναρ, νakρ];σ).

Now,

δ([ν−bi−2ρ, νai−2ρ])× δ([ν−ai−1ρ, νbi−1ρ])

= δ([ν−ai−1ρ, νai−2ρ])× δ([ν−bi−2ρ, νbi−1ρ])

+ L(δ([ν−ai−1ρ, νbi−1ρ]), δ([ν−bi−2ρ, νai−2ρ])),

a sum of irreducible representations. By Lemma 5.5, [Jan2], either

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−3ρ, νai−3ρ])

× δ([ν−ai−1ρ, νai−2ρ])× δ([ν−bi−2ρ, νbi−1ρ])

o δ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . [ναρ, νakρ];σ)1

or

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−3ρ, νai−3ρ])

× L(δ([ν−ai−1ρ, νbi−1ρ]), δ([ν−bi−2ρ, νai−2ρ]))

o δ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . [ναρ, νakρ];σ)1.
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In the first case, an easy commuting argument gives µ∗
δ([ν−ai−1ρ,νai−2ρ])

(δ1) 6= 0,
contradicting the Casselman criteria for the square-integrability of δ1. In the second
case, we have

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−3ρ, νai−3ρ])
× δ([ν−ai−1ρ, νbi−1ρ])× δ([ν−bi−2ρ, νai−2ρ])
o δ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . [ναρ, νakρ];σ)1.

We now observe that

δ([ν−bi−3ρ, νai−3ρ])× δ([ν−ai−1ρ, νbi−1ρ])

= δ([ν−ai−1ρ, νai−3ρ])× δ([ν−bi−3ρ, νbi−1ρ])

+ L(δ([ν−ai−1ρ, νbi−1ρ]), δ([ν−bi−3ρ, νai−3ρ])).

Thus, as above, we get either the contradiction µ∗
δ([ν−ai−1ρ,νai−3ρ])

(δ1) 6= 0 or

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−4ρ, νai−4ρ])
×δ([ν−ai−1ρ, νbi−1ρ])× δ([ν−bi−3ρ, νai−3ρ])× δ([ν−bi−2ρ, νai−2ρ])
oδ([νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . [ναρ, νakρ];σ)1.

Iterating this argument, we must eventually get

µ∗
δ([ν−ai−1ρ,νx])

(δ1) 6= 0

for some x ∈ {a2, . . . , ai−2, bi−1}, contradicting the Casselman criteria for the
square-integrability of δ1. Thus, θ 6= θ′′i−1.

We now have only the possibility

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−3ρ, νai−3ρ])
o (δ([ν−bi−2ρ, νai−2ρ])o θi−1).

If i = 3, then 1 now follows immediately from Lemma 2.6. If i ≥ 4, combining
Lemma 5.5, [Jan2] and Theorem 7.7 (by the inductive hypothesis), we get

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−3ρ, νai−3ρ])o θ,

for some θ ∈ {θi−2, θ
′
i−2, θ

′′
i−2}, where

δ0(θi−2) = δ([ν−bi−2ρ, νai−2ρ])⊗ δ([ν−bi−1ρ, νai−1ρ])⊗ δ([νβ−1ρ, νaiρ])
⊗δ([νβρ, νai+1ρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ

δ0(θ′i−2) = δ([ν−bi−1ρ, νbi−2ρ])⊗ δ([ν−ai−2ρ, νai−1ρ])⊗ δ([νβ−1ρ, νaiρ])
⊗δ([νβρ, νai+1ρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ

δ0(θ′′i−2) = δ([ν−ai−2ρ, νbi−2ρ])⊗ δ([ν−bi−1ρ, νai−1ρ])⊗ δ([νβ−1ρ, νaiρ])
⊗δ([νβρ, νai+1ρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ.

We can rule out the possibilities θ = θ′i−2, θ
′′
i−2 using the same arguments as above.

Therefore,

δ1 ↪→ δ([ν−β+2ρ, νbiρ])× δ([ν−b2ρ, νa2ρ])× · · · × δ([ν−bi−3ρ, νai−3ρ])o θi−2.

We continue iterating this argument. Eventually, we get

δ1 ↪→ δ([ν−β+2ρ, νbiρ])o θ2,
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with
θ2 = δ([ν−b2ρ, νa2ρ], . . . , [ν−bi−1ρ, νai−1ρ], [νβ−1ρ, νaiρ],

[νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)1.

It then follows from Lemma 2.6 that

µ∗δ([ν−β+2ρ,νbiρ])(δ1) ≤ 2 · δ([ν−β+2ρ, νbiρ])⊗ θ2,

as needed.

Now, suppose ak > · · · > a1 > b1 > . . . bk with b2, . . . , bk, a2, . . . , ak as in the
preceding lemma. Suppose π is an irreducible representation with

π ≤ δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−biρ, νaiρ],
[νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)t.

Corollary 6.7. With assumptions as in Lemma 6.6, we cannot have

δ0(π) = δ([ν−β+2ρ, νbiρ])⊗ · · · ⊗ δ([ν−β+i+1ρ, νb1ρ])

⊗ δ([νβ−iρ, νa1ρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ.
Proof. Suppose δ0(π) had this form.

The usual argument (cf. proof of Lemma 4.2) with the preceding lemma gives

µ∗
δ([ν−β+2ρ,νbiρ])

(δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−biρ, νaiρ],
[νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)t),

≤


0 if t = 2,

c · δ([ν−β+2ρ, νbiρ])⊗ δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . ,
[ν−bi−1ρ, νai−1ρ], [νβ−1ρ, νaiρ], [νβρ, νai+1ρ], . . . , [ναρ, νakρ];σ)t,
if t = 1.

Therefore, if t = 2 we already see that we cannot have µ∗
δ([ν−β+2ρ,νbiρ])

(π) 6= 0.
If t = 1, we have (by either δ0 or central character considerations)

π ↪→ δ([ν−β+2ρ, νbiρ])o θ
for some irreducible θ. By Lemma 5.5, [Jan2] and Theorem 7.7 (by the inductive
hypothesis),

δ0(θ) = δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bi−1ρ, νai−1ρ])⊗ δ([νβ−1ρ, νaiρ])

⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ,

δ([ν−b2ρ, νb1ρ])⊗ δ([ν−a1ρ, νa2ρ])⊗ δ([ν−b3ρ, νa3ρ])

⊗ · · · ⊗ δ([ν−bi−1ρ, νai−1ρ])⊗ δ([νβ−1ρ, νaiρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ,

or

δ([ν−a1ρ, νb1ρ])⊗ δ([ν−b2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−bi−1ρ, νai−1ρ])

⊗ δ([νβ−1ρ, νaiρ])⊗ · · · ⊗ δ([ναρ, νakρ])⊗ σ.
However, for any of these,

sapp(π) ≥ δ([ν−β+2ρ, νbiρ])⊗ δ0(θ)

contradicts the minimality of δ0(π).
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7. Construction of certain discrete series

In this section, we construct certain discrete series needed in this paper. In
particular, if ak > · · · > a1 > b1 > · · · > bk satisfy the conditions in Theorem 1.1,
we construct an irreducible representation, which we denote by δ([ν−b1ρ, νa1ρ], . . . ,
[ν−bkρ, νakρ];σ)t (more on t in a moment), which has

δ0(δ([ν−b1ρ, νa1ρ], . . . , [ν−bkρ, νakρ];σ)t)
= δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

Further, these constitute all the irreducible representations with this δ0. The con-
struction is inductive in nature; to obtain δ([ν−b1ρ, νa1ρ], . . . [ν−bkρ, νakρ];σ)t we
analyze the representation δ([ν−b1ρ, νa1ρ]) o δ([ν−b2ρ, νa2ρ], . . . [ν−bkρ, νakρ];σ)t.
Using the results of the last section, we can determine the composition series for
this induced representation; one of the irreducible subrepresentations has the de-
sired δ0. The composition series is described in Theorem 7.7, the main theorem in
this section. Additional properties we need are given in Corollaries 7.8 and 7.9.

Our situation with respect to the inductive argument is the following: by the
inductive hypothesis, we may assume Theorem 7.7 (and Corollaries 7.8 and 7.9)
hold when the parabolic rank of the supercuspidal support is less than p.r. By
Theorems 2.4, 3.7, 4.4, and 5.4, we may assume that Theorem 1.1 holds when the
parabolic rank of the supercuspidal support is less than or equal to p.r. (Again, we
note that Theorem 2.4 holds in general and is not part of the inductive argument.)
As a consequence, we may also assume Proposition 6.3 holds when the parabolic
rank of the supercuspidal support is less than or equal to p.r.

We make two additional remarks before starting in on the results for this sec-
tion. First, we note that if bk < 0, then t = 1; if bk ≥ 0, then t = 1 or 2. The
reason for this is the following: when k = 1, then δ([ν−b1ρ, νa1ρ]) o σ has one
irreducible subrepresentation (which has δ0 = δ([ν−b1ρ, νa1ρ]) ⊗ σ) when b1 < 0
(in which case −b1 = α) and two irreducible subrepresentations (both having
δ0 = δ([ν−b1ρ, νa1ρ]) ⊗ σ) when b1 ≥ 0. (This claim follows from the results
in [Tad6].) When k ≥ 2, there is always a unique irreducible subrepresentation
of δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t having δ([ν−b1ρ, νa1ρ])⊗
· · · ⊗ δ([ν−bkρ, νakρ])⊗ σ as its δ0.

Lemma 7.1. Suppose π is an irreducible representation with

δ0(π) = δ([ν−b1ρ, νa1ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

Further, suppose that ak > · · · > a1 > b1 > · · · > bk. Suppose that [νdρ, νcρ] is such
that b1 + 1 < d ≤ c ≤ a1 with d ≥ β (and d ≡ c ≡ βmod 1). Then, δ([νdρ, νcρ])oπ
is irreducible.

Proof. We use a Langlands classification argument similar to one in [Tad1] (also,
cf. [Jan1], [Jan3]). Write

π = δ([ν−b1ρ, νa1ρ], . . . , [ν−bsρ, νasρ], [νβρ, νas+1ρ], . . . , [ναρ, νakρ];σ)t.

Suppose a1 ≥ x > b1 + 1 with x ≥ β. Note that these imply x ≥ 1. Our first
goal is to show νxρ o π is irreducible. Suppose π0 ↪→ νxρ o π. Then, (with the
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obvious interpretation if x > α)

π0 ↪→ νxρ× δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νxρ, νarρ])× δ([νx+1ρ, νar+1ρ])
× · · · × δ([ναρ, νakρ])o σ

∼= δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νxρ, νarρ])× νxρ× δ([νx+1ρ, νar+1ρ])
× · · · × δ([ναρ, νakρ])o σ

↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νx+1ρ, νarρ])× νxρ× νxρ
×δ([νx+2ρ, νar+1ρ])× νx+1ρ× δ([νx+2ρ, νar+2ρ])× δ([ναρ, νakρ])o σ

∼= δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νx+1ρ, νarρ])× δ([νx+2ρ, νar+1ρ])
×νxρ× νxρ× νx+1ρ× δ([νx+2ρ, νar+2ρ])× δ([ναρ, νakρ])o σ
⇓ (Lemma 5.5, [Jan2])

π0 ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νx+1ρ, νarρ])× δ([νx+2ρ, νar+1ρ])
×ξ([νxρ, νx+1ρ])× νxρ× δ([νx+2ρ, νar+2ρ])× δ([ναρ, νakρ])o σ,

where ξ([νxρ, νx+1ρ]) is one of the two irreducible subquotients of νxρ×νx+1ρ (the
irreducibility of νxρ× ξ([νxρ, νx+1ρ]) follows from Theorem 4.2, [Zel] and Theorem
9.7, [Zel]). Continuing,

π0 ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νx+1ρ, νarρ])× δ([νx+2ρ, νar+1ρ])
×ξ([νxρ, νx+1ρ])× δ([νx+2ρ, νar+2ρ])× δ([ναρ, νakρ])× νxρo σ.

We now use this to show that µ∗ν−xρ(π0) 6= 0. We do this in three cases.
First, suppose x > α. Then, since νxρo σ ∼= ν−xρo σ (irreducible),

π0 ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bkρ, νakρ])× νxρo σ

∼= δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bkρ, νakρ])× ν−xρo σ

∼= ν−xρ× δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bkρ, νakρ])o σ

(where the commuting argument works since x > b1 + 1). Thus, µ∗ν−xρ(π0) 6= 0.
Next, suppose x < α. Then, since νxρo σ ∼= ν−xρo σ (irreducible),

π0 ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νx+1ρ, νarρ])× δ([νx+2ρ, νar+1ρ])
×ξ([νxρ, νx+1ρ])× δ([νx+2ρ, νar+2ρ])× δ([ναρ, νakρ])× ν−xρo σ

∼= ν−xρ× δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])
× · · · × δ([νx−1ρ, νar−1ρ])× δ([νx+1ρ, νarρ])× δ([νx+2ρ, νar+1ρ])
×ξ([νxρ, νx+1ρ])× δ([νx+2ρ, νar+2ρ])× δ([ναρ, νakρ])o σ

(the commuting argument works since x > b1 +1 and x ≥ 1). Thus, µ∗ν−xρ(π0) 6= 0.
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Now, suppose x = α. Then,

π0 ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])× . . .
×δ([να−1ρ, νak−1ρ])× δ([ναρ, νakρ])× ναρo σ

↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])× . . .
×δ([να−1ρ, νak−1ρ])× δ([να+1ρ, νakρ])× ναρ× ναρo σ
⇓ Lemma 5.5, [Jan2]

π0 ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])× . . .
×δ([να−1ρ, νak−1ρ])× δ([να+1ρ, νakρ])o θα,

for some irreducible θα ≤ ναρ× ναρo σ. Since α = x ≥ 1, we know that for such
a θα, µ∗ν−αρ(θα) 6= 0 (this follows from Theorem 13.1, [Tad3] and [Aub], [S-S]).
Therefore, by central character considerations, θα ↪→ ν−αρoηα for some ηα. Thus,

π0 ↪→ δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])× . . .
×δ([να−1ρ, νak−1ρ])× δ([να+1ρ, νakρ])× ν−αρo ηα

∼= ν−αρ× δ([ν−b1ρ, νa1ρ])× · · · × δ([ν−bsρ, νasρ])× δ([νβρ, νas+1ρ])× . . .
×δ([να−1ρ, νak−1ρ])× δ([να+1ρ, νakρ])o ηα

since α = x > b1 + 1 > bi + 1 for all i > 1 and x ≥ 1. By Frobenius reciprocity,
µ∗ν−αρ(π0) 6= 0, as needed.

Next, we note that for b1 < x < a1 with c > 1,

µ∗ν−xρ(ν
−xρo π) = ν−xρ⊗ π.

Therefore, by central character considerations,

π0 ↪→ ν−xρo π,

and is the unique irreducible subrepresentation (by Frobenius reciprocity or the
Langlands classification). However, since π0 ↪→ νxρoπ, this contradicts multiplicity
one in the Langlands classification unless νxρo π is irreducible.

We are now ready to show the irreducibility of δ([νdρ, νcρ])o π. The argument
is similar to the case c = d = x above; suppose π0 ↪→ δ([νdρ, νcρ])o π. Then,

π0 ↪→ δ([νdρ, νcρ])o π

↪→ δ([νd+1ρ, νcρ])× νdρo π

∼= δ([νd+1ρ, νcρ])× ν−dρo π

∼= ν−dρ× δ([νd+1ρ, νcρ])o π
... iterating

π0 ↪→ ν−dρ× ν−d−1ρ× · · · × ν−cρo π
⇓

π0 ↪→ τ o π

for some irreducible τ ≤ ν−dρ × ν−d−1ρ × · · · × ν−cρ. Anything other than
τ = δ([ν−cρ, ν−dρ]) gives rmin(τ), and therefore smin(π0), containing a term of
the form νzρ ⊗ . . . with z 6∈ {−d, b1, . . . , bk, a1, . . . , ak}, a contradiction. Thus,
π0 ↪→ δ([ν−cρ, ν−dρ])oπ. Again, this contradicts multiplicity one in the Langlands
classification unless δ([ν−cρ, ν−dρ])o π is irreducible.
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We continue to assume ak > · · · > a1 > b1 > · · · > bk. Suppose π1 is an
irreducible subquotient of δ([ν−b1ρ, νa1ρ]) o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t
Our next step is to identify the possibilities for δ0(π1).

Write

δ0(π1) = δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−dhρ, νchρ])⊗ σ.
By Proposition 6.3, h ≤ k. It follows from Lemma 3.1 that

{d1, . . . , dh, c1, . . . , ch} = {b1, . . . , bk, a1, . . . , ak} \
( ⋃
x∈X
{−x, x− 1}

)
.

By allowing, e.g., d1 = −β and c1 = β − 1, we can write

δ0(π1) = δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−dkρ, νckρ])⊗ σ,
with d1, . . . , dk, c1, . . . ck a permutation of b1, . . . , bk, a1, . . . , ak. (We remark that it
will turn out that we can have h = k−1 in some cases, but never anything smaller.)

Certainly,

t.e.(δ0(π1)) ≥ t.e.(δ0(δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)))

= t.e.(δ([ν−a1ρ, νb1ρ])) + t.e.(δ0(δ([ν−b2ρ, νa2ρ],. . ., [ν−bkρ, νakρ];σ)t)).

Now, one can check that since ak > · · · > a1 > b1 > . . . bk, this implies c1, . . . , ck
must be either a1, . . . , ak or b1, a2, . . . , ak. In particular, ci = ai for i ≥ 2. By
Lemma 6.1, there is an irreducible representation θ such that

1. δ([ν−d1ρ, νc1ρ])⊗ θ ≤ µ∗(π1),
2. δ0(θ) ≥ δ([ν−d2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−dkρ, νakρ])⊗ σ.

Therefore, since ai > di for all i ≥ 2, Theorem 4.2.1, [Jan4] tells us that θ is
square-integrable. Therefore, [ν−diρ, νaiρ], [ν−djρ, νajρ] satisfy conditions 3 and
4 of Theorem 1.1 for all i, j ≥ 2 with i 6= j (by Theorems 4.4 and 5.4). Since
ak > · · · > a2 > d2, . . . , dk, we must have d2 > · · · > dk. Therefore, di = bi for
i ≥ 3.

We now have
δ0(π1) = δ([ν−d1ρ, νc1ρ])⊗ δ([ν−d2ρ, νa2ρ])⊗ δ([ν−b3ρ, νa3ρ])

⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ,
with d1, d2, c1 equal to b1, b2, a1 in some order and c1 = b1 or a1. We consider the
following possibilities:

1. c1 = a1.
Then, π1 is square-integrable by Theorem 4.2.1, [Jan4]. By Theorems 4.4

and 5.4, condition 4 of Theorem 1.1 holds. Since ak > · · · > a1 > d1, . . . , dk,
this forces d1 > · · · > dk. Thus di = bi for all i.

2. c1 = b1.
(a) d1 = a1.

By Lemma 6.1, there is an irreducible θ with δ0(θ) = δ([ν−d2ρ, νa2ρ]) ⊗
· · ·⊗δ([ν−dkρ, νakρ])⊗σ. By Theorem 4.2.1, [Jan4], θ is square-integrable.
Again, we get d2 > · · · > dk, implying di = bi for i ≥ 2.

(b) d1 6= a1.
With θ as in (a), we see that d2 > · · · > dk, implying d2 = a1. Also, by
Theorem 4.2.1, [Jan4], π1 is square-integrable. Again, by Theorems 4.4
and 5.4, condition 4 of Theorem 1.1 holds. This forces d1 > d3 > · · · > dk,
so d1 = b2 and di = bi for i ≥ 3.
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We summarize:

Proposition 7.2. Suppose ak > · · · > a1 > b1 > · · · > bk satisfy conditions 1–4 of
Theorem 1.1. If π1 is an irreducible subquotient of δ([ν−b1ρ, νa1ρ])oδ([ν−b2ρ, νa2ρ],
. . . , [ν−bkρ, νakρ];σ)t, then δ0(π1) must be one of the following:

1. δ([ν−b1ρ, νa1ρ]) ⊗ δ([ν−b2ρ, νa2ρ]) ⊗ (δ([ν−b3ρ, νa3ρ]) ⊗ · · · ⊗ δ([ν−bkρ, νakρ])
⊗ σ),

2. δ([ν−a1ρ, νb1ρ]) ⊗ δ([ν−b2ρ, νa2ρ]) ⊗ (δ([ν−b3ρ, νa3ρ]) ⊗ · · · ⊗ δ([ν−bkρ, νakρ])
⊗ σ),

3. δ([ν−b2ρ, νb1ρ]) ⊗ δ([ν−a1ρ, νa2ρ]) ⊗ (δ([ν−b3ρ, νa3ρ]) ⊗ · · · ⊗ δ([ν−bkρ, νakρ])
⊗ σ).

Corollary 7.3. δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t has a uni-
que irreducible (Langlands) quotient. All other irreducible subquotients are square-
integrable.

Proof. The corollary follows immediately from the preceding proposition, the Lang-
lands classification, Theorem 4.2.1, [Jan4] and Lemma 3.4, [Jan2].

Lemma 7.4. We continue to assume ak > · · · > a1 > b1 > · · · > bk sat-
isfy conditions 1–4 of Theorem 1.1. Suppose b1 ≥ 0. Then, δ([ν−b1ρ, νb1ρ]) o
δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t decomposes as the direct sum of (exactly) two
inequivalent irreducible subrepresentations.

To fix notation when k = 1, write

δ([ν−αρ, ναρ])o σ =
2⊕
t=1

Tt([ν−αρ, ναρ];σ).

If α ≥ 1
2 , we let T1([ν−αρ, ναρ];σ) be the component which has the larger Jacquet

module (cf. Theorem 2.5, [Tad6]). Then, we may write

δ([ν−b1ρ, νb1ρ])o σ =
2⊕
t=1

Tt([ν−b1ρ, νb1ρ];σ),

where Tt([ν−b1ρ, νb1ρ];σ) is the component characterized by

µ∗
δ([να+1ρ,νb1ρ];σ)×δ([να+1ρ,νb1ρ];σ)

(Tt([ν−b1ρ, νb1ρ];σ))
= δ([να+1ρ, νb1ρ];σ)× δ([να+1ρ, νb1ρ];σ)⊗ Tt([ν−αρ, ναρ];σ).

(We note that T1([ν−b1ρ, νb1ρ];σ) is the representation denoted δ([ν−b1ρ, νb1ρ], σ)
in Theorem 2.5, [Tad6].)

Proof. First, let us address the case k = 1. In this case, the reducibility re-
sult follows from Theorem 13.2, [Tad3]. To justify the notational convention, it
suffices to show that µ∗

δ([να+1ρ,νb1ρ])×δ([να+1ρ,νb1ρ])
is nonzero for components of
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δ([ν−b1ρ, νb1ρ])o σ. If T is such a component, then

T ↪→ δ([ν−b1ρ, νb1ρ])o σ

↪→ δ([ν−αρ, νb1ρ])× δ([ν−b1ρ, ν−α−1ρ])o σ

∼= δ([ν−αρ, νb1ρ])× δ([να+1ρ, νb1ρ])o σ

∼= δ([να+1ρ, νb1ρ])× δ([ν−αρ, νb1ρ])o σ

↪→ δ([να+1ρ, νb1ρ])× δ([να+1ρ, νb1ρ])× δ([ν−αρ, ναρ])o σ,

where the irreducibility of δ([ν−b1ρ, ν−α−1ρ])oσ follows from Theorem 13.2, [Tad3].
By Frobenius reciprocity, µ∗

δ([να+1ρ,νb1ρ])×δ([να+1ρ,νb1ρ])
(T ) 6= 0, as needed.

We now address the case k ≥ 2. First, let

π′t = δ([ν−b1ρ, νb1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t,

π′′t = δ([ν−b1ρ, νa2ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

π∗t = δ([ν−b1ρ, νb1ρ])× δ([νb1+1ρ, νa2ρ])

o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

It follows from an argument like that in Lemma 5.2.5, [Jan4] that

µ∗δ([νb1+1ρ,νa2ρ])(π
′
t) = µ∗δ([νb1+1ρ,νa2ρ])(π

′′
t ) = µ∗δ([νb1+1ρ,νa2ρ])(π

∗
t ) 6= 0.

Therefore, π′t and π′′t have at least one irreducible subquotient in common.
Next, we claim

µ∗δ([ν−b1ρ,νb1ρ])(π
′
t) = 2 · δ([ν−b1ρ, νb1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

and

µ∗δ([ν−b1ρ,νb1ρ])(π
′′
t ) = δ([ν−b1ρ, νb1ρ])⊗ δ([νb1+1ρ, νa2ρ])

o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

We check the first claim; the second is similar. Write µ∗(δ([ν−b2ρ, νa2ρ], . . . ,
[ν−bkρ, νakρ];σ)t) =

∑
h τh ⊗ θh. Then,

µ∗(π′t)=
∑
h

b1+1∑
i=−b1

b1+1∑
j=1

δ([ν−i+1ρ, νb1ρ])×δ([νjρ, νb1ρ])×τh ⊗ δ([νiρ, νj−1ρ])o θh.

To get a contribution to µ∗
δ([ν−b1ρ,νb1ρ])

, we must have a copy of ν−b1ρ appearing
in δ([ν−i+1ρ, νb1ρ])× δ([νjρ, νb1ρ])× τh. If it appears in δ([ν−i+1ρ, νb1ρ]), we must
have i = b1 + 1, and therefore j = j1 + 1 and τh = 1. This contributes one copy of
δ([ν−b1ρ, νb1ρ]) ⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t to µ∗

δ([ν−b1ρ,νb1ρ])
(π′t). Sim-

ilarly, we get a second copy when j = −b1 (i.e., ν−b1ρ appears in δ([νjρ, νb1ρ])).
Finally, if τh contributes ν−b1ρ, we must have τh = δ([ν−b1ρ, ν−iρ]) or
δ([ν−b1ρ, νj−1ρ]), whichever is appropriate. However, by Frobenius reciprocity,
either of these would contradict the Casselman criteria for the square-integrability
of δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t. The claim follows.

We can now verify the lemma. By Frobenius reciprocity (or [Gol]), π′t decomposes
as the direct sum of at most two irreducible components. Further, π′t and π′′t have
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an irreducible subquotient in common. Therefore, to show that π′t is reducible, it
is enough to show that

µ∗δ([ν−b1ρ,νb1ρ])(π
′
t) 6≤ µ∗δ([ν−b1ρ,νb1ρ])(π

′′
t ),

or equivalently,

2 · δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t
6≤ δ([νb1+1ρ, νa2ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

However, a quick look at µ∗
δ([νb1+1ρ,νa2ρ])

for each of these (using Corollary 7.8 and
Lemma 2.6, respectively) gives the desired result. Thus π′t is reducible. That the
two components are inequivalent follows from [Gol].

Lemma 7.5. Suppose ak > · · · > a1 > b1 > · · · > bk satisfy conditions 1–4
of Theorem 1.1. Suppose b1 ≥ 0. Then, δ([ν−b1ρ, νa1ρ]) o δ([ν−b2ρ, νa2ρ], . . . ,
[ν−bkρ, νakρ];σ)t admits exactly two irreducible subrepresentations, and they are in-
equivalent. Furthermore, an irreducible subquotient π1 of δ([ν−b1ρ, νa1ρ]) o
δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t appears as a subrepresentation if and only if
µ∗
δ([νb1+1ρ,νa1ρ])

(π1) 6= 0.

Proof. First, it follows from Lemma 2.6 that

µ∗δ([νb1+1ρ,νa1ρ])(δ([ν
−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

= δ([νb1+1ρ, νa1ρ])⊗ δ([ν−b1ρ, νb1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Similarly, if we write δ([ν−b1ρ, νb1ρ]) o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t =
T1 ⊕ T2, then Lemma 2.6 also tells us

µ∗δ([νb1+1ρ,νa1ρ])(δ([ν
b1+1ρ, νa1ρ])o Ti) = δ([νb1+1ρ, νa1ρ])⊗ Ti.

Therefore, by Frobenius reciprocity, δ([νb1+1ρ, νa1ρ])o Ti has a unique irreducible
subrepresentation–call it Si. Further, since T1 6∼= T2, we have S1 6∼= S2. Since

δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([νb1+1ρ, νa1ρ])o (δ([ν−b1ρ, νb1ρ])

o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)
∼= δ([νb1+1ρ, νa1ρ])o (T1 ⊕ T2)

and S1, S2 appear with multiplicity one in δ([νb1+1ρ, νa1ρ]) o (δ([ν−b1ρ, νb1ρ]) o
δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) (by µ∗

δ([νb1+1ρ,νa1ρ])
considerations), we see

that S1, S2 ↪→ δ([ν−b1ρ, νa1ρ])oδ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t (just consider
the subspace of the space of δ([νb1+1ρ, νa1ρ])o(δ([ν−b1ρ, νb1ρ])oδ([ν−b2ρ, νa2ρ], . . . ,
[ν−bkρ, νakρ];σ)t) generated by the sum of the subspaces for δ([ν−b1ρ, νa1ρ]) o
δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t, S1, and S2).

Now, it is an easy consequence of Frobenius reciprocity that µ∗
δ([νb1+1ρ,νa1ρ])

must
be nonzero for an irreducible subrepresentation of δ([ν−b1ρ, νa1ρ])oδ([ν−b2ρ, νa2ρ],
. . . , [ν−bkρ, νakρ];σ)t. Therefore, S1 and S2 are the only irreducible subrepresenta-
tions. Further, since

µ∗
δ([νb1+1ρ,νa1ρ])

(δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

= δ([νb1+1ρ, νa1ρ])⊗ (T1 ⊕ T2),
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we see that any irreducible subquotient of δ([ν−b1ρ, νa1ρ]) o δ([ν−b2ρ, νa2ρ],
. . . , [ν−bkρ, νakρ];σ)t with µ∗

δ([νb1+1ρ,νa1ρ])
nonzero must be S1 or S2, hence a sub-

representation. The lemma follows.

Lemma 7.6. δ([ν−a1ρ, νa2ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t
admits exactly two irreducible subrepresentations, and they are inequivalent. Fur-
thermore, an irreducible subquotient π1 of δ([ν−a1ρ, νa2ρ]) o δ([ν−b2ρ, νb1ρ],
[ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t appears as a subrepresentation if and only if
µ∗
δ([νa1+1ρ,νa2ρ])

(π1) 6= 0.

Proof. An argument like that in Lemma 7.4 tells us that π′t = δ([ν−a1ρ, νa1ρ]) o
δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t decomposes as the direct sum of
(exactly) two inequivalent irreducible representations. (To make the analogy pre-
cise, we take

π′′t = δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t

and

π∗t = δ([ν−b1ρ, νa1ρ])× δ([νb1+1ρ, νa1ρ])
o δ([ν−b2ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t;

we use µ∗
δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa1ρ])

to show that π′t, π
′′
t have a subquotient in

common.) The proof then parallels that of Lemma 7.5

Theorem 7.7. Suppose (H). Suppose that Theorem 7.7 (and Corollaries 7.8 and
7.9) is proved when the parabolic rank of the supercuspidal support is less than p.r.
and that Theorem 1.1 is proved when the parabolic rank of the supercuspidal support
is less than or equal to p.r. We continue to assume ak > · · · > a1 > b1 > · · · > bk
satisfy conditions 1–4 of Theorem 1.1. Then, we have the following:

1. For b1 < 0: δ([ν−b1ρ, νa1ρ])oδ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ) has exactly
two irreducible subquotients; call them π(0), π(1). We have the following:
(a) π(0) is the unique irreducible quotient (Langlands quotient). It is non-

tempered and has δ0(π(0)) = δ([ν−a1ρ, νb1ρ]) ⊗ δ([ν−b2ρ, νa2ρ]) ⊗ · · · ⊗
δ([ν−bkρ, νakρ])⊗ σ.

(b) π(1) is the unique irreducible subrepresentation. It is square-integrable
and has δ0(π(1))=δ([ν−b1ρ, νa1ρ])⊗δ([ν−b2ρ, νa2ρ])⊗· · ·⊗δ([ν−bkρ, νakρ])
⊗ σ.

In this case, we define δ([ν−b1ρ, νa1ρ], . . . , [ν−bkρ, νakρ];σ) = π(1).
2. For b1 ≥ 0, k = 1: δ([ν−b1ρ, νa1ρ])oσ has three irreducible subquotients which

we denote δ([ν−b1ρ, νa1ρ];σ)1, δ([ν−b1ρ, νa1ρ];σ)2, and L(δ([ν−a1ρ, νb1ρ]);σ).
L(δ([ν−a1ρ, νb1ρ]);σ) is the unique irreducible quotient (Langlands quotient).
It is nontempered and has δ0(L(δ([ν−a1ρ, νb1ρ]);σ)) = δ([ν−a1ρ, νb1ρ]) ⊗ σ.
Both δ([ν−b1ρ, νa1ρ];σ)1 and δ([ν−b1ρ, νa1ρ];σ)2 are subrepresentations and
are square-integrable. We have δ0(δ([ν−b1ρ, νa1ρ];σ)t) = δ([ν−b1ρ, νa1ρ]) ⊗ σ
for t = 1, 2. If δ([ν−b1ρ, νb1ρ])oσ = T1([ν−b1ρ, νb1ρ];σ)⊕T2([ν−b1ρ, νb1ρ];σ)
(cf. Lemma 7.4), we may choose notation so that

µ∗δ([νb1+1ρ,νa1ρ])(δ([ν
−b1ρ, νa1ρ];σ)t) = δ([νb1+1ρ, νa1ρ])⊗ Tt([ν−b1ρ, νb1ρ];σ).



SQUARE-INTEGRABLE REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS II 171

(We note that in Theorem 4.7, [Tad6], δ([ν−b1ρ, νa1ρ];σ)1 is the representa-
tion denoted δ([ν−b1ρ, νa1ρ], σ).)

3. For b1 ≥ 0, k ≥ 2: δ([ν−b1ρ, νa1ρ])oδ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t has
exactly three irreducible subquotients; call them π

(0)
t , π

(1)
t , π

(2)
t . We have the

following:
(a) π(0)

t is the unique irreducible quotient (Langlands quotient). It is non-
tempered and has δ0(π(0)

t ) = δ([ν−a1ρ, νb1ρ]) ⊗ δ([ν−b2ρ, νa2ρ]) ⊗ · · · ⊗
δ([ν−bkρ, νakρ])⊗ σ.

(b) π
(1)
t is a subrepresentation. It is square-integrable and has δ0(π(1)

t ) =
δ([ν−b2ρ, νb1ρ])⊗δ([ν−a1ρ, νa2ρ])⊗δ([ν−b3ρ, νa3ρ])⊗· · ·⊗δ([ν−bkρ, νakρ])
⊗ σ. (Note that if b2 < 0, then b2 = β. In this case, if b1 = β − 1, the
first representation in δ0(π1) disappears.)

(c) π
(2)
t is a subrepresentation. It is square-integrable and has δ0(π(2)

t ) =
δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ])⊗ · · · ⊗ δ([ν−bkρ, νakρ])⊗ σ.

Furthermore, we note that if both are defined, π
(2)
1 6∼= π

(2)
2 . We define

δ([ν−b1ρ, νa1ρ], . . . , [ν−bkρ, νakρ];σ)t = π
(2)
t .

Proof. We address the case b1 < 0 first. In this case, we may write the induced
representation as δ([νβρ, νa1ρ]) o δ([νβ+1ρ, νa2ρ], . . . , [ναρ, νakρ];σ), with β > 0
and k = α − β + 1. Observe that the third possibility in Proposition 7.2 cannot
occur in this case. Thus, the only possibilities for δ0(π1) are those listed. Fur-
ther, both δ([νβρ, νa1ρ])⊗δ([νβ+1ρ, νa2ρ], . . . , [ναρ, νakρ];σ) and δ([ν−a1ρ, ν−βρ])⊗
δ([νβ+1ρ, νa2ρ], . . . , [ναρ, νakρ];σ) appear with multiplicity one in µ∗(δ([νβρ, νa1ρ])
o δ([νβ+1ρ, νa2ρ], . . . , [ναρ, νakρ];σ)). Thus there is at most one subquotient hav-
ing δ([νβρ, νa1ρ])⊗δ([νβ+1ρ, νa2ρ])⊗· · ·⊗δ([ναρ, νakρ])⊗σ as its δ0, and similarly
for δ([ν−a1ρ, ν−βρ])⊗δ([νβ+1ρ, νa2ρ])⊗· · ·⊗δ([ναρ, νakρ])⊗σ. Once we show that
δ([νβρ, νa1ρ])o δ([νβ+1ρ, νa2ρ], . . . , [ναρ, νakρ];σ) is reducible, the b1 < 0 case will
follow. If k = 1, this follows from Theorem 13.2, [Tad3]; so suppose k ≥ 2.

Let

π′ = δ([νβρ, νa1ρ])o δ([νβ+1ρ, νa2ρ], . . . , [ναρ, νakρ];σ),

π′′ = δ([νβρ, νa2ρ])o δ([νβ+1ρ, νa1ρ], [νβ+2ρ, νa3ρ], . . . , [ναρ, νakρ];σ),

π∗ = δ([νβρ, νa1ρ])× δ([νa1+1ρ, νa2ρ])

o δ([νβ+1ρ, νa1ρ], [νβ+2ρ, νa3ρ], . . . , [ναρ, νakρ];σ).

It follows easily from Corollary 7.8 (using the inductive hypothesis) that π′, π′′ ≤ π∗.
Next, we claim

µ∗δ([νβρ,νa2ρ])(π
′) = µ∗δ([νβρ,νa2ρ])(π

′′) = µ∗δ([νβρ,νa2ρ])(π
∗)

= δ([νβρ, νa2ρ])⊗ δ([νβ+1ρ, νa1ρ], [νβ+2ρ, νa3ρ], . . . , [ναρ, νakρ];σ).

Clearly, µ∗δ([νβρ,νa2ρ])(π
′′) 6= 0; it follows easily from Corollary 7.8 (and the inductive

hypothesis) that µ∗δ([νβρ,νa2ρ])(π
′) 6= 0. Since π′, π′′ ≤ π∗, it then suffices to ver-

ify the claim for π∗. Write µ∗(δ([νβ+1ρ, νa1ρ], [νβ+2ρ, νa3ρ], . . . , [ναρ, νakρ];σ)) =
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h τh ⊗ θh. Then,

µ∗(π∗) =
∑
h

a1+1∑
i1=β

a1+1∑
j1=i1

a2+1∑
i2=a1+1

a2+1∑
j2=i2

[δ([ν−i1+1ρ, ν−βρ])× δ([νj1ρ, νa1ρ])

× δ([ν−i2+1ρ, ν−a1−1ρ])× δ([νj2ρ, νa2ρ])× τh]

⊗ δ([νi1ρ, νj1−1ρ])× δ([νi2ρ, νj2−1ρ])o θh.

To contribute to µ∗δ([νβρ,νa2ρ]), we must certainly have i1 = β, i2 = a1+1. Also, since
neither δ([νj2ρ, νa2ρ]) nor τh can contain νβρ in their supercuspidal support, we
must have j1 = β. Since νxρ⊗ ≤ rmin(τh) has x ∈ {a1, a3, . . . , ak}—in particular,
we do not have a1 + 1 ≤ x ≤ a2—we see that τh = 1. Therefore, j2 = a1 + 1;
the claim follows. As a consequence, π′ and π′′ have an irreducible subquotient in
common. On the other hand, it is not difficult to show that

µ∗δ([νβρ,νa1ρ])(π
′′) = 0,

so that π′ 6≤ π′′. Therefore, π′ is reducible. The b1 < 0 case is now done.
We now turn to the case b1 ≥ 0. For k = 1, the reducibility and δ0 claims follow

from Proposition 7.2, Corollary 7.3, and Lemma 7.5 of [Tad6]. Suppose k ≥ 2. Let

π′t = δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t,

π′′t = δ([ν−a1ρ, νa2ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t,

π∗t = δ([ν−b1ρ, νa1ρ])× δ([νb1+1ρ, νa2ρ])

o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

First, we observe that the argument from the proof of Lemma 4.2 tells us

µ∗δ([ν−b1ρ,νa1ρ])(π
′
t) = 2 · δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Therefore, there are at most two irreducible subquotients having δ0 as in 1. of
Proposition 7.2.

Next, we claim that

µ∗δ([ν−a1ρ,νa2ρ])(π
′
t) = δ([ν−a1ρ, νa2ρ])

⊗ δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

Again, with µ∗(δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) =
∑

h τh ⊗ θh, we have

µ∗(π′t)=
∑
h

a1+1∑
i=−b1

a1+1∑
j=i

δ([ν−i+1ρ, νb1ρ])× δ([νjρ, νa1ρ])× τh ⊗ δ([νiρ, νj−1ρ])o θh.

To get a contribution to µ∗δ([ν−a1ρ,νa2ρ]), we need to have a copy of ν−a1ρ in
either δ([ν−i+1ρ, νb1ρ]), δ([νjρ, νa1ρ]), or τh. Since j ≥ −b1, it cannot come
from δ([νjρ, νa1ρ]). Suppose τh contributed the ν−a1ρ. Then, we must have
µ∗
δ([ν−a1ρ,νxρ])

(δ([ν−b2ρ, νa2ρ], . . . [ν−bkρ, νakρ];σ)t) 6= 0 for some a2 ≥ x ≥ −a1.
In order to avoid contradicting the Casselman criteria for the square-integrability
of δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t, we must have x > a1. Since we must also
have x ∈ {b2, . . . , bk, a2, . . . , ak}, we have a contradiction. Thus, τh cannot con-
tribute the ν−a1ρ. Finally, to have a ν−a1ρ in δ([ν−i+1ρ, νb1ρ]), we need i = a1 +1.
Then, j = a1 + 1 and τh = δ([νb1+1ρ, νa2ρ]). Therefore, by Corollary 7.8 (and



SQUARE-INTEGRABLE REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS II 173

the inductive hypothesis), θh = δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νb3ρ], . . . , [ν−bkρ, νakρ];σ)t.
The claim follows.

Now, we check that if π1 is an irreducible representation which has δ0(π1) =
δ([ν−b2ρ, νb1ρ]) ⊗ δ([ν−a1ρ, νa2ρ]) ⊗ δ([ν−b3ρ, νa3ρ]) ⊗ · · · ⊗ δ([ν−bkρ, νakρ]) ⊗ σ,
then µ∗δ([ν−a1ρ,νa2ρ])(π1) 6= 0. Since δ([ν−b2ρ, νb1ρ])× δ([ν−a1ρ, νa2ρ]) is irreducible,
the usual commuting argument tells us

π1 ↪→ δ([ν−b2ρ, νb1ρ])× δ([ν−a1ρ, νa2ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ

∼= δ([ν−a1ρ, νa2ρ])× δ([ν−b2ρ, νb1ρ])× δ([ν−b3ρ, νa3ρ])
× · · · × δ([ν−bkρ, νakρ])o σ.

The claim follows. It now follows that there is at most one irreducible subquo-
tient of δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t having δ0 as in 3 of
Proposition 7.2. Thus δ([ν−b1ρ, νa1ρ]) o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t has
at most four irreducible subquotients.

A straightforward argument like that in Lemma 5.2.5, [Jan4] (or Lemma 5.1
above) tells us π′t, π

′′
t ≤ π∗t and

µ∗δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa2ρ])(π
′
t) = µ∗δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa2ρ])(π

′′
t )

= µ∗δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa2ρ])(π
∗
t )

6= 0.

Thus π′t and π′′t have an irreducible subquotient in common. Let π(1)
t denote such a

representation (there will turn out to be only one possibility). By Lemmas 7.5 and
7.6, π(1)

t is a subrepresentation of both π′t and π′′t . Then, by Frobenius reciprocity,
π

(1)
t contains both a copy of δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

and δ([ν−a1ρ, νa2ρ]) ⊗ δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t. Thus,
there are at most three irreducible subquotients. By Lemma 7.5, there are exactly
three irreducible subquotients. The claims about δ0 follow.

Finally, the fact that π(2)
1 6∼= π

(2)
2 follows immediately from the observation that

µ∗
δ([ν−b1ρ,νa1ρ])

(π(2)
t ) = δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Corollary 7.8. With assumptions as in Theorem 7.7, we have the following:

1. For max{−b1 − 1, b1} < c < a1,

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([νc+1ρ, νa1ρ])o δ([ν−b1ρ, νcρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Further, we have

µ∗δ([νc+1ρ,νa1ρ])(δ([ν
−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

= δ([νc+1ρ, νa1ρ])⊗ δ([ν−b1ρ, νcρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

2. For b2 < d < b1 with d ≥ β − 1,

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([νd+1ρ, νb1ρ])o δ([ν−dρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.
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(If k = 1, the conditions on d reduce to α ≤ d < b1.) Further, we have

µ∗
δ([νd+1ρ,νb1ρ])

(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

= δ([νd+1ρ, νb1ρ])⊗ δ([ν−dρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Further, we may extend 1 to the case where c = b1 as follows: by Lemma 7.4
write

δ([ν−b1ρ, νb1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

∼= T1([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

⊕ T2([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Then, there is a component

δ([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

= Ti([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

such that

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([νb1+1ρ, νa1ρ])o δ([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

We note that δ([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t is well-defined (i.e.,
the choice of components does not depend on a1). Further, we have

µ∗δ([νb1+1ρ,νa1ρ])(δ([ν
−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

= δ([νb1+1ρ, νa1ρ])⊗ δ([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

Proof. First, we note that if we let

τ = νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1+1ρ⊗ (νb1ρ⊗ νb1ρ)⊗ (νb1−1ρ⊗ νb1−1ρ)
⊗ · · · ⊗ (να+1ρ⊗ να+1ρ),

then sτ (δ([ν−b1ρ, νa1ρ];σ)t) is a nonzero multiple of τ ⊗ Tt([ν−αρ, ναρ];σ). To see
this, observe that from Lemma 7.5, the definition of δ([ν−b1ρ, νa1ρ];σ)t, and the
proof of Lemma 7.4, we have

δ([ν−b1ρ, νa1ρ];σ)t ↪→ δ([νb1+1ρ, νa1ρ])o Tt([ν−b1ρ, νb1ρ];σ)

↪→ δ([νb1+1ρ, νa1ρ])× δ([να+1ρ, νb1ρ])× δ([να+1ρ, νb1ρ])o Tt([ν−αρ, ναρ];σ).

We may now conclude that sτ (δ([ν−b1ρ, νa1ρ];σ)t) contains a nonzero multiple of
τ ⊗Tt([ν−αρ, ναρ];σ) from the fact that rmin(δ([νb1+1ρ, νa1ρ])⊗ δ([να+1ρ, νb1ρ])×
δ([να+1ρ, νb1ρ])) contains τ and Frobenius reciprocity. On the other hand, the
same arguments as in the proof of Lemma 2.6 (part 1) tell us sτ (δ([νb1+1ρ, νa1ρ])×
δ([να+1ρ, νb1ρ])× δ([να+1ρ, νb1ρ])o Tt([ν−αρ, ναρ];σ)) can only contain multiples
of τ ⊗ Tt([ν−αρ, ναρ];σ).
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For 1, we have

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([νc+1ρ, νa1ρ])× δ([ν−b1ρ, νcρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t
⇓

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t ↪→ δ([νc+1ρ, νa1ρ])o θ

for some irreducible θ ≤ δ([ν−b1ρ, νcρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t (cf.
Lemma 5.5, [Jan2]). The possibilities for θ are given in the preceding theorem. For
k ≥ 2, we see that since

δ([νc+1ρ, νa1ρ])⊗ δ0(θ) ≤ sapp(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t),

only θ = δ([ν−b1ρ, νcρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t does not end up con-
tradicting the minimality of δ0(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)
(t.e. considerations are enough). When k = 1, we see that θ = δ([ν−b1ρ, νcρ];σ)t′
for some t′. From the definition of δ([ν−b1ρ, νcρ];σ)t′ (cf. Theorem 7.7), we see
that

δ([ν−b1ρ, νa1ρ];σ)t ↪→ δ([νc+1ρ, νa1ρ])o δ([ν−b1ρ, νcρ];σ)t′
⇓

µ∗
δ([νb1+1ρ,νcρ])×δ([νb1+1ρ,νa1ρ])

(δ([ν−b1ρ, νa1ρ];σ)t)
= δ([νb1+1ρ, νcρ])× δ([νb1+1ρ, νa1ρ])⊗ Tt′([ν−b1ρ, νb1ρ];σ).

By Lemma 7.4,

sδ([νb1+1ρ,νcρ])×δ([νb1+1ρ,νa1ρ])⊗δ([να+1ρ,νb1ρ])×δ([να+1ρ,νb1ρ])(δ([ν
−b1ρ, νa1ρ];σ)t)

≥ δ([νb1+1ρ, νcρ])× δ([νb1+1ρ, νa1ρ])⊗ δ([να+1ρ, νb1ρ])

× δ([να+1ρ, νb1ρ])⊗ Tt′([ν−αρ, ναρ];σ),

so that sτ (δ([ν−b1ρ, νa1ρ];σ)t) ≥ τ⊗Tt′([ν−αρ, ναρ];σ). From the discussion above,
this forces t′ = t. The claim about µ∗δ([νc+1ρ,νa1ρ]) is now straightforward; by Frobe-
nius reciprocity,

µ∗δ([νc+1ρ,νa1ρ])(δ([ν
−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

≥ δ([νc+1ρ, νa1ρ])⊗ δ([ν−b1ρ, νcρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

On the other hand, it follows from Lemma 2.6 that

µ∗δ([νc+1ρ,νa1ρ])(δ([ν
−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

≤ δ([νc+1ρ, νa1ρ])⊗ δ([ν−b1ρ, νcρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

The claim follows.
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For 2, we have

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([ν−b1ρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([ν−dρ, νa1ρ])× δ([ν−b1ρ, ν−d−1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t
(by Lemma 7.1)

∼= δ([ν−dρ, νa1ρ])× δ([νd+1ρ, νb1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

∼= δ([νd+1ρ, νb1ρ])× δ([ν−dρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t
⇓

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t ↪→ δ([νd+1ρ, νb1ρ])o θ

for some irreducible θ ≤ δ([ν−dρ, νa1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t (cf.
Lemma 5.5, [Jan2]). The possibilities for θ are given in the preceding theorem. For
k ≥ 2, we see that since

δ([νd+1ρ, νb1ρ])⊗ δ0(θ) ≤ sapp(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t),

only θ = δ([ν−dρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t does not end up con-
tradicting the minimality of δ0(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)
(total exponent considerations are enough). For k = 1, an argument like that
used in the proof of part 1 above tells us θ = δ([ν−dρ, νa1ρ];σ)t The claim about
µ∗δ([νc+1ρ,νa1ρ]) is now straightforward: by Frobenius reciprocity,

µ∗
δ([νd+1ρ,νb1ρ])

(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

≥ δ([νd+1ρ, νb1ρ])⊗ δ([ν−dρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

On the other hand, it follows from Lemma 2.6 that

µ∗
δ([νd+1ρ,νb1ρ])

(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

≤ δ([νd+1ρ, νb1ρ])⊗ δ([ν−dρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.

The claim follows.
Finally, the existence of a unique

Ti([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

≤ δ([ν−b1ρ, νb1ρ])o δ([ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

such that

δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

↪→ δ([νb1+1ρ, νa1ρ])o Ti([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t

follows from the proof of Lemma 7.5. To see that the choice of Ti([ν−b1ρ, νb1ρ],
[ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t does not depend on a1, observe that from 1,

µ∗(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t)

≥ δ([νb1+2ρ, νa1ρ])⊗ δ([ν−b1ρ, νb1+1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t.
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So, whichever choice of Ti([ν−b1ρ, νb1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t works
for a1 = b1 + 1 works in general. The µ∗

δ([νb1+1ρ,νa1ρ])
claim now follows from the

proof of Lemma 7.5.

Corollary 7.9. With assumptions as in Theorem 7.7, we have the following:
1. µ∗δ([νa1+1ρ,νa2ρ])(δ([ν

−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) = 0,
2. µ∗

δ([νb2+1ρ,νb1ρ])
(δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t) = 0.

Proof. Write π = δ([ν−b1ρ, νa1ρ], [ν−b2ρ, νa2ρ], . . . , [ν−bkρ, νakρ];σ)t. Let us focus
on part 2 of the corollary. Observe that if b1 ≤ 0, the fact that µ∗

δ([νb2+1ρ,νb1ρ])
(π) =

0 (when δ([νb2+1ρ, νb1ρ]) makes sense) follows immediately from the Casselman
criteria. Thus we may assume b1 > 0.

By Lemma 5.5, [Jan2],

π ↪→ δ([ν−b1ρ, νa1ρ])× δ([ν−b2ρ, νa2ρ])o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t
⇓

π ↪→ δ([ν−b1ρ, νa2ρ])× δ([ν−b2ρ, νa1ρ])o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t

or

π ↪→ L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ]))o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.

We now show that the first of these does not occur. Suppose it did. Then Lemma
5.5, [Jan2] tells us π ↪→ δ([ν−b1ρ, νa2ρ]) o πi for some πi ≤ δ([ν−b2ρ, νa1ρ]) o
δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t. By Theorem 7.7, we know δ0(πi) for such πi.
Since

µ∗(π) ≥ δ([ν−b1ρ, νa2ρ])⊗ πi,
we see that only πi = δ([ν−b2ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′ does not
produce a contradiction to the minimality of δ0(π). Note that if k > 2, we have
t′ = t automatically. (If k = 2, we could argue that t′ = t, but it is not needed.) By
the same argument as in Lemma 5.2.5, [Jan4] (also cf. Lemma 6.4 above), there is
a unique irreducible representation having µ∗

δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa2ρ])
6= 0 and

which is a subquotient of both

δ([ν−b1ρ, νa2ρ])o δ([ν−b2ρ, νa1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′

and

δ([ν−a1ρ, νa2ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′

(use the fact that both induced representations are ≤ π∗t′ = δ([ν−b1ρ, νa2ρ]) ×
δ([νb1+1ρ, νa1ρ])oδ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′). Then, since
µ∗
δ([ν−b1ρ,νa2ρ])×δ([ν−b2ρ,νa1ρ])

(π) 6= 0 implies µ∗
δ([νb1+1ρ,νa1ρ])×δ([νb1+1ρ,νa2ρ])

(π) 6= 0,
we see that this subquotient must be π. Further, since µ∗

δ([ν−b1ρ,νa2ρ])
(π) 6= 0

implies µ∗δ([νa1+1ρ,νa2ρ])(π) 6= 0, Lemma 7.6 tells us

π ↪→ δ([ν−a1ρ, νa2ρ])o δ([ν−b2ρ, νb1ρ], [ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t′ ,

contradicting the minimality of δ0(π). Therefore, the first possibility above cannot
occur, and we must have

π ↪→ L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ]))o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t.
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Now, let us focus on the case when b2 ≥ 0. In fact, we show a bit more; we show
that

µ∗
δ([νb2+1ρ,νb1ρ])

(L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ]))
o δ([ν−b3ρ, νa3ρ], . . . , [ν−bkρ, νakρ];σ)t) = 0.

By Lemma 2.6, it is enough to show that

M∗δ([νb2+1ρ,νb1ρ])(L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ]))) = 0.

Now, consider any term in rmin(L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ]))). Observe that
there are two copies of νb2+1ρ in such a term; both will always have copies of νa1ρ
appearing to their left. There is one copy of ν−b2−1ρ; it has a copy of ν−b2ρ to its
right. Thus, any term in rmin(M∗(L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ])))) can have
up to three copies of νb2+1ρ, but each must have either νa1ρ or νb2ρ to its left. In
particular, there are no terms of the form (νb1ρ ⊗ νb1−1ρ ⊗ · · · ⊗ νb2+1ρ) ⊗ . . . in
rmin(M∗(L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ])))). Therefore,

M∗δ([νb2+1ρ,νb1ρ])(L(δ([ν−b1ρ, νa1ρ]), δ([ν−b2ρ, νa2ρ]))) = 0.

Part 2 of the corollary follows. The argument when b2 < 0 is similar.
Part 1 of the corollary when b1 ≥ 0 is similar to the argument above. When

b1 < 0, we still have

π ↪→ δ([νβρ, νa2ρ])× δ([νβ+1ρ, νa1ρ])o δ([νβ+2ρ, νa3ρ], . . . , [ναρ, νakρ];σ)

or

π ↪→ L(δ([νβρ, νa1ρ]), δ([νβ+1ρ, νa2ρ]))o δ([νβ+2ρ, νa3ρ], . . . , [ναρ, νakρ];σ).

In this case, we can eliminate the first possibility more directly:

π ↪→ δ([νβ+1ρ, νa1ρ])× δ([νβρ, νa2ρ])o δ([νβ+2ρ, νa3ρ], . . . , [ναρ, νakρ];σ)

↪→ δ([νβ+1ρ, νa1ρ])× δ([νβ+1ρ, νa2ρ])× νβρ× δ([νβ+2ρ, νa3ρ])
× · · · × δ([ναρ, νakρ])o σ

∼= δ([νβ+1ρ, νa1ρ])× δ([νβ+1ρ, νa2ρ])× δ([νβ+2ρ, νa3ρ])
× · · · × δ([ναρ, νakρ])× νβρo σ

∼= δ([νβ+1ρ, νa1ρ])× δ([νβ+1ρ, νa2ρ])× δ([νβ+2ρ, νa3ρ])
× · · · × δ([ναρ, νakρ])× ν−βρo σ,

which contradicts the minimality of δ0(π) (by Frobenius reciprocity and t.e. con-
siderations). The rest of this case is similar to the argument above.
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