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Abstract

Let F be a p-adic field and G = SO2n+1(F ) (resp. Sp2n(F )). A maximal parabolic subgroup
of G has the form P = MU , with Levi factor M ∼= GLk(F ) × SO2(n−k)+1(F ) (resp. M ∼=
GLk(F ) × Sp2(n−k)(F )). A one-dimensional representation of M has the form χ ◦ detk ⊗
triv(n−k), with χ a one-dimensional representation of F×; this may be extended trivially to get

a representation of P . We consider representations of the form IndG
P (χ ◦ detk ⊗ triv(n−k)) ⊗ 1.

(More generally, we allow Zelevinsky segment representations for the inducing representation.)
In this paper, we study the reducibility of such representations. We determine the reducibil-

ity points, give Langlands data and Jacquet modules for each of the irreducible composition
factors, and describe how they are arranged into composition series. (Note: it turns out that
the composition series has length ≤ 4.) Our approach is based on Jacquet module techniques
developed by M. Tadić.

key words and phrases: p-adic field, symplectic group, orthogonal group, induced represen-
tation, Jacquet module, Langlands classification.
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1. Introduction

Let Sn denote either Sp2n(F ) or SO2n+1(F ), F p-adic, charF=0. A degenerate principal
series for Sn is a representation obtained by inducing a one-dimensional representation from
a maximal parabolic subgroup in Sn. In this paper, we determine the composition series for
such representations, specifying the components (irreducible composition factors) by giving
their Langlands data.

First, we note that a maximal parabolic subgroup of Sn has Levi factorM ∼= GLm(F )×Sn−m;
n possible maximal parabolic subgroups (1 ≤ m ≤ n). So, a typical degenerate principal
series representation is π = iGM(χ ◦ detm ⊗ trn−m) (iGM denotes induction from the parabolic
subgroup with Levi factor M). Such representations have been studied in [Gus], [Jan1], [Jan2],
[K-R]; also [Tad3]. [Gus] uses Hecke algebra methods to determine composition series in the
case where m = n and χ is unramified (for Sp2n(F )). [K-R] is the companion to [Gus],
using intertwining operators to determine composition series when m = n and χ is ramified
(for Sp2n(F )). [Jan1] uses Hecke algebra methods to determine composition series for the case
m = 1 and any χ (for Sp2n(F )). Also, the reducibility points for n ≤ 3 (any m) are determined
using the Jacquet module methods of Tadić. A general reducibility condition, subject to a
regularity hypothesis is also given. In [Jan2], Jacquet module methods are used to determine
the components (irreducible composition factors) for n ≤ 3 (any m) and in general for the
regular case (for SO2n+1(F )). [Tad3] uses the structure theory from [Tad2], which simplifies
the calculation of Jacquet modules, to recover many of the results above (among other things).
In this paper, we use the sort of approach used in [Tad3] to determine composition series
in general (any m, n, χ; no restriction on regularity). We give Langlands data and Jacquet
modules for each component, and specify where they lie in the composition series.

We follow the lead of [Tad3] and work in a slightly more general setting. Let ν denote
|det| on GL. Let ρ1, . . . , ρk be representations of GLp1

(F ), . . . , GLpk
(F ), respectively, and τ a

representation of Sm. Let ρ1 × ρ2 . . .× ρk denote the representation obtained by inducing the
representation ρ1⊗ρ2⊗ . . .⊗ρk from the appropriate subgroup of GLp1+···+pk

(F ). Similarly, let
ρ1×. . .×ρk⋊τ denote the representation of Sp1+···+pk+m obtained by inducing the representation
ρ1 ⊗ . . .⊗ ρk ⊗ τ from the appropriate parabolic subgroup of Sp1+···+pk+m. If m = n, we write
ρ1 × . . .×ρk ⋊1S0

, using the ⋊1S0
to distinguish this from induction in GLn(F ). (See the next

section for more details on notation.)
Now, if ρ0 is an irreducible unitarizable supercuspidal representation of GLp0

(F ), then

ν
−k+1

2 ρ0 × ν
−k+1

2
+1ρ0 × . . . × ν

k−1

2 ρ0 has a unique irreducible subrepresentation ζ(ρ0, k). Sim-
ilarly, suppose that ρ is an irreducible unitarizable supercuspidal representation of GLp(F )

and σ an irreducible supercuspidal representation of Sm such that ν−
1

2ρ⋊ σ (resp. ν−1ρ⋊ σ)
is reducible and νβρ ⋊ σ is irreducible for all β ∈ R with |β| 6= 1

2
(resp. |β| 6= 1). Then

ν−ℓ+ 1

2ρ × ν−ℓ+ 3

2ρ × . . . × ν−
1

2ρ ⋊ σ (resp. ν−ℓρ × ν−ℓ+1ρ × . . . × ν−1ρ ⋊ σ) contains a unique
irreducible subrepresentation which we denote ζ(ρ, ℓ; σ) (in either case). In this paper, we look

1Received by the editor August 6, 1994.
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2 CHRIS JANTZEN

at representations of the form ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) for α ∈ R.
Let σ be an irreducible supercuspidal representation of Sm. Let us say ρ satisfies (C1) (resp.

C(1/2), C(0)) if ρ is an irreducible unitarizable supercuspidal representation of some GLp(F )
satisfying

(C1) ν−1ρ⋊ σ is reducible and νβρ⋊ σ is irreducible for all β ∈ R with |β| 6= 1.

(C1/2) ν−
1

2ρ⋊ σ is reducible and νβρ⋊ σ is irreducible for all β ∈ R with |β| 6= 1
2
.

(C0) ρ⋊ σ is reducible and νβρ⋊ σ is irreducible for all β ∈ R with β 6= 0.

Note that any of these conditions (or more generally, ναρ ⋊ σ reducible for some α ∈ R)
implies ρ̃ ∼= ρ. Now, ναζ(ρ0, k)⋊ζ(ρ, ℓ; σ) generalizes degenerate principal series for SO2n+1(F )
as follows. Consider π = χ ◦ detm ⋊trn−m. Write χ = | · |αχ0 with α ∈ R. Let 1SO(1) denote
the trivial representation of SO1(F ). Note that for σ = 1SO(1), the trivial representation,
ρ = 1, of GL1(F ) satisfies (C1/2). Thus we have π = ναζ(χ0, m) ⋊ ζ(1, n − m; 1SO(1)).
The only difference for degenerate principal series for Sp2n(F ) is that when σ is the trivial
representation of Sp0(F ), ρ = 1 satisfies (C1) instead. However, we still have χ◦detm⋊trn−m =
ναζ(χ0, m) ⋊ ζ(1, n−m; 1Sp(0)).

Let us now describe the rest of this paper, section-by-section. In the next section, we
introduce notation and background results which will be needed in the rest of the paper. In
section 3, we focus on certain special cases, namely ναρ⋊ζ(ρ, ℓ; σ) (ρ satisfying (C1/2) or (C1))
and ναζ(ρ, n) ⋊ σ (ρ satisfying (C0), (C1/2), or (C1)). For these special cases, we identify
the components by Langlands data; Jacquet module information is also provided. We deal
with ναρ⋊ ζ(ρ, ℓ; σ) separately, in part because the results are already known. ναζ(ρ, n) ⋊ σ
is handled separately because the results will be needed in section 5. This will also save time
later, as these would have to be dealt with as separate cases when doing the general results.

The fourth section contains reducibility results for π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) for both ρ
satisfying (C1/2) (Theorem 4.1) and ρ satisfying (C1) (Theorem 4.3). We note that the proof
for ρ0

∼= ρ is done there. When ρ0 6∼= ρ, the approach to the study of π is a bit different, so
although we include the results for ρ0 6∼= ρ there, we do not include a proof. The reducibility
results when ρ0 6∼= ρ are corollaries of the results in section 5.

In section 5, we determine the components of ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) with ρ0 6∼= ρ, α ∈ R.
The main result in this regard is Proposition 5.3, which relates the components of ναζ(ρ0, k)⋊

ζ(ρ, ℓ; σ) to those of ναζ(ρ0, k) ⋊ σ. (Note that this gives the results on the reducibility of
ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) which were given in section 4.) As corollaries, we explicitly write out
components and their Jacquet modules when ρ and ρ0 both satisfy (C1/2) (Corollary 5.7) or ρ
satisfies (C1) and ρ0 satisfies (C0) (Corollary 5.8). We single out these particular combinations
of conditions on ρ, ρ0 because they generalize degenerate principal series of the form (| · |αsgn◦
detk) ⋊ trℓ, where sgn denotes a (nontrivial) character of order 2 (sgn satisfies (C1/2) for
σ = 1SO(1); (C0) for σ = 1Sp(0)). One other consequence of Proposition 5.3 is that if ρ̃0 6∼= ρ0,
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then ναζ(ρ0, k)⋊ζ(ρ, ℓ; σ) is irreducible for all α ∈ R. This means that the degenerate principal
series | · |αχ0 ◦ detk ⋊ trℓ, α ∈ R, with χ2

0 6= 1 is always irreducible.
In section 6, we determine the components of π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) when ρ is (C1/2) or

(C1). Again, the components are identified by Langlands data, with Jacquet module informa-
tion also given. The main results, Theorems 6.1 and 6.2 ((C1/2) and (C1), resp.) hold for all
k, ℓ. Jacquet modules are given for ℓ ≥ 1, k ≥ 2; when ℓ = 0 or k = 1, the Jacquet modules
are covered by the results in section 3.

In section 7, we determine composition series for the representations from sections 5 and
6. That is, we identify which components occurs as subrepresentations, quotients, etc. We
use the results from sections 5 and 6 in the following way–e.g., if π has four components,
there are other (generalized) degenerate principal series representations π′ and π′′ which have
components in common with π. This allows us to compare Jacquet modules for π, π′, π′′

to see which components contain certain key Jacquet module components. Then we can use
Frobenius reciprocity and other arguments to determine where the different components lie in
the composition series.

We now give a summary of where the results are located. Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ).

(1) ρ is (C1/2): reducibility points in Theorem 4.1
ρ0

∼= ρ: components in Theorem 6.1
composition series in Theorem 7.1
Jacquet modules Proposition 3.1 (k = 1)

Proposition 3.6 (ℓ = 0)
Theorem 6.1 (k ≥ 2, ℓ ≥ 1)

(tabulated in proof)
ρ0 6∼= ρ with ρ0 (C1/2): components in Corollary 5.7

composition series in Theorem 7.1
Jacquet modules in Corollary 5.7 (also cf. Remark 5.6)

(2) ρ is (C1): reducibility points in Theorem 4.3
ρ0

∼= ρ: components in Theorem 6.2
composition series in Theorem 7.2
Jacquet modules Proposition 3.9 (k = 1)

Proposition 3.10 (ℓ = 0)
Theorem 6.2 (k ≥ 2, ℓ ≥ 1)

(tabulated in proof)
ρ0 6∼= ρ with ρ0 (C0): components in Corollary 5.8

composition series in Theorem 7.2
Jacquet modules in Corollary 5.8 (also cf. Remark 5.6)

We remark that Proposition 5.3 and Corollary 5.5 coupled with the results of section 3 may
be used to cover cases with ρ0 6∼= ρ other than those mentioned above.

Before closing this introduction, there are a few people I would like to thank. Part of this
work was done at the SFB 170 in Göttingen; I would like to take this opportunity to thank
them for their hospitality. In addition, I would like to thank Marko Tadić for many valuable
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contributions to this work. Conversations with Dihua Jiang and Paul Sally were also helpful,
and I take this opportunity to thank them as well. Finally, I would like to thank the referee.

2. Notation and preliminaries

In this section, we introduce notation and recall some results that will be needed in the rest
of the paper. Much of this, though not all, follows the setup used in [Tad3].

Let F be a p-adic field with charF=0. Let | · | denote the absolute value on F , normalized
so that |̟| = q−1, ̟ a uniformizer.

In most of this paper, we work with the components (irreducible composition factors) of
a representation rather than with the actual composition series. That is, we usually work
with the semisimplified representation (even in chapter 7, where we determine composition
series, most of the argument uses semisimplified Jacquet modules). So, for any representation
π and irreducible representation ρ, let m(π, ρ) denote the multiplicity of ρ in π. We write
π = π1 + · · · + πk if m(π, ρ) = m(π1, ρ) + · · · +m(πk, ρ) for every irreducible ρ. Similarly, we
write π ≥ π0 if m(π, ρ) ≥ m(π0, ρ) for every such ρ. We write π ∼= π0 if we mean that they are
actually equivalent.

We now turn to symplectic and odd-orthogonal groups. Let

Jn =













1

1.
.

.1

1













denote the n× n antidiagonal matrix above. Then,

SO2n+1(F ) = {X ∈ SL2n+1(F )|TXJ2n+1X = J2n+1}

Sp2n(F ) =

{

X ∈ GL2n(F )|TX

(

−J
J

)

X =

(

−J
J

)}

.

We use Sn to denote either SO2n+1(F ) or Sp2n(F ). In either case, the Weyl group is W ={
permutations and sign changes on n letters }.

We take as minimal parabolic subgroup in Sn the subgroup Pmin consisting of upper trian-
gular matrices. Let α = (n1, . . . , nk) be an ordered partition of a nonnegative integer m ≤ n
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into positive integers. Let Mα ⊂ Sn be the subgroup

Mα =
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∣

∣

Xi ∈ GLni
(F ), X ∈ Sn−m











































,

where τX = JTX−1J . Then Pα = MαPmin is a parabolic subgroup of Sn and every para-
bolic subgroup is of this form (up to conjugation). For α = (n1, . . . , nk), let ρ1, . . . , ρk be
representations of GLn1

(F ), . . . , GLnk
(F ), respectively, and τ a representation of Sn−m. Let

ρ1 × . . . × ρk ⋊ τ denote the representation of Sn obtained by inducing the representation
ρ1 ⊗ . . . ⊗ ρk ⊗ τ of Mα (extended trivially to Pα). If m = n, we write ρ1 × . . . × ρk ⋊ 1S0

,
where 1S0

denotes the trivial representation of S0.
We now give the Langlands classification for Sn (cf. [Tad1] or [Tad2]). As in [Zel], let

ν = |det| on GLn(F ) (with the value of n clear from context). Suppose that δ is an irreducible
essentially square integrable representation of GLn(F ). Then, there is an ε(δ) ∈ R such that
ν−ε(δ)δ is unitarizable. Let δ1, . . . , δk be irreducible essentially square integrable representations
satisfying ε(δ1) ≤ · · · ≤ ε(δk) < 0 and τ a tempered representation of Sn−m. Then, δ1 × . . .×
δk ⋊τ has a unique irreducible subrepresentation which we denote by L(δ1, . . . , δk; τ). At times,
it will be convenient not to have to worry about listing δ1, . . . , δk in increasing order. So, if
δ1, . . . , δk satisfy ε(δi) < 0, then there is some permutation δσ1

, . . . , δσk
which satisfies ε(δσ1

) ≤
· · · ≤ ε(δσk

) < 0. Then, by L(δ1, . . . , δk; τ) we mean L(δσ1
, . . . , δσk

; τ). At times, it will also be
convenient to use i(δ1, . . . , δk; τ) = δσ1

⊗ . . .⊗δσk
⊗τ and I(δ1, . . . , δk; τ) = δσ1

× . . .×δσk
⋊τ (so

I(δ1, . . . , δk; τ) has L(δ1, . . . , δk; τ) as its unique irreducible subrepresentation). Note that we
use Langlands classification in the subrepresentation setting rather than the quotient setting
for the following reason: in the subrepresentation setting, δ1 ⊗ . . . ⊗ δk ⊗ τ will lie in the
appropriate Jacquet module of L(δ1, . . . , δk; τ) (by Frobenius reciprocity, cf. Theorem 2.2).

At this point, we introduce a little shorthand. Let ρ be a unitarizable supercuspidal repre-

sentation of GLp(F ). Then, ν
−k+1

2 ρ×ν
−k+1

2
+1ρ× . . .×ν

k−1

2 ρ has a unique irreducible subrepre-
sentation which we denote ζ(ρ, k) and a unique irreducible quotient which we denote by δ(ρ, k)
(n.b. δ(ρ, k) is square-integrable). Similarly, suppose that σ is a supercuspidal representation
of Sm and ναρ⋊ σ reduces for some α < 0 (note that this implies ρ̃ ∼= ρ, where ρ̃ denotes the
contragredient of ρ). Then,

ν−ℓ+1+αρ× ν−ℓ+2+αρ× . . .× ναρ⋊ σ

has a unique irreducible subrepresentation which we denote ζ(ρ, ℓ; σ) and a unique irreducible
quotient which we denote δ(ρ, ℓ; σ) (n.b. δ(ρ, ℓ; σ) is square-integrable). We also use the
segment notation of Zelevinsky [Zel]; let

[νβρ, νβ+mρ] = νβρ, νβ+1ρ, . . . , νβ+mρ.
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Then, ζ(ρ, k; σ) = L([ν−k+αρ, ναρ]; σ). For example, in Sn, trn = ζ(1, n; 1S0
) (for ρ = 1 and

σ = 1SO(1), α = −1
2
; for ρ = 1 and σ = 1Sp(0), α = −1).

The following facts about induced representations for GLn(F ) will be needed later.

Theorem 2.1 (Zelevinsky). Let ρ, ρ0, ρ1 be irreducible unitarizable supercuspidal representa-
tions of GLp(F ), GLp0

(F ), GLp1
(F ), respectively, and α, β, γ ∈ R.

(1) ναζ(ρ,m) × νβζ(ρ0, n) is reducible if and only if ρ0
∼= ρ and [να+−m+1

2 ρ, να+ m−1

2 ρ] ∪

[νβ+−n+1

2 ρ, νβ+ n−1

2 ρ] is also a segment and strictly contains both [να+−m+1

2 ρ, να+ m−1

2 ρ]

and [νβ+−n+1

2 ρ, νβ+ n−1

2 ρ].
(2) ναζ(ρ,m)×νβζ(ρ0, n)×νγζ(ρ1, r) is reducible if and only if one (or more) of ναζ(ρ,m)×

νβζ(ρ0, n), ναζ(ρ,m) × νγζ(ρ1, r), or νβζ(ρ0, n) × νγζ(ρ1, r) reduces.

Proof. See Theorem 4.2 of [Zel]. �

Let σ be an irreducible supercuspidal representation of Sm. Let us say ρ satisfies (C1) (resp.
C(1/2), C(0)) if ρ is an irreducible unitarizable supercuspidal representation of some GLp(F )
satisfying

(C1) ν−1ρ⋊ σ is reducible and νβρ⋊ σ is irreducible for all β ∈ R with |β| 6= 1.

(C1/2) ν−
1

2ρ⋊ σ is reducible and νβρ⋊ σ is irreducible for all β ∈ R with |β| 6= 1
2
.

(C0) ρ⋊ σ is reducible and νβρ⋊ σ is irreducible for all β ∈ R with β 6= 0.

Next, we introduce some notation for Jacquet modules. If π is a representation of some Sn

and α is a partition of m ≤ n, let sαπ denote the Jacquet module with respect to Mα. Further,
for π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), it makes sense to define sminπ = s(p,p,...,p)π (with k + ℓ copies of
p in the subscript) and sGLπ = s((k+ℓ)p)π. Note that, by abuse of notation, we also allow sα

and smin to be applied to representations of compatible Mβ’s. We will occasionally use similar
notation for representations of GLn(F ). If α = (n1, . . . , nk) is a partition of m ≤ n, GLn(F )
has a standard parabolic subgroup with Levi factor Lα

∼= GLn1
(F )×. . .×GLnk

(F )×GLn−m(F )
(Lα consists of block-diagonal matrices; the corresponding parabolic subgroup of block upper
triangular matrices). If π is a representation of GLn(F ), we let rαπ denote the Jacquet module
of π with respect to Lα. Similarly, for representations such as να1ζ(ρ, k1)×ν

α2ζ(ρ, k2), it makes
sense to define rmin = r(p,...,p) (with k1 + k2 copies of p).

We now give two theorems on Jacquet modules.

Theorem 2.2 (Frobenius reciprocity). Let G be a connected reductive p-adic group, P = MU
a parabolic subgroup, ρ an (admissible) representation of M , π an (admissible) representation
of G. Then

HomM(rMGπ, ρ) ∼= HomG(π, iGMρ).

Theorem 2.3 (Bernstein-Zelevinsky/Casselman). Let G be a connected reductive p-adic group,
MU and NV standard parabolic subgroups. Let ρ be an (admissible) representation of M .
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Then, rNG ◦ iGMρ has a composition series with factors

iNN ′ ◦ w ◦ rM ′Mρ

where M ′ = M ∩ w−1(N), N ′ = w(M) ∩ N , and WMN = {w ∈ W |w(Pmin ∩ M) ⊂
Pmin, w

−1(Pmin ∩N) ⊂ Pmin}.

Proof. See [B-Z] or [Cas]. �

Suppose ρ0, ρ are irreducible unitarizable supercuspidal representations of GLp(F ) (i.e.,
p0 = p; though see Remark 5.6) and σ an irreducible supercuspidal representation of Sm.
Further, suppose ρ satisfies (C1/2). Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ). Then, set

χ0 = sminν
αζ(ρ0, k) ⊗ ζ(ρ, ℓ; σ)

= (να+−k+1

2 ρ0 ⊗ να+−k+1

2
+1ρ0 ⊗ . . .⊗ να+ k−1

2 ρ0)

⊗(ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ ν−
1

2ρ) ⊗ σ.

For 0 ≤ r ≤ k, set

χr = (να+−k+1

2 ρ0 ⊗ να+−k+1

2
+1ρ0 ⊗ . . .⊗ να+−k+1

2
+(r−1)ρ0)

⊗(ν−α+−k+1

2 ρ̃0 ⊗ ν−α+−k+1

2
+1ρ̃0 ⊗ . . .⊗ ν−α+−k+1

2
+(k−r−1)ρ̃0)

⊗(ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ ν−
1

2ρ) ⊗ σ.

By analogy with [K-R], let us call a shuffle of χr a permutation on χr satisfying

1. να+−k+1

2 ρ0, . . . , ν
α+−k+1

2
+(r−1)ρ0 appear in that order

2. ν−α+−k+1

2 ρ̃0, . . . , ν
−α+−k+1

2
+(k−r−1)ρ̃0 appear in that order

3. ν−ℓ+ 1

2ρ, . . . , ν−
1

2ρ appear in that order.
That is, the relative orders in the three parenthesized pieces remain intact. Then,

sminπ =
k

∑

r=0

(all shuffles of χr)

(cf. Lemma 4.4, [Tad2]). A similar description holds if ρ satisfies (C1).
We now recall some structure theory related to Jacquet modules.

Definition 2.4. (1) If τ is a representation of GLn(F ), set

m∗τ =

n
∑

i=0

r(i)τ

(2) If π is a representation of Sn, set

µ∗π =

n
∑

i=0

s(i)π.
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If τ1 and τ2 are representations of GLn1
(F ), GLn2

(F ), respectively, let s(τ1 ⊗ τ2) = τ2 ⊗ τ1
and m(τ1 ⊗ τ2) = τ1 × τ2. If τ is a representation of GLn(F ) and ϑ is a representation of Sm,
define ⋊̂ by (τ1 ⊗ τ2)⋊̂(τ ⊗ ϑ) = (τ1 × τ) ⊗ (τ2 ⋊ ϑ). Set M∗

S = (m⊗ 1) ◦ ( ˜⊗m∗) ◦ s ◦m∗ ( ˜
denotes contragredient).

Theorem 2.5 (Tadić). If τ is a representation of GLn(F ) and ϑ a representation of Sm, then

µ∗(τ ⋊ ϑ) = M∗

S(τ)⋊̂µ∗(ϑ).

Proof. See [Tad2]. �

We mention that this has a counterpart for general linear groups. If we define ×̂ by (τ1 ⊗
τ2)×̂(τ ′1 ⊗ τ ′2) = (τ1 × τ ′1) ⊗ (τ2 × τ ′2), then m∗(π1 × π2) = m∗(π1)×̂m

∗(π2). See section 1.7 of
[Zel].

We now give two corollaries of this. We give their complete statements for the half-integral
case and simply indicate the few changes required for the integral case.

Corollary 2.6. Let ρ0,ρ be irreducible unitarizable supercuspidal representations of GLp0
(F ),

GLp(F ), respectively, and σ an irreducible supercuspidal representation of Sm. Suppose ρ
satisfies (C1/2). Set π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ). Then,

µ∗π =
k

∑

i=0

i
∑

t=0

ℓ
∑

j=0

{[ν−α− i
2 ζ(ρ̃0, k − i) × να+−k+t

2 ζ(ρ0, t) × ν−ℓ+ j

2 ζ(ρ, j)]

⊗[να+−k+i+t
2 ζ(ρ0, i− t) ⋊ ζ(ρ, ℓ− j; σ)]}

Proof. This follows from Theorem 2.5 and

m∗(ναζ(ρ0, k)) =

k
∑

i=0

να+−k+i
2 ζ(ρ0, i) ⊗ να+ i

2 ζ(ρ0, k − i)

µ∗(ζ(ρ, ℓ; σ)) =

ℓ
∑

j=0

ν−ℓ+ j

2 ζ(ρ, j) ⊗ ζ(ρ, ℓ− j; σ)

(cf. Lemma 2.9 for properties of ˜ ). �

We note that the case when ρ is (C1) is very similar–the only change necessary is to replace

ν−ℓ+ j

2 ζ(ρ, j) with ν−ℓ+ j−1

2 ζ(ρ, j) in the formula. (In the proof, the same change is needed for
µ∗(ζ(ρ, ℓ; σ)).)

Corollary 2.7. Suppose σ is an irreducible supercuspidal representation of Sm and ρ is a
representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) (i.e., ρ0 = ρ ∼= ρ̃
above). Then

s(p)π = να+−k+1

2 ρ⊗ (να+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ))

+ν−α+−k+1

2 ρ⊗ (να− 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ))

+ν−ℓ+ 1

2ρ⊗ (ναζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ))
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(note that the third term is missing if ℓ = 0)

sGLπ =

k
∑

i=0

[ν−α− i
2 ζ(ρ, k − i) × να+−k+i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ)] ⊗ σ

s((k+ℓ−1)p)π =
k

∑

i=0

[ν−α− i
2 ζ(ρ, k − i) × να+−k+i

2 ζ(ρ, i) × ν
−ℓ−1

2 ζ(ρ, ℓ− 1)] ⊗ ζ(ρ, 1; σ)

+

k
∑

i=1

[ν−α− i
2 ζ(ρ, k − i) × να+−k+i−1

2 ζ(ρ, i− 1) × ν−
ℓ
2 ζ(ρ, ℓ)] ⊗ (να+−k+2i−1

2 ρ⋊ σ)

(note that the first sum is missing if ℓ = 0).

Proof. In the preceding corollary, take ρ0 = ρ. Then, e.g., for a term in µ∗π to be in sGLπ =
s((k+ℓ)p)π, one needs j = ℓ and t = i in the sum for µ∗π. �

Again, the results for the case when ρ is (C1) are similar. The formula for s(p)π requires

replacing ν−ℓ+ 1

2ρ with ν−ℓρ in the third term (the first and second terms remain the same).

For sGLπ, replace ν−
ℓ
2 ζ(ρ, ℓ) with ν

−ℓ−1

2 ζ(ρ, ℓ). Finally, for s((k+ℓ−1)p)π, replace ν
−ℓ−1

2 ζ(ρ, ℓ−1)

with ν
−ℓ−2

2 ζ(ρ, ℓ− 1) in the first sum and replace ν−
ℓ
2 ζ(ρ, ℓ) with ν

−ℓ−1

2 ζ(ρ, ℓ) in the second.

Lemma 2.8. Let δi be an irreducible essentially square-integrable representation of GLpi
(F )

for i = 1, . . . , k, and τ an irreducible tempered representation of Sm. Suppose ε(δ1) ≤ · · · ≤
ε(δk) < 0, and set π = L(δ1, . . . , δk; τ). Then, for any 0 ≤ j ≤ k,

s(p1,...,pj)π ≥ δ1 ⊗ . . .⊗ δj ⊗ L(δj+1, . . . , δk; τ).

Proof. By exactness and induction in stages,

δ1 × . . .× δk ⋊ L(δj+1, . . . , δk; τ) →֒ δ1 × . . .× δj ⋊ (δj+1 × . . . δk ⋊ τ).

However, the right-hand side has π = L(δ1, . . . , δk; τ) as its unique irreducible subrepresenta-
tion. Therefore,

π →֒ δ1 × . . .× δj ⋊ L(δj+1, . . . δk; τ).

The claim is then immediate from Frobenius reciprocity. �

The next lemma gives a few properties of the contragredient representation.

Lemma 2.9. (1) π ⋊ ϑ and π̃ ⋊ ϑ have the same components.
(2) The functor π 7→ π̃ is an exact contravariant functor. Further, with respect to induction,

we have (δ1 × . . . δk ⋊ τ )̃ ∼= δ̃1 × . . . δ̃k ⋊ τ̃ .
(3) The contragredient of L(δ1, . . . , δk; τ) is L(δ1, . . . , δk; τ̃).
(4) The contragredient of ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) is ν−αζ(ρ̃0, k) ⋊ ζ(ρ, ℓ; σ̃).

Proof. (1) and (2) are standard facts. (3) is done in chapter 6 of [Tad1] (in the quotient setting
for Langlands classification). The same argument works in this setting. Finally, (4) follows
from (2) once we have that (ζ(ρ, ℓ; σ))̃ ∼= ζ(ρ, ℓ; σ̃) and (ναζ(ρ0, k))̃ ∼= ν−αζ(ρ0, k). The first
of these is an immediate consequence of (3); the second follows from the GL-analogue of (3)
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(For GLn(F ), δ1, . . . , δk constitute Langlands data if ε(δ1) ≤ · · · ≤ ε(δk). The analogue to (3)

is then (L(δ1, . . . , δk)) ∼= L(δ̃k, . . . , δ̃1).) �

We close with the following observation from section 2 of [Tad3]. Suppose ρ is an irreducible
unitarizable supercuspidal representation of GLp(F ) and σ is an irreducible supercuspidal
representation of Sm. Recall that if ρ 6∼= ρ̃, then ναρ⋊ σ is irreducible for all α ∈ R. Suppose
ρ̃ ∼= ρ. Then, conjectures in the ninth section in [Sha1] and [Sha2] imply that for any such
ρ and σ, ρ must satisfy one of (C0), (C1/2), (C1). This helps explain why we focus on the
conditions (C0), (C1/2), and (C1).

3. Components: useful special cases

This section focuses on a couple of special cases. The components and Jacquet modules
of ναρ ⋊ ζ(ρ, ℓ; σ) are given in Proposition 3.1 (for ρ satisfying (C1/2)) and Proposition 3.9
(for ρ satisfying (C1)). Also, the components and Jacquet modules for ναζ(ρ, n) ⋊ σ are
given in Proposition 3.6 (for ρ satisfying (C1/2)), Proposition 3.10 (for ρ satisfying (C1)), and
Proposition 3.11 (for ρ satisfying (C0)). There are certain advantages to dealing with these
separately. First, Propositions 3.1, 3.6, 3.9, 3.10 would have to be dealt with as special cases
in the proofs of later theorems, anyway. Also, Propositions 3.6 and 3.11 will be important in
section 5 as well. In addition, a couple of the lemmas here will also be useful later (keeping
the already too-long section 6 from being even longer).

Proposition 3.1. Let σ be an irreducible supercuspidal representation of Sm and suppose ρ
is a representation of GLp(F ) satisfying (C1/2). Let π = ναρ ⋊ ζ(ρ, ℓ; σ) with α ∈ R, ℓ ≥ 1.
Then, π is reducible if and only if α ∈ {±1

2
,±(ℓ+ 1

2
)}. Suppose π is reducible. By Lemma 2.9,

we may without loss of generality assume α ≤ 0.

(1) α = −1
2

π = π1 + π2 with

π1 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
1

2ρ; σ) π2 = L([ν−ℓ+ 1

2ρ, ν−
3

2ρ]; T ),

where T is the unique (irreducible) common component of ν−
1

2ρ⋊ζ(ρ, 1; σ) and δ(ρ, 2)⋊
σ.
(a) ℓ = 1

s(p)π1 = 2ν−
1

2ρ⊗ L(ν−
1

2ρ; σ) + ν−
1

2ρ⊗ δ(ν−
1

2ρ; σ)

s(p)π2 = ν
1

2ρ⊗ L(ν−
1

2ρ; σ)

(b) ℓ ≥ 2

s(p)π1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−
1

2ρ; σ)

+ν−
1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

s(p)π2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ]; T )

+ν
1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)
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(2) α = −ℓ− 1
2

π = L([ν−ℓ− 1

2ρ, ν−
1

2ρ]; σ) + L(ν−ℓδ(ρ, 2), [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

s(p)L([ν−ℓ− 1

2ρ, ν−
1

2ρ]; σ) = ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

s(p)L(ν−ℓδ(ρ, 2), [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ) = νℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

Proof. Theorem 6.1 of [Tad3] gives the Langlands (quotient) data for π. It is not difficult to
determine s(p)πi; enough similar arguments will be done later to justify omitting it here. �

In this section, we also will deal with ναζ(ρ, k) ⋊ σ. We first give a few useful lemmas. As
we will also need results like these later, we do them in more useful generality–that is, we work
with ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ).

Lemma 3.2. Suppose (π,M, V ) is an admissible representation of a reductive p-adic group M .
Let Z denote the center of M . If λ is a one-dimensional representation of Z, let

Vλ = {v ∈ V | there is an r ∈ N such that [π(z) − λ(z)]rv = 0 ∀z ∈ Z}.

Then, V =
⊕

λ Vλ is a direct sum of M-invariant subspaces.

Proof. This is Lemma 8.2 in [Gus]. �

Lemma 3.3. Let σ be an irreducible supercuspidal representation of Sm and suppose ρ is a
representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), with α ∈ R, α ≤ 0,
α ≡ k

2
mod 1. Then, π has a component π1 whose Langlands data comes from the smallest

possible parabolic subgroup. More precisely, we have the following:

(1) α+ k−1
2
< 0

π1 = L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

Furthermore, if α + k−1
2

= −1
2

s(p)π1 ≥ να+−k+1

2 ρ⊗ L([να+−k+1

2
+1ρ, να+ k−1

2 ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2 ⊗ L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

(for α + k−1
2

< −1
2
, we are only guaranteed of getting the first term in the inequality

above).
(2) α+ k−1

2
> 0

π1 = L([να+−k+1

2 ρ, ν−
1

2ρ], [ν−α+−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ).

Furthermore,

s(p)π1 ≥ να+−k+1

2 ρ⊗ L([να+−k+1

2
+1ρ, ν−

1

2ρ], [ν−α+−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−α+−k+1

2 ρ⊗ L([να+−k+1

2 ρ, ν−
1

2ρ], [ν−α+−k+1

2
+1ρ, ν−

1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([να+−k+1

2 ρ, ν−
1

2ρ], [ν−α+−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ).
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Note that if ℓ = 0, there is no ν−ℓ+ 1

2ρ–term in the s(p) inequalities above.

Proof. We do the second case, assuming ℓ > 0. The others are similar.
Let i(∆) denote a permutation of

να+−k+1

2 ρ⊗ . . .⊗ ν−
1

2ρ⊗ ν−α+−k+1

2 ρ⊗ . . .⊗ ν−
1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ . . . ν−
1

2ρ

which has the form νβ1 ⊗ . . .⊗νβn ⊗σ with βi ≤ βj for i ≤ j. In particular, π1 is the Langlands
subrepresentation of the representation obtained by inducing i(∆). We write L(∆) for π1 and
I(∆) for the representation obtained by inducing i(∆).

We begin by showing that π1 is a component of π. First, observe that i(∆) < sminπ (cf.
Lemma 2.3 et seq.). Let π′ be a component of π with i(∆) < sminπ

′. By Lemma 3.2 applied to
the representation sminπ

′ of M , we see that HomM(sminπ
′, i(∆)) 6= 0. Therefore, by Frobenius

reciprocity, HomG(π′, I(∆)) 6= 0, i.e., π′ is an irreducible subrepresentation of I(∆). Since
I(∆) has π1 = L(∆) as unique irreducible subrepresentation, we have π′ = π1 is a component
of π.

Next, recall that

s(p)π = να+−k+1

2 ρ⊗ να+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−α+−k+1

2 ρ⊗ να− 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ναζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= τ ′ + τ ′′ + τ ′′′

with τ ’s in the order listed. Using the identification of π1 done above, we have

τ ′1 = να+−k+1

2 ρ⊗ L([να+−k+1

2
+1ρ, ν−

1

2ρ], [ν−α+−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

τ ′′1 = ν−α+−k+1

2 ρ⊗ L([να+−k+1

2 ρ, ν−
1

2ρ], [ν−α+−k+1

2
+1ρ, ν−

1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

τ ′′′1 = ν−ℓ+ 1

2ρ⊗ L([να+−k+1

2 ρ, ν−
1

2ρ], [ν−α+−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ).

Also, recall that

sGLπ =

k
∑

i=0

ν−α− i
2 ζ(ρ, k − i) × να+−k+i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ.

The i = −α + k
2

term (necessarily, this is an integer) is

κ = ν−
α
2
−

k
4 ζ(ρ,

k

2
+ α) × ν

α
2
−

k
4 ζ(ρ,

k

2
− α) × ν−

ℓ
2 ζ(ρ, ℓ) ⊗ σ.

Observe that κ is irreducible (cf. Theorem 2.1) and that sminκ consists of terms of the form
νβ1 ⊗ . . . νβn ⊗ σ with βj < 0 for j = 1, . . . , n. Furthermore, every term in sminπ of the form
νβ1 ⊗ . . . νβn ⊗σ with βj < 0 for j = 1, . . . , n comes from sminκ (i.e., sminκ contains every such
“all-negative” term). Since sminπ1 ≥ i(∆) and i(∆) is such an all-negative term, we must have
κ ≤ sGLπ1. Therefore, sminπ1 contains all the all-negative terms. Now, observe that sminτ

′

1
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(resp. sminτ
′′

1 , sminτ
′′′

1 ) also has such an all-negative term. Therefore, we must have s(p)π1 ≥ τ ′1
(resp. s(p)π1 ≥ τ ′′1 , s(p)π1 ≥ τ ′′′1 ). �

Remark 3.4. More generally, if α 6≡ k
2

+ 1
2
mod 1, one has a similar representation π1 having

the form π1 = L(νβ1ρ, . . . , νβnρ; σ) with β1 ≤ · · · ≤ βn < 0 (i.e., having minimal support). The
same basic argument shows that π1 is a component of π. If α ≡ k

2
+ 1

2
mod 1, one has π1 of

the form L(νβ1ρ, . . . , νβn−1ρ; ρ ⋊ σ) (i.e., βn = 0) by similar considerations. It turns out that
in these cases π is irreducible (cf. Theorem 4.1), so π1 = π. This allows us to get Langlands
data for π in these situations.

Lemma 3.5. Let σ be an irreducible supercuspidal representation of Sm and suppose ρ is a
representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) with α ∈ R, α ≤ 0.

(1) Suppose that α+−k+1
2

6= −α+−k+1
2
, −ℓ+ 1

2
. Then, να+−k+1

2 ρ⊗να+ 1

2 ζ(ρ, k−1)⋊ζ(ρ, ℓ; σ)
reducible implies π reducible. Write

να+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ) =
∑

i

L(Λi),

where Λi is Langlands data. Then, no component of π contains more than one term of

the form να+−k+1

2 ρ⊗ L(Λi) in its s(p).

(2) Suppose in addition that α+ −k+1
2

< −α + −k+1
2
, −ℓ + 1

2
. Then,

π ≥
∑

i

L(να+−k+1

2 ρ,Λi).

(3) Suppose further that α + −k+1
2

+ 1 < −ℓ + 1
2
, −α + −k+1

2
(so that να+−k+1

2 ρ × ν−ℓ+ 1

2ρ

and να+−k+1

2 ρ× ν−α+−k+1

2 ρ are both irreducible). Then,

π =
∑

i

L(να+−k+1

2 ρ,Λi).

In the case where ℓ = 0, the conditions above involving ℓ may be ignored (though they
automatically hold in (1) and (2), anyway).

If −α+−k+1
2

6= α+−k+1
2
,−ℓ+ 1

2
, then the analogue to (1) holds with ν−α+−k+1

2 ρ⊗να− 1

2 ζ(ρ, k−

1)⋊ζ(ρ, ℓ; σ) replacing να+−k+1

2 ρ⊗να+ 1

2 ζ(ρ, k−1)⋊ζ(ρ, ℓ; σ). (Note that −α+−k+1
2

≥ α+−k+1
2

,
so that there are no counterparts to (2) and (3)) If ℓ ≥ 1, there are analogues to (1), (2), (3)

with ν−ℓ+ 1

2ρ⊗ ναζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ) replacing να+−k+1

2 ρ⊗ να+ 1

2 ζ(ρ, k− 1) ⋊ ζ(ρ, ℓ; σ). They
require −ℓ + 1

2
6= α + −k+1

2
,−α + −k+1

2
for (1), −ℓ + 1

2
< α + −k+1

2
,−α + −k+1

2
for (2), and

−ℓ + 1
2

+ 1 < α + −k+1
2
,−α + −k+1

2
for (3).

Proof. We work with the case explicitly described, i.e., να+−k+1

2 ρ⊗ να+ 1

2 ζ(ρ, k− 1) ⋊ ζ(ρ, ℓ; σ).
The other cases are similar.
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Part 1: Choose a component π1 of π such that s(p)π1 contains a term of the form να+−k+1

2 ρ⊗
L(Λi) (this is not necessarily the π1 from Lemma 3.3). By Lemma 3.2 and Frobenius reciprocity,

we must have π1 →֒ να+−k+1

2 ρ⋊ L(Λi) for some i; without loss of generality take i = 1.

Now, consider να+−k+1

2 ρ⋊ L(Λ1). Suppose

s(p)L(Λ1) =
∑

i

ναiρ⊗Mi.

Then,

s(p)ν
α+−k+1

2 ρ⋊ L(Λ1) = να+−k+1

2 ρ⊗ L(Λ1) + ν−α+ k−1

2 ρ⊗ L(Λ1) +
∑

i

ναiρ⊗ να+−k+1

2 ρ⋊Mi.

Observe that since L(Λ1) is a component of να+ 1

2 ζ(ρ, k−1)⋊ζ(ρ, ℓ; σ), looking at s(p)ν
α+ 1

2 ζ(ρ, k−

1)⋊ζ(ρ, ℓ; σ) tells us that ναiρ must be one of να+−k+1

2
+1ρ, ν−α+−k+1

2 ρ, or ν−ℓ+ 1

2ρ. In particular,

π1 contains only one term of the form να+−k+1

2 ρ⊗L(Λi) in its s(p). This verifies the first part.

Part 2: Now, suppose α+ −k+1
2

< −α+ −k+1
2

, −ℓ+ 1
2
. Let πi denote the component of π with

s(p)πi ≥ να+−k+1

2 ρ⊗ L(Λi) (if Λi = Λj for some i 6= j, choose a πi and πj with this property).

Since this is the only term of the form να+−k+1

2 ρ⊗ . . . in s(p)πi, by Lemma 3.2 and Frobenius
reciprocity,

πi →֒ να+−k+1

2 ρ⋊ L(Λi).

Suppose that Λi = να1δ1 ⊗ . . .⊗ ναrδr ⊗ τ with δi a square-integrable representation of some
GLmi

, τ a tempered representation of some appropriate Sm and α1 ≤ · · · ≤ αr < 0. Then,

α + −k+1
2

< α1 since α + −k+1
2

is lower than any exponent in sminν
α+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)
by assumption. Thus, we have

πi →֒ να+−k+1

2 ρ⋊ L(Λi) →֒ να+−k+1

2 ρ× να1δ1 × . . .× ναrδr ⋊ τ,

which has unique irreducible subrepresentation L(να+−k+1

2 ρ,Λi). So, πi = L(να+−k+1

2 ρ,Λi). We
can then conclude

π ≥
∑

i

L(να+−k+1

2 ρ,Λi)

as claimed.

Part 3: From Part 2, we have

π ≥
∑

i

L(να+−k+1

2 ρ,Λi) =
∑

i

πi

with s(p)πi ≥ να+−k+1

2 ρ ⊗ L(Λi). Suppose that π had another component–call it π0. Then,

s(p)π0 6≥ να+−k+1

2 ρ⊗ L(Λi) for any i. Since s(p)π0 6= 0, suppose that s(p)π0 ≥ ν−ℓ+ 1

2ρ⊗ L(Λ).
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Now, L(Λ) ≤ ναζ(ρ, k) ⋊ ζ(ρ, ℓ − 1; σ). We claim s(p)L(Λ) ≥ να+−k+1

2 ρ ⊗ L(Λ′) for some

Λ′. Since α + −k+1
2

+ 1 < −(ℓ − 1) + 1
2
, −α + −k+1

2
, this follows by induction on n = ℓ + k.

Therefore, we have the following:

s(p)π0 ≥ ν−ℓ+ 1

2ρ⊗ L(Λ)
⇓

s(p,p)π0 ≥ ν−ℓ+ 1

2ρ⊗ να+−k+1

2 ρ⊗ L(Λ′)
⇓

s(2p)π0 ≥ ν−ℓ+ 1

2ρ× να+−k+1

2 ρ⊗ L(Λ′) (since ν−ℓ+ 1

2ρ× να+−k+1

2 ρ is irreducible).
⇓

s(p,p)π0 ≥ να+−k+1

2 ρ⊗ ν−ℓ+ 1

2ρ⊗ L(Λ′)
⇓

s(p)π0 ≥ να+−k+1

2 ρ⊗ L(Λi)

for some i, a contradiction. Thus,

π =
∑

i

πi

as claimed. �

Proposition 3.6. Suppose σ is an irreducible supercuspidal representation of Sm and ρ is a
representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ, n) ⋊ σ with α ∈ R, n ≥ 2. Then
π is reducible if and only if α ∈ {−n

2
,−n

2
+ 1, . . . , n

2
}. Suppose π is reducible. By Lemma 2.9,

we may without loss of generality assume that α ≤ 0. Write α = −n
2

+ j, 0 ≤ j ≤ n
2
.

(1) j = 0
π = π1 + π2 with

π1 = L([ν−n+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−n+ 1

2ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))

s(p)π1 = ν−n+ 1

2ρ⊗ L([ν−n+ 3

2ρ, ν−
1

2ρ]; σ)

s(p)π2 = ν−n+ 1

2ρ⊗ L([ν−n+ 3

2ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ)) + ν
1

2ρ⊗ L([ν−n+ 1

2ρ, ν−
3

2ρ]; σ)

(2) 1 ≤ j < n
2

π = π1 + π2 + π3 with

π1 = L([ν−n+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−n+j+ 1

2ρ, ν−
3

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

π3 = L([ν−n+j+ 1

2ρ, ν−j− 3

2ρ], ν−jδ(ρ, 2), ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).
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(a) j = 1 = n−1
2

(so n = 3)

s(p)π1 = ν−
3

2ρ⊗ L(ν−
1

2ρ, ν−
1

2ρ; σ) + ν−
1

2ρ⊗ L(ν−
3

2ρ, ν−
1

2ρ; σ)

s(p)π2 = ν−
3

2ρ⊗ L(ν−
1

2ρ; δ(ν−
1

2ρ; σ))

s(p)π3 = ν−
1

2ρ⊗ L(ν−
3

2ρ; δ(ν−
1

2ρ; σ))

(b) j = 1, n > 3

s(p)π1 = ν−n+ 3

2ρ⊗ L([ν−n+ 5

2ρ, ν−
1

2ρ], ν−
1

2ρ; σ)

+ν−
1

2ρ⊗ L([ν−n+ 3

2ρ, ν−
1

2ρ]; σ)

s(p)π2 = ν−n+ 3

2ρ⊗ L([ν−n+ 5

2ρ, ν−
3

2ρ], ν−
1

2ρ; δ(ν−
1

2ρ; σ))

s(p)π3 = ν−n+ 3

2ρ⊗ L([ν−n+ 5

2ρ, ν−
5

2ρ], ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−
1

2ρ⊗ L([ν−n+ 3

2ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))

(c) j = n−1
2

, n > 3 (n odd)

s(p)π1 = ν−
n
2 ρ⊗ L([ν−

n
2
+1ρ, ν−

1

2ρ], [ν−
n
2
+1ρ, ν−

1

2ρ]; σ)

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−

1

2ρ], [ν−
n
2
+2ρ, ν−

1

2ρ]; σ)

s(p)π2 = ν−
n
2 ⊗ L([ν−

n
2
+1ρ, ν−

3

2ρ], [ν−
n
2
+1ρ, ν−

1

2ρ]; δ(ν−
1

2ρ; σ))

+ν−
n
2
+1 ⊗ L([ν−

n
2 ρ, ν−

3

2ρ], [ν−
n
2
+2ρ, ν−

1

2ρ]; δ(ν−
1

2ρ; σ))

s(p)π3 = ν−
n
2
+1ρ⊗ L(ν−

n
2 ρ, ν−

n
2
+ 3

2 δ(ρ, 2), ν−
n
2
+ 5

2 δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

(d) 1 < j < n−1
2

s(p)π1 = ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−j+ 1

2ρ⊗ L([ν−n+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; σ)

s(p)π2 = ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
3

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

+ν−j+ 1

2ρ⊗ L([ν−n+j+ 1

2ρ, ν−
3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

s(p)π3 = ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−j− 3

2ρ], ν−jδ(ρ, 2), ν−j+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−j+ 1

2ρ⊗ L([ν−n+j+ 1

2ρ, ν−j− 1

2ρ], ν−j+1δ(ρ, 2), ν−j+2δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

(3) j = n
2

(n even)
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π = π1 + π2 with

π1 = L([ν
−n+1

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
1

2ρ]; σ)

π2 = L([ν
−n+1

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))

(a) n = 2

s(p)π1 = 2ν−
1

2ρ⊗ L(ν−
1

2ρ; σ) + ν−
1

2ρ⊗ δ(ν−
1

2ρ; σ)

s(p)π2 = ν−
1

2ρ⊗ δ(ν−
1

2ρ; σ)

(b) n > 2

s(p)π1 = 2ν
−n+1

2 ρ⊗ L([ν
−n+3

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
1

2ρ]; σ)

+ν
−n+1

2 ρ⊗ L(ν−
n
2
+1δ(ρ, 2), ν−

n
2
+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−

1

2ρ; σ))

s(p)π2 = 2ν
−n+1

2 ρ⊗ L([ν
−n+3

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))

+ν
−n+1

2 ρ⊗ L(ν−
n
2
+1δ(ρ, 2), ν−

n
2
+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−

1

2ρ; σ))

Proof. The reducibility points are given in Theorem 7.2 (ii) of [Tad3].
We now turn to the task of showing that the components and Jacquet modules (for re-

ducibility points) are as claimed above. The proof is by induction on n. We go through it
case-by-case. Recall that

s(p)π = ν−n+j+ 1

2ρ⊗ ν−
n
2
+j+ 1

2 ζ(ρ, n− 1) ⋊ σ + ν−j+ 1

2ρ⊗ ν−
n
2
+j− 1

2 ζ(ρ, n− 1) ⋊ σ.

Case 1: By inductive hypothesis, we have

s(p)π = ν−n+ 1

2ρ⊗ ν−
n
2
+ 1

2 ζ(ρ, n− 1) ⋊ σ + ν
1

2ρ⊗ ν−
n
2
−

1

2 ζ(ρ, n− 1) ⋊ σ

= ν−n+ 1

2ρ⊗ L([ν−n+ 3

2ρ, ν−
1

2ρ]; σ) + ν−n+ 1

2ρ⊗ L([ν−n+ 3

2ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))

+ν
1

2ρ⊗ L([ν−n+ 1

2ρ, ν−
3

2ρ]; σ)

By Lemma 3.5 3, we have π = π1 + π2 with π1 and π2 as given. Since π1 = ζ(ρ, n; σ), we have

s(p)π1 = ν−n+ 1

2ρ ⊗ ζ(ρ, n − 1; σ) = ν−n+ 1

2ρ ⊗ L([ν−n+ 3

2ρ, ν−
1

2ρ]; σ), as claimed. Necessarily,
s(p)π2 consists of everything else in s(p)π.

Case 2a: The case ρ = 1, σ = 1 is in Theorem 4.5 of [Jan2]. The same basic proof works
here.

Case 2b: The proof is like that for case 2d below.
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Case 2c: By inductive hypothesis, we have

s(p)π = ν−
n
2 ρ⊗ ζ(ρ, n− 1) ⋊ σ + ν−

n
2
+1ρ⊗ ν−1ζ(ρ, n− 1) ⋊ σ

= ν−
n
2 ρ⊗ L([ν−

n
2
+1ρ, ν−

1

2ρ], [ν−
n
2
+1ρ, ν−

1

2ρ]; σ)

+ν−
n
2 ρ⊗ L([ν−

n
2
+1ρ, ν−

1

2ρ], [ν−
n
2
+1ρ, ν−

3

2ρ]; δ(ν−
1

2ρ; σ))

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−

1

2ρ], [ν−
n
2
+2ρ, ν−

1

2ρ]; σ)

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−

3

2ρ], [ν−
n
2
+2ρ, ν−

1

2ρ]; δ(ν−
1

2ρ; σ))

+ν−
n
2
+1ρ⊗ L(ν−

n
2 ρ, ν−

n
2
+ 3

2 δ(ρ, 2), ν−
n
2
+ 5

2 δ(ρ, 2) . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

= τ ′1 + τ ′2 + τ ′′1 + τ ′′2 + τ ′′3 (in the order listed)

First, by Lemma 3.3, π1 = L([ν−
n
2 ρ, ν−

1

2ρ], [ν−
n
2
+1ρ, ν−

1

2ρ]; σ) is a component of π and has
s(p)π1 ≥ τ ′1+τ ′′1 . By Lemma 3.5 1, we also have that τ ′2, τ

′′

2 , τ
′′

3 6≤ s(p)π1. Thus, s(p)π1 = τ ′1+τ ′′1 .

Next, by Lemma 3.5 2, we have π2 = L([ν−
n
2 ρ, ν−

3

2ρ], [ν−
n
2
+1ρ, ν−

1

2ρ]; δ(ν−
1

2ρ; σ)) is a com-
ponent of π. By Lemma 2.8, s(p)π2 ≥ τ ′2. Now, recall that

sGLπ =
n

∑

i=0

ν
−i+1

2 ζ(ρ, n− i) × ν
−n+i−1

2 ζ(ρ, i) ⊗ σ.

We claim that sGLπ contains ν
−n−1

4 ζ(ρ, n−3
2

) × ν
−n+1

4 ζ(ρ, n+3
2

) ⊗ σ with multiplicity 2. In
particular, it is the (irreducible) i = n+3

2
term and a component of the (reducible) i = n−1

2

term (a quick look at smin of the terms with i 6= n−1
2
, n+3

2
shows that these are the only copies).

Next, let

ψ = ν−
n
2
+1ρ⊗ ν−

n
2 ρ⊗ ν−

n
2
+1ρ⊗ (ν−

n
2
+2ρ× ν−

n
2
+2ρ) ⊗ (ν−

n
2
+3ρ× ν−

n
2
+3ρ)

⊗ . . .⊗ (ν−1ρ× ν−1ρ) ⊗ ν−
1

2ρ⊗ ν
1

2ρ⊗ σ.

By the description of sminπ (cf. Theorem 2.3 et seq.), we see that ψ occurs in s(p,p,p,2p,2p,...,2p,p,p)π

with multiplicity 2. Further, ψ ≤ s(p,p,p,2p,2p,...,2p,p,p)ν
−n−1

4 ζ(ρ, n−3
2

) × ν
−n+1

4 ζ(ρ, n+3
2

) ⊗ σ (just

look at sminν
−n−1

4 ζ(ρ, n−3
2

) × ν
−n+1

4 ζ(ρ, n+3
2

) ⊗ σ) and ψ ≤ s(p,p,p,2p,2p,...,2p,p,p)τ
′′

2 (it comes from
the Langlands data for τ ′′2 ). Therefore, if π′ denotes the component of π with s(p)π

′ ≥ τ ′′2 ,

s(p,p,p,2p,2p,...,2p,p,p)π
′ ≥ ψ. Since both copies of ψ come from a copy of ν

−n−1

4 ζ(ρ, n−3
2

) ×

ν
−n+1

4 ζ(ρ, n+3
2

)⊗ σ, we have sGLπ
′ ≥ ν

−n−1

4 ζ(ρ, n−3
2

)× ν
−n+1

4 ζ(ρ, n+3
2

)⊗ σ. This implies sminπ
′

has terms of the form ν−
n
2 ρ ⊗ . . . . Therefore, s(p)π

′ has a term of the form ν−
n
2 ρ ⊗ . . . , i.e.,

τ ′1 or τ ′2. Since π′ 6= π1 (since τ ′′2 ≤ s(p)π
′), we have s(p)π

′ ≥ τ ′2. Thus, π′ = π2 and we have
s(p)π2 ≥ τ ′2 + τ ′′2 . By Lemma 3.5 1, we have τ ′′3 6≤ s(p)π2. Thus s(p)π2 = τ ′2 + τ ′′2 and s(p)π3 = τ ′′3 ,
where π3 denotes the remaining component (which has yet to be identified).
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The final step is to show π3 = L(ν−
n
2
+ 1

2 δ(ρ, 2), ν−
n
2
+ 3

2 δ(ρ, 2) . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).
Since s(p)π3 = τ ′′3 , by Lemma 2.8 we have

s(p,p)π3 ≥ ν−
n
2
+1ρ⊗ ν−

n
2 ρ⊗ L(ν−

n
2
+ 3

2 δ(ρ, 2), ν−
n
2
+ 5

2 δ(ρ, 2) . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Further, by Lemma 3.5 1 applied to ν−
n
2
+1ρ⊗ ν−1ζ(ρ, n− 1) ⋊ σ, it is the only component of

s(p,p)π3 of the form ν−
n
2
+1ρ⊗ ν−

n
2 ρ⊗ . . . . This means

s(2p)π3 ≥ ν−
n
2
+ 1

2 δ(ρ, 2) ⊗ L(ν−
n
2
+ 3

2 δ(ρ, 2), ν−
n
2
+ 5

2 δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

and this is the only component of s(2p)π3 with this central character. If we let

λ = ν−
n
2
+ 1

2 δ(ρ, 2) ⊗ L(ν−
n
2
+ 3

2 δ(ρ, 2), ν−
n
2
+ 5

2 δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)),

then Lemma 3.2 implies Hom(s(2p)π3, λ) 6= 0. By Frobenius reciprocity,

π3 →֒ iGMλ →֒ ν−
n
2
+ 1

2 δ(ρ, 2) × ν−
n
2
+ 3

2 δ(ρ, 2) × . . .× ν−1δ(ρ, 2) ⋊ δ(ν−
1

2ρ; σ),

which has L(ν−
n
2
+ 1

2 δ(ρ, 2), ν−
n
2
+ 3

2 δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)) as unique irreducible sub-

representation. Thus, π3 = L(ν−
n
2
+ 1

2 δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)), as claimed. This fin-
ishes 2c.

Case 2d: By induction,

s(p)π = ν−n+j+ 1

2ρ⊗ ν−
n
2
+j+ 1

2 ζ(ρ, n− 1) ⋊ σ + ν−j+ 1

2ρ⊗ ν−
n
2
+j− 1

2 ζ(ρ, n− 1) ⋊ σ

= ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
3

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

+ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−j− 3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−j+ 1

2ρ⊗ L([ν−n+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−j+ 1

2ρ⊗ L([ν−n+j+ 1

2ρ, ν−
3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

+ν−j+ 1

2ρ⊗ L([ν−n+j+ 1

2ρ, ν−j− 1

2ρ], ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

= τ ′1 + τ ′2 + τ ′3 + τ ′′1 + τ ′′2 + τ ′′3 (in the order listed).

First, observe that we may apply Lemma 3.5 3 (to the ν−n+j+ 1

2ρ-terms) to get π = π1+π2+π3,
with π1, π2, π3 as given. We need to identify s(p)πi, i = 1, 2, 3.

By Lemma 3.3, s(p)π1 ≥ τ ′1 + τ ′′1 . By Lemma 3.5 1, τ ′2, τ
′

3, τ
′′

2 , τ
′′

3 6≤ s(p)π1. Thus, s(p)π1 =
τ ′1 + τ ′′1 . Also, we necessarily have s(p)π2 ≥ τ ′2 and s(p)π3 ≥ τ ′3 (cf. Lemma 2.8). Thus, all that
remains is to show s(p)π2 ≥ τ ′′2 and s(p)π3 ≥ τ ′′3 .
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To identify Jacquet modules, we work with s(p,p)π. Observe that

s(p,p)π = ν−n+j+ 1

2ρ⊗ ν−n+j+ 3

2ρ⊗ ν−
n
2
+j+1ζ(ρ, n− 2) ⋊ σ

+ν−n+j+ 1

2ρ⊗ ν−j+ 1

2ρ⊗ ν−
n
2
+jζ(ρ, n− 2) ⋊ σ

+ν−j+ 1

2ρ⊗ ν−n+j+ 1

2ρ⊗ ν−
n
2
+jζ(ρ, n− 2) ⋊ σ

+ν−j+ 1

2ρ⊗ ν−j+ 3

2ρ⊗ ν−
n
2
+j−1ζ(ρ, n− 2) ⋊ σ.

For our purposes, it is the second and third terms which are of interest. We note that
ν−

n
2
+jζ(ρ, n − 2) ⋊ σ has three distinct components (it is a “case 2” representation: it has

n̂ = n − 2, ĵ = j − 1 so that 0 < ĵ < n̂−1
2

). In particular, the components of ν−n+j+ 1

2ρ ⊗

ν−j+ 1

2ρ⊗ ν−
n
2
+jζ(ρ, n− 2) ⋊σ and ν−j+ 1

2ρ⊗ ν−n+j+ 1

2ρ⊗ ν−
n
2
+jζ(ρ, n− 2) ⋊σ appear in s(p,p)π

with multiplicity one. Furthermore, we claim:

s(p,p)τ
′

2 ≥ ν−n+j+ 1

2ρ⊗ ν−j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

s(p,p)τ
′

3 ≥ ν−n+j+ 1

2ρ⊗ ν−j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−j− 1

2ρ], ν−j+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

s(p,p)τ
′′

2 ≥ ν−j+ 1

2ρ⊗ ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

s(p,p)τ
′′

3 ≥ ν−j+ 1

2ρ⊗ ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−j− 1

2ρ], ν−j+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

This follows easily from induction: τ ′ = ν−n+j+ 1

2ρ ⊗ ν−
n
2
+j+ 1

2 ζ(ρ, n − 1) ⋊ σ (resp. τ ′′ =

ν−j+ 1

2ρ⊗ ν−
n
2
+j− 1

2 ζ(ρ, n− 1) ⋊ σ) has induced part with n′ = n− 1, j′ = j (resp. n′′ = n− 1,
j′′ = j−1). Thus, the Jacquet modules for τ ′ are governed by case 2c or 2d (resp. τ ′′ governed
by case 2b or 2d). In either case, the claim follows.

Using the above, we may argue as follows (using the irreducibility of ν−n+j+ 1

2ρ× ν−j+ 1

2ρ for
the second implication):

s(p)π2 ≥ τ ′2
⇓

s(p,p)π2 ≥ ν−n+j+ 1

2ρ⊗ ν−j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))
⇓

s(2p)π2 ≥ (ν−n+j+ 1

2ρ× ν−j+ 1

2ρ) ⊗ L([ν−n+j+ 3

2ρ, ν−
3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))
⇓

s(p,p)π2 ≥ ν−j+ 1

2ρ⊗ ν−n+j+ 1

2ρ⊗ L([ν−n+j+ 3

2ρ, ν−
3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))
⇓

s(p)π2 ≥ τ ′′2 .
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Similarly, s(p)π3 ≥ τ ′′3 . Thus, we have s(p)πi = τ ′i + τ ′′i for i = 1, 2, 3, as needed.

Case 3a: Case 3a is similar to case 3b below, but somewhat simpler.

Case 3b: By induction, we have (noting that ν
1

2 ζ(ρ, n− 1) ⋊ σ and ν−
1

2 ζ(ρ, n− 1) ⋊ σ have
the same components)

s(p)π = ν
−n+1

2 ρ⊗ ν
1

2 ζ(ρ, n− 1) ⋊ σ + ν
−n+1

2 ρ⊗ ν−
1

2 ζ(ρ, n− 1) ⋊ σ

= 2ν
−n+1

2 ρ⊗ L([ν
−n+1

2 ρ, ν−
1

2ρ], [ν
−n+3

2 ρ, ν−
1

2ρ]; σ)

+2ν
−n+1

2 ρ⊗ L([ν
−n+1

2 ρ, ν−
3

2ρ], [ν
−n+3

2 ρ, ν−
1

2ρ]; δ(ν−
1

2ρ; σ))

+2ν
−n+1

2 ρ⊗ L(ν−
n
2
+1δ(ρ, 2), ν−

n
2
+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−

1

2ρ; σ))

= 2τ1 + 2τ2 + 2τ3 (in order listed).

First, we show that π has exactly two components. Since π is known to be reducible, there
are at least two components. On the other hand, observe that

θ0 = ν−
n
2
+ 1

2ρ⊗ ν−
n
2
+ 3

2ρ⊗ . . .⊗ ν
n
2
−

1

2ρ⊗ σ = smin(ζ(ρ, n) ⊗ σ)

occurs in sminπ with multiplicity two (cf. Lemma 2.3 et seq.). Thus, HomMmin
(sminπ, θ0) has

dimension≤ 2. Therefore, by Frobenius reciprocity, π has at most two components.
By Lemma 3.3,

π1 = L([ν
−n+1

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
1

2ρ]; σ)

is a component of π and s(p)π1 ≥ 2τ1. Let π2 denote the other component of π. We claim

π2 = L([ν
−n+1

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ)).

To see this, consider

θ2 = ν
−n+1

2 ρ⊗ ν
−n+1

2 ρ⊗ ν
−n+3

2 ρ⊗ ν
−n+3

2 ρ⊗ . . . ν−
3

2ρ⊗ ν−
3

2ρ⊗ ν−
1

2ρ⊗ ν
1

2ρ⊗ σ.

Clearly, θ2 ≤ sminL([ν
−n+1

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ)) (cf. Lemma 2.8). Also, by the
description of sminπ (Lemma 2.3 et seq.), we see that θ2 has the same multiplicity in π as

in iGMmin
θ2 (namely 2

n
2 ). Therefore, L([ν

−n+1

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ)) must be a
component of π; necessarily π2, as claimed. Of course, s(p)π2 ≥ τ2.
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Next, observe that for n > 4, s(p)ν
−

1

2 ζ(ρ, n− 1) ⋊ σ is given by 2c (by 2a for n = 4). Thus,
for n > 4

s(p,p)τ1 = ν
−n+1

2 ρ⊗ ν
−n+1

2 ρ⊗ L([ν
−n+3

2 ρ, ν−
1

2ρ], [ν
−n+3

2 ρ, ν−
1

2ρ]; σ)

+ν
−n+1

2 ρ⊗ ν
−n+3

2 ρ⊗ L([ν
−n+1

2 ρ, ν−
1

2ρ], [ν
−n+5

2 ρ, ν−
1

2ρ]; σ)

s(p,p)τ2 = ν
−n+1

2 ρ⊗ ν
−n+1

2 ρ⊗ L([ν
−n+3

2 ρ, ν−
1

2ρ], [ν
−n+3

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))

+ν
−n+1

2 ρ⊗ ν
−n+3

2 ρ⊗ L([ν
−n+5

2 ρ, ν−
1

2ρ], [ν
−n+1

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))

s(p,p)τ3 = ν
−n+1

2 ρ⊗ ν
−n+3

2 ρ⊗ L(ν
−n+1

2 ρ, ν−
n
2
+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−

1

2ρ; σ))

For n = 4, the second term in s(p,p)τ2 is missing. Therefore, we may argue as follows (using

the irreducibility of ν
−n+1

2 ρ× ν
−n+1

2 ρ for the second implication):

s(p)π2 ≥ τ2
⇓

s(p,p)π2 ≥ ν
−n+1

2 ρ⊗ ν
−n+1

2 ρ⊗ L([ν
−n+3

2 ρ, ν−
1

2ρ], [ν
−n+3

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))
⇓

s(2p)π2 ≥ (ν
−n+1

2 ρ× ν
−n+1

2 ρ) ⊗ L([ν
−n+3

2 ρ, ν−
1

2ρ], [ν
−n+3

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))
⇓

s(p,p)π2 ≥ 2ν
−n+1

2 ρ⊗ ν
−n+1

2 ρ⊗ L([ν
−n+3

2 ρ, ν−
1

2ρ], [ν
−n+3

2 ρ, ν−
3

2ρ]; δ(ν−
1

2ρ; σ))
⇓

s(p)π2 ≥ 2τ2

Finally, by Frobenius reciprocity, θ0 ≤ sminπi for i = 1, 2. Therefore, θ0 6≤ sminτ1, θ0 6≤ sminτ2.
Thus, θ0 ≤ sminτ3 and therefore τ3 ≤ s(p)πi for i = 1, 2. Hence s(p)π1 = 2τ1+τ3, spπ2 = 2τ2+τ3.
�

Note 3.7. If we had done the preceding proposition in conjunction with Theorem 6.1, we could
shorten the proof of case 3 considerably. In particular, we could use the fact that π1 is also a
component of ν−

n
4 ζ(ρ, n

2
) ⋊ ζ(ρ, n

2
; σ), and the components of s(p)ν

−
n
4 ζ(ρ, n

2
) ⋊ ζ(ρ, n

2
; σ) would

be known (by inductive hypothesis). A comparison then implies s(p)π1 ≤ 2τ1 + τ3. Since π
has only two components, s(p)π2 ≥ 2τ2 + τ3. Again, by Frobenius reciprocity, θ0 ≤ sminπi for
i = 1, 2, implying that θ0 ≤ sminτ3. Therefore s(p)π1 = 2τ1 + τ3, s(p)π2 = 2τ2 + τ3.

We now give the analogues to Propositions 3.1 and 3.6 when ρ satisfies (C1). We note that
the analogue to Lemma 3.5 holds in this case. Lemma 3.3 has an analogue for this case; as it
is slightly different, we state it explicitly.

Lemma 3.8. Suppose that σ is an irreducible supercuspidal representation of Sm and ρ is a
representation of GLp(F ) satisfying (C1). Let π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) with α ∈ R, α ≤ 0,
α ≡ k−1

2
mod 1. Then, π has a component π1 whose Langlands data comes from the smallest

possible parabolic subgroup. More precisely, we have the following:
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(1) α+ k−1
2
< 0

π1 = L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓρ, ν−1ρ]; σ).

Furthermore, if α + k−1
2

= −1,

s(p)π1 ≥ να+−k+1

2 ρ⊗ L([να+−k+1

2
+1ρ, να+ k−1

2 ρ], [ν−ℓρ, ν−1ρ]; σ)

+ν−ℓρ⊗ L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓ+1ρ, ν−1ρ]; σ)

(for α + k−1
2

< −1, we are only guaranteed of getting the first term in the inequality
above).

(2) α+ k−1
2

≥ 0

π1 = L([να+−k+1

2 ρ, ν−1ρ], [ν−α+−k+1

2 ρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

Furthermore,

s(p)π1 ≥ να+−k+1

2 ρ⊗ L([να+−k+1

2
+1ρ, ν−1ρ], [ν−α+−k+1

2 ρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

+ν−α+−k+1

2 ρ⊗ L([να+−k+1

2 ρ, ν−1ρ], [ν−α+−k+1

2
+1ρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

+ν−ℓρ⊗ L([να+−k+1

2 ρ, ν−1ρ], [ν−α+−k+1

2 ρ, ν−1ρ], [ν−ℓ+1ρ, ν−1ρ]; ρ⋊ σ).

Note that if ℓ = 0, there is no ν−ℓρ–term in the s(p) inequalities above.

Proof. The proof is like that of Lemma 3.3. However, for the second part, the key Jacquet
module representation is

ν−
α
2
+−k−1

4 ζ(ρ, α+
k − 1

2
) × ν

α
2
+−k−1

4 ζ(ρ,−α +
k − 1

2
) × ν

−ℓ−1

2 ζ(ρ, ℓ) ⊗ (ρ⋊ σ) < s((k+ℓ−1)p)π,

which is irreducible. �

Proposition 3.9. Suppose that σ is an irreducible supercuspidal representation of Sm and ρ
is a representation of GLp(F ) satisfying (C1). Let π = ναρ ⋊ ζ(ρ, ℓ; σ) with α ∈ R, ℓ ≥ 1.
Then, π is reducible if and only if α ∈ {0,±(ℓ + 1)}. Suppose π is reducible. By Lemma 2.9,
we may without loss of generality assume that α ≤ 0.

(1) α = 0
π = π1 + π2 with

π1 = L([ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−ℓρ, ν−2ρ], ν−
1

2 δ(ρ, 2); σ)

(a) ℓ = 1
s(p)π1 = ν−1ρ⊗ (ρ⋊ σ) + ρ⊗ L(ν−1ρ; σ)

s(p)π2 = ρ⊗ L(ν−1ρ; σ)
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(b) ℓ ≥ 2

s(p)π1 = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ]; ρ⋊ σ) + ρ⊗ L([ν−ℓρ, ν−1ρ]; σ)

s(p)π2 = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−2ρ], ν−
1

2 δ(ρ, 2); σ) + ρ⊗ L([ν−ℓρ, ν−1ρ]; σ)

(2) α = −ℓ− 1
π = π1 + π2 with

π1 = L([ν−ℓ−1ρ, ν−1ρ]; σ)

π2 = L(ν−ℓ− 1

2 δ(ρ, 2), [ν−ℓ+1ρ, ν−1ρ]; σ)

s(p)π1 = ν−ℓ−1ρ⊗ L([ν−ℓρ, ν−1ρ]; σ)

s(p)π2 = ν−ℓρ⊗ L(ν−ℓ−1ρ, [ν−ℓ+1ρ, ν−1ρ]; σ) + νℓ+1ρ⊗ L([ν−ℓρ, ν−1ρ]; σ)

Proof. Theorem 5.2 of [Tad3] gives the Langlands (quotient) data for π. It is not difficult
to determine s(p)πi–enough similar (but harder) arguments will be done to justify omitting it
here. �

Proposition 3.10. Suppose that σ is an irreducible supercuspidal representation of Sm and ρ
is a representation of GLp(F ) satisfying (C1). Let π = ναζ(ρ, n)⋊σ with α ∈ R, n ≥ 2. Then,
π is reducible if and only if α ∈ {−n−1

2
, −n+1

2
, . . . , n+1

2
}. Suppose π is reducible. By Lemma 2.9,

we may without loss of generality assume that α ≤ 0. When α ≥ −n+1
2

(cases 2,3,4 below),

write α = −n+1
2

+ j, with 0 ≤ j ≤ n−1
2

.

(1) α = −n−1
2

π = π1 + π2 with π1 = L([ν−nρ, ν−1ρ]; σ) and π2 = L([ν−nρ, ν−2ρ]; δ(ν−1ρ; σ)).

s(p)π1 = ν−nρ⊗ L([ν−n+1ρ, ν−1ρ]; σ)

s(p)π2 = ν−nρ⊗ L([ν−n+1ρ, ν−2ρ]; δ(ν−1ρ; σ)) + νρ⊗ L([ν−nρ, ν−2ρ]; σ).

(2) j = 0
π = π1 + π2 with

π1 = L([ν−n+1ρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−n+1ρ, ν−2ρ]; T ),

where T denotes the unique (irreducible) common component of ν−
1

2 ζ(ρ, 2) ⋊ σ and
ρ⋊ δ(ν−1ρ; σ).
(a) n = 2

s(p)π1 = ν−1ρ⊗ (ρ⋊ σ) + ρ⊗ L(ν−1ρ; σ)

s(p)π2 = ρ⊗ δ(ν−1ρ; σ)
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(b) n > 2

s(p)π1 = ν−n+1ρ⊗ L([ν−n+2ρ, ν−1ρ]; ρ⋊ σ) + ρ⊗ L([ν−n+1ρ, ν−1ρ]; σ)

s(p)π2 = ν−n+1ρ⊗ L([ν−n+2ρ, ν−2ρ]; T ) + ρ⊗ L([ν−n+1ρ, ν−2ρ]; δ(ν−1ρ; σ))

(3) 1 ≤ j ≤ n−1
2

π = π1 + π2 + π2 with

π1 = L([ν−n+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−n+j+1ρ, ν−2ρ], [ν−jρ, ν−1ρ]; T )

π3 = L([ν−n+j+1ρ, ν−j−2ρ], ν−j− 1

2 δ(ρ, 2), ν−j+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T ),

where T is as above.
(a) j = 1 = n−2

2
(n = 4)

s(p)π1 = ν−2ρ⊗ L(ν−1ρ, ν−1ρ; ρ⋊ σ) + ν−1ρ⊗ L(ν−2ρ, ν−1ρ; ρ⋊ σ)

s(p)π2 = ν−2ρ⊗ L(ν−1ρ; T )

s(p)π3 = ν−1ρ⊗ L(ν−2ρ; T )

(b) j = 1, n > 4

s(p)π1 = ν−n+2ρ⊗ L([ν−n+3ρ, ν−1ρ], ν−1ρ; ρ⋊ σ)
+ν−1ρ⊗ L([ν−n+2ρ, ν−1ρ]; ρ⋊ σ)

s(p)π2 = ν−n+2ρ⊗ L[ν−n+3ρ, ν−2ρ], ν−1ρ; T )

s(p)π3 = ν−n+2ρ⊗ L([ν−n+3ρ, ν−3ρ], ν−
3

2 δ(ρ, 2); T )
+ν−1ρ⊗ L([ν−n+2ρ, ν−2ρ]; T )

(c) j = n−2
2

, n > 4 (n even)

s(p)π1 = ν−
n
2 ⊗ L([ν−

n
2
+1ρ, ν−1ρ], [ν−

n
2
+1ρ, ν−1ρ]; ρ⋊ σ)

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−1ρ], [ν−

n
2
+2ρ, ν−1ρ]; ρ⋊ σ)

s(p)π2 = ν−
n
2 ρ⊗ L([ν−

n
2
+1ρ, ν−2ρ], [ν−

n
2
+1ρ, ν−1ρ]; T )

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−2ρ], [ν−

n
2
+2ρ, ν−1ρ]; T )

s(p)π3 = ν−
n
2
+1ρ⊗ L(ν−

n
2 ρ, ν−

n
2
+ 3

2 δ(ρ, 2), ν−
n
2
+ 5

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )
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(d) 2 ≤ j < n−2
2

s(p)π1 = ν−n+j+1ρ⊗ L([ν−n+j+2ρ, ν−1ρ], [ν−jρ, ν−1ρ]; ρ⋊ σ)
+ν−jρ⊗ L([ν−n+j+1ρ, ν−1ρ], [ν−j+1ρ, ν−1ρ]; ρ⋊ σ)

s(p)π2 = ν−n+j+1ρ⊗ L([ν−n+j+2ρ, ν−2ρ], [ν−jρ, ν−1ρ]; T )
+ν−jρ⊗ L([ν−n+j+1ρ, ν−2ρ], [ν−j+1ρ, ν−1ρ]; T )

s(p)π3 = ν−n+j+1ρ⊗ L([ν−n+j+2ρ, ν−j−2ρ], ν−j− 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )

+ν−jρ⊗ L([ν−n+j+1ρ, ν−j−1ρ], ν−j+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )

(4) j = n−1
2

(n odd)
π = π1 + π2 with

π1 = L([ν
−n+1

2 ρ, ν−1ρ], [ν
−n+1

2 ρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν
−n+1

2 ρ, ν−2ρ], [ν
−n+1

2 ρ, ν−1ρ]; T )

(a) n = 3
s(p)π1 = 2ν−1ρ⊗ L(ν−1ρ; ρ⋊ σ) + ν−1ρ⊗ T

s(p)π2 = ν−1ρ⊗ T

(b) n > 3

s(p)π1 = 2ν
−n+1

2 ρ⊗ L([ν
−n+1

2 ρ, ν−1ρ], [ν
−n+3

2 ρ, ν−1ρ]; ρ⋊ σ)

+ν
−n+1

2 ρ⊗ L(ν−
n
2
+1δ(ρ, 2), . . . , ν−

3

2 δ(ρ, 2); T )

s(p)π2 = 2ν
−n+1

2 ρ⊗ L([ν
−n+1

2 ρ, ν−2ρ], [ν
−n+3

2 ρ, ν−1ρ]; T )

+ν
−n+1

2 ρ⊗ L(ν−
n
2
+1δ(ρ, 2), . . . , ν−

3

2 δ(ρ, 2); T )

Proof. The reducibility points are given in Theorem 7.2 (iv) of [Tad3]. The identification of
components and Jacquet modules is similar to that in Proposition 3.6. �

Proposition 3.11. Suppose that σ is an irreducible supercuspidal representation of Sm and
ρ is a representation of GLp(F ) satisfying (C0). Let ρ⋊ σ = T1 + T2. Let π = ναζ(ρ, n) ⋊ σ
with α ∈ R, n ≥ 2. Then π is reducible if and only if α ∈ {−n+1

2
, −n+3

2
, . . . , n−1

2
}. Suppose

π is reducible. By Lemma 2.9, we may without loss of generality assume that α ≤ 0. Write
α = −n+1

2
+ j with 0 ≤ j ≤ n−1

2
.

(1) j = n−1
2

π = π1 + π2 with

πi = L([ν
−n+1

2 ρ, ν−1ρ], [ν
−n+1

2 ρ, ν−1ρ];Ti)
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for i = 1, 2. Further,

s(p)πi = 2ν
−n+1

2 ρ⊗ L([ν
−n+1

2 ρ, ν−1ρ], [ν
−n+3

2 ρ, ν−1ρ];Ti)

+ν
−n+1

2 ρ⊗ L(ν−
n
2
+1δ(ρ, 2), ν−

n
2
+2δ(ρ, 2), . . . , ν−

1

2 δ(ρ, 2); σ)

for i = 1, 2.
(2) 0 ≤ j < n−1

2
π = π1 + π2 + π3 with

πi = L([ν−n+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ];Ti)

for i = 1, 2 and

π3 = L([ν−n+j+1ρ, ν−j−2ρ], ν−j− 1

2 δ(ρ, 2), ν−j+ 1

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ).

(a) j = 0 = n−2
2

(n = 2)

s(p)πi = ν−1ρ⊗ Ti

for i = 1, 2.
s(p)π3 = ρ⊗ L(ν−1ρ; σ).

(b) j = 0, n > 2

s(p)πi = ν−n+1ρ⊗ L([ν−n+2ρ, ν−1ρ];Ti)

for i = 1, 2.

s(p)π3 = ν−n+1ρ⊗ L([ν−n+2ρ, ν−2ρ], ν−
1

2 δ(ρ, 2); σ)

+ρ⊗ L([ν−n+1ρ, ν−1ρ]; σ).

(c) j = n−2
2

, n ≥ 4 (n even)

s(p)πi = ν−
n
2 ρ⊗ L([ν−

n
2
+1ρ, ν−1ρ], [ν−

n
2
+1ρ, ν−1ρ];Ti)

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−1ρ], [ν−

n
2
+2ρ, ν−1ρ];Ti)

for i = 1, 2.

s(p)π3 = ν−
n
2
+1ρ⊗ L(ν−

n
2 ρ, ν

−n+3

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ).

(d) 0 < j < n−2
2

s(p)πi = ν−n+j+1ρ⊗ L([ν−n+j+2ρ, ν−1ρ], [ν−jρ, ν−1ρ];Ti)

+ν−jρ⊗ L([ν−n+j+1ρ, ν−1ρ], [ν−j+1ρ, ν−1ρ];Ti)
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for i = 1, 2.

s(p)π3 = ν−n+j+1ρ⊗ L([ν−n+j+2ρ, ν−j−2ρ], ν−j− 1

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ)

+ν−jρ⊗ L([ν−n+j+1ρ, ν−j−1ρ], ν−j+ 1

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ).

Proof. The reducibility points are given in Theorem 7.2 (iii) of [Tad3].
Case 2a uses an argument different than those used up to now. So, we do this case in

detail. The remaining cases use use arguments similar to those used already; we do case 2c to
illustrate this and show the one change necessary.

Case 2a: j = 0 = n−2
2

(n = 2)

Here, π = ν−
1

2 ζ(ρ, 2) ⋊ σ and

s(p)π = ν−1ρ⊗ (ρ⋊ σ) + ρ⊗ (ν−1ρ⋊ σ)

= ν−1ρ⊗ T1 + ν−1ρ⊗ T2 + ρ⊗ L(ν−1ρ; σ)

First, we show that L(ν−1ρ;Ti), i = 1, 2, are components of π. Observe that

ν−
1

2 ζ(ρ, 2) ⋊ σ →֒ ν−1ρ× ρ⋊ σ

∼= ν−1ρ⋊ (T1 ⊕ T2).

Now, by µ∗ calculations,

s(p)ν
−1ρ⋊ Ti = ν−1ρ⊗ Ti + νρ⊗ Ti + ρ⊗ L(ν−1ρ; σ).

In particular, this means ν−1ρ ⊗ Ti appears with multiplicity one in s(p)π, s(p)ν
−1ρ ⋊ Ti and

s(p)ν
−1ρ × ρ⋊ σ. Therefore, π and ν−1ρ⋊ Ti have a component in common, that component

characterized by having ν−1ρ⊗ Ti in its s(p). Let πi denote that component. By Lemmma 3.2
and Frobenius reciprocity,

πi →֒ ν−1ρ⋊ Ti

(n.b. s(p)πi ≤ ν−1ρ ⊗ Ti + ρ ⊗ L(ν−1ρ; σ)). Since ν−1ρ ⋊ Ti has unique irreducible subrepre-
sentation L(ν−1ρ;Ti), this forces πi = L(ν−1ρ;Ti), as needed.

Next, we show that π1⊕π2 is a subrepresentation of π (the reason for doing this will become
clear). From above, π1, π2 and π are subrepresentations of ν−1ρ × ρ ⋊ σ. Since ν−1ρ ⊗ Ti

appears with multiplicity one in s(p)π and s(p)ν
−1ρ × ρ⋊ σ, we see that πi (i = 1, 2) appears

with multiplicity one in π and ν−1ρ × ρ ⋊ σ. By considering the subspace Vπ + Vπ1
+ Vπ2

⊂
Vν−1ρ×ρ⋊σ, we see that in order for multiplicity one to hold, Vπ1

+ Vπ2
⊂ Vπ. Thus π1 ⊕ π2 is a

subrepresentation of π.
We now use the fact that π1⊕π2 is a subrepresentation of π to show that π has a third compo-

nent. To see this, observe that ν
1

2 ζ(ρ, 2)⊗ σ̃ appears in sGLπ̃ with multiplicity one. Therefore,
by Frobenius reciprocity, π̃ has a unique irreducible subrepresentation. Consequently, π has a
unique irreducible quotient. Therefore, π must have a third component; call it π3. Note that
we necessarily have s(p)πi = ν−1ρ⊗ Ti for i = 1, 2 and s(p)π3 = ρ⊗ L(ν−1ρ; σ).
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It remains to identify π3. Observe that

sminπ3 = ρ⊗ ν−1ρ⊗ σ + ρ⊗ νρ⊗ σ.

Therefore,

sGLπ3 = ν−
1

2 δ(ρ, 2) ⊗ σ + ν
1

2 ζ(ρ, 2) ⊗ σ.

By Lemma 3.2 and Frobenius reciprocity,

π3 →֒ ν−
1

2 δ(ρ, 2) ⋊ σ.

Since ν−
1

2 δ(ρ, 2) ⋊ σ has L(ν−
1

2 δ(ρ, 2); σ) as its unique irreducible subrepresentation, we have

π3 = L(ν−
1

2 δ(ρ, 2); σ), as needed.

Case 2c: j = n−2
2

, n ≥ 4 (n even)

Here, π = ν−
1

2 ζ(ρ, n) ⋊ σ) and

s(p)π = ν−
n
2 ρ⊗ ζ(ρ, n− 1) ⋊ σ + ν−

n
2
+1ρ⊗ ν−1ζ(ρ, n− 1) ⋊ σ

= ν−
n
2 ρ⊗ L([ν−

n
2
+1ρ, ν−1ρ], [ν−

n
2
+1ρ, ν−1ρ];T1)

+ν−
n
2 ρ⊗ L([ν−

n
2
+1ρ, ν−1ρ], [ν−

n
2
+1ρ, ν−1ρ];T2)

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−1ρ], [ν−

n
2
+2ρ, ν−1ρ];T1)

+ν−
n
2
+1ρ⊗ L([ν−

n
2 ρ, ν−1ρ], [ν−

n
2
+2ρ, ν−1ρ];T2)

+ν−
n
2
+1ρ⊗ L(ν−

n
2 ρ, ν

−n+3

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ)

= τ ′1 + τ ′2 + τ ′′1 + τ ′′2 + τ ′′3

First, the obvious analogue to Lemma 3.5 holds (same proof). From this, it follows that

πi = L([ν−
n
2 ρ, ν−1ρ], [ν−

n
2
+1ρ, ν−1ρ];Ti)

for i = 1, 2 are components of π.
Next, we claim that s(p)πi = τ ′i + τ ′′i for i = 1, 2. By the analogue to Lemma 3.5, it suffices

to show s(p)πi ≥ τ ′i + τ ′′i . In general, if π = ναζ(ρ, n) ⋊ σ,

s((n−1)p)π =

n
∑

i=1

[ν−α− i
2 ζ(ρ, n− i) × να+−n+i−1

2 ζ(ρ, i− 1)] ⊗ [να+−n+2i−1

2 ρ⋊ σ]

(a µ∗ calculation like that used for Corollary 2.7). In particular, if α ≤ 0 is a reducibility point,

s((n−1)p)π ≥ [ν−
α
2
+−n−1

4 ζ(ρ, n−1
2

+ α) × ν
α
2
+−n−1

4 ζ(ρ, n−1
2

− α)] ⊗ T1

+[ν−
α
2
+−n−1

4 ζ(ρ, n−1
2

+ α) × ν
α
2
+−n−1

4 ζ(ρ, n−1
2

− α)] ⊗ T2
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and these are the only terms of the form . . .⊗ T1 or . . .⊗ T2 in s((n−1)p)π. Observe that both
of these are irreducible. Then, for our particular π,

s(p)π1 ≥ τ ′1
⇓

sminπ1 ≥ ν−
n
2 ρ⊗ (ν−

n
2
+1ρ⊗ ν−

n
2
+1ρ) ⊗ . . .⊗ (ν−1ρ⊗ ν−1ρ) ⊗ T1

⇓

s((n−1)p)π1 ≥ [ν−
n
4 ζ(ρ, n

2
− 1) × ν−

n
4
−

1

2 ζ(ρ, n
2
)] ⊗ T1

⇓
s(p)π1 ≥ τ ′1 + τ ′′1 .

A similar argument holds for π2. Note that this is essentially the argument that would be used
in the proof of an analogue to Lemma 3.8 (to identify Jacquet modules). We do not separate
this out as a lemma as this is the only place it will be used.

Finally, we have s(p)π3 = τ ′′′3 . The identification of π3 uses the same argument as in case 2c
of Proposition 3.6.

Finally, if one uses the analogue to Lemma 3.5 and the Jacquet module argument involving
s((n−1)p)π above (which plays the role of Lemma 3.3), the same arguments used in Proposition
3.6 do the remaining cases here. �

We include the following for future use.

Note 3.12. Suppose σ is an irreducible supercuspidal representation of Sm and ρ is an irre-
ducible supercuspidal representation of GLp(F ). Further, suppose ρ 6∼= ρ̃. Then ναζ(ρ, n) ⋊ σ
is irreducible for all α ∈ R.

Proof. See Theorem 7.2 (i) in [Tad3]. �

4. Reducibility points

In this section, we give the reducibility points for π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ). If ρ satisfies
(C1/2), the results are in Theorem 4.1; for (C1), in Theorem 4.3. Note that in this section,
we only address the proof for ρ0

∼= ρ. The results for ρ0 6∼= ρ are a corollary of the results in
section 5. (The arguments used when ρ0 6∼= ρ have a somewhat different flavor than those for
ρ0

∼= ρ; relying on the irreducibility of ναρ0 × νβρ for all α, β ∈ R).
In Theorem 4.1 1, most of the work goes into verifying irreducibility. This is also the

most important part of the theorem: reducibility could be obtained from Theorem 6.1. (The
decomposition into components in Theorem 6.1 is obtained more or less independently from
the reducibility results in Theorem 4.1.) Since the proof of reducibility does not add much
work, we include it here for the sake of completeness.

Theorem 4.1. Let ρ0, ρ be irreducible unitarizable supercuspidal representations of GLp0
(F ),

GLp(F ), resp.; σ an irreducible supercuspidal representation of Sm. Further, suppose ρ satisfies
(C1/2). Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ), α ∈ R.
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(1) Suppose ρ0
∼= ρ. Then, π is reducible if and only if

α ∈

{

−
k

2
,−

k

2
+ 1, . . . ,

k

2

}

∪

{

±(ℓ+
k

2
),±(ℓ+

k

2
− 1), . . . ,±(ℓ−

k

2
+ 1)

}

(noting that the sets are not necessarily disjoint) with the exception that if k = 2ℓ and
α = 0, there is irreducibility (i.e., ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ; σ) is irreducible).

(2) Suppose ρ0 6∼= ρ. Then, π is reducible if and only if ναζ(ρ0, k) ⋊ σ is reducible. If
ρ0 6∼= ρ̃0, ν

αζ(ρ0, k) ⋊ σ is irreducible (cf. Note 3.12). For ρ0 satisfying (C1/2), (C1),
or (C0), resp., the reducibility points for ναζ(ρ0, k) ⋊ σ are given in Propositions 3.6,
3.10, or 3.11, resp.).

Proof. Here, we do the case ρ0
∼= ρ. The case ρ0 6∼= ρ is covered by Proposition 5.3. The cases

k = 1 and ℓ = 0 are covered by section 3. So, we assume k ≥ 2, ℓ ≥ 1 here.
To deal with the case ρ0

∼= ρ, we proceed by induction (on n = ℓ + k), splitting this into
three cases. By Lemma 2.9, we may without loss of generality assume α ≤ 0.

Case 1: k = 2ℓ
Here, we need to show that π = ναζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ; σ) is reducible for α ∈ {−2ℓ,−2ℓ +

1, . . . ,−1} and irreducible for all other α ≤ 0.
Let us start by verifying reducibility for α ∈ {−2ℓ,−2ℓ+ 1, . . . ,−1}. Recall that

s(p)π = ν−α−ℓ+ 1

2ρ⊗ να− 1

2 ζ(ρ, 2ℓ− 1) ⋊ ζ((ρ, ℓ; σ)

+να−ℓ+ 1

2ρ⊗ να+ 1

2 ζ(ρ, 2ℓ− 1) ⋊ ζ((ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ναζ(ρ, 2ℓ) ⋊ ζ((ρ, ℓ− 1; σ).

For α ∈ {−2ℓ,−2ℓ+1, . . . ,−1}, we may apply Lemma 3.5 to any term in s(p)π. By induction,

we have that να+ 1

2 ζ(ρ, 2ℓ− 1) ⋊ ζ(ρ, ℓ; σ) is reducible for α ∈ {−2ℓ,−2ℓ + 1, . . . ,−1}, giving
π reducible there.

We now turn to the irreducibility points. We save irreducibility for α = 0 until Lemma 4.2.
So, for now we may assume α < 0. Note that this means −α − ℓ + 1

2
, α − ℓ + 1

2
, and −ℓ + 1

2
are all distinct. Since α 6∈ {−2ℓ,−2ℓ + 1, . . . ,−1}, the inductive hypothesis tells us that the
three terms in s(p)π are all irreducible. Now, by Corollary 2.7,

sGLπ =

2ℓ
∑

i=0

ν−α− i
2 ζ(ρ, 2ℓ− i) × να+−2ℓ+i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ.

First, if α is not an integer, then the i = 0, 2ℓ terms–i.e., ν−αζ(ρ, 2ℓ) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ and

ναζ(ρ, 2ℓ)× ν−
ℓ
2 ζ(ρ, ℓ)⊗σ–are irreducible (cf. Theorem 2.1). The first of these contains terms

of the form ν−α−ℓ+ 1

2ρ ⊗ . . . and ν−ℓ+ 1

2ρ ⊗ . . . in its minimal Jacquet module, smin. This
forces ν−α−ℓ+ 1

2ρ ⊗ να− 1

2 ζ(ρ, 2ℓ − 1) ⋊ ζ(ρ, ℓ; σ) and ν−ℓ+ 1

2ρ ⊗ ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ − 1; σ) to both

come from the component of π which has ν−αζ(ρ, 2ℓ) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ in its sGL. Similarly,
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να−ℓ+ 1

2ρ ⊗ να+ 1

2 ζ(ρ, 2ℓ − 1) ⋊ ζ(ρ, ℓ; σ) and ν−ℓ+ 1

2ρ ⊗ ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ − 1; σ) come from the

component of π which gives rise to ναζ(ρ, 2ℓ) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ. Thus, all three terms in s(p)π

come from the same component of π. Thus, π must be irreducible. If α is an integer, we have
α < −2ℓ. We can then use exactly the same argument as in the noninteger case–the i = 0, 2ℓ
terms from sGLπ are still irreducible and the argument goes through. This finishes the k = 2ℓ
case.

Case 2: k > 2ℓ
Here, we need to show that π is reducible for α ∈ {−ℓ − k

2
,−ℓ − k

2
+ 1, . . . , ℓ + k

2
} and

irreducible for all other α. Again, without loss of generality, we may restrict our attention to
α ≤ 0.

We begin with the reducibility points. First, assume α 6= 0, ℓ − k
2

is a reducibility point.

Then, α+ −k+1
2

, −α+ −k+1
2

, and −ℓ+ 1
2

are all distinct, so Lemma 3.5 may be applied to any
term in s(p)π. It is easy to check that at least one of them reduces for any of the α we are
looking at, making π reducible there. This shows reducibility for all the reducibility points
except α = ℓ− k

2
, 0 (α = 0 reducible only for k even).

If α = 0 we can still apply Lemma 3.5 to the term ν−ℓ+ 1

2ρ ⊗ ζ(ρ, k) ⋊ ζ(ρ, ℓ − 1; σ) (but
not to the others). So, for k even, Lemma 3.5 and the inductive hypothesis give reducibility
for α = 0. We could try the same approach for α = ℓ − k

2
–apply Lemma 3.5 to the term

νℓ−k+ 1

2ρ⊗ νℓ− k
2
+ 1

2 ζ(ρ, k− 1) ⋊ ζ(ρ, ℓ; σ). However, if k = 2ℓ+1, this term is irreducible, so the
lemma will not be enough to give us reducibility. Thus, we take a different approach for the
α = ℓ− k

2
case.

We show that νℓ− k
2 ζ(ρ, k)⋊ζ(ρ, ℓ; σ) is reducible by comparing it with ζ(ρ, 2ℓ)⋊ζ(ρ, k−ℓ; σ).

First, we observe that L([νℓ−k+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ) is a component of

both (cf. Lemma 3.3). However, since sminν
ℓ− k

2 ζ(ρ, k)⋊ζ(ρ, ℓ; σ) 6≤ sminζ(ρ, 2ℓ)⋊ζ(ρ, k−ℓ; σ)

(e.g., νk−ℓ− 1

2ρ never appears in any term in sminζ(ρ, 2ℓ) ⋊ ζ(ρ, k − ℓ; σ), cf. Theorem 2.3 et
seq.), we have that

L([νℓ−k+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ) < νℓ− k
2 ζ(ρ, k) ⋊ ζ(ρ, ℓ; σ)

This gives reducibility for α = ℓ− k
2

and finishes the reducibility points for the case k > 2ℓ.
We now turn to the irreducibility points. Again, we take α ≤ 0. For α 6= 0, the same basic

argument as in the k = 2ℓ case works. For α = 0 (relevant here only if k is odd), we do not
have α + −k+1

2
, −α + −k+1

2
, −ℓ + 1

2
all distinct and must be more careful. (Note that α = 0

with k even and α = ℓ− k
2

also have this property but are reducibility points).

Now, suppose we have α 6= 0 a point where we need to show irreducibility. Then, α+ −k+1
2

,

−α + −k+1
2

, and −ℓ + 1
2

are all distinct, and further, by the induction hypothesis, the three
terms in s(p)π are all irreducible. Again, for such α, the i = 0 and i = k terms in sGLπ,

namely ν−αζ(ρ, k) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ and ναζ(ρ, k) × ν−

ℓ
2 ζ(ρ, ℓ) ⊗ σ, are irreducible. Thus, we

(again) have that ν−α+−k+1

2 ρ⊗να− 1

2 ζ(ρ, k−1)⋊ζ(ρ, ℓ; σ) and ν−ℓ+ 1

2ρ⊗ναζ(ρ, k)⋊ζ(ρ, ℓ−1; σ)



DEGENERATE PRINCIPAL SERIES 33

come from the component of π containing ν−αζ(ρ, k) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ in its sGL. Similarly,

να+−k+1

2 ρ⊗ να+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ) and ν−ℓ+ 1

2ρ⊗ ναζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ) come from the

component of π containing ναζ(ρ, k) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ in its sGL. Since all the terms in s(p)π

come from the same component of π, we must have that π is irreducible.
We now turn to the case α = 0, k odd. The proof is similar to the general case, but a little

more care is required. Note that if k = 2j + 1,

s(p)π = 2ν−jρ⊗ ν−
1

2 ζ(ρ, 2j) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 1

2ρ⊗ ζ(ρ, 2j + 1) ⋊ ζ(ρ, ℓ− 1; σ).

By the inductive hypothesis, these are all irreducible. Also,

sGLπ = 2

j
∑

i=0

ν−
i
2 ζ(ρ, 2j + 1 − i) × ν−j+ i−1

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ.

All the terms in sGLπ are irreducible as well. Now, smin of any term in sGLπ contains a term
of the form ν−ℓ+ 1

2ρ⊗ . . . . Take any component π1 of π. Since sGLπ1 6= 0, we have that sminπ1

has a term of the form ν−ℓ+ 1

2 ⊗ . . . . Therefore, s(p)π1 ≥ ν−ℓ+ 1

2ρ⊗ ζ(ρ, 2j + 1) ⋊ ζ(ρ, ℓ− 1; σ).

Since this holds for any component π1 of π but ν−ℓ+ 1

2ρ⊗ ζ(ρ, 2j + 1) ⋊ ζ(ρ, ℓ− 1; σ) occurs in
s(p)π with multiplicity one, we must have that π is irreducible. This finishes the case k > 2ℓ.

Case 3: k < 2ℓ
Here, we need to show that π is reducible for α ∈ {−k

2
, k

2
+ 1, . . . , k

2
} ∪ {±(ℓ+ k

2
− 1),±(ℓ+

k
2
− 2), . . . ,±(ℓ − k

2
+ 1)}, irreducible otherwise. Again, without loss of generality, we may

restrict our attention to α ≤ 0.
We begin with the reducibility points. First, suppose α is a reducibility point with α 6=

0,−ℓ + k
2
. Then, α + −k+1

2
, −α + −k+1

2
, and −ℓ + 1

2
are all distinct, so Lemma 3.5 may be

applied to any term in s(p)π. It is easy to see that at least one of them is reducible, so that
the lemma implies π is reducible.

Now, take α = 0 with k even. Unlike the α = 0 case for k > 2ℓ, Lemma 3.5 is not enough
to give reducibility–in particular, it fails to work if k = 2(ℓ − 1). However, for k = 2j, we

can compare ζ(ρ, 2j) ⋊ ζ(ρ, ℓ; σ) and ν
−ℓ+j

2 ζ(ρ, ℓ + j) ⋊ ζ(ρ, j; σ). They have a component

in common, namely L([ν−j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ) (again, cf. Lemma
3.5). However, ζ(ρ, 2j)⊗ ζ(ρ, ℓ; σ) occurs with multiplicity two in s(2jp)ζ(ρ, 2j)⋊ ζ(ρ, ℓ; σ) and

multiplicity one in s(2jp)ν
−ℓ+j

2 ζ(ρ, ℓ+j)⋊ζ(ρ, j; σ) (e.g., look at smin). So, ζ(ρ, 2j)⋊ζ(ρ, ℓ; σ) >

L([ν−j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ), hence is reducible.
We now address the case α = −ℓ + k

2
. If k ≥ ℓ, −ℓ + k

2
≥ −k

2
so we expect reducibility. In

this case, we get reducibility by comparing π with ζ(ρ, 2ℓ) ⋊ ζ(ρ, k− ℓ; σ). First, observe that

L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [νℓ−k+ 1

2ρ, ν−
1

2ρ]; σ) is a component of both. Further,we have

νℓ− k
2 ζ(ρ, k)⊗ ζ(ρ, ℓ; σ) < s(kp)π but νℓ− k

2 ζ(ρ, k)⊗ ζ(ρ, ℓ; σ) 6< s(kp)ζ(ρ, 2ℓ) ⋊ ζ(ρ, k− ℓ; σ) (e.g.,

there is always a ν−ℓ+ 1

2ρ before νℓ− 1

2ρ in sminζ(ρ, 2ℓ) ⋊ ζ(ρ, k − ℓ; σ)). Therefore,

νℓ− k
2 ζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) 6< s(kp)L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [νℓ−k+ 1

2ρ, ν−
1

2ρ]; σ)
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hence π must have another component. This finishes the reducibility points.
We now turn to the irreducibility points. Suppose α 6= 0,−ℓ+ k

2
is an (expected) irreducibility

point. The same argument as in the case k > 2ℓ with α 6= 0 shows irreducibility; we do not
repeat the argument here. Similarly, for α = 0, k odd, the k < 2ℓ case is the same as the
k > 2ℓ case. Again, we do not repeat it. This leaves α = −ℓ+ k

2
(with k < ℓ).

Suppose α = −ℓ + k
2

with k < ℓ, so we expect irreducibility. Then

s(p)π = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ k
2
+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+νℓ−k+ 1

2ρ⊗ ν−ℓ+ k
2
−

1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−ℓ+ k
2 ζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ).

The first two terms are irreducible; the last reducible. Also,

sGLπ =
k

∑

i=0

νℓ− k
2
−

i
2 ζ(ρ, k − i) × ν−ℓ+ i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ.

All the terms in sGLπ are irreducible. Every term in sGLπ for i < k has something of the
form νℓ−k+ 1

2ρ ⊗ . . . in its (minimal) Jacquet module, therefore they must all come from the

component of π containing νℓ−k+ 1

2ρ⊗ ν−ℓ+ k
2
−

1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ) in its s(p). In particular,
π can have at most two components, and if π = π1 + π2,

sGLπ1 =
k−1
∑

i=0

νℓ− k
2
−

i
2 ζ(ρ, k − i) × ν−ℓ+ i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ

sGLπ2 = ν−ℓ+ k
2 ζ(ρ, k) × ν−

ℓ
2 ζ(ρ, ℓ) ⊗ σ.

Therefore, we see that any term in sminπ1 contains one copy of ν−ℓ+k− 1

2ρ and one copy of
νℓ−k+ 1

2ρ while any term in sminπ2 contains two copies of ν−ℓ+k− 1

2ρ (and none of νℓ−k+ 1

2ρ).

However, ν−ℓ+ 1

2ρ ⊗ ν−ℓ+ k
2
+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ) ≤ s(p)π is irreducible and sminν
−ℓ+ 1

2ρ ⊗

ν−ℓ+ k
2
+ 1

2 ζ(ρ, k−1)⋊ζ(ρ, ℓ; σ) contains both terms with one copy each of ν−ℓ+k− 1

2ρ and νℓ−k+ 1

2ρ

and terms with two copies of ν−ℓ+k− 1

2ρ. Therefore, π1 and π2 cannot be separate components.
This forces π to be irreducible, finishing the case k < 2ℓ and the case ρ0 = ρ in the theorem.
�

Lemma 4.2. With notation as in the theorem, π = ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ; σ) is irreducible (ℓ ≥ 1).

Proof. Let n = 3ℓ. From Corollary 2.7, we have

s(p)π = 2ν−ℓ+ 1

2ρ⊗ ν−
1

2 ζ(ρ, 2ℓ− 1) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 1

2ρ⊗ ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ− 1; σ).
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These are all reducible.

sGLπ =

2ℓ
∑

i=0

ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ

= 2

ℓ−1
∑

i=0

ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ

+ν−
ℓ
2 ζ(ρ, ℓ) × ν−

ℓ
2 ζ(ρ, ℓ) × ν−

ℓ
2 ζ(ρ, ℓ) ⊗ σ

All the terms for sGLπ are irreducible.

s(n−1)pπ =
2ℓ

∑

i=0

ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i

2 ζ(ρ, i) × ν
−ℓ−1

2 ζ(ρ, ℓ− 1) ⊗ ζ(ρ, 1; σ)

+

2ℓ
∑

i=1

ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i−1

2 ζ(ρ, i− 1) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ ν−ℓ+i− 1

2ρ⋊ σ

= 2

ℓ−1
∑

i=0

ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i

2 ζ(ρ, i) × ν
−ℓ−1

2 ζ(ρ, ℓ− 1) ⊗ ζ(ρ, 1; σ)

+3ν−
ℓ
2 ζ(ρ, ℓ) × ν−

ℓ
2 ζ(ρ, ℓ) × ν

−ℓ−1

2 ζ(ρ, ℓ− 1) ⊗ ζ(ρ, 1; σ)

+2
ℓ−1
∑

i=1

ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i−1

2 ζ(ρ, i− 1) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ ν−ℓ+i− 1

2ρ⋊ σ

+2ν−
ℓ
2 ζ(ρ, ℓ) × ν

−ℓ−1

2 ζ(ρ, ℓ− 1) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ δ(ρ, 1; σ)

This is a decomposition into irreducible components. Two copies of ν−
ℓ
2 ζ(ρ, ℓ)× ν−

ℓ
2 ζ(ρ, ℓ) ×

ν
−ℓ−1

2 ζ(ρ, ℓ− 1)⊗ ζ(ρ, 1; σ) come from the (reducible) i = ℓ, ℓ+1 terms in the second sum; the
other is the i = ℓ term in the first sum.

We show irreducibility by showing that all the terms in sGLπ come from the same component
of π. Observe that in the expression for sGLπ above, we have

ith term























rminν
−

i
2 ζ(ρ, 2ℓ− i) = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ νℓ−i− 1

2ρ

rminν
−ℓ+ i

2 ζ(ρ, i) = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ ν−ℓ+i− 1

2ρ

rminν
−

ℓ
2 ζ(ρ, ℓ) = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ ν−
1

2ρ
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i− 1st term























rminν
−i+1

2 ζ(ρ, 2ℓ+ 1 − i) = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ νℓ−i+ 1

2ρ

rminν
−ℓ+ i−1

2 ζ(ρ, i− 1) = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ ν−ℓ+i− 3

2ρ

rminν
−

ℓ
2 ζ(ρ, ℓ) = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . .⊗ ν−
1

2ρ.

From this, one can see that the ith term may be characterized by the fact that smin(ith term)

contains terms of the form . . .⊗ν−ℓ+i− 1

2ρ⊗σ. Similarly, the i−1st term may be characterized
by the fact that smin(i − 1st term) has terms of the form . . . ⊗ νℓ−i+ 1

2ρ ⊗ σ (for i > 0).

Now, in s((n−1)p)π, the term ν−
i
2 ζ(ρ, 2ℓ− i)× ν−ℓ+ i−1

2 ζ(ρ, i− 1)× ν−
ℓ
2 ζ(ρ, ℓ)⊗ ν−ℓ+i− 1

2ρ⋊ σ is

irreducible (1 ≤ i ≤ ℓ− 1). Furthermore, any term in sminπ of the form . . .⊗ ν−ℓ+i− 1

2ρ⊗ σ or

. . .⊗ νℓ−i+ 1

2ρ⊗ σ comes from one of the two copies of this. Therefore, if π0 is a component of
π with sGLπ0 ≥ ith term, we get

sGLπ0 ≥ ith term
⇓

s((n−1)p)π0 ≥ ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i−1

2 ζ(ρ, i− 1) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ ν−ℓ+i− 1

2ρ⋊ σ
⇓

sGLπ0 ≥ (i− 1)st term.

That is, each copy of ν−
i
2 ζ(ρ, 2ℓ− i)×ν−ℓ+ i−1

2 ζ(ρ, i−1)×ν−
ℓ
2 ζ(ρ, ℓ)⊗ν−ℓ+i− 1

2ρ⋊σ “connects”
one copy of the ith and i− 1st terms in sminπ. Using this as i varies for 1 to ℓ− 1, we get that
π has at most three components, and further, if π = π1 + π2 + π3, then

sGLπ1 = sGLπ2 =

ℓ−1
∑

i=1

ν−
i
2 ζ(ρ, 2ℓ− i) × ν−ℓ+ i

2 ζ(ρ, i) × ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ

and
sGLπ3 = ν−

ℓ
2 ζ(ρ, ℓ) × ν−

ℓ
2 ζ(ρ, ℓ) × ν−

ℓ
2 ζ(ρ, ℓ) ⊗ σ.

Next, we show that there are at most two components, eliminating π3 from above. Observe
that any term in sminπ3 has only negative powers of ν appearing (to see this, take Jacquet
modules in stages starting with sGLπ3). This means we cannot have s(2ℓp)π3 ≥ ζ(ρ, 2ℓ) ⊗
ζ(ρ, ℓ; σ) (which has positive powers of ν appearing). This contradicts Frobenius reciprocity.
Thus π has at most two components, and if π = π1 + π2, we have sGLπ1 as above and

sGLπ2 = sGLπ1 + ν−
ℓ
2 ζ(ρ, ℓ) × ν−

ℓ
2 ζ(ρ, ℓ) × ν−

ℓ
2 ζ(ρ, ℓ) ⊗ σ.

Finally, observe that

L = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

is a component of both ν−
1

2 ζ(ρ, 2ℓ−1)⋊ ζ(ρ, ℓ; σ) (cf. Lemma 3.3) and ζ(ρ, 2ℓ)⋊ ζ(ρ, ℓ−1; σ),

and occurs with multiplicity one in each. Therefore, s(p)π contains ν−ℓ+ 1

2ρ⊗L with multiplicity

three. Since sminν
−ℓ+ 1

2ρ ⊗ L has a term with only negative powers of ν appearing, all three

copies must come from the component of π containing ν−
ℓ
2 ζ(ρ, ℓ)× ν−

ℓ
2 ζ(ρ, ℓ)× ν−

ℓ
2 ζ(ρ, ℓ)⊗σ
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in its sGL, which contains all of the “all-negative” terms. That is, s(p)π2 > 3ν−ℓ+ 1

2ρ⊗L. On the

other hand, by Frobenius reciprocity, ν−ℓ+ 1

2ρ⊗ζ(ρ, 2ℓ)⊗ζ(ρ, ℓ−1; σ) < s(p,2ℓp)ν
−ℓ+ 1

2ρ⊗L. We

observe (cf. Theorem 2.3 et seq.) that ν−ℓ+ 1

2ρ⊗ν−ℓ+ 1

2ρ⊗ . . .⊗νℓ− 1

2ρ⊗ν−ℓ+ 3

2ρ⊗ . . .⊗ν−
1

2ρ⊗σ,

which is sminν
−ℓ+ 1

2ρ ⊗ ζ(ρ, 2ℓ) ⊗ ζ(ρ, ℓ − 1; σ), occurs with multiplicity four in sminπ. Two

copies each come from each
∑ℓ−1

i=1 ν
−

i
2 ζ(ρ, 2ℓ−i)×ν−ℓ+ i

2 ζ(ρ, i)×ν−
ℓ
2 ζ(ρ, ℓ)⊗σ (by symmetry),

so that π1 has two copies. Since there are three copies of ν−ℓ+ 1

2ρ ⊗ L, we must have s(p)π1

containing at least one copy of ν−ℓ+ 1

2ρ ⊗ L. However, we already have that π2 contains all
three copies of ν−ℓ+ 1

2ρ⊗ L, a contradiction. Therefore, π is irreducible. �

We now give the counterpart to Theorem 4.1 for the case where ρ satisfies (C1). The proof
is essentially the same.

Theorem 4.3. Let ρ0, ρ be irreducible unitarizable supercuspidal representations of GLp0
(F ),

GLp(F ); σ an irreducible supercuspidal representation of Sm. Further, suppose ρ satisfies (C1).
Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ), α ∈ R.

(1) Suppose ρ0
∼= ρ. Then, π is reducible if and only if

α ∈

{

−k + 1

2
,
−k + 1

2
+ 1, . . . ,

k − 1

2

}

∪

{

±(ℓ+
k + 1

2
),±(ℓ+

k + 1

2
− 1), . . . ,±(ℓ+

−k + 3

2
)

}

(noting that the sets are not necessarily disjoint) with the exception that if k = 2ℓ + 1
and α = 0, there is irreducibility (i.e., ζ(ρ, 2ℓ+ 1) ⋊ ζ(ρ, ℓ; σ) is irreducible).

(2) Suppose ρ0 6∼= ρ. Then, π is reducible if and only if ναζ(ρ0, k) ⋊ σ is reducible. If
ρ0 6∼= ρ̃0, ν

αζ(ρ0, k) ⋊ σ is irreducible (cf. Note 3.12). For ρ0 satisfying (C1/2), (C1),
or (C0), resp., the reducibility points for ναζ(ρ0, k) ⋊ σ are given in Propositions 3.6,
3.10, or 3.11, resp.).

5. Components: the “ramified” case

In this section, we study π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) for ρ0 6∼= ρ. The main result, Proposition
5.3, relates the components of π to those of ναζ(ρ0, k) ⋊ σ. (In particular, Proposition 5.3
verifies the reducibility claims from Theorems 4.1 and 4.3.) We are particularly interested in
the cases where π is a degenerate principal series representation. Let χ = | · |αψ0, α ∈ R,
be a one-dimensional representation of F×. Now, ψ2

0 6= 1 corresponds to ρ0 6∼= ρ̃0, which is
irreducible by Proposition 5.3 and Note 3.12. If ψ0 = 1, the components of χ ◦ detk ⋊ trℓ

(when reducible) are covered by the next section. Suppose ψ0 = sgn (order two). Then we
have ρ0 = ψ0 = sgn, ρ = 1, σ = 1S0

. For SO2n+1(F ), ψ0 = sgn satisfies (C1/2). Therefore,
χ ◦ detk ⋊ trℓ in SO2n+1(F ) corresponds to both ρ and ρ0 satisfying (C1/2). Similarly, in
Sp2n(F ), ψ0 = sgn satisfies (C0). So, χ◦detk ⋊ trℓ in Sp2n(F ) corresponds to ρ satisfying (C1)
and ρ0 satisfying (C0). These particular combinations of conditions on ρ and ρ0 are dealt with
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explicitly in Corollaries 5.7 and 5.8, respectively. One key fact in proving the results of this
section is the following: ναρ× νβρ0 is irreducible for all α, β ∈ R.

We have one small obstacle: if ρ0 is a representation of GLp0
(F ) and ρ is a representation

of GLp(F ), we do not necessarily have p0 = p. Therefore, we use the following to play the role
that s(p) played in the previous sections.

Definition 5.1. For τ a representation of Sn, let sscτ denote the sum of all the irreducible
terms in µ∗τ of the form ρ′ ⊗ τ ′ with ρ′ supercuspidal. In addition, allow smin to mean the
analogue of smin for this setting–that is, the sum of everything in any Jacquet module which
has all of its terms supercuspidal. (Alternatively, if X denotes the set of all permutations of k
copies of p0 and ℓ copies of p, then smin =

∑

α∈X sα.)

Lemma 5.2. For π as above, if π0 ≤ π with π0 6= 0, then

(1) sscπ0 ≤ sscπ
(2) sscπ0 6= 0.

Proof. (1) is trivial. For (2), choose m minimal such that s(m)π0 6= 0. Suppose ρ1⊗τ1 ≤ s(m)π0

with ρ1 ⊗ τ1 irreducible. Then, ρ1 is supercuspidal. If not, we have that s(m1)ρ1 ≥ ρ2 ⊗ ρ3

for some m1 < m. We claim s(m1)π0 6= 0: by restriction in stages this must be true since
s(m1,m−m1)π0 ≥ ρ2 ⊗ ρ3 ⊗ τ 6= 0. This contradicts the choice of m, finishing (2). �

Proposition 5.3. Suppose that σ is an irreducible supercuspidal representation of Sm and ρ
is a representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ). Write

ναζ(ρ0, k) ⋊ σ =

m
∑

i=1

L(∆i(k, α)).

Further, suppose that this decomposition has multiplicity one, i.e., ∆i(k, α) 6= ∆j(k, α) for
i 6= j. Then,

π =

m
∑

i=1

L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k, α)).

In particular, π is reducible if and only if ζ(ρ0, k) ⋊ σ is reducible.

Proof. Note that the results holds for ℓ = 0 (trivially) and for k = 1 (Theorem 6.1 (i) of
[Tad3]). So, we may make the convenient assumption that k ≥ 2, ℓ ≥ 1.
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We proceed by induction on k + ℓ. Now, by µ∗ (Corollary 2.6) and induction, we have

sscπ = να+−k+1

2 ρ0 ⊗ να+ 1

2 ζ(ρ0, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−α+−k+1

2 ρ̃0 ⊗ να− 1

2 ζ(ρ0, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ναζ(ρ0, k) ⋊ ζ(ρ, ℓ− 1; σ)

=
∑

i

να+−k+1

2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k − 1, α+
1

2
))

+
∑

i

ν−α+−k+1

2 ρ̃0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k − 1, α−
1

2
))

+
∑

i

ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α)).

We now proceed as in Lemma 3.5. In particular, we show that each component of π contains
a term of the form ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α)) in its ssc. Suppose πi is a component
of π. By Lemma 5.2, we have sscπi 6= 0. By the same lemma, sscπi ≤ sscπ. Therefore, suppose

να+−k+1

2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k − 1, α + 1
2
)) ≤ sscπi. Then, consider sminν

α+−k+1

2 ρ0 ⊗

L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k − 1, α + 1
2
)) (cf. Definition 5.1). By Lemma 2.8, it has terms of the

form να+−k+1

2 ρ0 ⊗ δ1 . . .⊗ δj ⊗ ν−ℓ+ 1

2ρ ⊗ terms, where δ1, . . . , δj involve only ρ0’s. Therefore,

since ν−ℓ+ 1

2ρ× δj = δj × ν−ℓ+ 1

2ρ, etc., we can commute ν−ℓ+ 1

2ρ and δj to argue as follows:

sminπi ≥ να+−k+1

2 ρ0 ⊗ δ1 . . .⊗ δj ⊗ ν−ℓ+ 1

2ρ⊗ terms
⇓

sappπi ≥ να+−k+1

2 ρ0 ⊗ δ1 . . .⊗ (δj × ν−ℓ+ 1

2ρ) ⊗ terms
⇓

sminπi ≥ να+−k+1

2 ρ0 ⊗ δ1 . . .⊗ δj−1 ⊗ ν−ℓ+ 1

2ρ⊗ δj ⊗ terms
⇓
...
⇓

sminπi ≥ να+−k+1

2 ρ0 ⊗ ν−ℓ+ 1

2ρ⊗ δ1 ⊗ . . .⊗ δj ⊗ terms
⇓

sappπi ≥ (να+−k+1

2 ρ0 × ν−ℓ+ 1

2ρ) ⊗ δ1 ⊗ . . .⊗ δj ⊗ terms
⇓

sminπi ≥ ν−ℓ+ 1

2ρ⊗ να+−k+1

2 ρ0 ⊗ δ1 ⊗ . . .⊗ δj ⊗ terms,

where sapp denotes the Jacquet module taken with respect to the parabolic subgroup of the

appropriate shape. A similar argument holds for ν−α+−k+1

2 ρ̃0 ⊗ . . . .
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Next, observe that

π →֒ να(ρ0, k) ⋊ (ν−ℓ+ 1

2ρ⋊ ζ(ρ, ℓ− 1; σ)) ∼= ν−ℓ+ 1

2ρ× ναζ(ρ0, k) ⋊ ζ(ρ, ℓ− 1; σ).

Set π′ = ν−ℓ+ 1

2ρ× ναζ(ρ0, k) ⋊ ζ(ρ, ℓ− 1; σ) and π(i) = ν−ℓ+ 1

2ρ⋊ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α)).

Observe that π(i) < π′. We claim that ν−ℓ+ 1

2ρ ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α)) occurs with
mutiplicity one in sscπ, sscπ

′ and sscπ
(i). Multiplicity one in sscπ is trivial–sscπ is writ-

ten out above and ναζ(ρ0, k) ⋊ σ decomposes with multiplicity one. That sscπ
′ contains

ν−ℓ+ 1

2ρ ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α)) with multiplicity one follows from µ∗ calculations. This
implies multiplicity (at most, and therefore exactly) one in sscπ

(i), as claimed. From this,

it follows that π(i) and π have a component in common, characterized by having ν−ℓ+ 1

2ρ ⊗
L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α)) in its ssc. Call this representation πi. By the preceding paragraph,
we have π =

∑

i πi.

We now identify πi. Since ν−ℓ+ 1

2ρ⊗L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α)) appears with multiplicity one
in sscπ

(i), by Frobenius reciprocity, π(i) has a unique irreducible subrepresentation, necessarily
πi. Thus,

πi →֒ ν−ℓ+ 1

2ρ⋊ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α))

→֒ ν−ℓ+ 1

2ρ⋊ I([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i(k, α))

∼= I([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k, α))

by the usual commuting of ρ and ρ0 terms (recall that I(∆) is the representation obtained by

inducing the Langlands data ∆; see section 2). Since I([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k, α)) has unique

irreducible subrepresentation L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k, α)), we see that

πi = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i(k, α)),

as needed. �

Lemma 5.4. With hypotheses as in Proposition 5.3, let ∆i = ∆i(k, α). Then, for π =

ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) write π =
∑

i πi with πi = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i). Then,

(1)

πi →֒ ν−
ℓ
2 ζ(ρ, ℓ) ⋊ L(∆i)

In particular, this means s(ℓp)πi ≥ ν−
ℓ
2 ζ(ρ, ℓ) ⊗ L(∆i).

(2) ν−
ℓ
2 ζ(ρ, ℓ) ⊗ L(∆i) appears with multiplicity one in s(ℓp)π.

Proof. For (1),

ν−
ℓ
2 ζ(ρ, ℓ) ⋊ L(∆i) →֒ ν−ℓ+ 1

2ρ× . . .× ν−
1

2ρ⋊ I(∆i)

∼= I([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i)

by the usual argument commuting ρ-terms around ρ0-terms (νβρ × δ ∼= δ × νβρ for any
β ∈ R and any δ ∈ ∆i). Note that πi is the unique irreducible subrepresentation of the
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I([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆i). Therefore πi is the unique irreducible subrepresentation of ν−
ℓ
2 ζ(ρ, ℓ) ⋊

L(∆i). The claim then follows from Frobenius reciprocity.
For (2), observe that in the formula for µ∗π (cf. Corollary 2.6), we see that to have the form

ν−
ℓ
2 ζ(ρ, ℓ) ⊗ . . . , we must have j = ℓ, t = 0, i = k. That gives ν−

ℓ
2 ζ(ρ, ℓ) ⊗ [ναζ(ρ0, k) ⋊ σ].

Since L(∆i) appears with multiplicity one in ναζ(ρ0, k) ⋊ σ, the claim follows. �

Corollary 5.5. Suppose that σ is an irreducible supercuspidal representation of Sm and ρ
a representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ). Suppose that

ναζ(ρ0, k)⋊σ, να+ 1

2 ζ(ρ0, k−1)⋊σ and να− 1

2 ζ(ρ0, k)⋊σ satisfy the multiplicity one hypothesis
in Proposition 5.3. Then, with notation as in Lemma 5.4, write

s(p0)L(∆i) =
∑

j

ναjρ0 ⊗ L(∆
(j)
i )

(n.b. the αj need not be distinct, but there are at most two possible values for αj). Then,

sscπi = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i)

+
∑

j

ναjρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆
(j)
i ).

Proof. First, recall that from the proof of Proposition 5.3, we have sscπi ≥ ν−ℓ+ 1

2ρ⊗L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i).

Next, we claim sscπi ≥
∑

j ν
αjρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆
(j)
i ). First, from Lemma 5.4 above,

s(ℓp)πi ≥ ν−
ℓ
2 ζ(ρ, ℓ) ⊗ L(∆i)
⇓

s(ℓp,p0)πi ≥
∑

j

ν−
ℓ
2 ζ(ρ, ℓ) ⊗ ναjρ0 ⊗ L(∆

(j)
i )

⇓

s(p0,ℓp)πi ≥
∑

j

ναjρ0 ⊗ ν−
ℓ
2 ζ(ρ, ℓ) ⊗ L(∆

(j)
i ).

since ν−
ℓ
2 ζ(ρ, ℓ)× ναjρ0

∼= ναjρ0 × ν−
ℓ
2 ζ(ρ, ℓ) (as both are irreducible, cf. Theorem 2.1). Now,

observe that since

sscπ = να+−k+1

2 ρ0 ⊗ να+ 1

2 ζ(ρ0, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−α+−k+1

2 ρ0 ⊗ να− 1

2 ζ(ρ0, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ναζ(ρ0, k) ⋊ ζ(ρ, ℓ− 1; σ),

if αj = α + −k+1
2

, then we have that ν−
ℓ
2 ζ(ρ, ℓ) ⊗ L(∆

(j)
i ) must come from a component of

να+ 1

2 ζ(ρ0, k − 1) ⋊ ζ(ρ, ℓ; σ) (and similarly for αj = −α + −k+1
2

; if α = 0 their contributions
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are the same). By Lemma 5.4, this implies

s(p0)πi ≥
∑

j

ναjρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆
(j)
i ).

As we run through the different values of i, this covers all of

να+−k+1

2 ρ0 ⊗ να+ 1

2 ζ(ρ0, k − 1) ⋊ ζ(ρ, ℓ; σ) + ν−α+−k+1

2 ρ0 ⊗ να− 1

2 ζ(ρ0, k − 1) ⋊ ζ(ρ, ℓ; σ),

so this covers everything of the form ναjρ0 ⊗ . . . in sscπi. Therefore,

sscπi = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ],∆i)

+
∑

j

ναjρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆
(j)
i ),

as claimed. �

Remark 5.6. It is also worth commenting on sminπ, sminπi (cf. Definition 5.1). It is not
difficult to see that sminπ is as described after Theorem 2.3 (without the restriction p0 = p, of
course) and

sminπi = shuffles of ν−ℓ+ 1

2ρ⊗ . . . ν−
1

2ρ and sminL(∆i).

More precisely, if sminL(∆i) =
∑

j θj, we mean

sminπi =
∑

j

shuffles of ν−ℓ+ 1

2ρ⊗ . . .⊗ ν−
1

2ρ and θj.

Corollary 5.7. Suppose σ is an irreducible supercuspidal representation of Sm, ρ, ρ0 irre-
ducible unitarizable supercuspidal representations of GLp(F ), GLp0

(F ). Further, suppose both
ρ and ρ0 satisfy (C1/2). Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ), α ∈ R. Then, π is reducible if and
only if α ∈ {−k

2
,−k

2
+ 1, . . . , k

2
}. Suppose π is reducible. By Lemma 2.9, we may without loss

of generality assume that α ≤ 0. Write α = −k
2

+ j, 0 ≤ j ≤ k
2
. Since ℓ = 0 is covered by

Proposition 3.6, we may assume ℓ ≥ 1.

(1) j = 0
π = π1 + π2 with

π1 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 1

2ρ0, ν
−

1

2ρ0]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 1

2ρ0, ν
−

3

2ρ0]; δ(ν
−

1

2ρ0; σ))

(a) k = 1

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−
1

2ρ0; σ) + ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ0; σ)) + ν
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)
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(b) k > 1

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+ 1

2ρ0, ν
−

1

2ρ0]; σ)

+ν−k+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 3

2ρ0, ν
−

1

2ρ0]; σ)

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+ 1

2ρ0, ν
−

3

2ρ0]; δ(ν
−

1

2ρ0; σ))

+ν−k+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 3

2ρ0, ν
−

3

2ρ0]; δ(ν
−

1

2ρ0; σ))

+ν
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 1

2ρ0, ν
−

3

2ρ0]; σ)

(2) 1 ≤ j < k
2

π = π1 + π2 + π3 with

π1 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−

1

2ρ0], [ν
−j+ 1

2ρ0, ν
−

1

2ρ0]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−

3

2ρ0], [ν
−j+ 1

2ρ0, ν
−

1

2ρ0]; δ(ν
−

1

2ρ0; σ))

π3 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−j− 3

2ρ0], ν
−jδ(ρ0, 2), . . . , ν−1δ(ρ0, 2); δ(ν−

1

2ρ0; σ))

(a) j = 1 = k−1
2

(so k = 3)

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−
3

2ρ0, ν
−

1

2ρ0, ν
−

1

2ρ0; σ)

+ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
3

2ρ0, ν
−

1

2ρ0; σ)

+ν−
3

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
1

2ρ0, ν
−

1

2ρ0; σ)

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−
3

2ρ0, ν
−

1

2ρ0; δ(ν
−

1

2ρ0; σ))

+ν−
3

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
1

2ρ0; δ(ν
−

1

2ρ0; σ))

sscπ3 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

+ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
3

2ρ0; δ(ν
−

1

2ρ0; σ))

(b) j = 1, k > 3

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+ 3

2ρ0, ν
−

1

2ρ0], ν
−

1

2ρ0; σ)

+ν−k+ 3

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 5

2ρ0, ν
−

1

2ρ0], ν
−

1

2ρ0; σ)

+ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 3

2ρ0, ν
−

1

2ρ0]; σ)

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+ 3

2ρ0, ν
−

3

2ρ0], ν
−

1

2ρ0; δ(ν
−

1

2ρ0; σ))

+ν−k+ 3

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 5

2ρ0, ν
−

3

2ρ0], ν
−

1

2ρ0; δ(ν
−

1

2ρ0; σ))

sscπ3 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+ 3

2ρ0, ν
−

5

2ρ0], ν
−1δ(ρ0, 2); δ(ν−

1

2ρ0; σ))

+ν−k+ 3

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 5

2ρ0, ν
−

5

2ρ0], ν
−1δ(ρ0, 2); δ(ν−

1

2ρ0; σ))

+ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ 3

2ρ0, ν
−

3

2ρ0]; δ(ν
−

1

2ρ0; σ))
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(c) j = k−1
2

, k > 3 (k odd)

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−
k
2 ρ0, ν

−
1

2ρ0], [ν
−

k
2
+1ρ0, ν

−
1

2ρ0]; σ)

+ν−
k
2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−
k
2
+1ρ0, ν

−
1

2ρ0], [ν
−

k
2
+1ρ0, ν

−
1

2ρ0]; σ)

+ν−
k
2
+1ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−
k
2 ρ0, ν

−
1

2ρ0], [ν
−

k
2
+2ρ0, ν

−
1

2ρ0]; σ)

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−
k
2 ρ0, ν

−
3

2ρ0],

[ν−
k
2
+1ρ0, ν

−
1

2ρ0]; δ(ν
−

1

2ρ0; σ))

+ν−
k
2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−
k
2
+1ρ0, ν

−
3

2ρ0],

[ν−
k
2
+1ρ0, ν

−
1

2ρ0]; δ(ν
−

1

2ρ0; σ))

+ν−
k
2
+1ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−
k
2 ρ0, ν

−
3

2ρ0],

[ν−
k
2
+2ρ0, ν

−
1

2ρ0]; δ(ν
−

1

2ρ0; σ))

sscπ3 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν
−k+1

2 δ(ρ0, 2), . . . , ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

+ν−
k
2
+1ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
k
2 ρ0, ν

−k+3

2 δ(ρ0, 2),

. . . , ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

(d) 1 < j < k−1
2

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−

1

2ρ0], [ν
−j+ 1

2ρ0, ν
−

1

2ρ0]; σ)

+ν−k+j+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 3

2ρ0, ν
−

1

2ρ0], [ν
−j+ 1

2ρ0, ν
−

1

2ρ0]; σ)

+ν−j+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−

1

2ρ0], [ν
−j+ 3

2ρ0, ν
−

1

2ρ0]; σ)

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−

3

2ρ0],

[ν−j+ 1

2ρ0, ν
−

1

2ρ0]; δ(ν
−

1

2ρ0; σ))

+ν−k+j+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 3

2ρ0, ν
−

3

2ρ0],

[ν−j+ 1

2ρ0, ν
−

1

2ρ0]; δ(ν
−

1

2ρ0; σ))

+ν−j+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−

3

2ρ0],

[ν−j+ 3

2ρ0, ν
−

1

2ρ0]; δ(ν
−

1

2ρ0; σ))

sscπ3 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−j− 3

2ρ0], ν
−jδ(ρ0, 2),

. . . , ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

+ν−k+j+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 3

2ρ0, ν
−j− 3

2ρ0], ν
−jδ(ρ0, 2),

. . . , ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

+ν−j+ 1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ0, ν
−j− 1

2ρ0], ν
−j+1δ(ρ0, 2),

. . . , ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

(3) j = k
2

(k even)
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π = π1 + π2 with

π1 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν
−k+1

2 ρ0, ν
−

1

2ρ0], [ν
−k+1

2 ρ0, ν
−

1

2ρ0]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν
−k+1

2 ρ0, ν
−

1

2ρ0], [ν
−k+1

2 ρ0, ν
−

3

2ρ0]; δ(ν
−

1

2ρ0; σ))

(a) k = 2

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−
1

2ρ0, ν
−

1

2ρ0; σ)

+2ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
1

2ρ0; σ)

+ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ0; σ))

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−
1

2ρ0; δ(ν
−

1

2ρ0; σ))

+ν−
1

2ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ]; δ(ν−
1

2ρ0; σ))

(b) k > 2

sscπ1 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν
−k+1

2 ρ0, ν
−

1

2ρ0], [ν
−k+1

2 ρ0, ν
−

1

2ρ0]; σ)

+2ν
−k+1

2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν
−k+1

2 ρ0, ν
−

1

2ρ0], [ν
−k+3

2 ρ0, ν
−

1

2ρ0]; σ)

+ν
−k+1

2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
k
2
+1δ(ρ0, 2),

. . . , ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

sscπ2 = ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν
−k+1

2 ρ0, ν
−

1

2ρ0],

[ν
−k+1

2 ρ0, ν
−

3

2ρ0]; δ(ν
−

1

2ρ0; σ))

+2ν
−k+1

2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν
−k+3

2 ρ0, ν
−

1

2ρ0],

[ν
−k+1

2 ρ0, ν
−

3

2ρ0]; δ(ν
−

1

2ρ0; σ))

+ν
−k+1

2 ρ0 ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
k
2
+1δ(ρ0, 2),

. . . , ν−1δ(ρ0, 2); δ(ν−
1

2ρ0; σ))

Proof. This is an immediate consequence of Proposition 3.6 used with Proposition 5.3 and
Corollary 5.5. �

We now give the counterpart to this for the case ρ satisfies (C1) and ρ0 satisfies (C0). Note
that if we assume that ρ satisfies (C1) instead of (C1/2), Lemmas 5.3 and 5.5 still hold. The

only change required is to replace ν−ℓ+ 1

2ρ, . . . , ν−
1

2ρ with ν−ℓρ, . . . , ν−1ρ, resp.

Corollary 5.8. Suppose σ is an irreducible supercuspidal representation of Sm, ρ, ρ0 ir-
reducible unitarizable supercuspidal representations of GLp(F ), GLp0

(F ). Further, suppose ρ
satisfies (C1) and ρ0 satisfies (C0). Let ρ0⋊σ = T1+T2. Let π = ναζ(ρ0, k)⋊ζ(ρ, ℓ; σ), α ∈ R.
Then, π is reducible if and only if α ∈ {−k+1

2
, −k+1

2
+ 1, . . . , k−1

2
}. Suppose π is reducible. By

Lemma 2.9, we may without loss of generality assume that α ≤ 0. Write α = −k+1
2

+ j with

0 ≤ j ≤ k−1
2

. Since ℓ = 0 is covered by Proposition 3.11, we may assume ℓ ≥ 1.

(1) j = k−1
2
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π = π1 + π2 with

πi = L([ν−ℓρ, ν−1ρ], [ν
−k+1

2 ρ0, ν
−1ρ0], [ν

−k+1

2 ρ0, ν
−1ρ0];Ti)

for i = 1, 2.
(a) k = 1

sscπi = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ];Ti) + ρ0 ⊗ L([ν−ℓρ, ν−1ρ]; σ)

for i = 1, 2.
(b) k > 1

sscπi = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], [ν
−k+1

2 ρ0, ν
−1ρ0], [ν

−k+1

2 ρ0, ν
−1ρ0];Ti)

+2ν
−k+1

2 ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν
−k+1

2 ρ0, ν
−1ρ0], [ν

−k+3

2 ρ0, ν
−1ρ0];Ti)

+ν
−k+1

2 ρ0 ⊗ L([ν−ℓρ, ν−1ρ], ν−
k
2
+1δ(ρ0, 2), . . . , ν−

1

2 δ(ρ0, 2); σ)

for i = 1, 2.
(2) 0 ≤ j < k−1

2
π = π1 + π2 + π3 with

πi = L([ν−ℓρ, ν−1ρ], [ν−k+j+1ρ0, ν
−1ρ0], [ν

−jρ0, ν
−1ρ0];Ti)

for i = 1, 2 and

π3 = L([ν−ℓρ, ν−1ρ], [ν−k+j+1ρ0, ν
−j−2ρ0],

ν−j− 1

2 δ(ρ0, 2), ν−j+ 1

2 δ(ρ0, 2), . . . , ν−
1

2 δ(ρ0, 2); σ).

(a) j = 0 = k−2
2

(k = 2)

sscπi = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], ν−1ρ0;Ti)

+ν−1ρ0 ⊗ L([ν−ℓρ, ν−1ρ];Ti)

for i = 1, 2. Further,

sscπ3 = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], ν−
1

2 δ(ρ0, 2); σ)

+ρ0 ⊗ L([ν−ℓρ, ν−1ρ], ν−1ρ0; σ).

(b) j = 0, k > 2

sscπi = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], [ν−k+1ρ0, ν
−1ρ0];Ti)

+ν−k+1ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−k+2ρ0, ν
−1ρ0];Ti)
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for i = 1, 2. Further,

sscπ3 = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], [ν−k+1ρ0, ν
−2ρ0], ν

−
1

2 δ(ρ0, 2); σ)

+ν−k+1ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−k+2ρ0, ν
−2ρ0], ν

−
1

2 δ(ρ0, 2); σ)

+ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−k+1ρ0, ν
−1ρ0]; σ).

(c) j = k−2
2

, k ≥ 4 (k even)

sscπi = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], [ν−
k
2 ρ0, ν

−1ρ0], [ν
−

k
2
+1ρ0, ν

−1ρ0];Ti)

+ν−
k
2 ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−

k
2
+1ρ0, ν

−1ρ0], [ν
−

k
2
+1ρ0, ν

−1ρ0];Ti)

+ν−
k
2
+1ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−

k
2 ρ0, ν

−1ρ0], [ν
−

k
2
+2ρ0, ν

−1ρ0];Ti)

for i = 1, 2. Further,

sscπ3 = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], ν
−k+1

2 δ(ρ0, 2), . . . , ν−
1

2 δ(ρ0, 2); σ)

+ν−
k
2
+1ρ0 ⊗ L([ν−ℓρ, ν−1ρ], ν−

k
2 ρ0, ν

−k+3

2 δ(ρ0, 2), . . . , ν−
1

2 δ(ρ0, 2); σ).

(d) 0 < j < k−2
2

sscπi = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], [ν−k+j+1ρ0, ν
−1ρ0], [ν

−jρ0, ν
−1ρ0];Ti)

+ν−k+j+1ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−k+j+2ρ0, ν
−1ρ0], [ν

−jρ0, ν
−1ρ0];Ti)

+ν−jρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−k+j+1ρ0, ν
−1ρ0], [ν

−j+1ρ0, ν
−1ρ0];Ti)

for i = 1, 2. Further,

sscπ3 = ν−ℓρ⊗ L([ν−ℓ+1ρ, ν−1ρ], [ν−k+j+1ρ0, ν
−j−2ρ0],

ν−j− 1

2 δ(ρ0, 2), . . . , ν−
1

2 δ(ρ0, 2); σ)

+ν−k+j+1ρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−k+j+2ρ0, ν
−j−2ρ0],

ν−j− 1

2 δ(ρ0, 2), . . . , ν−
1

2 δ(ρ0, 2); σ)

+ν−jρ0 ⊗ L([ν−ℓρ, ν−1ρ], [ν−k+j+1ρ0, ν
−j−1ρ0],

ν−j+ 1

2 δ(ρ0, 2), . . . , ν−
1

2 δ(ρ0, 2); σ).

Proof. This follows from Proposition 3.11 and the analogues of Proposition 5.3 and Proposition
5.5 for the case when ρ satisfies (C1). �
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6. Components: the “unramified” case

In this section, we give the components of ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), α ∈ R. For ρ satisfying
(C1/2), the results are in Theorem 6.1; for ρ satisfying (C1), the results are in Theorem 6.2.
The techniques are basically the same as those used in section 3 to get the components of
ναζ(ρ, n) ⋊ σ–the argument is inductive; s(p) is the main tool. Of course, things are more
complicated here. Note that Jacquet modules for k ≥ 2, ℓ ≥ 1 are given in abbreviated form
in the tables in this section (to save space). The cases k = 1 and ℓ = 0 are both covered in
section 3.

Theorem 6.1. Suppose σ is an irreducible supercuspidal representation of Sm and ρ is a
representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) with α ∈ R. Recall
that π is reducible if and only if α ∈ {±(ℓ+ k

2
),±(ℓ+ k

2
− 1), . . . ,±(ℓ− k

2
+ 1)} ∪ {{−k

2
,−k

2
+

1, . . . , k
2
} \ {0 if k = 2ℓ}}. Let S1 denote the first set; S2 the second. Suppose π is reducible.

By Lemma 2.9, without loss of generality, we may restrict our attention to α ≤ 0. Note: T is
described in Proposition 3.1.

(1) α ∈ S1, α 6∈ S2

π = π1 + π2 with

π1 = L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([να+−k+1

2 ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), ν−ℓ+1δ(ρ, 2), . . . , να+ k
2 δ(ρ, 2),

[να+ k+3

2 ρ, ν−
1

2ρ]; σ)

(2) α ∈ S2, α 6∈ S1

Write α = −k
2

+ j, 0 ≤ j ≤ k
2
.

(a) j = k − ℓ (j < k − j = ℓ)
π = π1 + π2 with

π1 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ],
ν−k+ℓδ(ρ, 2), ν−k+ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

(b) k − ℓ < j < k
2

(j < k − j < ℓ)
(i) j = 0

π = π1 + π2 with

π1 = L([ν−k+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−k+ 1

2ρ, ν−
3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ]; T )

(ii) j > 0
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π = π1 + π2 + π3 with

π1 = L([ν−k+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−j− 3

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ],
ν−jδ(ρ, 2), ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

π3 = L([ν−ℓ+ 1

2ρ, ν−k+j− 3

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ],
ν−k+jδ(ρ, 2), ν−k+j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

(c) j = k
2
, k even (j = k − j < ℓ)

π = π1 + π2 with

π1 = L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−
k
2
−

3

2ρ], [ν
−k+1

2 ρ, ν−
3

2ρ],

ν−
k
2 δ(ρ, 2), ν−

k
2
+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

(3) α ∈ S1 ∩ S2

Write α = −k
2

+ j, 0 ≤ j ≤ k
2
.

(a) j ≤ ℓ− 1 (j < ℓ < k − j)
π = π1 + π2 + π3 + π4 with

π1 = L([ν−k+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−k+j+ 1

2ρ, ν−j− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ],
ν−jδ(ρ, 2), ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

π3 = L([ν−k+j+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

π4 = L([ν−k+j+ 1

2ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), ν−ℓ+1δ(ρ, 2), . . . , ν−j−2δ(ρ, 2),

ν−j− 1

2 δ(ρ, 3), ν−j+ 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

(b) j = ℓ (j = ℓ < k − j)
π = π1 + π2 with

π1 = L([ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−k+ℓ+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

(c) ℓ < j < k
2

(ℓ < j < k − j)
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π = π1 + π2 + π3 with

π1 = L([ν−k+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−k+j+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

π3 = L([ν−k+j+ 1

2ρ, ν−j− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ],

ν−jδ(ρ, 2), ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

(d) j = k
2
, k even (ℓ < j = k − j)

π = π1 + π2 with

π1 = L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−ℓ− 3

2ρ],

ν−ℓδ(ρ, 2), ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

The proof of the theorem also gives us s(p)πi for each component πi of π (summarized in the
tables); for reasons of space, we do not write them out here. (Note that the tables only give
the Jacquet modules for k ≥ 2, ℓ ≥ 1; for k = 1 or ℓ = 0, see section 3.)

Proof. The proof is by induction on k+ℓ (not exactly the rank, but the same basic idea). Note
that the cases k = 1 and ℓ = 0 are done in section 3, so we may assume k ≥ 2, ℓ ≥ 1. Also,
we do case 1 (α ∈ S1, α 6∈ S2) last, so we may restrict our attention to cases 2 and 3 for the
time being.

As in Proposition 3.6, the induction focuses on s(p)π. For π = ν−
k
2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), we

have
s(p)π = ν−k+j+ 1

2ρ⊗ ν−
k
2
+j+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−j+ 1

2ρ⊗ ν−
k
2
+j− 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
k
2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

Let
τ ′ = ν−k+j+ 1

2ρ⊗ ν−
k
2
+j+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

τ ′′ = ν−j+ 1

2ρ⊗ ν−
k
2
+j− 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

τ ′′′ = ν−ℓ+ 1

2ρ⊗ ν−
k
2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

For τ ′, we have k′ = k − 1, ℓ′ = ℓ, j′ = j (in the obvious notation) so that k′ − j′ = k − j − 1.
Similarly, for τ ′′ we have k′′ − j′′ = k − j, j′′ = j − 1, ℓ′′ = ℓ and for τ ′′′, k′′′ − j′′′ = k − j,
j′′′ = j, ℓ′′′ = ℓ − 1. Further, by inductive hypothesis, we know that τ ′, τ ′′, τ ′′′ decompose
according to the theorem.
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The proof of the theorem is broken into subcases based on how τ ′, τ ′′, τ ′′′ decompose (with
respect to the theorem). The particular case of the theorem governing the decomposition of τ ′

is given in the second column in the table below, and is easily determined from k′−j′, j′, ℓ′. One

note: if j = k
2
, in order to avoid having α′ > 0, we replace τ ′ = ν

−k+1

2 ρ⊗ν
1

2 ζ(ρ, k−1)⋊ζ(ρ, ℓ; σ)

with ν
−k+1

2 ρ ⊗ ν−
1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ) = τ ′′ (so then k′ − j′ = k′′ − j′′, j′ = j′′, ℓ′ = ℓ′′).
The third and fourth columns have the corresponding information for τ ′′ and τ ′′′, respectively.
The final column indicates which components of τ ′, τ ′′, τ ′′′ are contained in s(p)πi for each
component πi of π. Note that this is part of the induction–we assume the table gives the
Jacquet modules for lower values of k + ℓ and verify it for k + ℓ under consideration.

We note that the notation in the tables is the obvious notation–e.g., if τ ′ decomposes ac-
cording to case 3a, then τ ′2 is the second component in part 3a of the statement of the theorem.
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Case (for π) for τ ′ for τ ′′ for τ ′′′ components
1.

(α) α = −ℓ− k
2

1 irr irr s(p)π1 = τ ′1
s(p)π2 = τ ′2 + τ ′′ + τ ′′′

(β) α = −ℓ+ k
2
− 1 irr 1 1 s(p)π1 = τ ′ + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

(γ) −ℓ− k
2
< α, 1 1 1 s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

α < −ℓ + k
2
− 1 s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

2a.
(α) k = ℓ 2b(i) irr 3a s(p)π1 = τ ′1 + τ ′′′1 + τ ′′′3

s(p)π2 = τ ′2 + τ ′′ + τ ′′′2 + τ ′′′4

(β) ℓ < k < 2ℓ− 1 2b(ii) 2a 3a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′3

s(p)π2 = τ ′2 + τ ′3 + τ ′′2 + τ ′′′2 + τ ′′′4

(γ) k = 2ℓ− 1 2c 2a 3b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′2

s(p)π2 = τ ′2 + τ ′′2

2b(i).
(α) k = ℓ− 1 2b(i) irr 2a s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′ + τ ′′′2

(β) k < ℓ− 1 2b(i) irr 2b(i) s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′ + τ ′′′2

2b(ii).
(α) j = 1, k = 3, ℓ = 3 2c 2b(i) 2a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

s(p)π3 = τ ′2
(β) j = 1, k = 3, ℓ > 3 2c 2b(i) 2b(ii) s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

s(p)π3 = τ ′2 + τ ′′′3

(γ) j = 1, k = ℓ, ℓ > 3 2b(ii) 2b(i) 2a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3
(δ) j = 1, 3 < k < ℓ 2b(ii) 2b(i) 2b(ii) s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′′3

(ǫ) j = k−1
2

, 2c 2b(ii) 2a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

k = 2ℓ− 3, ℓ > 3 s(p)π2 = τ ′′2 + τ ′′′2

s(p)π3 = τ ′2 + τ ′′3
(ζ) j = k−1

2
, 2c 2b(ii) 2b(ii) s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

3 < k < 2ℓ− 3 s(p)π2 = τ ′′2 + τ ′′′2

s(p)π3 = τ ′2 + τ ′′3 + τ ′′′3
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Case (for π) for τ ′ for τ ′′ for τ ′′′ components

(η) j = k − ℓ+ 1, 2b(ii) 2b(ii) 2a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

ℓ < k < 2ℓ− 3 s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′3
(θ) 1 < j < k−1

2
, j 6= k − ℓ+ 1 2b(ii) 2b(ii) 2b(ii) s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π1 = τ ′3 + τ ′′3 + τ ′′′3

2c. (n.b. τ ′ = τ ′′)
(α) k = 2, ℓ = 2 2b(i) 2b(i) irr s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′

s(p)π2 = τ ′′2
(β) k = 2, ℓ > 2 2b(i) 2b(i) 2c s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

(γ) k = 2ℓ− 2, ℓ > 2 2b(ii) 2b(ii) irr s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′

s(p)π2 = τ ′3 + τ ′′2 + τ ′′3
(δ) 2 < k < 2ℓ− 2 2b(ii) 2b(ii) 2c s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′3 + τ ′′2 + τ ′′3 + τ ′′′2

3a.
(α) j = 0, ℓ = 1, k = 2 2a 1 3b s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1
s(p)π3 = τ ′′′2

s(p)π4 = τ ′′2
(β) j = 0, ℓ = 1, k > 2 3a 1 3b s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1
s(p)π3 = τ ′3 + τ ′′′2

s(p)π4 = τ ′4 + τ ′′2
(γ) j = 0, ℓ > 1, k = ℓ+ 1 2a 1 3a s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1 + τ ′′′2

s(p)π3 = τ ′′′3

s(p)π4 = τ ′′2 + τ ′′′4

(δ) j = 0, ℓ > 1, k > ℓ+ 1 3a 1 3a s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′′3

s(p)π4 = τ ′4 + τ ′′2 + τ ′′′4

(ǫ) j = k − ℓ− 1 > 0, k = 2ℓ 2a 3a 3b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2
s(p)π3 = τ ′′3 + τ ′′′2

s(p)π4 = τ ′′4
(ζ) j = k − ℓ− 1 > 0, k < 2ℓ 2a 3a 3a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′′3 + τ ′′′3

s(p)π4 = τ ′′4 + τ ′′′4
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Case (for π) for τ ′ for τ ′′ for τ ′′′ components

(η) j = ℓ− 1 > 0, 3a 3a 3b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

j 6= k − ℓ− 1 s(p)π2 = τ ′2 + τ ′′2
s(p)π3 = τ ′3 + τ ′′3 + τ ′′′2

s(p)π4 = τ ′4 + τ ′′4
(θ) 0 < j < ℓ− 1, 3a 3a 3a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

j 6= k − ℓ− 1 s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′3 + τ ′′′3

s(p)π4 = τ ′4 + τ ′′4 + τ ′′′4

3b.
(α) k = 2ℓ+ 1 irr 3a 3c s(p)π1 = τ ′ + τ ′′1 + τ ′′2 + τ ′′′1

s(p)π2 = τ ′′3 + τ ′′4 + τ ′′′2 + τ ′′′3

(β) k > 2ℓ+ 1 3b 3a 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′2 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′3 + τ ′′4 + τ ′′′2 + τ ′′′3

3c.
(α) j = ℓ+ 1, k = 2ℓ+ 3 3d 3b 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′′2

s(p)π3 = τ ′′2 + τ ′′′3

(β) j = ℓ+ 1, k > 2ℓ+ 3 3c 3b 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′2 + τ ′′′3

(γ) j > ℓ+ 1, j = k−1
2

3d 3c 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′′3 + τ ′′′3

(δ) ℓ+ 1 < j < k−1
2

3c 3c 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′3 + τ ′′′3

3d. (n.b. τ ′ = τ ′′)
(α) k = 2ℓ+ 2 3b 3b 3d s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

(β) k > 2ℓ+ 2 3c 3c 3d s(p)π1 = τ ′1 + τ ′3 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′3 + τ ′′′2

For convenience, we begin with the unitary cases, cases 2c and 3d.

3d (β): k > 2ℓ+ 2
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We have π = ζ(ρ, k) ⋊ ζ(ρ, ℓ; σ). Again, since ν
1

2 ζ(ρ, k− 1) ⋊ ζ(ρ, ℓ; σ) and ν−
1

2 ζ(ρ, k− 1) ⋊

ζ(ρ, ℓ; σ) have the same components, τ ′ = τ ′′. So, by inductive hypothesis, we have (see table)

s(p)π = 2ν
−k+1

2 ρ⊗ ν−
1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 1

2ρ⊗ ζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= 2ν
−k+1

2 ρ⊗ L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν−
k
2
+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+2ν
−k+1

2 ρ⊗ L([ν
−k+1

2 ρ, ν−ℓ− 3

2ρ], [ν−
k
2
+ 3

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+2ν
−k+1

2 ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
k
2
+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−

1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−ℓ− 1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

First, we check that π has two components. Set θ = sminζ(ρ, k) ⊗ ζ(ρ, ℓ; σ), i.e.,

θ = ν
−k+1

2 ρ⊗ ν
−k+3

2 ρ⊗ . . .⊗ ν
k−1

2 ρ⊗ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . . ν−
1

2ρ⊗ σ.

From the description of sminπ (cf. Theorem 2.3 et seq.), we see that θ occurs in sminπ with
multiplicity two. Therefore, ζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) occurs in s(kp)π with multiplicity two. Since
π is unitary and reducible, Frobenius reciprocity tells us that π must have (exactly) two
components. By Lemma 3.3, one component is

π1 = L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ).

Let π2 denote the other component.
We now determine s(p)π1 and s(p)π2. By Lemma 3.3, s(p)π1 ≥ τ ′1 + τ ′′1 + τ ′′′1 (n.b. τ ′1 = τ ′′1 ).

Frobenius reciprocity tells us sminπ1 ≥ θ and sminπ2 ≥ θ. Since both copies of τ ′1 are in
s(p)π1, we have θ 6≤ sminτ

′

1. Therefore, θ ≤ sminτ
′

2 or θ ≤ sminτ
′

3 (again, note τ ′2 = τ ′′2 and
τ ′3 = τ ′′3 ). We determine which by a comparison: by Lemma 3.3, π1 is also a component of
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π̂ = ν−
k
4
+ ℓ

2 ζ(ρ, ℓ+ k
2
) ⋊ ζ(ρ, k

2
; σ). Further, by inductive hypothesis, we can decompose s(p)π̂:

s(p)π̂ = ν
−k+1

2 ρ⊗ ν−
k
4
+ ℓ

2
+ 1

2 ζ(ρ, ℓ+ k
2
− 1) ⋊ ζ(ρ, k

2
; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
k
4
+ ℓ

2
−

1

2 ζ(ρ, ℓ+ k
2
− 1) ⋊ ζ(ρ, k

2
; σ)

+ν
−k+1

2 ρ⊗ ν−
k
4
+ ℓ

2 ζ(ρ, ℓ+ k
2
) ⋊ ζ(ρ, k

2
− 1; σ)

= ν
−k+1

2 ρ⊗ L([ν
−k+3

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ]; σ)

+ν
−k+1

2 ρ⊗ L([ν
−k+1

2 ρ, ν−ℓ− 3

2ρ], [ν
−k+3

2 ρ, ν−
3

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν
−k+1

2 ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−
k
2
+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν
−k+1

2 ρ, ν−ℓ− 1

2ρ], [ν
−k+1

2 ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν
−k+1

2 ρ⊗ L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ]; σ)

+ν
−k+1

2 ρ⊗ L([ν
−k+1

2 ρ, ν−ℓ− 3

2ρ], [ν
−k+3

2 ρ, ν−
3

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν
−k+1

2 ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−
k
2
+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−

1

2ρ; σ))

+ν
−k+1

2 ρ⊗ L(ν−
k
2
+1δ(ρ, 2), . . . , ν−ℓ−2δ(ρ, 2), ν−ℓ− 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

A comparison of s(p)π and s(p)π̂ tells us that s(p)π1 ≤ τ ′1 + τ ′3 + τ ′′1 + τ ′′′1 . Therefore, we must
have θ ≤ sminτ

′

3 and s(p)π1 = τ ′1 + τ ′3 + τ ′′1 + τ ′′′1 . This gives s(p)π2 = τ ′2 + τ ′′2 + τ ′′3 + τ ′′′2 . Thus
the Jacquet modules work out as needed.

It remains to identify π2. First, observe that by Lemma 2.8 (or the s(p) results applied to
τ ′2)

s(p,p)π2 ≥ ν
−k+1

2 ρ⊗ ν
−k+1

2 ρ⊗ L([ν
−k+3

2 ρ, ν−ℓ− 3

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Furthermore, we claim that (up to multiplicity) this is the only term of the form ν
−k+1

2 ρ ⊗

ν
−k+1

2 ρ⊗ . . . in s(p,p)π2. To see this, consider τ ′ = τ ′′ = ν
−k+1

2 ρ⊗ν−
1

2 ζ(ρ, k−1)⋊ζ(ρ, ℓ; σ) (the
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induced part of which is case 3c(α) or (γ), i.e., j′ = k′
−1
2

). Then, by the inductive hypothesis

s(p,p)τ
′ = ν

−k+1

2 ρ⊗ {ν
−k+1

2 ρ⊗ ζ(ρ, k − 2) ⋊ ζ(ρ, ℓ; σ) + ν
−k+3

2 ρ⊗ ν−1ζ(ρ, k − 2) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ− 1; σ)}

= ν
−k+1

2 ρ⊗ ν
−k+1

2 ρ⊗ L([ν
−k+3

2 ρ, ν−
1

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν
−k+1

2 ρ⊗ ν
−k+1

2 ρ⊗ L([ν
−k+3

2 ρ, ν−ℓ− 3

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν
−k+1

2 ρ⊗ ν
−k+3

2 ρ terms + ν
−k+1

2 ρ⊗ ν−ℓ+ 1

2ρ terms.

Now, we know (from case 3c (α) and (γ), by induction)

s(p,p)τ
′

1 ≥ ν
−k+1

2 ρ⊗ ν
−k+1

2 ρ⊗ L([ν
−k+3

2 ρ, ν−
1

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

s(p,p)τ
′

2 ≥ ν
−k+1

2 ρ⊗ ν
−k+1

2 ρ⊗ L([ν
−k+3

2 ρ, ν−ℓ− 3

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

From this, it follows that

ν
−k+1

2 ρ⊗ ν
−k+1

2 ρ⊗ L([ν
−k+3

2 ρ, ν−ℓ− 3

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

is the only term of the form ν
−k+1

2 ρ⊗ ν
−k+1

2 ρ⊗ . . . in s(p,p)π2 (up to multiplicity). By Lemma
3.2 and Frobenius reciprocity, we have

π2 →֒ ν
−k+1

2 ρ× ν
−k+1

2 ρ⋊ L([ν
−k+3

2 ρ, ν−ℓ− 3

2ρ], [ν
−k+3

2 ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))
⇓

π2 →֒ ν
−k+1

2 ρ× ν
−k+1

2 ρ⋊ [(ν
−k+3

2 ρ× ν
−k+3

2 ρ) × . . .× (ν−ℓ− 3

2ρ× ν−ℓ− 3

2ρ) × ν−ℓ− 1

2ρ

×ν−ℓδ(ρ, 2) × ν−ℓ+ 1

2ρ× ν−ℓ+1δ(ρ, 2) × . . .× ν−1δ(ρ, 2) × ν−
1

2ρ⋊ δ(ν−
1

2ρ; σ)]
⇓

π2 = L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

by the uniqueness of the Langlands subrepresentation. With π2 properly identified, 3d(β) is
done.

3d(α): k = 2ℓ+ 2

The same arguments work as those used for 3d(β), save for the identification of π2, which
is easier. In particular, we get

s(p)π2 = ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], ν−ℓ− 1

2ρ, ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))
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Therefore, Lemma 3.2 and Frobenius reciprocity imply

π2 →֒ ν−ℓ− 1

2ρ⋊ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

which then forces

π2 = L([ν−ℓ− 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

as above.

2c(δ): 2 < k < 2ℓ− 2

Again, we have τ ′ = τ ′′, so that (by inductive hypothesis)

s(p)π = 2ν
−k+1

2 ρ⊗ ν−
1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 1

2ρ⊗ ζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= 2ν
−k+1

2 ρ⊗ L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+3

2 , ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+2ν
−k+1

2 ρ⊗ L([ν−ℓ+ 1

2ρ, ν
−k−1

2 ρ], [ν
−k+1

2 ρ, ν−
3

2ρ], ν−
k
2
+1δ(ρ, 2) . . . , ν−1δ(ρ, 2); T )

+2ν
−k+1

2 ρ⊗ L([ν−ℓ+ 1

2ρ, ν
−k−3

2 ρ], [ν
−k+3

2 ρ, ν−
3

2ρ], ν−
k
2 δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν
−k−3

2 ρ], [ν
−k+1

2 ρ, ν−
3

2ρ], ν−
k
2 δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

At this point, Lemma 3.5 (applied to the ν−ℓ+ 1

2ρ–terms) tells us that

π1 = L([ν
−k+1

2 ρ, ν−
1

2ρ], [ν
−k+1

2 ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ+ 1

2 , ν
−k−3

2 ρ], [ν
−k+1

2 ρ, ν−
3

2ρ], ν−
k
2 δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

are both components of π. Next, we can use the same arguments as in 3d(β) to see that π has
only two components and to show that s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1 , s(p)π2 = τ ′3 + τ ′′2 + τ ′′3 + τ ′′′2 ,
finishing this subcase.

2c(β): k = 2, ℓ > 2

The proof for this subcase parallels that for 2c(δ).

2c(γ): k = 2ℓ− 2, ℓ > 2
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Here, we have

s(p)π = 2ν−ℓ+ 3

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+2ν−ℓ+ 3

2ρ⊗ L(ν−ℓ+ 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+2ν−ℓ+ 3

2ρ⊗ L([ν−ℓ+ 5

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

(n.b. τ ′′′ is irreducible). The same arguments as in 3d(β) tell us that π has two components
and s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′ and s(p)π2 = τ ′3 + τ ′′2 + τ ′′3 .

The identification of π2 is similar to that in 3d(β) (π1 is, of course, given by Lemma 3.3).
First, we claim

s(p,p)π2 ≥ ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

and that this is the only term of the form ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ . . . in s(p,p)π2. This follows from
the same basic argument used in 3d(β). Therefore,

s(2p)π2 ≥ ν−ℓ+1δ(ρ, 2) ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

Since this is the only term in s(2p)π2 with this central character, Lemma 3.2 and Frobenius
reciprocity imply

π2 →֒ ν−ℓ+1δ(ρ, 2) ⋊ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )
⇓

π2 →֒ ν−ℓ+1δ(ρ, 2) ⋊ [ν−ℓ+ 3

2ρ× ν−ℓ+2δ(ρ, 2) × ν−ℓ+ 5

2ρ× ν−ℓ+3δ(ρ, 2) ×

. . .× ν−
3

2ρ× ν−1δ(ρ, 2) ⋊ T ]
⇓

π2 = L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

by the uniqueness of the Langlands subrepresentation. This finishes 2c(γ).

2c(α): k = 2, ℓ = 2

The proof for this subcase parallels that for 2c (γ).
This finishes up the unitary cases. We next turn to cases 2a and 3b; the other cases in which

k − j, j, ℓ are not all distinct.

3b(α): k = 2ℓ+ 1
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In this subcase, π = ν−
1

2 ζ(ρ, 2ℓ+ 1) ⋊ ζ(ρ, ℓ; σ). By induction,

s(p)π = ν−ℓ− 1

2ρ⊗ ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 1

2ρ⊗ ν−1ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
1

2 ζ(ρ, 2ℓ+ 1) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ+ 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

First, by Lemma 3.3,

π1 = L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

is a component of π. Observe that π1 is also a component of ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ+ 1; σ) (covered
by case 2c). Since case 2c has already been done, we know that s(p)π1 = τ ′ + τ ′′1 + τ ′′2 + τ ′′′1 .

The next step is to show there is only one more component. To this end, observe that τ ′′ is
3a(α) or (ǫ) and τ ′′′ is 3c(α) or falls under Proposition 3.6. In particular, this tells us that

s(p,p)τ
′′

3 = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . . (this term is missing if ℓ = 1)

s(p,p)τ
′′

4 = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ L(ν−ℓδ(ρ, 2), ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

s(p,p)τ
′′′

2 = ν−ℓ+ 1

2ρ⊗ ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ . . . (this term is missing if ℓ = 1)

s(p,p)τ
′′′

3 = s(p,p)τ
′′

3 (since τ ′′′3 = τ ′′3 ).
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First, let π2 be a component of π such that s(p)π2 ≥ τ ′′3 . Then,

s(p,p)π2 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

⇓ (since ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ is irreducible)

s(2p)π2 ≥ (ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

⇓ (since r(p,p)ν
−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ = 2ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ)

s(p,p)π2 ≥ 2ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Thus, s(p)π2 ≥ τ ′′3 + τ ′′′3 . Note that these are the only terms of the form ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ . . .
in s(p,p)(π − π1).

Next, observe that

s(p,p,p)τ
′′′

2 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ− 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Now,

ν−ℓ+ 1

2ρ× ν−ℓ− 1

2ρ× ν−ℓ+ 1

2ρ = ν−ℓζ(ρ, 2) × ν−ℓ+ 1

2ρ+ ν−ℓδ(ρ, 2) × ν−ℓ+ 1

2ρ,

where both terms on the right-hand side are irreducible. Therefore, if π0 is the component of
π such that s(p)π0 ≥ τ ′′′2 , we must have either

s(3p)π0 ≥ (ν−ℓζ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

or

s(3p)π0 ≥ (ν−ℓδ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Since rminν
−ℓζ(ρ, 2)× ν−ℓ+ 1

2ρ ≥ ν−ℓ− 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ and there are no terms of the form

ν−ℓ− 1

2ρ ⊗ . . . in s(p)(π − π1), it must be the latter. Then, since r(2p)ν
−ℓδ(ρ, 2) × ν−ℓ+ 1

2ρ ≥

(ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ) ⊗ ν−ℓ− 1

2ρ, we have

s(3p)π0 ≥ (ν−ℓδ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))
⇓

s(2p,p)π0 ≥ (ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ) ⊗ ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))
⇓

s(2p)π0 ≥ (ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

since this is the only term of the form (ν−ℓ+ 1

2ρ × ν−ℓ+ 1

2ρ) ⊗ . . . in s(2p)(π − π1). Therefore
s(p)π0 ≥ τ ′′3 + τ ′′′3 –i.e., π0 = π2. This gives us s(p)π2 ≥ τ ′′3 + τ ′′′2 + τ ′′′3 .
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We use the same basic argument to deal with τ ′′4 :

s(p,p,p)τ
′′

4 = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ).

Now,

ν−ℓ+ 1

2ρ× ν−ℓ+ 3

2ρ× ν−ℓ+ 1

2ρ = ν−ℓ+1ζ(ρ, 2) × ν−ℓ+ 1

2ρ+ ν−ℓ+1δ(ρ, 2) × ν−ℓ+ 1

2ρ.

Both terms on the right-hand side are irreducible. Again, let π0 be the component of π such
that s(p)π0 ≥ τ ′′4 . Then either

s(3p)π0 ≥ (ν−ℓ+1ζ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

or
s(3p)π0 ≥ (ν−ℓ+1δ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ).

Since rminν
−ℓ+1δ(ρ, 2)×ν−ℓ+ 1

2ρ ≥ ν−ℓ+ 3

2ρ⊗ν−ℓ+ 1

2ρ⊗ν−ℓ+ 1

2ρ and s(p)π−π1 (in fact, s(p)π) has

no terms of the form ν−ℓ+ 3

2 ⊗ . . . , it must be the former. We have

s(3p)π0 ≥ (ν−ℓ+1ζ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)
⇓

s(2p,p)π0 ≥ (ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ) ⊗ ν−ℓ+ 3

2ρ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)
⇓

s(p)π0 ≥ τ ′′3 + τ ′′′3

again since s(2p)(π − π1) has only one term of the form ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ⊗ . . . . Thus π0 = π2

and we have s(p)π2 = τ ′′3 + τ ′′4 + τ ′′′2 + τ ′′′3 . Note that since we have now accounted for all of
s(p)π, we know there are no additional components; π = π1 + π2.

It remains to identify π2. Observe that

s(p,p)π2 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))
⇓

s(2p)π2 ≥ ν−ℓδ(ρ, 2) ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

A glance at s(p,p)τ
′′

3 , etc., calculated earlier tells us that this is the only term in s(2p)π2 with
this central character. Therefore, by Lemma 3.2 and Frobenius reciprocity

π2 →֒ ν−ℓδ(ρ, 2) ⋊ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))
⇓

π2 →֒ ν−ℓδ(ρ, 2) ⋊ (ν−ℓ+ 1

2ρ× ν−ℓ+1δ(ρ, 2) × ν−ℓ+ 3

2ρ× . . .× ν−1δ(ρ, 2) × ν−
1

2ρ⋊ δ(ν−
1

2ρ; σ))
⇓

π2 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

by the uniqueness of the Langlands subrepresentation. This finishes 3b(α).

3b(β): k > 2ℓ+ 1
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We have π = ν−
k
2
+ℓζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) and by inductive hypothesis,

s(p)π = ν−k+ℓ+ 1

2ρ⊗ ν−
k
2
+ℓ+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
k
2
+ℓ− 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
k
2
+ℓζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−k+ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−k+ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 3

2ρ, ν−ℓ− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2 , ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−ℓ− 1

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−ℓ− 3

2ρ], ν−ℓ+ 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−ℓ− 1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

By Lemma 3.5 3 applied to the ν−k+ℓ+ 1

2ρ-terms, we have π = π1 + π2 with

π1 = L([ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−k+ℓ+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Finally, observe that π1 is also a component of ζ(ρ, 2ℓ) ⋊ ζ(ρ, k − ℓ; σ) (case 2c (β) or (δ)).
This tells us (since case 2c is already done) s(p)π1 = τ ′1 + τ ′′1 + τ ′′2 + τ ′′′1 and therefore s(p)π2 =
the rest = τ ′2 + τ ′′3 + τ ′′4 + τ ′′′2 + τ ′′′3 . This finishes 3b(β).

2a(β): ℓ < k < 2ℓ− 1
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Here, π = ν−ℓ+ k
2 ζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) and, by inductive hypothesis,

s(p)π = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ k
2
+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−k+ℓ+ 1

2ρ⊗ ν−ℓ+ k
2
−

1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−ℓ+ k
2 ζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−k+ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−k+ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−k+ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 1

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−k+ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−k+ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ+1δ(ρ, 2), . . . , ν−k+ℓ−2δ(ρ, 2), ν−k+ℓ− 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

By Lemma 3.3,

π1 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−k+ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

is a component. Furthermore, π1 is also a component of ζ(ρ, 2ℓ) ⋊ ζ(ρ, k− ℓ; σ) (which is case
3d(β); already done), so we know s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′3 .

Let π2 be the component of π with s(p)π2 ≥ τ ′′2 . We claim s(p)π2 = τ ′2 + τ ′3 + τ ′′2 + τ ′′′2 + τ ′′′4 .
For example, consider τ ′2. Let π0 be the component of π with s(p)π0 ≥ τ ′2. Then, noting that
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ν−ℓ+ 1

2ρ× ν−k+ℓ+ 1

2ρ is irreducible,

s(p,p)τ
′

2 ≥ ν−ℓ+ 1

2ρ⊗ ν−k+ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 1

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ],
ν−k+ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

⇓

s(2p)π0 ≥ (ν−ℓ+ 1

2ρ× ν−k+ℓ+ 1

2ρ) ⊗ L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 1

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ],
ν−k+ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

⇓

s(p,p)π0 ≥ ν−k+ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 1

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ],
ν−k+ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

⇓
s(p)π0 ≥ τ ′′2

Thus π0 = π2, so s(p)π2 ≥ τ ′2 + τ ′′2 . The same argument applied to τ ′′′2 (n.b. τ ′′′2 = τ ′2) and τ ′′′4

gives s(p)π2 ≥ τ ′2 + τ ′′2 + τ ′′′2 + τ ′′′4 .
Next, if j > 1, the same argument gives us τ ′3 ≤ s(p)π2. If j = 1, we show that τ ′3 ≤ s(p)π2

in a similar, though slightly more involved way (using s(p,p,p), as in the proof for 3b(α)). In
particular, if j = 1, we have k = ℓ+ 1, so that

τ ′3 = ν−ℓ+ 1

2ρ⊗ L(ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

and
s(p,2p)τ

′

3 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ+1δ(ρ, 2) ⊗ L(ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

Therefore, if π0 is the component of π with τ ′3 ≤ s(p)π0,

s(p,p,p)π0 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L(ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

Now,

ν−ℓ+ 1

2ρ× ν−ℓ+ 3

2ρ× ν−ℓ+ 1

2ρ = ν−ℓ+1ζ(ρ, 2) × ν−ℓ+ 1

2ρ+ ν−ℓ+1δ(ρ, 2) × ν−ℓ+ 1

2ρ

with both terms on the right-hand side irreducible. Therefore, we must have

s(3p)π0 ≥ (ν−ℓ+1ζ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

or
s(3p)π0 ≥ (ν−ℓ+1δ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

Since rminν
−ℓ+1δ(ρ, 2)×ν−ℓ+ 1

2ρ ≥ ν−ℓ+ 3

2 ⊗ν−ℓ+ 1

2ρ⊗ν−ℓ+ 1

2ρ and s(p)π has no terms of the form

ν−ℓ+ 3

2ρ⊗ . . . , it must be the former. Now,

s(3p)π0 ≥ (ν−ℓ+1ζ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L(ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )
⇓

s(p,p,p)π0 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ L(ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

Observe that (noting that τ ′ is 2b(ii) (α) or (γ))

s(p,p)τ
′

3 = ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ L(ν−ℓ+ 1

2ρ, ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).
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In particular, s(p,p)τ
′

3 has no terms of the form ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ . . . . Since s(p,p)π0 does, we
must have s(p)π0 > τ ′3. This forces π0 = π2, so that s(p)π2 = τ ′2 + τ ′3 + τ ′′2 + τ ′′′2 + τ ′′′4 .

The last step is to identify π2. This follows a familiar pattern; it is the same argument used
to identify π2 in 3b (α). Observe that

s(p,p)π2 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−k+ℓ− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−k+ℓδ(ρ, 2),
. . . , ν−1δ(ρ, 2); T ).

Further, this is the only term of the form ν−ℓ+ 1

2ρ⊗ν−ℓ+ 1

2ρ⊗ . . . (up to multiplicity) in s(p,p)π2.
So, by Lemma 3.2 and Frobenius reciprocity,

π2 →֒ ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ⋊ L([ν−ℓ+ 3

2ρ, ν−k+ℓ− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ],
ν−k+ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

⇓

π2 = L([ν−ℓ+ 1

2ρ, ν−k+ℓ− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−k+ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

by the uniqueness of the Langlands subrepresentation. This finishes 2a (β).

2a(α): k = ℓ

This is essentially the same as 2a (β).

2a(γ): k = 2ℓ− 1

Here, we have π = ν−
1

2 ζ(ρ, 2ℓ− 1) ⋊ ζ(ρ, ℓ; σ) and

s(p)π = ν−ℓ+ 1

2ρ⊗ ζ(ρ, 2ℓ− 2) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 3

2ρ⊗ ν−1ζ(ρ, 2ℓ− 2) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
1

2 ζ(ρ, 2ℓ− 1) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 3

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 3

2ρ⊗ L(ν−ℓ+ 1

2ρ, [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Now, by Lemma 3.3,

π1 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ).

Comparison with ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ− 1; σ) gives us s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′2 .
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Let π2 be the component of π with s(p)π2 ≥ τ ′′2 . Then, the same sort of argument used in
3b (α) (using s(p,p,p)/s(3p)) gives us s(p)π2 = τ ′2 + τ ′′2 :

s(p,p,p)τ
′′

2 ≥ ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )
⇓

s(3p)π2 ≥ (ν−ℓ+1δ(ρ, 2) × ν−ℓ+ 1

2ρ) ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )
⇓

s(p,p,p)π2 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

Therefore, s(p)π2 has a term of the form ν−ℓ+ 1

2ρ ⊗ . . . , necessarily τ ′2. Finally, by Lemma 3.2
and Frobenius reciprocity,

π2 →֒ ν−ℓ+ 1

2ρ⋊ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )
⇓

π2 = L([ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

(uniqueness of Langlands subrepresentation). This finishes 2a (γ).

2b(ii) (α): j = 1, k = 3, ℓ = 3

Here, π = ν−
1

2 ζ(ρ, 3) ⋊ ζ(ρ, 3; σ) and

s(p)π = ν−
3

2ρ⊗ ζ(ρ, 2) ⋊ ζ(ρ, 3; σ) + ν−
1

2ρ⊗ ν−1ζ(ρ, 2) ⋊ ζ(ρ, 3; σ)

+ν−
5

2ρ⊗ ν−
1

2 ζ(ρ, 3) ⋊ ζ(ρ, 2; σ)

= ν−
3

2ρ⊗ L(ν−
5

2ρ, ν−
3

2ρ, ν−
1

2ρ, ν−
1

2ρ, ν−
1

2ρ; σ)

+ν−
3

2ρ⊗ L(ν−
5

2ρ, ν−1δ(ρ, 2); T )

+ν−
1

2ρ⊗ L(ν−
5

2ρ, ν−
3

2ρ, ν−
3

2ρ, ν−
1

2ρ, ν−
1

2ρ; σ)

+ν−
1

2ρ⊗ L(ν−
5

2ρ, ν−
3

2ρ, ν−
3

2ρ; T )

+ν−
5

2ρ⊗ L(ν−
3

2ρ, ν−
3

2ρ, ν−
1

2ρ, ν−
1

2ρ, ν−
1

2ρ; σ)

+ν−
5

2ρ⊗ L(ν−
3

2ρ, ν−1δ(ρ, 2); T ).

First, by Lemma 3.5 2,

π1 = L(ν−
5

2ρ, ν−
3

2ρ, ν−
3

2ρ, ν−
1

2ρ, ν−
1

2ρ, ν−
1

2ρ; σ)

π2 = L(ν−
5

2ρ, ν−
3

2ρ, ν−1δ(ρ, 2); T )

are components of π. Lemma 3.3 implies s(p)π1 ≥ τ ′1 + τ ′′1 + τ ′′′1 . Then, Lemma 3.5 1 tells us
s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 .
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Next, consider π̂ = ν−1ζ(ρ, 4) ⋊ ζ(ρ, 2; σ). By induction,

s(p)π̂ = ν−
5

2ρ⊗ ν−
1

2 ζ(ρ, 3) ⋊ ζ(ρ, 2; σ) + ν−
1

2ρ⊗ ν−
3

2 ζ(ρ, 3) ⋊ ζ(ρ, 2; σ)

+ν−
3

2ρ⊗ ν−1ζ(ρ, 4) ⋊ ζ(ρ, 1; σ)

= ν−
5

2ρ⊗ L(ν−
3

2ρ, ν−
3

2ρ, ν−
1

2ρ, ν−
1

2ρ, ν−
1

2ρ; σ)

+ν−
5

2ρ⊗ L(ν−
3

2ρ, ν−1δ(ρ, 2); T )

+ν−
1

2ρ⊗ L(ν−
5

2ρ, ν−
3

2ρ, ν−
3

2ρ, ν−
1

2ρ, ν−
1

2ρ; σ)

+ν−
1

2ρ⊗ L(ν−
5

2ρ, ν−
3

2ρ, ν−
3

2ρ; T )

+ν−
1

2ρ⊗ L(ν−2δ(ρ, 2), ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−
1

2ρ⊗ L(ν−2δ(ρ, 2), ν−
1

2 δ(ρ, 3); σ)

+ν−
3

2ρ⊗ L(ν−
5

2ρ, ν−
3

2ρ, ν−
1

2ρ, ν−
1

2ρ, ν−
1

2ρ; σ)

+ν−
3

2ρ⊗ L(ν−
5

2ρ, ν−1δ(ρ, 2), ν−
1

2ρ; δ(ν−
1

2ρ; σ)).

By Lemma 3.5, π2 is also a component of π̂ (as is π1). A comparison of s(p)π and s(p)π̂ tells
us that s(p)π2 ≤ τ ′′2 + τ ′′′2 . We can use the same sort of s(p,p)/s(2p) argument as in 2a (β) to get
s(p)π2 = τ ′′2 + τ ′′′2 . In particular, let π0 denote the component of π with s(p)π0 ≥ τ ′′2 . Then

s(p,p)τ
′′

2 ≥ ν−
1

2ρ⊗ ν−
5

2ρ⊗ L(ν−
3

2ρ, ν−
3

2ρ; T )
⇓

s(2p)π0 ≥ (ν−
1

2ρ× ν−
5

2ρ) ⊗ L(ν−
3

2ρ, ν−
3

2ρ; T )
⇓

s(p,p)π0 ≥ ν−
5

2ρ⊗ ν−
1

2ρ⊗ L(ν−
3

2ρ, ν−
3

2ρ; T )

so that s(p)π0 ≥ τ ′′′2 . Thus π0 = π2 and s(p)π2 = τ ′′2 + τ ′′′2 .
Let π3 denote the final component, so that s(p)π3 = τ ′2. We identify π3 using now-familiar

methods (cf. 2c (γ), 3b (α)):

s(p,p)π3 = ν−
3

2ρ⊗ ν−
1

2ρ⊗ L(ν−
5

2ρ, ν−
3

2ρ; T ) + ν−
3

2ρ⊗ ν−
5

2ρ⊗ L(ν−1δ(ρ, 2); T )
⇓

s(2p)π3 = ν−1ζ(ρ, 2) ⊗ L(ν−
5

2ρ, ν−
3

2ρ; T ) + ν−2δ(ρ, 2) ⊗ L(ν−1δ(ρ, 2); T )
⇓

π2 →֒ ν−2δ(ρ, 2) ⋊ L(ν−1δ(ρ, 2); T )
⇓

π2 = L(ν−2δ(ρ, 2), ν−1δ(ρ, 2); T ),
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finishing 2b(ii) (α).

2b(ii) (θ): 1 < j < k−1
2

, j 6= k − ℓ+ 1
By induction, we have

s(p)π = ν−k+j+ 1

2 ⊗ L([ν−k+j+ 3

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−k+j+ 1

2 ⊗ L([ν−ℓ+ 1

2ρ, ν−j− 3

2ρ], [ν−k+j+ 3

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−k+j+ 1

2 ⊗ L([ν−ℓ+ 1

2ρ, ν−k+j− 1

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ], ν−k+j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−j+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−j+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−j− 1

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ], ν−j+1δ(ρ, 2) . . . , ν−1δ(ρ, 2); T )

+ν−j+ 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−k+j− 3

2ρ], [ν−j+ 3

2ρ, ν−
3

2ρ], ν−k+jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 3

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−k+j− 3

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ], ν−k+jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

By Lemma 3.5 3, π = π1 + π2 + π3, where

π1 = L([ν−k+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−j− 3

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

π3 = L([ν−ℓ+ 1

2ρ, ν−k+j− 3

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ], ν−k+jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

By Lemma 3.3, s(p)π1 ≥ τ ′1 + τ ′′1 + τ ′′′1 . By Lemma 3.5 1, s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 . To identify
s(p)π2 and s(p)π3, we use the same sort of s(p,p)/s(2p) argument already used a couple of times.
By induction (noting that τ ′ is 2b(ii) (ζ) or (θ), τ ′′ is 2b(ii) (δ) or (θ), τ ′′′ is 2b(ii) (η) or (θ)),
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we have

s(p,p)τ
′

2 ≥ ν−k+j+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 3

2ρ], [ν−k+j+ 3

2ρ, ν−
3

2ρ],
ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

s(p,p)τ
′

3 ≥ ν−k+j+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−k+j− 1

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ],
ν−k+j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

s(p,p)τ
′′

2 ≥ ν−j+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 1

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ],
ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

s(p,p)τ
′′

3 ≥ ν−j+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−k+j− 3

2ρ], [ν−j+ 3

2ρ, ν−
3

2ρ],
ν−k+jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

s(p,p)τ
′′′

2 ≥ ν−ℓ+ 1

2ρ⊗ ν−k+j+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 3

2ρ], [ν−k+j+ 3

2ρ, ν−
3

2ρ],
ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ ν−j+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 1

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ],
ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

s(p,p)τ
′′′

3 ≥ ν−ℓ+ 1

2ρ⊗ ν−k+j+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−k+j− 1

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ],
ν−k+j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ ν−j+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−k+j− 3

2ρ], [ν−j+ 3

2ρ, ν−
3

2ρ],
ν−k+jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

By Lemma 3.5 1 applied to τ ′, τ ′′, τ ′′′, we see that each term above appears only once in s(p,p)π.

Now, we argue as usual. For example, we know s(p)π2 ≥ τ ′′′2 . Therefore, since ν−ℓ+ 1

2ρ×ν−k+j+ 1

2ρ
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and ν−ℓ+ 1

2ρ× ν−j+ 1

2ρ are irreducible, we have

s(p,p)π2 ≥ ν−ℓ+ 1

2ρ⊗ ν−k+j+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 3

2ρ], [ν−k+j+ 3

2ρ, ν−
3

2ρ],
ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ ν−j+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 1

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ],
ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

⇓

s(2p)π2 ≥ (ν−ℓ+ 1

2ρ× ν−k+j+ 1

2ρ) ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 3

2ρ], [ν−k+j+ 3

2ρ, ν−
3

2ρ],
ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+(ν−ℓ+ 1

2ρ× ν−j+ 1

2ρ) ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 1

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ],
ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

⇓

s(p,p)π2 ≥ ν−k+j+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 3

2ρ], [ν−k+j+ 3

2ρ, ν−
3

2ρ],
ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−j+ 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−j− 1

2ρ], [ν−k+j+ 1

2ρ, ν−
3

2ρ],
ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

⇓
s(p)π2 ≥ τ ′2 + τ ′′2 .

Thus s(p)π2 ≥ τ ′2 + τ ′′2 + τ ′′′2 . By Lemma 3.5 1, s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2 . A similar argument gives
s(p)π3 = τ ′3 + τ ′′3 + τ ′′′3 . (One could also use this argument to get s(p)π1.) This finishes 2b(ii)
(θ).

2b(ii) (β): j = 1, k = 3, ℓ > 3

This subcase parallels 2b(ii) (θ).

2b(ii) (ǫ): j = ℓ− 2, k = 2ℓ− 3, ℓ > 3
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Here, π = ν−
1

2 ζ(ρ, 2ℓ− 3) ⋊ ζ(ρ, ℓ; σ). By inductive hypothesis,

s(p)π = ν−ℓ+ 3

2ρ⊗ ζ(ρ, 2ℓ− 4) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 5

2ρ⊗ ν−1ζ(ρ, 2ℓ− 4) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
1

2 ζ(ρ, 2ℓ− 3) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ+ 3

2ρ⊗ L([ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 3

2ρ⊗ L(ν−ℓ+ 1

2ρ, [ν−ℓ+ 5

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 5

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 7

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 5

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−ℓ+ 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+3δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 5

2ρ⊗ L([ν−ℓ+ 7

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

By Lemma 3.5 2,

π1 = L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

are components of π. By Lemma 3.3, s(p)π1 ≥ τ ′1+τ
′′

1 +τ ′′′1 ; by Lemma 3.5 1, s(p)π1 = τ ′1+τ
′′

1 +τ ′′′1 .
The same s(p,p)/s(2p) argument as above (cf. 2b(ii) (θ)) tells us s(p)π2 ≥ τ ′′2 + τ ′′′2 . Observe that
π2 is also a component of ν−1ζ(ρ, 2ℓ−2)⋊ζ(ρ, ℓ−1; σ) by Lemma 3.5 2. A comparison of s(p)π
and s(p)ν

−1ζ(ρ, 2ℓ− 2) ⋊ ζ(ρ, ℓ− 1; σ) shows that s(p)π2 ≤ τ ′′2 + τ ′′′2 ; therefore s(p)π2 = τ ′′2 + τ ′′′2 .
Next, take π3 with s(p)π3 ≥ τ ′′3 . We claim s(p)π3 = τ ′2 + τ ′′3 . To see this, use the same

s(p,p,p)/s(3p) argument as earlier (cf. 3b (α), 2a (β)). If π0 is the component of π with s(p)π0 ≥ τ ′2,
then (by inductive hypothesis)

s(p,p,p)π0 ≥ 2ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 5

2ρ⊗ ν−ℓ+ 5

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−ℓ+ 3

2ρ], [ν−ℓ+ 7

2ρ, ν−
3

2ρ],
ν−ℓ+3δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

This implies s(p)π0 contains a term of the form ν−ℓ+ 5

2ρ⊗ . . . , i.e., τ ′′1 , τ ′′2 , or τ ′′3 . As τ ′′1 and τ ′′2
are accounted for, we have s(p)π3 = τ ′2 + τ ′′3 .

Finally, we show that

π3 = L([ν−ℓ+ 5

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

in the usual way for something having the lowest exponent in the Langlands data attached to
a δ(ρ, 2) term (cf. 3b (α), et. al.). From s(p,p)π3, we can see that

s(2p)π3 ≥ ν−ℓ+1δ(ρ, 2) ⊗ L([ν−ℓ+ 5

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).
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Since this is the only component of s(2p)π3 with this central character, Lemma 3.2 and Frobenius
reciprocity imply

π3 →֒ ν−ℓ+1δ(ρ, 2) ⋊ L([ν−ℓ+ 5

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T ).

By the uniqueness of Langlands subrepresentations, π3 is as claimed. This finishes 2b(ii) (ǫ).

2b(ii) (γ): j = 1, k = ℓ, ℓ > 3

This subcase is similar to 2b(ii) (ǫ) above, but a bit easier. Here, we can determine s(p)π2,
s(p)π3 just using s(p,p)/s(2p) arguments; there is no need to go to s(p,p,p)/s(3p).

2b(ii) (δ): j = 1, 3 < k < ℓ

This subcase parallels 2b(ii) (θ).

2b(ii) (ζ): j = k−1
2

, 3 < k < 2ℓ− 3

This subcase also parallels 2b(ii) (θ).

2b(ii) (η): j = k − ℓ+ 1, ℓ < k < 2ℓ− 3

This subcase parallels 2b(ii) (γ).

2b(i) (α): k = ℓ− 1

Here, π = ν
−ℓ+1

2 ζ(ρ, ℓ− 1) ⋊ ζ(ρ, ℓ; σ) and

s(p)π = ν−ℓ+ 3

2ρ⊗ ν
−ℓ+2

2 ζ(ρ, ℓ− 2) ⋊ ζ(ρ, ℓ; σ) + ν
1

2ρ⊗ ν−
ℓ
2 ζ(ρ, ℓ− 2) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν
−ℓ+1

2 ζ(ρ, ℓ− 1) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ+ 3

2ρ⊗ L([ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 3

2ρ⊗ L([ν−ℓ+ 5

2ρ, ν−
3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ]; T )

+ν
1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ]; T ).

Lemma 3.5 2 tells us

π1 = L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ+ 3

2ρ, ν−
3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ]; T )

are components of π. Lemma 3.3 gives s(p)π1 ≥ τ ′1 + τ ′′′1 . We claim s(p)π2 = τ ′2 + τ ′′ + τ ′′′2 ,
(implying s(p)π1 = τ ′1 + τ ′′′1 ). The usual s(p,p)/s(2p) argument gives s(p)π2 ≥ τ ′2 + τ ′′ + τ ′′′2 –in
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particular, it shows that the component of π containing τ ′2 (resp. τ ′′′2 ) necessarily contains τ ′′.
This finishes 2b(i) (α).

2b(i) (β): k < ℓ− 1

This can be done the same way as 2b(i) (α).

3c (α): j = ℓ+ 1, k = 2ℓ+ 3

We have π = ν−
1

2 ζ(ρ, 2ℓ+ 3) ⋊ ζ(ρ, ℓ; σ) and

s(p)π = ν−ℓ− 3

2ρ⊗ ζ(ρ, 2ℓ+ 2) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ− 1

2ρ⊗ ν−1ζ(ρ, 2ℓ+ 2) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
1

2 ζ(ρ, 2ℓ+ 3) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ− 3

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ− 3

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ− 1

2ρ⊗ L([ν−ℓ− 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ− 1

2ρ⊗ L(ν−ℓ− 3

2ρ, [ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 3

2ρ, ν−
1

2ρ], [ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 3

2ρ, ν−ℓ− 1

2ρ], [ν−ℓ− 1

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2),

. . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ−1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

The argument here is like that in 2b(ii) (ǫ). By Lemma 3.5 2,

π1 = L([ν−ℓ− 3

2ρ, ν−
1

2ρ], [ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ− 3

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

are components of π. By Lemmas 3.3 and 3.5 1, s(p)π1 = τ ′1 +τ ′′1 +τ ′′′1 . An s(p,p)/s(2p) argument
shows s(p)π2 ≥ τ ′2 + τ ′′′2 . Suppose π3 is the component of π such that s(p)π3 ≥ τ ′′′3 . Then, we
may use an s(p,p,p)/s(3p) argument to get s(p)π3 ≥ τ ′′2 + τ ′′′3 :

s(p,p,p)τ
′′′

3 ≥ ν−ℓ+ 1

2ρ⊗ ν−ℓ− 1

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 3

2ρ, ν−ℓ− 1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ],

ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))
⇓

s(3p)π3 ≥ (ν−ℓ+ 1

2ρ× ν−ℓζ(ρ, 2))⊗ L([ν−ℓ− 3

2ρ, ν−ℓ− 1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ],

ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)),
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choosing ν−ℓ+ 1

2ρ× ν−ℓζ(ρ, 2) over ν−ℓ+ 1

2ρ× ν−ℓδ(ρ, 2) because s(p,p)π contains no terms of the

form ν−ℓ+ 1

2ρ ⊗ ν−ℓ+ 1

2ρ ⊗ . . . . This implies s(p)π3 contains a term of the form ν−ℓ− 1

2ρ ⊗ . . . ;
necessarily τ ′′2 . Thus, we have s(p)π2 = τ ′2 + τ ′′′2 and s(p)π3 = τ ′′2 + τ ′′′3 . The usual argument for
identifying a component whose lowest exponent in the Langlands data is attached to a δ(ρ, 2)
gives

π3 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ν−ℓ−1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

This finishes 3c (α).

3c (β): j = ℓ+ 1, k > 2ℓ+ 3

This subcase may be done the same way as 2b(ii) (θ).

3c (γ): j = k−1
2

(k odd), j > ℓ+ 1

This follows 3c (α) except that the s(p,p)/s(2p) arguments are enough to determine s(p)π2,
s(p)π3 (i.e., it is not necessary to use any s(p,p,p)/s(3p) arguments).

3c (δ): ℓ+ 1 < j < k−1
2

This subcase is done like 3c (β).

3a (θ): 0 < j < ℓ− 1, j 6= k − ℓ− 1
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Here, π = ν−
k
2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) and

s(p)π = ν−k+j+ 1

2ρ⊗ ν−
k
2
+j+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−j+ 1

2ρ⊗ ν−
k
2
+j− 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−
k
2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−k+j+ 1

2ρ⊗ L([ν−k+j+ 3

2ρ, ν−
1

2 ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−k+j+ 1

2ρ⊗ L([ν−k+j+ 3

2ρ, ν−j− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−k+j+ 1

2ρ⊗ L([ν−k+j+ 3

2ρ, ν−ℓ− 3

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−k+j+ 1

2ρ⊗ L([ν−k+j+ 3

2ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), . . . , ν−j−2δ(ρ, 2),

ν−j− 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

+ν−j+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−
1

2 ], [ν−j+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−j+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−j− 1

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−j+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−j+ 3

2ρ, ν−
1

2ρ],

ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−j+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), . . . , ν−j−1δ(ρ, 2),

ν−j+ 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−
1

2 ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−j− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−ℓ− 1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ],

ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−ℓ− 1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−j−2δ(ρ, 2),

ν−j− 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ).

Lemma 3.5 3 (applied to the ν−k+j+ 1

2ρ–terms) gives π = π1 + π2 + π3 + π4, where

π1 = L([ν−k+j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−k+j+ 1

2ρ, ν−j− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )



DEGENERATE PRINCIPAL SERIES 77

π3 = L([ν−k+j+ 1

2ρ, ν−ℓ− 3

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

π4 = L([ν−k+j+ 1

2ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), . . . , ν−j−2δ(ρ, 2), ν−j− 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ).

We now identify s(p)πi. Rather than using an s(p,p)/s(2p) argument, we can argue as follows:

observe that π1 and π2 are both components of ν
−ℓ+j

2 ζ(ρ, ℓ+ j)⋊ζ(ρ, k− j; σ) (case 2b) and π1

and π3 are both components of ν
−k+j+ℓ

2 ζ(ρ, k− j + ℓ) ⋊ ζ(ρ, j; σ) (case 3c). Since cases 2b and
3c are already done, we know s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 , s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2 , s(p)π3 = τ ′3 + τ ′′3 + τ ′′′3 .
Necessarily, s(p)π4 = τ ′4 + τ ′′4 + τ ′′′4 . (Note that the comparison of these generalized degenerate
principal series plays an important role in section 7.)

3a (α): j = 0, ℓ = 1, k = 2

This subcase for ordinary degenerate principal series (i.e., ρ = 1 on F× and σ the trivial
representation of SO1(F )) is done in Theorem 4.5 of [Jan2]. The same argument works here.
(Note: the argument is very similar to that used in 3a (γ) below; the comparison used in 3a
(θ) above plays an essential role.)

3a (β): j = 0, ℓ = 1, k > 2

The same argument as in 3a (θ) works here.

3a (γ): j = 0, ℓ > 1, k = ℓ+ 1

Here π = ν
−ℓ−1

2 ζ(ρ, ℓ+ 1) ⋊ ζ(ρ, ℓ; σ) and

s(p)π = ν−ℓ− 1

2ρ⊗ ν−
ℓ
2 ζ(ρ, ℓ) ⋊ ζ(ρ, ℓ; σ) + ν

1

2ρ⊗ ν−
ℓ
2
−1ζ(ρ, ℓ) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν
−ℓ−1

2 ζ(ρ, ℓ+ 1) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ]; T )

+ν
1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν
1

2ρ⊗ L(ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
3

2ρ], [ν−ℓ+ 3

2ρ, ν−
3

2ρ]; T )

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+1δ(ρ, 2), . . . , ν−2δ(ρ, 2), ν−
1

2 δ(ρ, 3); σ).
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First, Lemma 3.5 2 tells us

π1 = L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ− 1

2ρ, ν−
3

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ]; T )

are components of π. The first comparison used in 3a (θ) gives s(p)π1 = τ ′1 + τ ′′′1 and s(p)π2 =
τ ′2 + τ ′′1 + τ ′′′2 . Further, Lemma 3.5 1 tells us that π has at least four components. Choose π3

and π4 such that s(p)π3 ≥ τ ′′′3 and s(p)π4 ≥ τ ′′′4 . The usual argument for identifying components
when that lowest exponent in the Langlands data is attached to a δ(ρ, 2) (cf. 3b (α), et. al.)
tells us

π3 = L(ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

π4 = L(ν−ℓδ(ρ, 2), . . . , ν−2δ(ρ, 2), ν−
1

2 δ(ρ, 3); σ).

Then, the second comparison from 3a (θ) gives s(p)π3 = τ ′′′3 . Finally, the usual s(p,p)/s(2p)

argument shows that τ ′′2 comes from the same component as τ ′′′4 , i.e., s(p)π4 = τ ′′2 + τ ′′′4 .

3a (δ): j = 0, ℓ > 1, k = ℓ+ 1

This subcase may be done the same way as 3a (θ).

3a (ǫ): j = k − ℓ− 1, k = 2ℓ

Here, π = ν−1ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ; σ) and

s(p)π = ν−ℓ− 1

2ρ⊗ ν−
1

2 ζ(ρ, 2ℓ− 1) ⋊ ζ(ρ, ℓ; σ) + ν−ℓ+ 3

2ρ⊗ ν−
3

2 ζ(ρ, 2ℓ− 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−1ζ(ρ, 2ℓ) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 3

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 5

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 3

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−ℓ+ 1

2ρ], [ν−ℓ+ 1

2ρ, ν−
3

2ρ], ν−ℓ+2δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

+ν−ℓ+ 3

2ρ⊗ L([ν−ℓ+ 5

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ))

+ν−ℓ+ 3

2ρ⊗ L(ν−ℓδ(ρ, 2), ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, [ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).
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By Lemma 3.5 2,

π1 = L([ν−ℓ− 1

2ρ, ν−
1

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([ν−ℓ− 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

are components of π. Since π1 and π2 are also both components of ν−
1

2 ζ(ρ, 2ℓ−1)⋊ζ(ρ, ℓ+1; σ)
(one of the comparisons used in 3a (θ)), we get that s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 and s(p)π2 = τ ′2 + τ ′′2 .
If we choose π3 such that s(p)π3 ≥ τ ′′′2 , the usual argument for identifying components when
the lowest exponent in the Langlands data is attached to a δ(ρ, 2) tells us (cf. 3b (α), et. al.)

π3 = L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], ν−ℓδ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν−
1

2ρ; σ)).

Again, as in 3a (θ), π3 is also a component of ν−
1

2 ζ(ρ, 2ℓ + 1) ⋊ ζ(ρ, ℓ − 1; σ), so we get
s(p)π3 = τ ′′3 + τ ′′′3 .

This leaves a fourth component, with s(p)π4 = τ ′′4 . We use the same basic idea to identify
π4–whose lowest exponent in its Langlands data is attached to a δ(ρ, 3)–as we would if the
lowest exponent were attached to a δ(ρ, 2). The only difference is that we have to use s(3p)

instead of s(2p). In particular,

s(p,p)π4 = ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

+ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 5

2ρ⊗ L(. . . )
⇓

s(p,p,p)π4 ≥ ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 1

2ρ⊗ ν−ℓ− 1

2ρ⊗ L(ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)
⇓

s(3p)π4 ≥ ν−ℓ+ 1

2 δ(ρ, 3) ⊗ L(ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ)

and this is the only term in s(3p)π4 with this central character. Therefore, by Lemma 3.2 and
Frobenius reciprocity,

π4 →֒ ν−ℓ+ 1

2 δ(ρ, 3) ⋊ L(ν−ℓ+ 3

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ).

The uniqueness of Langlands subrepresentations gives

π4 = L(ν−ℓ+ 1

2 δ(ρ, 3), . . . , ν−
1

2 δ(ρ, 3); σ).

This finishes 3a (ǫ).

3a (ζ): j = k − ℓ− 1 > 0, k < 2ℓ

The proof for this subcase parallels that for 3a (γ).

3a (η): j = ℓ− 1, j 6= k − ℓ− 1

The proof for this subcase parallels that for 3a (θ).

We now return to case 1.

1 (γ): −ℓ− k
2
< α < −ℓ+ k

2
− 1
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Here,

s(p)π = να+−k+1

2 ρ⊗ να+ 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−α+−k+1

2 ρ⊗ να− 1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ναζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= να+−k+1

2 ρ⊗ L([να+−k+3

2 ρ, να+ k−1

2 ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+να+−k+1

2 ρ⊗ L([να+−k+3

2 ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), . . . , να+ k
2 δ(ρ, 2), [να+ k+3

2 ρ, ν−
1

2ρ]; σ)

+ν−α+−k+1

2 ρ⊗ L([να+−k+1

2 ρ, να+ k−3

2 ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+ν−α+−k+1

2 ρ⊗ L([να+−k+1

2 ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2),

. . . , να+ k
2
−1δ(ρ, 2), [να+ k+1

2 ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓ− 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([να+−k+1

2 ρ, ν−ℓ− 1

2ρ], ν−ℓ+1δ(ρ, 2), . . . , να+ k
2 δ(ρ, 2), [να+ k+3

2 ρ, ν−
1

2ρ]; σ)

First, by Lemma 3.5 3 (applied to the να+−k+1

2 ρ–terms), we get π = π1 + π2 with

π1 = L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

π2 = L([να+−k+1

2 ρ, ν−ℓ− 3

2ρ], ν−ℓδ(ρ, 2), . . . , να+ k
2 δ(ρ, 2), [να+ k+3

2 ρ, ν−
1

2ρ]; σ).

Further, since

π1 = ν
α
2
−

ℓ
2
+ k

4 ζ(ρ, ℓ+ α+
k

2
) ⋊ ζ(ρ,−α +

k

2
; σ)

(irreducible), we have s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 . Necessarily, s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2 .

1 (α): α = −ℓ− k
2

In this case, the same argument as in 1 (γ) works. Note that here we have π1 = ζ(ρ, k+ℓ; σ),
which gives s(p)π1 = τ ′1.

1 (β): α = −ℓ + k
2
− 1
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Here

s(p)π = ν−ℓ− 1

2ρ⊗ ν−ℓ+ k
2
−

1

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+νℓ−k+ 3

2ρ⊗ ν−ℓ+ k
2
−

3

2 ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓ+ 1

2ρ⊗ ν−ℓ+ k
2
−1ζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ)

= ν−ℓ− 1

2ρ⊗ L([ν−ℓ+ 1

2ρ, ν−ℓ+k− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+νℓ−k+ 3

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−ℓ+k− 5

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ)

+νℓ−k+ 3

2ρ⊗ L(ν−ℓδ(ρ, 2), . . . , ν−ℓ+k−2δ(ρ, 2), [ν−ℓ+k− 1

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L([ν−ℓ− 1

2ρ, ν−ℓ+k− 3

2ρ], [ν−ℓ+ 3

2ρ, ν−
1

2ρ]; σ)

+ν−ℓ+ 1

2ρ⊗ L(ν−ℓ− 1

2ρ, ν−ℓ+1δ(ρ, 2), . . . , ν−ℓ+k−1δ(ρ, 2), [ν−ℓ+k+ 1

2ρ, ν−
1

2ρ]; σ)

By Lemma 3.3, π1 = L([ν−ℓ− 1

2ρ, ν−ℓ+k− 3

2ρ], [ν−ℓ+ 1

2ρ, ν−
1

2ρ]; σ) and s(p)π1 ≥ τ ′ + τ ′′′1 . The
usual s(p,p)/s(2p) argument tells us s(p)π1 ≥ τ ′ + τ ′′1 + τ ′′′1 so s(p)π1 = τ ′ + τ ′′1 + τ ′′′1 .

The usual s(p,p)/s(2p) argument tells us that s(p)π2 = τ ′′2 + τ ′′′2 . The identification of π2

follows the usual argument for a component which has the lowest exponent in its Langlands
data attached to a δ(ρ, 2).

This finishes the proof of the theorem. �

We now give the counterpart for the case where ρ satisfies (C1).

Theorem 6.2. Let σ be an irreducible supercuspidal representation of Sm and suppose ρ is a
representation of GLp(F ) satisfying (C1). Let π = ναζ(ρ, k)⋊ζ(ρ, ℓ; σ) with α ∈ R. Recall that
π is reducible if and only if α ∈ {±(ℓ+ k+1

2
),±(ℓ+ k+1

2
−1), . . . ,±(ℓ+ −k+3

2
)}∪{{−k+1

2
, −k+1

2
+

1, . . . , k−1
2
} \ {0 if k = 2ℓ + 1}}. Let S1 denote the first set; S2 the second. Suppose π is

reducible. By Lemma 2.9, without loss of generality, we may restrict our attention to α ≤ 0.
Note: T is described in Proposition 3.10.

(1) α ∈ S1, α 6∈ S2

(a) α < −k−1
2

π = π1 + π2 with

π1 = L([να+−k+1

2 ρ, να+ k−1

2 ρ], [ν−ℓρ, ν−1ρ]; σ)

π2 = L([να+−k+1

2 ρ, ν−ℓ−2ρ], ν−ℓ− 1

2 δ(ρ, 2),

ν−ℓ+ 1

2 δ(ρ, 2), . . . , να+ k
2 δ(ρ, 2), [να+ k+3

2 ρ, ν−1ρ]; σ)

(b) α = −k−1
2
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π = π1 + π2 with

π1 = L([ν−kρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; σ)

π2 = L([ν−kρ, ν−ℓ−2ρ], ν−ℓ− 1

2 δ(ρ, 2), ν−ℓ+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); δ(ν−1ρ; σ))

(2) α ∈ S2, α 6∈ S1

Write α = −k+1
2

+ j, 0 ≤ j ≤ k−1
2

.
(a) j = k − ℓ− 1 (j < k − j − 1 = ℓ)

π = π1 + π2 with

π1 = L([ν−ℓρ, ν−1ρ], [ν−k+ℓ+1ρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−ℓρ, ν−1ρ], [ν−ℓρ, ν−k+ℓ−1ρ], ν−k+ℓ+ 1

2 δ(ρ, 2),

ν−k+ℓ+ 3

2 δ(ρ, 2), . . . ν−
1

2 δ(ρ, 2); σ)

(b) k − ℓ− 1 < j < k−1
2

(j < k − j − 1 < ℓ)
π = π1 + π2 + π3 with

π1 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−ℓρ, ν−j−2ρ], [ν−k+j+1ρ, ν−1ρ], ν−j− 1

2 δ(ρ, 2),

ν−j+ 1

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ)

π3 = L([ν−ℓρ, ν−k+j−1ρ], [ν−jρ, ν−1ρ], ν−k+j+ 1

2 δ(ρ, 2),

ν−k+j+ 3

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ)

(c) j = k−1
2

, k odd (j = k − j − 1 < ℓ)
π = π1 + π2 with

π1 = L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+1

2 ρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−ℓρ, ν
−k−3

2 ρ], [ν
−k+1

2 ρ, ν−1ρ], ν−
k
2 δ(ρ, 2), ν−

k
2
+1δ(ρ, 2), . . . , ν−

1

2 δ(ρ, 2); σ)

(3) α ∈ S1 ∩ S2

Write α = −k+1
2

+ j, 0 ≤ j ≤ k−1
2

.
(a) j ≤ ℓ− 1 (j < ℓ < k − j − 1)
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π = π1 + π2 + π3 + π4 with

π1 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−k+j+1ρ, ν−j−2ρ], [ν−ℓρ, ν−1ρ], ν−j− 1

2 δ(ρ, 2),

ν−j+ 1

2 δ(ρ, 2), . . . , ν−
1

2 δ(ρ, 2); σ)

π3 = L([ν−k+j+1ρ, ν−ℓ−2ρ], [ν−jρ, ν−1ρ], ν−ℓ− 1

2 δ(ρ, 2),

ν−ℓ+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )

π4 = L([ν−k+j+1ρ, ν−ℓ−2ρ], ν−ℓ− 1

2 δ(ρ, 2), ν−ℓ+ 1

2 δ(ρ, 2), . . . , ν−j− 5

2 δ(ρ, 2),
ν−j−1δ(ρ, 3), ν−jδ(ρ, 3), . . . , ν−1δ(ρ, 3); δ(ν−1ρ; σ))

(b) j = ℓ (j = ℓ < k − j − 1)
π = π1 + π2 with

π1 = L([ν−k+ℓ+1ρ, ν−1ρ], [ν−ℓρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−k+ℓ+1ρ, ν−ℓ−2ρ], [ν−ℓρ, ν−1ρ], ν−ℓ− 1

2 δ(ρ, 2),

ν−ℓ+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )

(c) ℓ < j < k−1
2

(ℓ < j < k − j − 1)
π = π1 + π2 + π3 with

π1 = L([ν−k+j+1ρ, ν−1ρ], [ν−jρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν−k+j+1ρ, ν−ℓ−2ρ], [ν−jρ, ν−1ρ], ν−ℓ− 1

2 δ(ρ, 2),

ν−ℓ+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )

π3 = L([ν−k+j+1ρ, ν−j−2ρ], [ν−ℓρ, ν−1ρ], ν−j− 1

2 δ(ρ, 2),

ν−j+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )

(d) j = k−1
2

, k odd (ℓ < j = k − j − 1)
π = π1 + π2 with

π1 = L([ν
−k+1

2 ρ, ν−1ρ], [ν
−k+1

2 ρ, ν−1ρ], [ν−ℓρ, ν−1ρ]; ρ⋊ σ)

π2 = L([ν
−k+1

2 ρ, ν−ℓ−2ρ], [ν
−k+1

2 ρ, ν−1ρ], ν−ℓ− 1

2 δ(ρ, 2),

ν−ℓ+ 1

2 δ(ρ, 2), . . . , ν−
3

2 δ(ρ, 2); T )

The proof of the theorem also gives us s(p)πi for each component πi of π (summarized in the
tables); for reasons of space, we do not write them out here. (Note that the tables only give
the Jacquet modules for k ≥ 2, ℓ ≥ 1; for k = 1 or ℓ = 0, see section 3.)
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Proof. The proof is basically the same as that for Theorem 6.1, so we will not go into any
detail. However, we do include the counterpart to the tables of Jacquet modules used in the

proof. Note that for π = ν
−k+1

2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), we have

s(p)π = ν−k+j+1ρ⊗ ν−
k
2
+j+1ζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−jρ⊗ ν−
k
2
+jζ(ρ, k − 1) ⋊ ζ(ρ, ℓ; σ)

+ν−ℓρ⊗ ν
−k+1

2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ− 1; σ).
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Case (for π) for τ ′ for τ ′′ for τ ′′′ components
1a.

(α) α = −ℓ+ −k−1
2

1a irr irr s(p)π1 = τ ′1
s(p)π2 = τ ′2 + τ ′′ + τ ′′′

(β) α = −ℓ + k−3
2

irr 1a 1a s(p)π1 = τ ′ + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

(γ) −ℓ + −k−1
2

< α, 1a 1a 1a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

α < −ℓ+ k−3
2

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

1b.
(α) ℓ = k − 1 irr 1a 1b s(p)π1 = τ ′ + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

(β) ℓ < k − 1 1b 1a 1b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

2a.
(α) k = 2, ℓ = 1 2c irr 3b s(p)π1 = τ ′1 + τ ′′′1 + τ ′′′2

s(p)π2 = τ ′2 + τ ′′

(β) k = ℓ+ 1, ℓ > 1 2b irr 3a s(p)π1 = τ ′1 + τ ′′′1 + τ ′′′3

s(p)π2 = τ ′2 + τ ′3 + τ ′′ + τ ′′′2 + τ ′′′4

(γ) k = 2ℓ, ℓ > 1 2c 2a 3b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′2

s(p)π2 = τ ′2 + τ ′′2
(δ) ℓ+ 1 < k < 2ℓ 2b 2a 3a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1 + τ ′′′3

s(p)π2 = τ ′2 + τ ′3 + τ ′′2 + τ ′′′2 + τ ′′′4

2b.
(α) j = 0, k = 2, ℓ = 2 2c irr 2a s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′′ + τ ′′′2

s(p)π3 = τ ′2
(β) j = 0, k = 2, ℓ > 2 2c irr 2b s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′′ + τ ′′′2

s(p)π3 = τ ′2 + τ ′′′3

(γ) j = 0, k = ℓ, ℓ > 2 2b irr 2a s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′ + τ ′′′2

s(p)π3 = τ ′3
(δ) j = 0, 2 < k < ℓ 2b irr 2b s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′ + τ ′′′2

s(p)π3 = τ ′3 + τ ′′′3

(ǫ) j = ℓ− 2, 2c 2b 2a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

k = 2ℓ− 2, ℓ > 2 s(p)π2 = τ ′′2 + τ ′′′2

s(p)π3 = τ ′2 + τ ′′3
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Case (for π) for τ ′ for τ ′′ for τ ′′′ components

(ζ) j = k
2
− 1, 2 < k < 2ℓ− 2 2c 2b 2b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

s(p)π3 = τ ′2 + τ ′′3 + τ ′′′3

(η) j = k − ℓ, ℓ < k < 2ℓ− 2 2b 2b 2a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′3
(θ) 0 < j < k

2
− 1, j > k − ℓ 2b 2b 2b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′3 + τ ′′′3

2c. (n.b. τ ′ = τ ′′)
(α) k = 2ℓ− 1 2b 2b irr s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′

s(p)π2 = τ ′3 + τ ′′2 + τ ′′3
(β) k < 2ℓ− 1 2b 2b 2c s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′3 + τ ′′2 + τ ′′3 + τ ′′′2

3a.
(α) j = 0, ℓ = 1, k = 3 2a 1b 3b s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1
s(p)π3 = τ ′′′2

s(p)π4 = τ ′′2
(β) j = 0, ℓ = 1, k > 3 3a 1b 3b s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1
s(p)π3 = τ ′3 + τ ′′′2

s(p)π4 = τ ′4 + τ ′′2
(γ) j = 0, ℓ = k − 2, k > 3 2a 1b 3a s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1 + τ ′′′2

s(p)π3 = τ ′′′3

s(p)π4 = τ ′′2 + τ ′′′4

(δ) j = 0, 1 < ℓ < k − 2 3a 1b 3a s(p)π1 = τ ′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′1 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′′3

s(p)π4 = τ ′4 + τ ′′2 + τ ′′′4

(ǫ) j = ℓ− 1, k = 2ℓ+ 1, ℓ > 1 2a 3a 3b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2
s(p)π3 = τ ′′3 + τ ′′′2

s(p)π4 = τ ′′4
(ζ) j = k − ℓ− 2, 2a 3a 3a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

ℓ+ 2 < k < 2ℓ+ 1 s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′′3 + τ ′′′3

s(p)π4 = τ ′′4 + τ ′′′4
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Case (for π) for τ ′ for τ ′′ for τ ′′′ components

(η) j = ℓ− 1, 1 < ℓ < k−1
2

3a 3a 3b s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2
s(p)π3 = τ ′3 + τ ′′3 + τ ′′′2

s(p)π4 = τ ′4 + τ ′′4
(θ) 0 < j < ℓ− 1, 3a 3a 3a s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

j < k − ℓ− 2 s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′3 + τ ′′′3

s(p)π4 = τ ′4 + τ ′′4 + τ ′′′4

3b.
(α) k = 2ℓ+ 2 irr 3a 3c s(p)π1 = τ ′ + τ ′′1 + τ ′′2 + τ ′′′1

s(p)π2 = τ ′′3 + τ ′′4 + τ ′′′2 + τ ′′′3

(β) k > 2ℓ+ 2 3b 3a 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′2 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′3 + τ ′′4 + τ ′′′2 + τ ′′′3

3c.
(α) j = ℓ+ 1, k = 2ℓ+ 4 3d 3b 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′′2

s(p)π3 = τ ′′2 + τ ′′′3

(β) j = ℓ+ 1, k > 2ℓ+ 4 3c 3b 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′2 + τ ′′′3

(γ) j = k
2
− 1, k > 2ℓ+ 4 3d 3c 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′′3 + τ ′′′3

(δ) ℓ+ 1 < j < k
2
− 1 3c 3c 3c s(p)π1 = τ ′1 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′′2

s(p)π3 = τ ′3 + τ ′′3 + τ ′′′3

3d. (n.b. τ ′ = τ ′′)
(α) k = 2ℓ+ 3 3b 3b 3d s(p)π1 = τ ′1 + τ ′2 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′′2 + τ ′′′2

(β) k > 2ℓ+ 3 3c 3c 3d s(p)π1 = τ ′1 + τ ′3 + τ ′′1 + τ ′′′1

s(p)π2 = τ ′2 + τ ′′2 + τ ′′3 + τ ′′′2

7. Composition series

In this section, we give the composition series for π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ). If ρ satisfies
(C1/2) and ρ0

∼= ρ, the components of π are given in Theorem 6.1; the composition series
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are described in Theorem 7.1 below. Theorem 7.1 also gives composition series when ρ0 6∼= ρ
but ρ0 satisfies (C1/2) (i.e., the representations whose components are described in Corollary
5.7). Similarly, if ρ satisfies (C1) and ρ0

∼= ρ, the components are given in Theorem 6.2; the
composition series in Theorem 7.2 below. Theorem 7.2 also gives the composition series when
ρ0 6∼= ρ has ρ0 satisfying (C0) (i.e., the representations whose components are described in
Corollary 5.8). The main tool is Frobenius reciprocity, using a comparison between different
generalized degenerate principal series which have common components (cf. proof of 3a in
Theorem 6.1) to isolate key Jacquet module components.

Theorem 7.1. Let σ be an irreducible supercuspidal representation of Sm and suppose that
ρ is a representation of GLp(F ) satisfying (C1/2). Let π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), α ≤ 0, be
reducible. The components of π are described in Theorem 6.1. In the notation of that theorem,
we have the following:

case 1: π1 is the unique irreducible subrepresentation; π2 the unique
irreducible quotient.

case 2a: π1 is the unique irreducible subrepresentation; π2 the unique
irreducible quotient.

case 2b(i): π1 is the unique irreducible subrepresentation; π2 the unique
irreducible quotient.

case 2b(ii): π1 ⊕ π3 is a subrepresentation; π2 the unique irreducible quotient.
case 2c: π ∼= π1 ⊕ π2.
case 3a: π1 is the unique irreducible subrepresentation; π4 the unique

irreducible quotient. π2 ⊕ π3 is a subquotient.
case 3b: π1 is the unique irreducible subrepresentation; π2 the unique

irreducible quotient.
case 3c: π1 ⊕ π2 is a subrepresentation; π3 the unique irreducible quotient.
case 3d: π ∼= π1 ⊕ π2

Suppose ρ0 6∼= ρ is a representation of GLp0
(F ) which also satisfies (C1/2). Let π =

ναζ(ρ0, k)⋊ζ(ρ, ℓ; σ), α ≤ 0, be reducible. Then, the components of π are described in Corollary
5.7. In the notation of that corollary, we have the following:

case 1: π1 is the unique irreducible subrepresentation; π2 the unique irreducible
quotient.

case 2: π1 ⊕ π2 is a subrepresentation; π3 the unique irreducible quotient.
case 3: π ∼= π1 ⊕ π2.

For α > 0, the order of composition series is reversed from that of −α.

Proof. We start with the last claim first–in particular, we begin by relating composition series
for ν−αζ(ρ0, k)⋊ζ(ρ, ℓ; σ) to composition series for ναζ(ρ0, k)⋊ζ(ρ, ℓ; σ). For example, suppose

π = ν−
k
2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) 0 ≤ j < k

2
, decomposes according to case 3a. Then π1 is

the unique irreducible subrepresentation, π4 the unique irreducible quotient, and π2 ⊕ π3 a

subquotient. We claim that ν
k
2
−jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) has π1 as unique irreducible quotient, π4

as unique irreducible subrepresentation, and π2 ⊕ π3 as a subquotient. To see this, consider

τ = ν−
k
2
+jζ(ρ, k)⋊ζ(ρ, ℓ; σ̃). Then τ also decomposes according to case 3a. So, τ1 is the unique
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irreducible subrepresentation, τ4 the unique irreducible quotient, and τ2 ⊕ τ3 a subquotient.

Now, by Lemma 2.9, τi = π̃i for i = 1, 2, 3, 4. Since τ̃ = ν
k
2
−jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), taking

contragredients gives the composition series claimed.
We address the case ρ0

∼= ρ first. Note that cases 2c and 3d are clear.
We start with the most difficult part of the proof: cases 2b, 3a, and 3c. We do these together

to make use of the following observation (which was also used in the proof for 3a in Theorem

6.1): if π = ν−
k
2
+jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) is case 3a, then π′ = ν

−ℓ+j

2 ζ(ρ, ℓ+ j) ⋊ ζ(ρ, k − j; σ) and

π′′ = ν
−k+j+ℓ

2 ζ(ρ, k + ℓ − j) ⋊ ζ(ρ, j; σ) (cases 2b and 3c, respectively) have π1 = π′

1 = π′′

1 ,
π2 = π′

2, and π3 = π′′

3 . Further, every representation from case 2b (resp. case 3c) arises as such
a π′ (resp. π′′).

We start by addressing π′. For the time being, let us assume π′ is case 2b(ii). We begin by

showing that π2 is the unique irreducible quotient. Recall that π̃′ = ν
ℓ−j

2 ζ(ρ, ℓ+j)⋊ζ(ρ, k−j; σ̃),

π̃ = ν
k
2
−jζ(ρ, k) ⋊ ζ(ρ, ℓ; σ̃), and π̃′′ = ν

k−j−ℓ

2 ζ(ρ, k + ℓ− j) ⋊ ζ(ρ, j; σ̃). Now, observe that

(1) s((ℓ+j)p)π̃′ contains ν
ℓ−j

2 ζ(ρ, ℓ+ j) ⊗ ζ(ρ, k − j; σ̃) with multiplicity one.

(2) s((ℓ+j)p)π̃ contains ν
ℓ−j

2 ζ(ρ, ℓ+ j) ⊗ ζ(ρ, k − j; σ̃) with multiplicity one.

(3) s((ℓ+j)p)π̃′′ does not contain ν
ℓ−j

2 ζ(ρ, ℓ+ j) ⊗ ζ(ρ, k − j; σ̃).

(To see this, consider sminπ̃′, sminπ̃, sminπ̃′′; cf. Theorem 2.3 et seq.) Now, (3) implies that

s((ℓ+j)p)π̃
′

1 does not contain ν
ℓ−j
2 ζ(ρ, ℓ+ j) ⊗ ζ(ρ, k − j; σ̃). Next, observe that since

π′ →֒ ν
−ℓ+j

2 ζ(ρ, ℓ+ j) ⋊ (ν
−k+j−ℓ

2 ζ(ρ, k − j − ℓ) ⋊ ζ(ρ, ℓ; σ))

π →֒ (ν
−k+j−ℓ

2 ζ(ρ, k − j − ℓ) × ν
−ℓ+j

2 ζ(ρ, ℓ+ j)) ⋊ ζ(ρ, ℓ; σ),

we have π̃, π̃′ < ν
ℓ−j

2 ζ(ρ, ℓ+ j)×ν
k−j+ℓ

2 ζ(ρ, k− j− ℓ)⋊ ζ(ρ, ℓ; σ̃). Since s((ℓ+j)p)ν
ℓ−j

2 ζ(ρ, ℓ+ j)×

ν
k−j+ℓ

2 ζ(ρ, k−j−ℓ)⋊ζ(ρ, ℓ; σ̃) contains ν
ℓ−j

2 ζ(ρ, ℓ+j)⋊ζ(ρ, k−j; σ̃) with multiplicity one (again,

cf. Theorem 2.3 et seq.), we see that the copies of ν
ℓ−j

2 ζ(ρ, ℓ+j)⊗ζ(ρ, k−j; σ̃) in s((ℓ+j)p)π̃′ and

s((ℓ+j)p)π̃ must come from a common component of π̃ and π̃′, necessarily π̃2 = π̃′

2. By Frobenius

reciprocity, an irreducible subrepresentation of π̃′ must contain ν
ℓ−j

2 ζ(ρ, ℓ+ j) ⊗ ζ(ρ, k − j; σ̃)

in its s((ℓ+j)p). Therefore, π̃′

2 is the only possible irreducible subrepresentation of π̃′, making
π′

2 the unique irreducible quotient of π′.
Next, we turn to the task of showing that π′

1 ⊕ π′

3 is a subrepresentation of π′. We work

inductively, so we begin by assuming ℓ = j + 1. Then, π′ = ν−
1

2 ζ(ρ, 2j + 1) ⋊ ζ(ρ, k − j; σ).
Observe that

π′ →֒ (ν−j− 1

2ρ× ζ(ρ, 2j)) ⋊ ζ(ρ, k − j; σ)

∼= ν−j− 1

2ρ⋊ (ζ(ρ, 2j) ⋊ ζ(ρ, k − j; σ))

which admits both

ν−j− 1

2ρ⋊ L([ν−j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ, ν−
1

2ρ]; σ)

and
ν−j− 1

2ρ⋊ L([ν−k+j+ 1

2ρ, ν−j− 3

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )
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as subrepresentations (noting that ζ(ρ, 2j) ⋊ ζ(ρ, k − j; σ) is case 2c). The usual argument
using Lemma 3.2 and Frobenius reciprocity tells us that π′

1 is a subrepresentation of the first
and π′

3 is a subrepresentation of the second (n.b. Theorem 6.1 gives us s(p)π
′

1, s(p)π
′

3; see 2b(ii)
(α), (β), (ǫ), (ζ) in the table). Further, a µ∗ calculation tells us that

ν−j− 1

2ρ⊗ L([ν−j+ 1

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ, ν−
1

2ρ]; σ)

and
ν−j− 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−j− 3

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ], ν−jδ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

each appear in s(p)ν
−j− 1

2ρ × ζ(ρ, 2j) ⋊ ζ(ρ, k − j; σ) with multiplicity one. Therefore π′

1

and π′

3 each appear in ν−j− 1

2ρ × ζ(ρ, 2j) ⋊ ζ(ρ, k − j; σ) exactly once. Since π′, π′

1 ⊕ π′

3

are subrepresentations of ν−j− 1

2ρ × ζ(ρ, 2j) ⋊ ζ(ρ, k − j; σ) and π′

1, π
′

3 appear only once in

ν−j− 1

2ρ× ζ(ρ, 2j) ⋊ ζ(ρ, k − j; σ), we see that π′ must contain π′

1 ⊕ π′

3 as a subrepresentation,
as needed. (To see this, just consider the subspace of the larger representation formed by
image(π′) + (Vπ′

1
⊕ Vπ′

3
).)

Next, suppose ℓ > j + 1. Observe that

π′ →֒ ν−ℓ+ 1

2ρ⋊ (ν
−ℓ+j+1

2 ζ(ρ, ℓ+ j − 1) ⋊ ζ(ρ, k − j; σ)),

with ν
−ℓ+j+1

2 ζ(ρ, ℓ + j − 1) ⋊ ζ(ρ, k − j; σ) a case 2b(ii) representation. By the inductive

hypothesis and exactness, we see that ν−ℓ+ 1

2ρ× ν
−ℓ+j+1

2 ζ(ρ, ℓ+ j − 1) ⋊ ζ(ρ, k − j; σ) has

ν−ℓ+ 1

2ρ⋊ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ, ν−
1

2ρ]; σ)

and

ν−ℓ+ 1

2ρ⋊ L([ν−k+j+ 1

2ρ, ν−ℓ− 1

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

as subrepresentations. Again, the usual argument using Frobenius reciprocity and Lemma 3.2
tells us that π′

1 is a subrepresentation of the first and π′

3 a subrepresentation of the second.
Further, a µ∗ calculation tells us that

ν−ℓ+ 1

2ρ⊗ L([ν−ℓ+ 3

2ρ, ν−
1

2ρ], [ν−j+ 1

2ρ, ν−
1

2ρ], [ν−k+j+ 1

2ρ, ν−
1

2ρ]; σ)

and

ν−ℓ+ 1

2ρ⊗ L([ν−k+j+ 1

2ρ, ν−ℓ− 1

2ρ], [ν−j+ 1

2ρ, ν−
3

2ρ], ν−ℓ+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); T )

each appear in s(p)ν
−ℓ+ 1

2ρ× ν
−ℓ+j+1

2 ζ(ρ, ℓ+ j− 1) ⋊ ζ(ρ, k− j; σ) with multiplicity one. There-

fore, π′

1 and π′

3 each appear only once in ν−ℓ+ 1

2ρ × ν
−ℓ+j+1

2 ζ(ρ, ℓ + j − 1) ⋊ ζ(ρ, k − j; σ); as

subrepresentations. Since π′ →֒ ν−ℓ+ 1

2ρ × ν
−ℓ+j+1

2 ζ(ρ, ℓ + j − 1) ⋊ ζ(ρ, k − j; σ), we again get
that π′

1 ⊕π′

3 is a subrepresentation of π′, as required. This finishes up the analysis for π′ when
π′ is 2b(ii).

When π′ is 2b(i), things are much easier. The same proof shows that π′

2 is the unique
irreducible quotient. This forces π′

1 to be the unique irreducible subrepresentation.
The argument for π′′ (case 3c) is the same as that for π′ above (when π′ is 2b(ii)).
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We now consider π. The fact that π4 is the unique irreducible quotient is similar to the
proof that π′

2 is the unique irreducible quotient of π′, only easier. Here, we have

(1) s(kp)π̃′ does not contain ν
k
2
−jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ̃).

(2) s(kp)π̃ contains ν
k
2
−jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ̃) with multiplicity one.

(3) s(kp)π̃′′ does not contain ν
k
2
−jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ̃).

Therefore, ν
k
2
−jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ̃) comes from π̃4. By Frobenius reciprocity, this forces π̃4 to

be the unique irreducible subrepresentation of π̃, hence π4 is the unique irreducible quotient
of π.

Next, we show that π1 is the unique irreducible subrepresentation. We do this by showing
that none of the other components can appear as subrepresentations. First, observe that

(1) s(kp)π
′ contains ν−

k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) with

{

multiplicity 2 if j = 0
multiplicity 3 if j > 0

(2) s(kp)π contains ν−
k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) with

{

multiplicity 2 if j = 0
multiplicity 3 if j > 0

(3) s(kp)π
′′ contains ν−

k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) with multiplicity 2.

Further, as before, we have π′, π < π∗, with

π∗ = ν
−k+j−ℓ

2 ζ(ρ, k − j − ℓ) × ν
−ℓ+j

2 ζ(ρ, ℓ+ j) ⋊ ζ(ρ, ℓ; σ)

and π, π′′ < π∗∗, with

π∗∗ = ν−
k
2
+jζ(ρ, k) × ν

−ℓ−j
2 ζ(ρ, ℓ− j) ⋊ ζ(ρ, j; σ).

We also observe that

(4) s(kp)π
∗ contains ν−

k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) with

{

multiplicity 2 if j = 0
multiplicity 3 if j > 0

(5) s(kp)π
∗∗ contains ν−

k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) with

{

multiplicity 2 if j = 0
multiplicity 3 if j > 0

Now, (1), (2), and (4) imply that π1 + π2 contain all the copies of ν−
k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) in

s(kp)π. Then, (2), (3), and (5) imply that s(kp)π1 contains two copies of ν−
k
2
+jζ(ρ, k)⊗ζ(ρ, ℓ; σ).

In short, we have

s(kp)π1 contains ν−
k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) with multiplicity 2

s(kp)π2 contains ν−
k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ) with

{

multiplicity 0 if j = 0
multiplicity 1 if j > 0

s(kp)π3 and s(kp)π4 do not contain ν−
k
2
+jζ(ρ, k) ⊗ ζ(ρ, ℓ; σ).

Therefore, by Frobenius reciprocity, the only other possible irreducible subrepresentation of π
is π2.

Next, we show that π2 is also not a subrepresentation of π. First, observe that

π →֒ ν−
k
2
+jζ(ρ, k) × ν−

ℓ
2 ζ(ρ, ℓ) ⋊ σ.

Therefore, by Frobenius reciprocity, if π0 is an irreducible subrepresentation of π, we have

sGLπ0 ≥ ν−
k
2
+jζ(ρ, k) × ν−

ℓ
2 ζ(ρ, ℓ) ⊗ σ
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(note that this is irreducible). By taking Jacquet modules in stages, this means sminπ0 contains
terms of the form

ν−k+j+ 1

2ρ⊗ ν−k+j+ 3

2ρ⊗ . . .⊗ ν−ℓ− 1

2ρ⊗ (ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ) ⊗ (ν−ℓ+ 3

2ρ⊗ ν−ℓ+ 3

2ρ) ⊗ . . .

. . .⊗ (ν−j− 1

2ρ⊗ ν−j− 1

2ρ) ⊗ . . . .

On the other hand, we claim that sminπ2 does not have any terms of this form. Suppose this
were not the case. Then, we would have

s(p,p,...,p)π2 ≥ ν−k+j+ 1

2ρ⊗ . . .⊗ ν−ℓ− 1

2ρ⊗ (ν−ℓ+ 1

2ρ⊗ ν−ℓ+ 1

2ρ)⊗ . . .⊗ (ν−j− 1

2ρ⊗ ν−j− 1

2ρ)⊗ L(∆)

for some Langlands data ∆. By Lemma 3.2 and Frobenius reciprocity,

π2 →֒ ν−k+j+ 1

2ρ× . . .× ν−ℓ− 1

2ρ× (ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ) × . . .× (ν−j− 1

2ρ× ν−j− 1

2ρ) ⋊ L(∆)

for some such ∆. Note that sminL(∆) contains no terms of the form ναρ with α < −j + 1
2
.

Therefore, ν−k+j+ 1

2ρ× . . .× ν−ℓ− 1

2ρ× (ν−ℓ+ 1

2ρ× ν−ℓ+ 1

2ρ)× . . .× (ν−j− 1

2ρ× ν−j− 1

2ρ)⋊L(∆) has

L([ν−k+j+ 1

2ρ, ν−j− 1

2ρ], [ν−ℓ+ 1

2ρ, ν−j− 1

2ρ],∆) as its unique irreducible subrepresentation, so that

π2 = L([ν−k+j+ 1

2ρ, ν−j− 1

2ρ], [ν−ℓ+ 1

2ρ, ν−j− 1

2ρ],∆),

a contradiction. Therefore, sminπ2 has no terms of the form ν−k+j+ 1

2ρ⊗. . .⊗ν−ℓ− 1

2ρ⊗(ν−ℓ+ 1

2ρ⊗

ν−ℓ+ 1

2ρ)⊗ . . .⊗ (ν−j− 1

2ρ⊗ν−j− 1

2ρ)⊗ . . . , hence cannot be a subrepresentation of π. This leaves
π1 as the unique irreducible subrepresentation of π.

Let πres denote the restriction of π to the maximal proper invariant subspace, so that
πres = π1 + π2 + π3. We show that π2 ⊕ π3 is a quotient of πres. First, we claim that

ν
ℓ−j

2 ζ(ρ, ℓ+j)⊗ζ(ρ, k−j; σ) is the only term in s((ℓ+j)p)π
′ with this central character; from above

it is part of s((ℓ+j)p)π2. Further, we claim that no term in s((ℓ+j)p)π
′′ has this central character.

To see these claims, consider the description of sminπ
′ and sminπ

′′ as shuffles. From this, one

can see that ν
ℓ−j

2 ζ(ρ, ℓ+j)⊗ζ(ρ, k−j; σ) and ν
−ℓ+j

2 ζ(ρ, ℓ+j)⊗ζ(ρ, k−j; σ) have the “highest”

central characters in s((ℓ+j)p)π
′, s((ℓ+j)p)π

′′, resp. Therefore, ν
ℓ−j

2 ζ(ρ, ℓ+ j)⊗ζ(ρ, k− j; σ) is the
only term in s((ℓ+j)p)πres with this central character. Therefore, by Lemma 3.2 and Frobenius
reciprocity,

HomG(πres, ν
ℓ−j

2 ζ(ρ, ℓ+ j) ⋊ ζ(ρ, k − j; σ)) 6= 0,

i.e., ν
ℓ−j

2 ζ(ρ, ℓ + j) ⋊ ζ(ρ, k − j; σ) has a subrepresentation which is a quotient of πres. Now,

ν
ℓ−j

2 ζ(ρ, ℓ+ j) ⋊ ζ(ρ, k− j; σ) has π2 as its unique irreducible subrepresentation (from above).

So, the quotient of πres must be either π2 or
π1

|
π2

(i.e., a representation having π2 as its unique

subrepresentation and π1 as its unique quotient). Since we can rule out the latter, we have π2 as

a quotient of πres. We apply a similar argument for π3. We claim ν
k−j−ℓ

2 ζ(ρ, k+ℓ−j)⊗ζ(ρ, j; σ)
is the only term in s((k+ℓ−j)p)π

′′ with this central character, and is part of s((k+ℓ−j)p)π3. Further,
nothing in s((k+ℓ−j)p)π

′ has this central character. Thus, as above,

HomG(πres, ν
k−j−ℓ

2 ζ(ρ, k + ℓ− j) ⋊ ζ(ρ, j; σ)) 6= 0.
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So, ν
k−j−ℓ

2 ζ(ρ, k+ℓ−j)⋊ζ(ρ, j; σ) has a subrepresentation which is a quotient of πres, necessarily

π3 or
π1

|
π3

. Again, we can rule out the latter to conclude that π3 is also a quotient of πres.

Therefore, π2 ⊕ π3 is a quotient of πres, as claimed.

We now consider case 2a. Let π = ν
k
2
−ℓζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) (case 2a) and π′ = ζ(ρ, 2ℓ) ⋊

ζ(ρ, k − ℓ; σ) (case 3d). We note that π′

1 = π1. We show that π2 is the unique irreducible
quotient of π using the same kind of argument as above. Observe that

(1) s(kp)π̃ contains νℓ− k
2 ζ(ρ, k) ⊗ ζ(ρ, ℓ; σ̃) with multiplicity one

(2) s(kp)π̃′ does not contain νℓ− k
2 ζ(ρ, k) ⊗ ζ(ρ, ℓ; σ̃).

Therefore, s(kp)π̃2 contains the copy of νℓ− k
2 ζ(ρ, k) ⊗ ζ(ρ, ℓ; σ̃). By Frobenius reciprocity, π̃2

is the unique irreducible subrepresentation of π̃, hence π2 is the unique irreducible quotient
of π. Therefore, π1 is the unique irreducible subrepresentation of π, finishing case 2a. A

similar argument works for case 3b (use π = νℓ− k
2 ζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) (case 3b) and π′ =

ζ(ρ, 2ℓ) ⋊ ζ(ρ, k − ℓ; σ) (case 2c)) and case 1 (use π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ) (case 1) and

π′ = ν−
ℓ
2
+ α

2
+ k

4 ζ(ρ, ℓ+α+ k
2
)⋊ ζ(ρ,−α+ k

2
; σ) (irreducible)). This finishes the last of the cases

for ρ0
∼= ρ.

Now, suppose ρ0 6∼= ρ. We focus on the case where π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ) has three
components (i.e., α = −k

2
+ j with 1 ≤ j < k

2
). Then, write

ν−
k
2
+jζ(ρ0, k) ⋊ σ = L(∆1) + L(∆2) + L(∆3),

with
L(∆1) = L([ν−k+j+ 1

2ρ0, ν
−

1

2ρ0], [ν
−j+ 1

2ρ0, ν
−

1

2ρ0]; σ)

L(∆2) = L([ν−k+j+ 1

2ρ0, ν
−

3

2ρ0], [ν
−j+ 1

2ρ0, ν
−

1

2ρ0]; δ(ν
−

1

2ρ0; σ))

L(∆3) = L([ν−k+j+ 1

2ρ0, ν
−j− 3

2ρ0], ν
−jδ(ρ0, 2), . . . , ν−1δ(ρ0, 2); δ(ν−

1

2ρ0; σ)).

Note that by the results already verified above, we have that L(∆1)⊕L(∆2) is a subrepresen-

tation of ν−
k
2
+jζ(ρ0, k) ⋊ σ; L(∆3) is the unique irreducible quotient.

We now turn our attention back to π. First, we claim that π3 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ],∆3)

is the unique irreducible quotient of π. We do this by showing π̃3 = L([ν−ℓ+ 1

2ρ, ν−
1

2ρ], ∆̃3)

(where ∆̃3 is defined by L(∆̃3) = L̃(∆3)) is the unique irreducible subrepresentation of π̃ =
ν−αζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ̃) (n.b. π reducible implies ρ̃0

∼= ρ0). Now, since L(∆3) is the unique

irreducible quotient of ναζ(ρ0, k)⋊σ, we have ν−αζ(ρ0, k)⊗ σ̃ ≤ s(kp0)L(∆̃3). Thus, by Lemma
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5.4,

s(ℓp)π̃3 ≥ ν−
ℓ
2 ζ(ρ, ℓ) ⊗ L(∆̃3)
⇓

s(ℓp,kp0)π̃3 ≥ ν−
ℓ
2 ζ(ρ, ℓ) ⊗ ν−αζ(ρ0, k) ⊗ σ̃

⇓

s(ℓp+kp0)π̃3 ≥ ν−
ℓ
2 ζ(ρ, ℓ) × ν−αζ(ρ0, k) ⊗ σ̃

⇓

s(kp0,ℓp)π̃3 ≥ ν−αζ(ρ0, k) ⊗ ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ̃.

Now, by µ∗ computations (or by considering smin), we have that ν−αζ(ρ0, k) ⊗ ν−
ℓ
2 ζ(ρ, ℓ) ⊗ σ̃

appears with multiplicity one in s(kp0,ℓp)π̃. Therefore, the above implies

s(kp0)π̃3 ≥ ν−αζ(ρ0, k) ⊗ ζ(ρ, ℓ; σ̃).

Since s(kp0)π̃3 contains the only copy of ν−αζ(ρ0, k)⊗ζ(ρ, ℓ; σ̃), it must be the unique irreducible
subrepresentation of π̃, as needed.

Finally, we show that π1 ⊕ π2 is a subrepresentation of π. Now, from above, L(∆1)⊕L(∆2)
is a subrepresentation of ναζ(ρ0, k) ⋊ σ. Next,

π →֒ ν−
ℓ
2 ζ(ρ, ℓ) ⋊ (ναζ(ρ0, k) ⋊ σ).

Then, by exactness and induction in stages, ν−
ℓ
2 ζ(ρ, ℓ) ⋊ L(∆1) and ν−

ℓ
2 ζ(ρ, ℓ) ⋊ L(∆2) are

subrepresentations of ν−
ℓ
2 ζ(ρ, ℓ)⋊ (ναζ(ρ0, k)⋊σ). Further, by Lemma 5.4, π1 →֒ ν−

ℓ
2 ζ(ρ, ℓ)⋊

L(∆1) and π2 →֒ ν−
ℓ
2 ζ(ρ, ℓ)⋊L(∆2). Now, we note that ν−

ℓ
2 ζ(ρ, ℓ)⊗ναζ(ρ0, k)⊗σ occurs with

multiplicity two in s(ℓp,kp0)ν
−

ℓ
2 ζ(ρ, ℓ) × ναζ(ρ0, k) ⋊ σ. Therefore, π1 and π2 appear only once

in ν−
ℓ
2 ζ(ρ, ℓ)× ναζ(ρ0, k) ⋊σ. Since the only copies of π1 and π2 in ν−

ℓ
2 ζ(ρ, ℓ)× ναζ(ρ0, k) ⋊σ

appear as subrepresentations, and π →֒ ν−
ℓ
2 ζ(ρ, ℓ) ⋊ ναζ(ρ0, k) ⋊ σ, we see that π1 ⊕ π2 is a

subrepresentation of π, as claimed.
The two-component cases are easy; their proofs are omitted. �

Theorem 7.2. Suppose that σ is an irreducible supercuspidal representation of Sm and ρ is a
representation of GLp(F ) satisfying (C1). Let π = ναζ(ρ, k) ⋊ ζ(ρ, ℓ; σ), α ≤ 0, be reducible.
The components of π are described in Theorem 6.2. In the notation of that theorem, we have
the following:
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case 1a: π1 is the unique irreducible subrepresentation; π2 the unique irreducible
quotient.

case 1b: π1 is the unique irreducible subrepresentation; π2 the unique irreducible
quotient.

case 2a: π1 is the unique irreducible subrepresentation; π2 the unique irreducible
quotient.

case 2b: π1 ⊕ π3 is a subrepresentation; π2 the unique irreducible quotient.
case 2c: π ∼= π1 ⊕ π2.
case 3a: π1 is the unique irreducible subrepresentation; π4 the unique irreducible

quotient. π2 ⊕ π3 is a subquotient.
case 3b: π1 is the unique irreducible subrepresentation; π2 the unique irreducible

quotient.
case 3c: π1 ⊕ π2 is a subrepresentation; π3 the unique irreducible quotient.
case 3d: π ∼= π1 ⊕ π2

Suppose ρ0 is a representation of GLp0
(F ) satisfying (C0). Let π = ναζ(ρ0, k) ⋊ ζ(ρ, ℓ; σ),

α ≤ 0, be reducible. Then, the components of π are described in Corollary 5.8. In the notation
of that corollary, we have the following:

case 1: π ∼= π1 ⊕ π2.
case 2: π1 ⊕ π2 is a subrepresentation; π3 the unique irreducible quotient.

For α > 0, the order of composition series is reversed from that for −α.

Proof. The proof for ρ0
∼= ρ is essentially the same as its counterpart in Theorem 7.1. We note

that if π = ν
−k+1

2
+jζ(ρ, k)⋊ζ(ρ, ℓ; σ) is case 3a, then π′ = ν

−ℓ+j

2 ζ(ρ, j+ℓ+1)⋊ζ(ρ, k−j−1; σ)

(case 2b) and π′′ = ν
−k+j+ℓ+1

2 ζ(ρ, k + ℓ − j) ⋊ ζ(ρ, j; σ) (case 3c) have π1 = π′

1 = π′′

1 , π2 = π′

2

and π3 = π′′

3 . Thus, the same sort of comparisons used in Theorem 7.1 may be used here.

Suppose ρ0 6∼= ρ. We start by considering the case ℓ = 0. In this case, π = ν
−k+1

2
+jζ(ρ0, k)⋊σ.

We claim that π1 ⊕ π2 is a subrepresentation of π and π3 is the unique irreducible quotient. If
j = 0, this follows from the same argument used in the proof of Proposition 3.11, case 2a. For
j ≥ 1, observe that

π →֒ ν−
k
2
+jζ(ρ0, k − 1) × νjρ0 ⋊ σ

∼= ν−
k
2
+jζ(ρ0, k − 1) × ν−jρ0 ⋊ σ

∼= ν−jρ0 × ν−
k
2
+jζ(ρ0, k − 1) ⋊ σ.

Proposition 3.11 tells us

s(p)πi = ν−k+j+1ρ0 ⊗ L([ν−k+j+2ρ0, ν
−1ρ0], [ν

−jρ0, ν
−1ρ0];Ti)

+ν−jρ0 ⊗ L([ν−k+j+1ρ0, ν
−1ρ0], [ν

−j+1ρ0, ν
−1ρ0];Ti)

for i = 1, 2. By induction (on j), we have that L([ν−k+j+1ρ0, ν
−1ρ0], [ν

−j+1ρ0, ν
−1ρ0];Ti) is a

subrepresentation of ν−
k
2
+jζ(ρ0, k−1)⋊σ. By Lemma 3.2 and Frobenius reciprocity, we know
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that
πi →֒ ν−jρ0 ⋊ L([ν−k+j+1ρ0, ν

−1ρ0], [ν
−j+1ρ0, ν

−1ρ0];Ti)

→֒ ν−jρ0 ⋊ (ν−
k
2
+jζ(ρ0, k − 1) ⋊ σ).

Now, πi, i = 1, 2, has multiplicity one in ν−jρ0×ν
−

k
2
+jζ(ρ0, k−1)⋊σ (in fact, πi has multiplicity

one in ν−k+j+1ρ0 × . . .× ν−j−1ρ0 × (ν−jρ0 × ν−jρ0) × . . .× (ν−1ρ0 × ν−1ρ0) × ρ0 ⋊ σ). Then,

by considering the subspace Vπ + Vπ1
+ Vπ2

in the space of ν−jρ0 × ν−
k
2
+jζ(ρ0, k − 1) ⋊ σ, we

see that π1 ⊕ π2 is a subrepresentation of π. That π3 is the unique irreducible quotient is then
easy–the usual Jacquet module argument shows that there is a unique irreducible quotient;
necessarily it is π3.

From this point, the argument now follows that of the ρ0 6∼= ρ case in Theorem 7.1. (In
Theorem 7.1, it was not necessary to do the case ℓ = 0 separately–since ρ0 satisfied (C1/2),
the ℓ = 0 results followed from the work already done.) �

References

[B-Z] I. Bernstein and A. Zelevinsky, Induced representations of reductive p-adic groups I, Ann. Sci. École
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