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Abstract

Let F' be a p-adic field and G = SOqy,41(F) (resp. Spa,(F')). A maximal parabolic subgroup
of G has the form P = MU, with Levi factor M =2 GLy(F) x SOzpm-g)+1(F) (resp. M =
GLi(F) % Spag-i)(F')). A one-dimensional representation of M has the form x o det; ®
triv(m—k), With x a one-dimensional representation of I'*; this may be extended trivially to get
a representation of P. We consider representations of the form IndIGD(X o dety, ® trivg,_y)) @ 1.
(More generally, we allow Zelevinsky segment representations for the inducing representation.)

In this paper, we study the reducibility of such representations. We determine the reducibil-
ity points, give Langlands data and Jacquet modules for each of the irreducible composition
factors, and describe how they are arranged into composition series. (Note: it turns out that

the composition series has length < 4.) Our approach is based on Jacquet module techniques
developed by M. Tadi¢.

key words and phrases: p-adic field, symplectic group, orthogonal group, induced represen-
tation, Jacquet module, Langlands classification.

viii



1. INTRODUCTION

Let S,, denote either Spy,(F) or SOy, 41(F), F p-adic, charF'=0. A degenerate principal
series for .S, is a representation obtained by inducing a one-dimensional representation from
a maximal parabolic subgroup in S,. In this paper, we determine the composition series for
such representations, specifying the components (irreducible composition factors) by giving
their Langlands data.

First, we note that a maximal parabolic subgroup of S,, has Levi factor M = G L,,,(F) X S —m;
n possible maximal parabolic subgroups (1 < m < n). So, a typical degenerate principal
series representation is m = igas(x o det,, @ tr,_m) (i denotes induction from the parabolic
subgroup with Levi factor M). Such representations have been studied in [Gus|, [Janl], [Jan2],
[K-RJ; also [Tad3]. [Gus] uses Hecke algebra methods to determine composition series in the
case where m = n and x is unramified (for Spy,(F)). [K-R] is the companion to [Gus],
using intertwining operators to determine composition series when m = n and y is ramified
(for Spa,(F')). [Janl] uses Hecke algebra methods to determine composition series for the case
m = 1 and any x (for Spa,(F')). Also, the reducibility points for n < 3 (any m) are determined
using the Jacquet module methods of Tadi¢. A general reducibility condition, subject to a
regularity hypothesis is also given. In [Jan2|, Jacquet module methods are used to determine
the components (irreducible composition factors) for n < 3 (any m) and in general for the
regular case (for SOq,41(F')). [Tad3] uses the structure theory from [Tad2], which simplifies
the calculation of Jacquet modules, to recover many of the results above (among other things).
In this paper, we use the sort of approach used in [Tad3] to determine composition series
in general (any m, n, x; no restriction on regularity). We give Langlands data and Jacquet
modules for each component, and specify where they lie in the composition series.

We follow the lead of [Tad3] and work in a slightly more general setting. Let v denote
|det| on GL. Let py, ..., py be representations of GL,, (F),...,GL,, (F), respectively, and 7 a
representation of S,,. Let p; X ps ... X p; denote the representation obtained by inducing the
representation p; @ po @...® py from the appropriate subgroup of GL,, +...4p, (F). Similarly, let
p1X...XppxT denote the representation of S, 4...4p, +m Obtained by inducing the representation
p1®...® pr @7 from the appropriate parabolic subgroup of S, +..4p, +m. If m =n, we write
p1 X ... %X pp X 1g,, using the x1g, to distinguish this from induction in GL, (F'). (See the next
section for more details on notation.)

Now, if py is an irreducible unitarizable supercuspidal representation of GL,,(F'), then
—k+1 —htl g k—1 . . . . .
VT2 pg X VT2 Tipg X ...X vz pghas a unique irreducible subrepresentation ((pg, k). Sim-

ilarly, suppose that p is an irreducible unitarizable supercuspidal representation of GL,(F)

. . . . 1
and ¢ an irreducible supercuspidal representation of S,, such that v 2p x o (resp. v 1p x o)
is reducible and v°p x ¢ is irreducible for all 3 € R with |3| # % (resp. || # 1). Then

v g x i x L x vTipx o (tesp. v lp x v p x ... x v™1p x o) contains a unique
irreducible subrepresentation which we denote ((p, ¢; o) (in either case). In this paper, we look

IReceived by the editor August 6, 1994.
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at representations of the form v*((pg, k) x ((p, ;o) for a € R.

Let o be an irreducible supercuspidal representation of S,,. Let us say p satisfies (C1) (resp.
C(1/2), C(0)) if p is an irreducible unitarizable supercuspidal representation of some GL,(F’)
satisfying

(C1) v~!px o is reducible and vPp x o is irreducible for all 3 € R with |3| # 1.

(C1/2) v~ 2p x o is reducible and p x o is irreducible for all 8 € R with |3 # 3
(CO0) p x o is reducible and v?p x ¢ is irreducible for all 8 € R with 3 # 0.

Note that any of these conditions (or more generally, v*p x o reducible for some o € R)
implies p = p. Now, v“((po, k) X ((p, {; o) generalizes degenerate principal series for SOq,11(F)
as follows. Consider m = x o det,, xtr,_,,. Write x = |- |*xo with a € R. Let 1go(1) denote
the trivial representation of SO;(F'). Note that for ¢ = 1gpn), the trivial representation,
p = 1, of GLi(F) satisfies (C1/2). Thus we have 7 = v*((xo,m) x ((1,n — m;lgo())-
The only difference for degenerate principal series for Sps,(F) is that when o is the trivial
representation of Spo(F'), p = 1 satisfies (C1) instead. However, we still have xodet,, xtr,_,, =
v*C(x0,m) x C(1,n —m; Lgy)).

Let us now describe the rest of this paper, section-by-section. In the next section, we
introduce notation and background results which will be needed in the rest of the paper. In
section 3, we focus on certain special cases, namely v*px((p, ¢; o) (p satisfying (C1/2) or (C1))
and v*((p,n) x o (p satisfying (C0), (C1/2), or (C1)). For these special cases, we identify
the components by Langlands data; Jacquet module information is also provided. We deal
with v%p x ((p, (; o) separately, in part because the results are already known. v*((p,n) x o
is handled separately because the results will be needed in section 5. This will also save time
later, as these would have to be dealt with as separate cases when doing the general results.

The fourth section contains reducibility results for 7 = v*((po, k) % ((p,¢;0) for both p
satisfying (C1/2) (Theorem 4.1) and p satisfying (C1) (Theorem 4.3). We note that the proof
for pg = p is done there. When pg 2 p, the approach to the study of 7 is a bit different, so
although we include the results for py 2 p there, we do not include a proof. The reducibility
results when py 2 p are corollaries of the results in section 5.

In section 5, we determine the components of v*((po, k) X ((p,l;0) with py % p, a € R.
The main result in this regard is Proposition 5.3, which relates the components of v*((pg, k) %
C(p,l;0) to those of v*((po, k) x 0. (Note that this gives the results on the reducibility of
v*((po, k) x {(p, ;o) which were given in section 4.) As corollaries, we explicitly write out
components and their Jacquet modules when p and py both satisfy (C1/2) (Corollary 5.7) or p
satisfies (C1) and pg satisfies (CO) (Corollary 5.8). We single out these particular combinations
of conditions on p, py because they generalize degenerate principal series of the form (|- |*sgno
dety) x try, where sgn denotes a (nontrivial) character of order 2 (sgn satisfies (C1/2) for
o = lgoa); (CO) for 0 = 1gy(g)). One other consequence of Proposition 5.3 is that if gy 2 po,
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then v*((po, k) X ((p, ¢; o) is irreducible for all @« € R. This means that the degenerate principal
series | - [*xq o dety X try, « € R, with x2 # 1 is always irreducible.

In section 6, we determine the components of m = v*((p, k) x ((p, ¢; o) when p is (C1/2) or
(C1). Again, the components are identified by Langlands data, with Jacquet module informa-
tion also given. The main results, Theorems 6.1 and 6.2 ((C1/2) and (C1), resp.) hold for all
k, . Jacquet modules are given for ¢ > 1, k > 2; when ¢ = 0 or k = 1, the Jacquet modules
are covered by the results in section 3.

In section 7, we determine composition series for the representations from sections 5 and
6. That is, we identify which components occurs as subrepresentations, quotients, etc. We
use the results from sections 5 and 6 in the following way—e.g., if 7 has four components,
there are other (generalized) degenerate principal series representations 77’ and 7" which have
components in common with 7. This allows us to compare Jacquet modules for 7w, 7/, 7’
to see which components contain certain key Jacquet module components. Then we can use
Frobenius reciprocity and other arguments to determine where the different components lie in
the composition series.

We now give a summary of where the results are located. Let m = v*((po, k) X ((p, ;o).

(1) pis (C1/2): reducibility points in Theorem 4.1
po = p: components in Theorem 6.1
composition series in Theorem 7.1
Jacquet modules  Proposition 3.1 (k = 1)
Proposition 3.6 (¢ = 0)
Theorem 6.1 (k> 2, (> 1)
(tabulated in proof)
po % p with py (C1/2): components in Corollary 5.7
composition series in Theorem 7.1
Jacquet modules in Corollary 5.7 (also cf. Remark 5.6)
(2) pis (Cl): reducibility points in Theorem 4.3
po = p: components in Theorem 6.2
composition series in Theorem 7.2
Jacquet modules  Proposition 3.9 (k = 1)
Proposition 3.10 (¢ = 0)
Theorem 6.2 (k> 2, > 1)
(tabulated in proof)
po % p with po (CO): components in Corollary 5.8
composition series in Theorem 7.2
Jacquet modules in Corollary 5.8 (also cf. Remark 5.6)

We remark that Proposition 5.3 and Corollary 5.5 coupled with the results of section 3 may
be used to cover cases with py 2 p other than those mentioned above.

Before closing this introduction, there are a few people I would like to thank. Part of this
work was done at the SFB 170 in Gottingen; I would like to take this opportunity to thank
them for their hospitality. In addition, I would like to thank Marko Tadi¢ for many valuable
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contributions to this work. Conversations with Dihua Jiang and Paul Sally were also helpful,
and I take this opportunity to thank them as well. Finally, I would like to thank the referee.

2. NOTATION AND PRELIMINARIES

In this section, we introduce notation and recall some results that will be needed in the rest
of the paper. Much of this, though not all, follows the setup used in [Tad3].

Let F' be a p-adic field with charF'=0. Let | - | denote the absolute value on F', normalized
so that || = ¢!, @ a uniformizer.

In most of this paper, we work with the components (irreducible composition factors) of
a representation rather than with the actual composition series. That is, we usually work
with the semisimplified representation (even in chapter 7, where we determine composition
series, most of the argument uses semisimplified Jacquet modules). So, for any representation
7 and irreducible representation p, let m(7, p) denote the multiplicity of p in 7. We write
T =m + -+ m if m(w, p) = m(m,p) + - + m(mg, p) for every irreducible p. Similarly, we
write m > mo if m(m, p) > m(mo, p) for every such p. We write m = 7 if we mean that they are
actually equivalent.

We now turn to symplectic and odd-orthogonal groups. Let

1

denote the n x n antidiagonal matrix above. Then,
50241 (F) ={X € SLon1(F)|"X Jops1 X = Jops1}

Spon(F) = {X € GLgn(F)\TX( 7 -7 ) X = ( J -/ )}

We use S, to denote either SOsg,11(F') or Spe,(F). In either case, the Weyl group is W ={
permutations and sign changes on n letters }.

We take as minimal parabolic subgroup in 5, the subgroup P,,;, consisting of upper trian-
gular matrices. Let a = (nq,...,n,) be an ordered partition of a nonnegative integer m <n
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into positive integers. Let M, C S, be the subgroup
( )
X1

Xk
M, = X X; € GL,(F), X € Sy v
TXk

X,

where "X = JTX~'J. Then P, = M,P,,, is a parabolic subgroup of S, and every para-
bolic subgroup is of this form (up to conjugation). For a = (ny,...,ng), let p1,..., px be
representations of GL,,, (F),...,GL,, (F), respectively, and 7 a representation of S,,_,,. Let
p1 X ... X pp X 7 denote the representation of S,, obtained by inducing the representation
PR ... pp @7 of M, (extended trivially to P,). If m = n, we write p; X ... X pp X lg,,
where 1g, denotes the trivial representation of Sy.

We now give the Langlands classification for S, (cf. [Tadl] or [Tad2]). As in [Zel], let
v = |det| on GL,(F) (with the value of n clear from context). Suppose that d is an irreducible
essentially square integrable representation of G L, (F'). Then, there is an £(§) € R such that
v~¢0)§ is unitarizable. Let d1, ..., be irreducible essentially square integrable representations
satisfying £(d;) < -+ < e(d) < 0 and 7 a tempered representation of S, _,,. Then, §; x ... x
dr X 7 has a unique irreducible subrepresentation which we denote by L(d1, ..., d0; 7). At times,
it will be convenient not to have to worry about listing d;,...,d; in increasing order. So, if
91, ..., 05 satisfy £(6;) < 0, then there is some permutation d,,, ..., d,, which satisfies £(d,,) <
- <€(d,,) <0. Then, by L(dy,...,0;7) we mean L(dy,,...,0,,;7). At times, it will also be
convenient to use i(0y,...,0k;7) = 0p, ®...®0,, T and I(d1,...,0,;7) = 0y X... X, X T (S0
I(61,...,0k;7) has L(6y,...,0,;7) as its unique irreducible subrepresentation). Note that we
use Langlands classification in the subrepresentation setting rather than the quotient setting
for the following reason: in the subrepresentation setting, §; ® ... ® §, ® 7 will lie in the
appropriate Jacquet module of L(dy,...,dx; 7) (by Frobenius reciprocity, cf. Theorem 2.2).

At this point, we introduce a little shorthand. Let p be a unitarizable supercuspidal repre-

\ J

sentation of GL,(F). Then, v7E px vz Hlpx ... x "7 p has a unique irreducible subrepre-
sentation which we denote ((p, k) and a unique irreducible quotient which we denote by d(p, k)
(n.b. §(p, k) is square-integrable). Similarly, suppose that o is a supercuspidal representation
of S,, and v®p x o reduces for some a < 0 (note that this implies p = p, where p denotes the
contragredient of p). Then,

V—Z-i—l-}—oz —l+2+a

p XV pX... XV X0

has a unique irreducible subrepresentation which we denote ((p, ¢; o) and a unique irreducible
quotient which we denote 0(p,¢;0) (n.b. d(p,¢;0) is square-integrable). We also use the
segment notation of Zelevinsky [Zel]; let

W, v pl = P p, P p T,



6 CHRIS JANTZEN

Then, ((p, k;0) = L([v=""%p,v%p]; o). For example, in S, tr, = ((1,n;1s,) (for p = 1 and
o= 1lgon), @ = —%; for p =1 and 0 = 1g,), @ = —1).
The following facts about induced representations for G L, (F) will be needed later.

THEOREM 2.1 (Zelevinsky). Let p, po, p1 be irreducible unitarizable supercuspidal representa-
tions of GL,(F), GL,,(F), GLy, (F), respectively, and «, 3,7y € R.

(1) v*¢(p,m) x vP¢(po,n) is reducible if and only if py = p and [VOH_%Hp,I/
WA+ p, P2 gl is also a segment and strictly contains both [V*+ % p, vt p
and [Pt p, T ).

(2) v2¢(p, m)xvP(po, n)xv7¢(p1,7) is reducible if and only if one (or more) of v (p, m)x
V3¢ (o, ), v C(psm) X V7 (pr, ), o OC(poym) X ¢ (1, 1) reduces.

Proof. See Theorem 4.2 of [Zel]. O

Let o be an irreducible supercuspidal representation of S,,. Let us say p satisfies (C1) (resp.
C(1/2), C(0)) if p is an irreducible unitarizable supercuspidal representation of some G'L,(F’)
satisfying

Q
+
m:
1=,
C

(C1) v~ !px o is reducible and vPp x o is irreducible for all 3 € R with |3| # 1.

(C1/2) v 2p x o is reducible and °p x o is irreducible for all 5 € R with |3 # 3
(CO) p x o is reducible and v’p x o is irreducible for all 3 € R with 3 # 0.

Next, we introduce some notation for Jacquet modules. If 7 is a representation of some S,
and « is a partition of m < n, let s, denote the Jacquet module with respect to M,,. Further,
for m = v*((p, k) x ((p,¢;0), it makes sense to define s, ™ = S(pp,.. 7 (With k + £ copies of
p in the subscript) and sqrm = 5(10p) 7. Note that, by abuse of notation, we also allow s,
and S, to be applied to representations of compatible Mg’s. We will occasionally use similar
notation for representations of GL,(F). If a = (ny,...,n,) is a partition of m < n, GL,(F)
has a standard parabolic subgroup with Levi factor L, = GL,,,(F)x...XGLy, (F)XGLy_(F)
(L, consists of block-diagonal matrices; the corresponding parabolic subgroup of block upper
triangular matrices). If 7 is a representation of GL, (F'), we let r,m denote the Jacquet module
of m with respect to L,. Similarly, for representations such as v**((p, k1) X v*2((p, ko), it makes

.....

We now give two theorems on Jacquet modules.

THEOREM 2.2 (Frobenius reciprocity). Let G be a connected reductive p-adic group, P = MU
a parabolic subgroup, p an (admissible) representation of M, © an (admissible) representation
of G. Then

Homy(ryem, p) = Home (T, igap)-
THEOREM 2.3 (Bernstein-Zelevinsky/Casselman). Let G be a connected reductive p-adic group,
MU and NV standard parabolic subgroups. Let p be an (admissible) representation of M.
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Then, rnyg o tanmp has a composition series with factors
ILNN' O W O TP
where M' = M Nw (N), N' = w(M)N N, and WM = {w € W|w(Ppm N M) C
Pmiru w_l(Pmin N N) - szn}
Proof. See [B-Z] or [Cas|. [
Suppose pg, p are irreducible unitarizable supercuspidal representations of GL,(F) (i.e.,

po = p; though see Remark 5.6) and o an irreducible supercuspidal representation of S,,.
Further, suppose p satisfies (C1/2). Let m = v*((po, k) % ((p, ¢;0). Then, set

Xo = SminyaC(p(M k) ® C(pa f; U)

_ (Va+#p0 ® Va+#+1p0 Q.. .1® Va+%3po) 1
RrFpripR... v ip) ®o.
For 0 <r <k, set
— o —kFL at+ =kt a4 =kt 4 (r—1)
X (V —aj— 7621@1 ) —iv—l—Le?f? ’“ Y 2—a+7 +1ﬁ)‘(zlz—r—1) g
W o @I @ L @ v fo)
R FipRripR... ®rip) ®o.
By analogy with [K-R], let us call a shuffle of y, a permutation on y, satisfying

1. v+ =57 py, ... vt =5 +0=D o0 appear in that order
2. vt =5 5y, L et =5 =1 50 appear in that order
3. v 2p, ..., v 2p appear in that order.
That is, the relative orders in the three parenthesized pieces remain intact. Then,
k
Spin T = Z (all shuffles of x;.)
r=0

(cf. Lemma 4.4, [Tad2]). A similar description holds if p satisfies (C1).
We now recall some structure theory related to Jacquet modules.

DEFINITION 2.4. (1) If T is a representation of GL,(F), set

n
*
m T = E T(i)T
=0

(2) If m is a representation of S,, set

W = Z 5(:)T-
=0
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If 71 and 7 are representations of GL,, (F'),GL,,(F), respectively, let s(11 ® 7o) = 7 @ 7y
and m(7‘1 ®To) =T X Ta. If 7 is a representation of GL,(F') and ¥ is a representation of S,,,
define x by (11 @ )X (7®@9) = (1 X 7) @ (12 ¥ ¥). Set M= (m®1)o( ®@m*)osom* (~
denotes contragredient).

THEOREM 2.5 (Tadié¢). If 7 is a representation of GL,(F') and 9 a representation of S,,, then
(7 4 ) = Mi(r) s (9).
Proof. See [Tad2]. O

We mention that this has a counterpart for general linear groups. If we define x by (1 ®
)X (1] @ 15) = (11 X 7]) @ (12 X 73), then m*(m; x mp) = m*(m ) xm*(m). See section 1.7 of
[Zel].

We now give two corollaries of this. We give their complete statements for the half-integral
case and simply indicate the few changes required for the integral case.

COROLLARY 2.6. Let pg,p be irreducible unitarizable supercuspidal representations of GL,,(F'),

GL,(F), respectively, and o an irreducible supercuspidal representation of S,. Suppose p
satisfies (CI/Q) Set m = v*((po, k) x ((p, ;o). Then,

Fm 3SR b ) x 7 o) x ()

=0 t=0 75=0

QT TEE C(po, i — 1) @ Cp, € = i 0)]}
Proof. This follows from Theorem 2.5 and
m*(v*C(po, k ZV(H T C(po,1) @ v (po, k — 1)
¢
l
1w (C(p, ;o)) ZV 20(p,J) @ C(p, £ — j;0)
7=0

(cf. Lemma 2.9 for properties of ~ ). OJ
We note that the case when p is (C1) is very similar-the only change necessary is to replace

V_H%C(p,j) with V_Z—"_%C(p,j) in the formula. (In the proof, the same change is needed for
1 (C(ps 4 0)).)
COROLLARY 2.7. Suppose o is an irreducible supercuspidal representation of S,, and p is a
representation of GL,(F) satisfying (C1/2). Let m = v*((p, k) x ((p,l;0) (i.e., po = p = p
above). Then

spT =vTTE p@ (VT (p,k — 1) % ((p, £;0))

+ T p @ (V22 (p, k — 1) % C(p, 4 0))

+ T Ep @ (v°C(p, k) % ((p, £ — 1;0))
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(note that the third term is missing if { = 0)

k
sem = Y WO (pk — i) x TR ((p,i) x vTEC(p, )] @0
=0
b i —k+4i —4—1
ST = Y O3k — i) x T2 ((p, i) x v ((p, L= 1)] @ C(p, 150)
=0

1 —k+2i—1

k i —kti— L
Y T (k= i) x v T ((pi— 1) x v (p, 0)] @ (VT2 pxo)
=1

(note that the first sum is missing if £ =0).

Proof. In the preceding corollary, take pg = p. Then, e.g., for a term in p*7 to be in sgpm =
S((k+0)p)T, one needs j = £ and ¢ = ¢ in the sum for p*7w. O

Again, the results for the case when p is (C1) are similar. The formula for s, requires
replacing ytts p with v7%p in the third term (the first and second terms remain the same).
For sqpm, replace u‘ég(p, ¢) with I/#C(p, ¢). Finally, for s((j4.¢—1)p)7, replace V#C(p, (—1)
with V#C(p,f — 1) in the first sum and replace I/_%C(p, ¢) with V#C(p, ) in the second.

LEMMA 2.8. Let 0; be an irreducible essentially square-integrable representation of GL,,(F)
fori=1,... k, and T an irreducible tempered representation of S,,. Suppose £(1) < -+ <
e(dx) <0, and set m = L(6y,...,0; 7). Then, for any 0 < j <k,

S(pryep)T 2 01 @ .. ® 05 ® L(0j41, -, 0%; 7).

.....

Proof. By exactness and induction in stages,
01 X oo X O X L(0j41, -, 05 T) = 01 X oo X 05 X (0541 X ... 0 X T).

However, the right-hand side has m = L(d1,...,dx; 7) as its unique irreducible subrepresenta-
tion. Therefore,
7T‘—>(51 X ... X 5]' X L((Sj+1,...5k;T).
The claim is then immediate from Frobenius reciprocity. [
The next lemma gives a few properties of the contragredient representation.

LEMMA 2.9. (1) m x99 and 7™ x ¥ have the same components.
(2) The functor ™ — 7 is an exact contravariant functor. Further, with respect to induction,
we have (07 X ... 0 >47-)~%5~1 X . O X T
(3) The contragredient of L(01,...,0k;7) is L(d1,...,0k; 7).
(4) The contragredient of v*C(po, k) X ((p, €;0) is v=*C(po, k) x {(p, l;5).
Proof. (1) and (2) are standard facts. (3) is done in chapter 6 of [Tad1] (in the quotient setting
for Langlands classification). The same argument works in this setting. Finally, (4) follows

from (2) once we have that ({(p,¢;0))” = ((p, ;) and (v*((po, k) = v~=*C(po, k). The first
of these is an immediate consequence of (3); the second follows from the G L-analogue of (3)
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(For GL,(F), d1,...,0, constitute Langlands data if £(d;) < --- < &(dg). The analogue to (3)
is then (£(d1,...,04)) = L(dk,...,01).) O

We close with the following observation from section 2 of [Tad3]. Suppose p is an irreducible
unitarizable supercuspidal representation of GL,(F') and ¢ is an irreducible supercuspidal
representation of S,,. Recall that if p 22 p, then v*p x ¢ is irreducible for all « € R. Suppose
p = p. Then, conjectures in the ninth section in [Shal] and [Sha2] imply that for any such
p and o, p must satisfy one of (C0), (C1/2), (C1). This helps explain why we focus on the
conditions (C0), (C1/2), and (C1).

3. COMPONENTS: USEFUL SPECIAL CASES

This section focuses on a couple of special cases. The components and Jacquet modules
of v%p x ((p,?; o) are given in Proposition 3.1 (for p satisfying (C1/2)) and Proposition 3.9
(for p satisfying (C1)). Also, the components and Jacquet modules for v*((p,n) X o are
given in Proposition 3.6 (for p satisfying (C1/2)), Proposition 3.10 (for p satisfying (C1)), and
Proposition 3.11 (for p satisfying (C0)). There are certain advantages to dealing with these
separately. First, Propositions 3.1, 3.6, 3.9, 3.10 would have to be dealt with as special cases
in the proofs of later theorems, anyway. Also, Propositions 3.6 and 3.11 will be important in
section 5 as well. In addition, a couple of the lemmas here will also be useful later (keeping
the already too-long section 6 from being even longer).

PROPOSITION 3.1. Let o be an irreducible supercuspidal representation of S,, and suppose p
is a representation of GL,(F) satisfying (C1/2). Let m = v*p x ((p,{;0) with « € R, £ > 1.
Then, m is reducible if and only if o € {j:%, +(0+ %)} Suppose 7 is reducible. By Lemma 2.9,
we may without loss of generality assume o < 0.

1) o=

T =T + T with
m = L2 p, v 3pl v 2pi0) mo = L([v " 2p, 0720 T),

where T is the unique (irreducible) common component of v"2px((p, 1;0) and 8(p,2) x

o.

(a) {=1
ST =20"2p @ LV 2p;0) + v 2p @ 6(v72p;0)
s =vip® L(v2p;0)

(b) £ >2

Sp)T = V‘l“%p ® L([V‘l“%p, g‘%p], vip;0)
+v2p @ L([v~*2p,v72p);0)

Sp)T2 = Vl‘“%p ® L([Vl‘“%p; V3 p) T)
+v2p@ L([v="2p,v72p];0)
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m=L(v " 2p,v2p:0) + Lv™"6(p,2), [V 2 p, v 2 0
p’ p 7 p7 ) p’ p 7
s L "2p,v72plio) =v i@ Ly 2p,v72); 0)

s L(=0(p,2), v p, v 3 pls0) = vHip@ L([v™3p, v 3] 0)
2 p @ L™ 2, [ e p, 25 0)
Proof. Theorem 6.1 of [Tad3] gives the Langlands (quotient) data for m. It is not difficult to
determine s, m;; enough similar arguments will be done later to justify omitting it here. [J

In this section, we also will deal with v*((p, k) x 0. We first give a few useful lemmas. As
we will also need results like these later, we do them in more useful generality—that is, we work

with v*((p, k) x ((p, £;0).
LEMMA 3.2. Suppose (m, M, V') is an admissible representation of a reductive p-adic group M.
Let Z denote the center of M. If X is a one-dimensional representation of Z, let
Vi ={v € V| there is an r € N such that [t(z) — X\(2)]"v =0 Vz € Z}.
Then, V =@, V) is a direct sum of M-invariant subspaces.
Proof. This is Lemma 8.2 in [Gus|. O
LEMMA 3.3. Let o be an irreducible supercuspidal representation of S,, and suppose p is a
representation of GL,(F) satisfying (C1/2). Let m1 = v*((p, k) X ((p, {;0), with v € R, a <0,
a = gmod 1. Then, m has a component m; whose Langlands data comes from the smallest
possible parabolic subgroup. More precisely, we have the following:
(1) e+t <0
m = L([vT 5 p vt E gl [, v ) o)

' k=1 _ 1
Furthermore, if a + *5= = —3

spm =Vt p@ Lt TR vt ) [ s, i) 0)

FTE @ L g g [ e, 3l o)

(for a + % < —%, we are only guaranteed of getting the first term in the inequality
above).
(2) a+ 5t >0

v i), T R v e, 5 o).

m = L([v**"
Furthermore,
spym >V p@ Lt v i) [ T pv e ), [, 072 ) 0)
_a+*k+1 O!-i-ﬁ _1 _a+*k+1+1 _1 —Z‘f‘l _1
T T p @ Lt T, vrp) VT T p, v ] VTR, 072 ) 0)
v 2 p@ L[t 2 povepl [t T povmepl [V 2 p, 072 )5 0).
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Note that if £ = 0, there is no I/_£+%p*t€7’m in the sy) inequalities above.

Proof. We do the second case, assuming ¢ > 0. The others are similar.
Let i(A) denote a permutation of

pot kzﬂp@...®V_%p®y_a+#p®...®V_%p®u_z+%p®...V_%p

which has the form "' ®@...® v ® o with 3; < 3, for i < j. In particular, m; is the Langlands
subrepresentation of the representation obtained by inducing i(A). We write L(A) for m and
I(A) for the representation obtained by inducing i(A).

We begin by showing that m; is a component of 7. First, observe that i(A) < sy, (cf.
Lemma 2.3 et seq.). Let 7' be a component of 7 with i(A) < S, 7". By Lemma 3.2 applied to
the representation s,,;,7" of M, we see that Hom ys (8,7, i(A)) # 0. Therefore, by Frobenius
reciprocity, Homg (7, I(A)) # 0, i.e., 7’ is an irreducible subrepresentation of I(A). Since
I(A) has m = L(A) as unique irreducible subrepresentation, we have 7’ = m; is a component
of .

Next, recall that

spm =V p@ v (o k — 1) % ((p. L 0)
T p@ vt ((p k1) xC(p, o)
+r i p @ vC(p, k) X ((p, £ — 150)

— 7_/ _"_ 7_// _"_ 7_///

with 7’s in the order listed. Using the identification of m; done above, we have

T =t g Lt T v et T p i) [ v 2 ) 0)
T =TT p @ Lt T p vl [t T s p) v R p v R s o)
o = *rpe L[t v, vt T v i) [ e p, v 3l 0).

Also, recall that

seLm = Zv TEC(p, ki) x T ((pi) x v (p ) @ 0
The i = —a + £ term (necessarlly, this is an integer) is
k
k=751 (p, +a) X V2 4<(p,——04) x 175((p, ) ®
Observe that « is irreducible (cf. Theorem 2.1) and that S,k consists of terms of the form
v @ . P @ o with 3; < 0 for j = 1,...,n. Furthermore, every term in ,,;,7 of the form
vV @ .. VP @ o with B; <0for j =1,...,n comes from s,k (i.€., Spmink contains every such

“all-negative” term). Since sp;,m > i(A) and ¢(A) is such an all-negative term, we must have
k < sgrpm. Therefore, $,;,m contains all the all-negative terms. Now, observe that s,,;,7
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(resp. SminTy smm7‘1 ") also has such an all-negative term. Therefore, we must have si,)m > 77
(resp. spm > 711, Sym > 7). O

REMARK 3.4. More generally, if o # % + %mod 1, one has a similar representation m having
the form m = L(vPp, ..., vP"p;o) with B; < --- < B, <0 (i.e., having minimal support). The
same basic argument shows that m is a component of w. If a = g + %mod 1, one has m of
the form L(vPp,... vP=1p;px o) (i.e., B, = 0) by similar considerations. It turns out that
in these cases  is irreducible (cf. Theorem 4.1), so my = w. This allows us to get Langlands
data for m in these situations.

LEMMA 3.5. Let o be an irreducible supercuspidal representation of S,, and suppose p is a
representation of GL,(F') satisfying (C1/2). Let m = v*((p, k) x ((p,l;0) with o € R, a < 0.

(1) Suppose that a+=EH £ —q4=EEL (41 Then, v+~ =5 p@v i (p, k—1)x((p, l; o)
reducible implies m reducible. Wmte

1/0‘+%C(p, kE—1)x{(p,¢;0) ZL

where \; is Langlands data. Then, no component 0f7r contains more than one term of
the form v**=%2= p® L(A;) in its S(p)-
(2) Suppose in addition that o + =EH < —a 4+ =EEL ¢+ 1 Then,

WEZLV 2)

(3) Suppose further that o+ =5 +1 < —0+ 1 —a + =EH (50 that v° +55 ) x v

Oc+;k'2+1 ot=

%p are both irreducible). Then,
= Z L(V(Hik;l s Ni).

In the case where £ = 0, the conditions above involving { may be ignored (though they
automatically hold in (1) and (2), anyway).
If —a+=E5 _Hl # a+ =5 _Hl €—|—2, then the analogue to (1) holds with I/_O‘Jr#p@w’_%g(p, k—
1)x((p, ¢; 0) replacmgl/ 5 p@T2¢(p, k—1)xC(p, l; ). (Note that —a4=EH > g4 =EEHL
so that there are no counterparts to (2) and (3)) If € > > 1 there are analogues to (1), (2), (3)
with v 2p @ ¢ (p, k) % C(p, £ — 1;0) replacing v 2 5 p® votaC(p,k—1) x C(p, ;0). They
requz’re —l+ 1A a+EL —a+ = for (1), 0+ L < a+ ZEH —a+ =EE for (2), and
—+ 141 <a+ =ht —a+ =EEL for (3).

and v pXUT

Proof. We work with the case explicitly described, i.e., vt 5 p® vetsC(p, k—1) % C(p, b o).
The other cases are similar.
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Part 1: Choose a component 7 of 7 such that s, contains a term of the form v a+=5H PR
L(A;) (this is not necessarily the m; from Lemma 3.3). By Lemma 3.2 and Frobenius reciprocity,

we must have m — vt =5 p x L(A;) for some i; without loss of generality take i = 1.
Now, consider 1/“*%;) X L(Ay). Suppose

spL) =Y v¥p® M,

Then,
S(p)’/aJrikzﬂp X L(A) = VT e L(Ay) + vyt Ty L(A) + Z Vo @ vt 5 p X M,

Observe that since L(A;) is a component of v+ C(p kE—=1)x((p, ¢; a) looking at s, vetal(p, k—

a+2+1

1)x((p, l; o) tells us that v* p must be one of v p, vty or v, In particular,

71 contains only one term of the form vt~ p @ L(A;) in its S(p)- This verifies the first part.

—k+1
2

Part 2: Now suppose o+ % < —a+ ; denote the component of = with
Sy > VT2 £l p ® L(A;) (if A; = A; for some ¢ # j, choose a m; and 7; with this property).
Since this is the only term of the form v** =5 p® ... in s m;, by Lemma 3.2 and Frobenius
reciprocity,
ot =EtL
m = vtz px L(A).
Suppose that A; = v ® ... ® v*), ® T with §; a square-integrable representation of some
GL,,,, T a tempered representation of some appropriate S,, and a; < --- < a, < 0. Then,
o+ = < oy since a + =& is lower than any exponent in Smin®T2C(p, k — 1) 3 C(p, b5 0)
by assumption. Thus, we have
T < 1/0‘+%p X L(A;) — 1/0‘+%p X VMo X .. X VY, X T,

—k+1 —k+1

which has unique irreducible subrepresentation L(v*" =2 p, A;). So, m; = L(v*T =z p, A;). We

can then conclude et
> ZL(VQJF 2 p, )

as claimed.
Part 3: From Part 2, we have

> ZL(VO‘JF%'?Hp, Ay) = Zm
—k+1

with spym > v*T 72 p ® L(A;). Suppose that m had another component—call it 7. Then,

SpTo 2 V° +=5H p @ L(A;) for any i. Since smy # 0, suppose that sg,)mo > l/_“_%p ® L(A).



DEGENERATE PRINCIPAL SERIES 15

—k+1

Now, L(A) < v*((p,k) x ((p, ¢ — 1;0). We claim s, L(A) > v**72 p @ L(A) for some
A, Since a + % +1l1<—-(-1)+ %, —a + %, this follows by induction on n = £ + k.
Therefore, we have the following:

s@To > v 2 p @ L(A)
_£+l U/ a_ﬁ.ﬁ /
SppTo >V Tip@ vt p@ L(A)
4
S(2p)T0 > v o x 12 p L(A)  (since v2p x ot =57 p s irreducible).
4
Spa)To > V27T pvTTIp® L(N)
\L—Lk+1
ST = VT2 p® L(A;)

for some i, a contradiction. Thus,
m™ = E v
i

as claimed. OJ

PROPOSITION 3.6. Suppose o is an irreducible supercuspidal representation of S,, and p is a
representation of GL,(F) satisfying (C1/2). Let m = v*((p,n) X 0 with o« € R, n > 2. Then
7 is reducible if and only if o € {—5,—5 +1,...,5}. Suppose m is reducible. By Lemma 2.9,
we may without loss of generality assume that o < 0. Write a = —5 + 7, 0 < 7 < 3.

(1) j=0
T =T + T2 with

m = L([v™"2p,v72);0)
m = L([v™" 2 p, v )1 6(v 2 p; )
spym = v p® L " Ep, v 5l 0)
_ o —nti —n+3 -3 -1 : —n+i -3 .
Spme=v ""2p@ L([v™" 2p,v72pl;0(v72p;0)) +v2p @ L([vT" 2 p, 072l 0)

2)1<j<3
T =T + Ty + 73 with

m = L+, bl i+ p, vt s )

™2 = Ll 0,0l [T v gl (0 )

w3 = L([v™" 3 p, 072 p) v78(p,2), v (p, 2), ... v (p, 2);6(v 2 s 0)).
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(a) j=1=21L (son=3)
spm =V ip® L ip,v ip0) + v 2p® L(v 2p, v 2 pi0)
spym =V ip@ L(rip;6(vEp; o))
Spms =v 2p@ L 2p;0(v2p;0)
(b)j=1,n>3
spm =V "2 p@ L([v i p, v 2], v 2p;0)
+r72p @ L([v™" 2 p, v 3] 0)
ST =v " p@ L([v g, v, v 6(v 2 pr )
spms =v " ip@ L([v " p, v 3 p], v 10(p, 2); (v 2 p; 0)
+v 2p@ L([v "2 p, v 2p); 6(v 2 p; 0)
(c) j=21 n>3 (n odd)
som = v ip® L p, vl 3 v i gl o)
+v 2t p@ L([v=2p,v2p), v 2 2p, v 2p); 0)

spm =v 5 @ L 5, v 2] [V, v 3] 672 ps 0))
v L@ L([v i p, v 3 p), [ 320,02 pli 6 (v 2 s )

S(p)T3 = V_%-Hp ® L(V_%p> V_%+%5(p> 2)a I/_%_'—gd(p, 2)
v (p,2); 0 (v
(d) 1<j<nt

spm =v "I p@ L[y e p, vkl [V 2 p, v 2 ) 0)
+r It p @ L([v ™2 p, v 3], [Vt Ep, 073 )5 0)

[V

Spme =V @ L[ p, v ), [Vt e p, v )i 6(v 2 s 0))
v p @ L[y Ep, v 3], [V p, v 2] (v 2 p; 0)

Spms = v "I p @ L[y 2 p, v T p] w6 (p, 2), v (p, 2),
v, 2);8(v 2 )

v p @ Ly 2 p, v 2 pl v (p, 2), v H0(p, 2),
v 1(p,2);0(v 2 o))

(3) =75 (n even)
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T =T + T2 with

(a) n=2
S(p)ﬂ-1:2l/ 2P®L(V 2p;0‘)—|—]/ 2p®5(1/ 2p70)
S(pyT2 = v Ip®6(v2p;o)
(b) n > 2
spm =202 p@L(v 5 pvapl v pvTipli0)
+vTE p® L 510(p, 2), v E420(p, 2), ..., v 16(p, 2); 6(v 3 p; 0)
S(p) T2 =21/773“,0®L([V%pr‘%p],[Vﬁlp,f%pw(v 2p;0))

+v7E p@ L(v516(p, 2), 173 726(p, 2), ..., v 16(p, 2);6(v 2 p; 0))

Proof. The reducibility points are given in Theorem 7.2 (ii) of [Tad3].

We now turn to the task of showing that the components and Jacquet modules (for re-
ducibility points) are as claimed above. The proof is by induction on n. We go through it
case-by-case. Recall that

ST =v " p @ TEI I (pn— 1)} o+ v i p @i (pn — 1) x o

Case 1: By inductive hypothesis, we have

spT =v " Ip VT (pn— 1) xo+vip@vTiTi((p,n—1) x 0

= v p@ L™ 2p, v 2 pli0) + v i p @ L([v T2 p, 073 pls 6(v 2 p; 0)
1 1 3
+vip® L([v " 2p,v7 2] 0)
By Lemma 3.5 3, we have m = m; + mo with m and my as given. Since m; = ((p,n;0), we have

ST = vyt @ C(p,n —1;0) = vyt @ L([V‘"Jr%p, I/_%p]; o), as claimed. Necessarily,
S(p)T2 consists of everything else in s, .

Case 2a: The case p =1, 0 = 1 is in Theorem 4.5 of [Jan2]. The same basic proof works
here.

Case 2b: The proof is like that for case 2d below.
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Case 2¢: By inductive hypothesis, we have
spmT =v ip@C(pn—1)xo+v:tpuri(pn—1)x0o

=v 3 p@ L([v 3 p, v 2p], v 5 p,v 72l 0)

+v Ep @ L(v 5 p, v 3p], =3 p, v (v 2 0))

+v i@ L[ 3 p,v 2 p], [V 2,072 ) 0)

+v @ L= Ep, v 3 p], [V E2p, 7] 6(v 2 0))

v p @ L(v™ 3 p, v 720(p,2), 075 736(p,2) ., v 0(p, 2);0(v 2 pr )
=71 + 715+ 71 + 7 + 7/ (in the order listed)

First, by Lemma 3.3, m; = L([v~2p, l/_%p], [v=2t1p, l/_%p]; o) is a component of 7w and has

Spm > T, +71. By Lemma 3.5 1, we also have that 75, 7/, 75 £ s@ymi. Thus, sgym =71 +77.
Next, by Lemma 3.5 2, we have my = L([v=%p,v-2p], [v" 5 p, v 2p): 0(v 2p;0)) is a com-
ponent of 7. By Lemma 2.8, 54,7 > 7;. Now, recall that

—n+i—1

sarm =y v E ((pn—i)x v F ((pi)®0

—n+1

We claim that sgpm contains v 1 ((p, n3) x vo1 ((p, "3) ® o with multiplicity 2. In

particular, it is the (irreducible) ¢ = 22 term and a component of the (reducible) i = 2%

term (a quick look at sy, of the terms with i # "5= L "*3 shows that these are the only copies).
Next, let

V= vTperTiparT it e (VT xvTi ) @ (VTR x v )
@..0 v lpxvip)@riperipo.

By the description of $,,;,7 (cf. Theorem 2.3 et seq.), we see that ¢ occurs in S (p,psps20,2p, s 2p,pp) T

with multiplicity 2. Further, ¢ < $4ppopop.2ppm? 1 C(p, %52) X v = ((p, "53) @ o (just
100k at Sy 1 C(p, n=3) x v ((p, 253) @ o) and 1 < Sppapap,..2ppp)Ts. (it comes from

the Langlands data for 7). Therefore, if 7' denotes the component of 7 with 50) T > 7,

S22 2ppp™ > . Since both copies of ¥ come from a copy of v C(p, 3) x
v C(p, ) @ o, we have s > v C(p,52) x v == (p, 253) @ o. This implies sy, 7’
has terms of the form v~ 2p ® .... Therefore, s( 7’ has a term of the form v 2p® ..., ie.,

71 or 7. Since 7' # m (since 7} < S(pT'), we have S > 15. Thus, 7" = 7, and we have
S(p)T2 > Ty + 75 . By Lemma 3.5 1 we have 75 £ sgyme. Thus sgym = 75 + 75 and spym3 = 73,
where 73 denotes the remaining component (which has yet to be identified).
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The final step is to show m5 = L(vr 5%28(p,2), v 5%28(p,2) ..., v 0(p,2); 6(v2p;0)).
Since s m3 = 73, by Lemma 2.8 we have
Sy 2 v ETp@uTEp @ L E36(p,2), v E36(p,2) ., 0(p,2);6(v i 0)).

Further, by Lemma 3.5 1 applied to v~ 271 p ® v=1¢(p,n — 1) x 0, it is the only component of
S(p,p)T3 of the form V_%H,O & 1/_%,0 ® .... This means

SenTs >V ET30(p,2) @ L(v™3426(p, 2), v 5430(p,2), ..., v 16 (p, 2);0(v 2 p; 0)
and this is the only component of s, m3 with this central character. If we let
A= 1/_%+%5(p 2)® L(V_%Jr%(S(p, 2), 1/_%+%5(p, 2),...,v(p,2); 5(1/_%p; 7)),
then Lemma 3.2 implies Hom(s(9p)m3, A) # 0. By Frobenius reciprocity,

T3 o g — v 3T28(p,2) x v E25(p, 2) X ... x v 8(p,2) % 8(v2p; o),

1

which has L(v=2%28(p,2), v 2728(p, 2), .. _15(p, 2);6(v~2p;0)) as unique irreducible sub-

v
representation. Thus, w3 = L(v~5+24(p, 2), v=15(p,2);6(v _% ;0)), as claimed. This fin-
ishes 2c.

Case 2d: By induction,
spT = v p@uTENTIC(pn—1) x o+ v ITIp v EHTI(pn— 1) x 0

= v p @ LT e p, v E ), [V p, v ) 0)

HUT IR p @ L[t p, 03 p), v p, v 3 pli (v 2 s 0)

FU I p @ L[ Y I3 ), v98(p,2), L v (p, 2); 6 (v 2 ps o))
+v It p @ L([v " 2 p, 03], VI3 p, 073 ) 0)

+vitap@ Ll s p, v 3p), [Vt p, 03 ) 6(v 2 ps o))

T+ itep @ L[ 2 p, v=i73p], v 28(p, 2), ..., v 8(p, 2); 6 (v 2 p: o))

=7+ 7+ 71+ 7 + 7+ 7 (in the order listed).

First, observe that we may apply Lemma 3.5 3 (to the alarhs p-terms) to get m = m+mo+3,
with 71, m, m3 as given. We need to identify sy, ¢ = 1,2, 3.

By Lemma 3.3, sp)m > 71 + 71 By Lemma 3.5 1, 7'2,7‘3,7‘2,7‘3’,’ £ spmi. Thus, sgpym =
71 + 71 Also, we necessarily have s, 7y > 75 and s¢,)m3 > 735 (cf. Lemma 2.8). Thus, all that
remains is to show sgyme > 75 and sp,)m3 > 73
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To identify Jacquet modules, we work with s, ,ym. Observe that

SppT =V "I p@ TR p @y BN (g0 — 2) x o
_‘_V—n+j+%p ® V—j—i-%p ® V—%—l—jc(p’ n— 2) o
tritip @it p @ uTEIC(pn — 2) Mo

+r T p @It p @ vTETI I (p,n — 2) X 0.
For our purposes, it is the second and third terms which are of interest. We note that

v=3¢(p,n — 2) x o has three dlstlnct components (it is a “case 2” representation: it has
n=n—27=j—1sothat 0 <j < 2-1). In particular, the components of v it @
v ]+2p®1/ 5HC(p,n—2)xo and v T2 p@ T2 p@ 5T (p,n— 2) X o appear in S(pp) ™
with multiplicity one. Furthermore, we claim:

ST = VT p @ vt ap @ L[ p vl [V p, vl 6(v 2 s 0))

Spo)Th > VT p @ vt p @ L[y, V‘j‘%p] V‘j“f?(p, 2),
v716(p,2);6(v 2 p; )

ST = vt p@ v p @ L[ vl [ e p, v el (v 2 s o))

ST > VI p @I p @ L[y, V‘j‘%p] V‘j“é(p, 2),
v 16(p,2);6(v 2 p; 0))
This follows easily from induction: 7/ = v="H+2p @ V‘§+]+§C(p,n — 1) x o (resp. 7" =
v it3p @5 73((p,n — 1) x o) has induced part with n’ =n —1, j' = j (resp. n’ =n — 1,
j" = j—1). Thus, the Jacquet modules for 7" are governed by case 2¢ or 2d (resp. 7" governed
by case 2b or 2d). In either case, the claim follows.

Using the above, we may argue as follows (using the irreducibility of v~ +2px vitap for
the second implication):

S(p)T2 > Ty

1

SepayTa > v Y p @ uITap @ L[y " e p v 3 p), (v p, 03 ) (v 2 ps o))

4

Sepm2 2 (v p X v p) @ L p v ] I e p w2 gl 6021 0)
\’

ST = VITIp @I p @ L[y R p, v 3], (v R p, w3 )i (v 2 s 0)
4

Sp)T2 > Ty
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Similarly, sq)ms > 75. Thus, we have s, m; = 7/ + 7] for i = 1,2, 3, as needed.
Case 3a: Case 3a is similar to case 3b below, but somewhat simpler.

Case 3b: By induction, we have (noting that V%Q(p, n—1)x o and V_%g(p, n—1) x o have
the same components)
—n—+1

ST =V 2 p@vit(pn—1)xo+v 2 pval(pn—1)xo

n

—w T p® L([v

—n—+1 1 —n+3 1

+20 7 p@ L([vTE pvpl [vE pvp)i (v 2 p;0)

+2075 p® L(v=3718(p, 2), v 5420(p,2), ..., v 8(p, 2); 6(v 2 p; 7))

= 271 + 275 + 273 (in order listed).

First, we show that 7 has exactly two components. Since 7 is known to be reducible, there
are at least two components. On the other hand, observe that

bo=v" 5 2p @1 3R .. @riTIp® 0 = $un(((p,n) ®0)

oceurs in Sy, with multiplicity two (cf. Lemma 2.3 et seq.). Thus, Homyy, , (Smin7, 0) has
dimension< 2. Therefore, by Frobenius reciprocity, 7 has at most two components.
By Lemma 3.3,
m=L(™% pv 2l VT2 pv2p)0)
is a component of 7 and s, > 271. Let mp denote the other component of 7. We claim
= L™ p,v 2], v pv2pli6(v 2 p0)).
To see this, consider

—n+1 —n+1 —n+3 —n+3

bo=v 2 pRUV 2 pRV 2 ,0®1/ 2 p®.. u_%p@)l/_%p@l/_%p@l/%p@a.

Clearly, 0y < spinL([v 2 p,v=2p],[v % p,v2p);0(v~2p;0)) (cf. Lemma 2.8). Also, by the
description of s,,;,7 (Lemma 2.3 et seq.), We see that 0, has the same multiplicity in 7 as

in iy, 0 (namely 2%). Therefore, L([v 2 p,v-2p],[v 2 p,v 2p];6(v 2p;0)) must be a
component of 7; necessarily my, as claimed. Of course, s, ™ > 7o.
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Next, observe that for n > 4, s~ 2C(p, n—1) x o is given by 2¢ (by 2a for n = 4). Thus,
forn >4

—n+1 n+1 —n+3 1

SppTt =V 2 pRV 2 pRL(v 2 pvT2pl [V pvT2plio)
—nxl —n+3

SopT =V 2 pRV 2 p@L(vE pwTipl [vE pv2plid(v
—_n 3

+7E pevE p@ L pvip v

+
o
=
|
3
+
=

ST =V 2 pRVTE p@ LvE p,uE25(p,2), .., v16(p, 2);6(v 2 p; 0))
For n = 4, the second term in s(p p)’TQ is missing. Therefore, we may argue as follows (using

the irreducibility of v =5 p XU =5 p for the second implication):

S(p)T2 2 T2
—n+1 n+1 7n<lFJ/3 1 —n+3 3 1

SppT2 =V 2 p@v—2 p@L(v™2 p,v72p|, [vT2 p,v 2pl (v 2p;0))
U

sepm > (V5 px v p) @ L(vTE pv i) [V pv2pli0(v2p;0)
Y

Spa™2 = 2WTE pRUTE p@ L(vTE pv gl [vTE pvT2pli0(v 2 p50))
U

8(;0)77'2 Z 27'2

Finally, by Frobenius reciprocity, 6y < s, for i = 1,2. Therefore, 6y £ SpminT1, 0o L SminT2-
Thus, 0y < 8,73 and therefore 73 < s, m; for i = 1,2. Hence s m = 271+ 73, 5,m = 275+ 73.
O

NoOTE 3.7. If we had done the preceding proposition in conjunction with Theorem 6.1, we could
shorten the proof of case 8 considerably. In particular, we could use the fact that m is also a
component of v~ (p, 5) % ((p, 5;0), and the components of spr 1 ¢(p, 5) % ((p, 5;0) would
be known (by inductive hypothesis). A comparison then implies spm < 27 + 73. Since @
has only two components, sgma > 275 + 3. Again, by Frobenius reciprocity, 0y < Spinm; for
i = 1,2, implying that 0y < S,,in73. Therefore spym = 27 + T3, ST = 27y + T3.

We now give the analogues to Propositions 3.1 and 3.6 when p satisfies (C1). We note that
the analogue to Lemma 3.5 holds in this case. Lemma 3.3 has an analogue for this case; as it
is slightly different, we state it explicitly.

LEMMA 3.8. Suppose that o is an irreducible supercuspidal representation of S,, and p is a
representation of GL,(F') satisfying (C1). Let m = v*((p, k) x ((p,¢;0) with « € R, a < 0,
a= % mod 1. Then, ™ has a component m whose Langlands data comes from the smallest

possible parabolic subgroup. More precisely, we have the following:
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(1) a+ % <0
—k k—1
m = L2 p, vt T ), v, v )i o).

Furthermore, if a + % =—1,

spm = v p @ L[t T, et o] [, ) o)

—k+1
2

vl @ L([v*t 5 p, vt T ), [, ) 0)

(for a + % < —1, we are only guaranteed of getting the first term in the inequality

above).
k—1
(2) o+ 3 Z O
gkl ag =kl _ _
mo= L(w™ 2 p, vl v T p vl v v )i p 2 o)
Furthermore,
—k+1

o o —kt1 - —Q —kt1 — — —
ST ZV+ 2 p®L([V+ 2 +1pa1/ lp]a[lj M psv lp]>[1/ gp,]/ 1p];p>40’)

—k+1

Ca OSSR =kl - VS
+r T p@ L[t e pv Tl vt ] [, v pli p 4 o)

—k+41

_ I =5 R “a _ _ _
+vlp @ L[t =2 p, vl [t T v ) v v pli p o).
Note that if ¢ = 0, there is no v—*p-term in the s, inequalities above.

Proof. The proof is like that of Lemma 3.3. However, for the second part, the key Jacquet
module representation is

—k—1 k - 1 —k—1 ]f —_ 1 —£—1

V_%+T<(p>a+T)XV%+ 4 C(pa_a+T)XV 2

C(p, ) @ (p X o) < S((kst—1)p) T
which is irreducible. [

PROPOSITION 3.9. Suppose that o is an irreducible supercuspidal representation of S,, and p
is a representation of GL,(F') satisfying (C1). Let m = v®p x ((p,{;0) with o € R, £ > 1.
Then, 7 is reducible if and only if a € {0,+(¢ + 1)}. Suppose 7 is reducible. By Lemma 2.9,
we may without loss of generality assume that o < 0.

(1) a=0
T =T + T2 with

m = L([v~‘p,v"pl;p % 0)
m = L([v='p,v"2p],v"38(p,2); 0)
Spm =v_'p®@(pxo)+p® L p;0o)

ST = p® L(v"'p;0)
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(b) > 2
spm =V p@ L[y~ p,v plipxa) + p@ L([v~"p,v"pl; 0)

spm =v"p® L([v="p,v72p,v738(p,2);0) + p@ L([v~'p, v 1p]; 0)
(2) a=—-0—-1
T =T + T2 with

m = L([v="1p,v7pl; 0)

™y = L(v~""20(p,2), [ p, vl 0)
spmm =v " p@ L([v ' p, v pls 0)

ST = v 'p @ L™ p, [ p, v pl o) + v p @ L([v o, v pls 0)

Proof. Theorem 5.2 of [Tad3] gives the Langlands (quotient) data for w. It is not difficult

to determine s, m;—enough similar (but harder) arguments will be done to justify omitting it
here. [J

PROPOSITION 3.10. Suppose that o is an irreducible supercuspidal representation of S,, and p
is a representation of GL,(F') satisfying (C1). Let m = v*((p,n) x o with o« € R, n > 2. Then,

7 s reducible if and only if o € {_"2_1, _”2+1, ceey ”T“} Suppose m is reducible. By Lemma 2.9,

we may without loss of generality assume that o < 0. When o > %H (cases 2,3,4 below),
write @ = =2 4§ with 0 < j < 25

(1) a = =21

T =m +m withm = L([v™"p,v"tpl;0) and my = L([v™"p,v2p|; 6(v"'p; 0)).

spm =v "p@ L([v " p, vl 0)
ST =v "p@ L([v ™" p,v?pl;6(v " p; o)) + vp @ L([v " p, v ?pl; 0).
(2) j=0

T =T + Ty with
m = L([v=""p,v 1l p 3 0)

72 = L(lv" 1 p,v-2p); T),

where T denotes the unique (irreducible) common component of 1/_%((,0, 2) X o and
px (v tpo).
(a) n=2

spm=v"'p®(pxo)+pe Lv'po)

ST =p @ 6(v"p;0)
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(b) n > 2
spm =v " p@ L([v " 2p, v pls pxa) + p@ L(lv " p, v pls o)

spTa =v "Mp@ L([v ™" p,v?p; T) + p @ L([v"" p,v=2pl; 6(v~" p; o))

(3) 1<j< 3
T = T + Mg + e with

m = Ly o, vl v p, vl p 2 o)
my = L([v™" 7 p, vl [ p, v )i T)

T3 = L([V_n+j+1p7 V_j_2p]7 I/_j_%é(p7 2)7 V_j+%5(/77 2)7 T V_%(S(pv 2)7 T)u

where T is as above.
(a) j=1=1252% (n=4)
spm =V p@ L p, v g pxo) +vp@ L ?p, v pip X o)

ST =v2pQ L(v~'p;T)

ST =v"p® L *p;T)
b)j=1,n>4
spm =v "o @ L([v "o, v ol v pip X o)
+r 7t p@ L([v " 2p, v pls p 2 o)
SpTa = V—n+2p ® L[l/_n+3p, l/_2p], l/_lp; T)

swyms = v "2p@ L([v "3 p, v 3], v750(p, 2); T)
+vlp @ L([v " 2p,v72p); T)
(c) =12, n>4 (n even)
spm =v 2 @ L(v i p,v7tpl 2 p vl p 1 0)
+v 2t p@ L(lv =2 p, v pl, v 2 2p, 07 pls p X 0)
ST = 2p@ L[ p,v 2] v s p, v )i T)
+v i p @ L([v™2p, v 2], v 2 2,07 ) T)

spms =V T p® L(vip, v T30(p, 2), 173 T30(p,2), .., v720(p,2); T)
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: n—2
(d) 2<j <557
spm = v " p@ L([v e, vl v p, v pls p o)

+vp@ L™+ p, v pl, [ p, v pli p 2 0)

ST =v " p@ L([v e, v=2p] v p, v )i T)
+rp@ L([v "+ p,v2p), [y p, v ) T)

SpTs = v " p @ L[, V‘j‘zp],lv‘j‘%(p, 2),- s v35(p,2);T)
+vp@ L[y p, v pl, v 20(p, 2), .., vT20(p, 2); T)

(4) j =25+ (n odd)

T =T + T2 with
—n+1 —n+1
mo=L(v=7 pv ol v povTiplip o)
M= L([v=% pv 2, [vF pv ol T)
(a) n=3
Spm =2v"p@ L lppxo)+rvtpT
S(p)T2 = I/_lp QT
(b) n >3
spm =277 p@ L% pv 'l 5 pv plip x o)
+rTE p@ L E9(p,2), ... v 20(p, 2); T)
spm =22 p@ L(vTE p,v 2], [T pv ) T)

+1

+rTE p@ Ly E9(p,2), ... v 20(p, 2); T)

Proof. The reducibility points are given in Theorem 7.2 (iv) of [Tad3|. The identification of
components and Jacquet modules is similar to that in Proposition 3.6. [J

PROPOSITION 3.11. Suppose that o is an irreducible supercuspidal representation of S, and
p is a representation of GL,(F) satisfying (CO). Let p x o =T, +Ty. Let 1 = v*((p,n) X o
with a € R, n > 2. Then m is reducible if and only if a € {_"QH, _"2+3, e ”T_l} Suppose
7 is reducible. By Lemma 2.9, we may without loss of generality assume that o < 0. Write

Congl o n—1
a==g=+7 with( < j < "0,
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forv=1,2. Further,

—n+1 —n+3

spm =20 p@ L([v = pv il v p v )i )

n+1

72 p@ Lv3415(p, 2), v 526(p, 2), ..., v 36(p, 2); 0)

foriv=1,2.

- n—1
(2)0< ) <5
T =1y + My + w3 with

m = L p, vl v p, v )i )

fori=1,2 and
73 = L([v ™"+ p, v T2 IR (p,2), v 0(p, 2), . v Ed(p, 2); ).

(a) j=0="3% (n=2)

spm=v p®T,
fori=1,2.
ST = p @ L(v™"p;0).
(b) j=0,n>2
spm =v " p@ L p, v ) Th)
fori=1,2.
sy =V " p@ L[y 2p,v72p),v758(p, 2); 0)
+p@ L([v"p, v pl; o).
C))=-—-5",n2=> n even
=22 n>4
spym =V 2p@ L[y p, v pl, v p, v )i T)
+r 2 p@ L2 p, v ), v 2 20,7 )i )
fori=1,2.
spyms =V 2T p@ L i p, v 6(p,2),...,v726(p,2);0).
. n—=2
Spm = v "I p @ L[y 2, vl [y p, v pli T)

+vp@ L[y p, v pl, [y p, v )i T)
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fori=1,2.
spms = v "I @ L[y v IT35(p,2), .., v 20(p, 2); 0)

+rp@ L[yt p, v ] v IF26(p,2), ..., v720(p, 2); 0).

Proof. The reducibility points are given in Theorem 7.2 (iii) of [Tad3].

Case 2a uses an argument different than those used up to now. So, we do this case in
detail. The remaining cases use use arguments similar to those used already; we do case 2¢ to
illustrate this and show the one change necessary.

Case 2a: j =0 = 232 (n = 2)
Here, 7 = v72((p,2) x o and
Som =V @ (p )+ p® (v x o)

=vp@TI+vp@Ty+p@ L(v~'p;0)
First, we show that L(v~1p;T;), i = 1,2, are components of 7. Observe that

v a((p,2) xo —vlpxpxo

= l/_lp X (Tl D Tg)
Now, by p* calculations,
sor o Ti=v"p@T+vp@ T+ p® L(v ' p;0).

In particular, this means v~'p ® T; appears with multiplicity one in s¢,)m, sgpv~'p x T; and
S(p)l/_lp x p x 0. Therefore, 7 and v~!p x T; have a component in common, that component
characterized by having v~ 'p ® T; in its s(,). Let m; denote that component. By Lemmma 3.2
and Frobenius reciprocity,

= v pxT,
(n.b. spym < v lp@Ti+p® L(r~'p;0)). Since v~'p x T; has unique irreducible subrepre-
sentation L(v~1p;T;), this forces m; = L(v~1p; T;), as needed.

Next, we show that m @y is a subrepresentation of 7 (the reason for doing this will become
clear). From above, 7, m and 7 are subrepresentations of v71p x p x . Since v™1p @ T;
appears with multiplicity one in sg)m and sg)v~'p X p x 0, we see that m; (i = 1,2) appears
with multiplicity one in 7 and v~!p x p x 0. By considering the subspace V; + V,, + V, C
V1pxpxo, We see that in order for multiplicity one to hold, V;, + V,, C V.. Thus m @ m is a
subrepresentation of .

We now use the fact that 7 @y is a subrepresentation of 7 to show that 7 has a third compo-
nent. To see this, observe that V%C (p,2) ® & appears in sgr7 with multiplicity one. Therefore,
by Frobenius reciprocity, 7 has a unique irreducible subrepresentation. Consequently, 7 has a
unique irreducible quotient. Therefore, 7 must have a third component; call it m3. Note that
we necessarily have spym = v 'p®T; for i = 1,2 and spyms = p® L(v~'p; 0).
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It remains to identify m3. Observe that
SminT3 = pRV '\pRT+pRUpRo.

Therefore,
1 1
sarms = v 20(p,2) @ o +v2((p,2) ® 0.
By Lemma 3.2 and Frobenius reciprocity,
Ty — 1/_%5(/), 2) X 0.
Since 128(p,2) x o has L(v~28(p,2); o) as its unique irreducible subrepresentation, we have

Ty = L(r~26(p, 2); o), as needed.

Case 2c: j = %52, n > 4 (n even)

Here, 7 = v~ 2((p,n) % o) and

spmT =v 2p@((pn—1)xo+vitpavi{(pn—1)x0
= v 3p@ L([v= 2 p,vpl, [ o, v ) )
i p@ L([v= 2t p, vl V2 o, vl T)
+vmsp@ L[z p, vl [, 07 ) )
+r7 i @ L([v™ 2 p, v, v 320,07 ) T)

—n+3

+u @ L(v=2p,v=2 6(p,2),...,v"20(p,2): 0)

=r+n+m+1+7
First, the obvious analogue to Lemma 3.5 holds (same proof). From this, it follows that

m o= L([v~2p,v™"p), v p, v )i )

for i = 1,2 are components of .
Next, we claim that sy)m; = 7/ + 7" for i = 1,2. By the analogue to Lemma 3.5, it suffices
to show sgym; > 7/ 4+ 77, In general, if 7 = v*((p,n) x o,

n
+i—1 —n+2i—1

S(m-vp™ = D[V 5 (p,n — i) x v TET((p,i = 1)] @ [T px o]

i=1

(a p* calculation like that used for Corollary 2.7). In particular, if & < 0 is a reducibility point,

S((n—1)p)T = [V_%+%71§(p7 nT_l + Oé) X V%—F%ﬂg(pv nT_l - Oé)] ®Th

—n—1

HrTEET (B 4 a) x v T ((p, 2 — )] @ T
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and these are the only terms of the form ... ® Ty or ... ® T, in s((—1)p7. Observe that both
of these are irreducible. Then, for our particular =,

ST > T

N3
SminT >V ip@ (V2@ it )@, @ vy @1
U
S(n-vp™ = [V iC(p, 2 — 1) xvTi72((p, B)] @ T}
N[}

S(p)T1 > 7‘{ + 7‘{/.
A similar argument holds for m,. Note that this is essentially the argument that would be used
in the proof of an analogue to Lemma 3.8 (to identify Jacquet modules). We do not separate
this out as a lemma as this is the only place it will be used.

Finally, we have sgym3 = 73". The identification of 75 uses the same argument as in case 2c
of Proposition 3.6.

Finally, if one uses the analogue to Lemma 3.5 and the Jacquet module argument involving
S((n—1)p)T™ above (which plays the role of Lemma 3.3), the same arguments used in Proposition
3.6 do the remaining cases here. [J

We include the following for future use.

NOTE 3.12. Suppose o is an irreducible supercuspidal representation of S,, and p is an irre-
ducible supercuspidal representation of GL,(F'). Further, suppose p % p. Then v*((p,n) X o
is irreducible for all o € R.

Proof. See Theorem 7.2 (i) in [Tad3]. O

4. REDUCIBILITY POINTS

In this section, we give the reducibility points for m = v*((po, k) % ((p, ¢;0). If p satisfies
(C1/2), the results are in Theorem 4.1; for (C1), in Theorem 4.3. Note that in this section,
we only address the proof for pg = p. The results for py 2 p are a corollary of the results in
section 5. (The arguments used when py 2 p have a somewhat different flavor than those for
po = p; relying on the irreducibility of v%py x v9p for all a, 3 € R).

In Theorem 4.1 1, most of the work goes into verifying irreducibility. This is also the
most important part of the theorem: reducibility could be obtained from Theorem 6.1. (The
decomposition into components in Theorem 6.1 is obtained more or less independently from
the reducibility results in Theorem 4.1.) Since the proof of reducibility does not add much
work, we include it here for the sake of completeness.

THEOREM 4.1. Let py, p be irreducible unitarizable supercuspidal representations of G Ly, (F),
GL,(F), resp.; o an irreducible supercuspidal representation of S,,. Further, suppose p satisfies
(C1/2). Let m = v*((po, k) x ((p,l;0), a € R.
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(1) Suppose pg = p. Then,  is reducible if and only if

k k k

k k k
——,—=4+1,..., = + —),*+ ——1,..., ¢ —=+1
ae{-fip g fu{Her Prr s - x-S0

(noting that the sets are not necessarily disjoint) with the exception that if k = 20 and
a =0, there is irreducibility (i.e., ((p,20) x ((p, l;0) is irreducible).

(2) Suppose py 2 p. Then, 7 is reducible if and only if v*((po, k) X o is reducible. If
po # po, v*C(po, k) X o is irreducible (cf. Note 3.12). For py satisfying (C1/2), (C1),
or (C0), resp., the reducibility points for v*((po, k) X o are given in Propositions 3.6,
3.10, or 3.11, resp.).

Proof. Here, we do the case pg = p. The case py % p is covered by Proposition 5.3. The cases
k=1 and ¢ = 0 are covered by section 3. So, we assume k > 2, £ > 1 here.

To deal with the case py = p, we proceed by induction (on n = ¢ + k), splitting this into
three cases. By Lemma 2.9, we may without loss of generality assume a < 0.

Case 1: k= 2¢

Here, we need to show that @ = v*((p,2¢) x ((p,¥; o) is reducible for a € {—2¢, —2¢ +
1,...,—1} and irreducible for all other a < 0.

Let us start by verifying reducibility for a € {—2¢,—2¢ 4+ 1,..., —1}. Recall that

spT = v Hap@ o3¢ (p,20 — 1) X (((p, £; 0)
o3 p @ vt EC(p, 20 — 1) x (((p, £; 0)

+ %2 p @ 1C(p, 20) % (((p, £ — 1;0).
For o € {-2(,-2(+1,..., -1}, we may apply Lemma 3.5 to any term in sgy7. By induction,
we have that V‘”%((p, 20 — 1) x ((p,¢;0) is reducible for « € {—2¢,—20 +1,...,—1}, giving
7 reducible there.

We now turn to the irreducibility points. We save irreducibility for = 0 until Lemma 4.2.
So, for now we may assume o < 0. Note that this means —a — ¢ + %, a—L0+ %, and —( + %
are all distinct. Since o € {—2¢,—2¢ 4+ 1,...,—1}, the inductive hypothesis tells us that the
three terms in sg,7 are all irreducible. Now, by Corollary 2.7,

—20+41

= C(p,i) x v 3(p, ) @ 0.

2
SGLT = Z T3 (p, 20 — i) x vt
i=0

First, if v is not an integer, then the i = 0,2¢ terms—i.e., v=“((p, 2¢) X V‘ég(p, () ® o and
v (p, 20) x v=2((p, {) @ o—are irreducible (cf. Theorem 2.1). The first of these contains terms
of the form V‘O““%p ® ... and V‘“%p ® ... in its minimal Jacquet module, s,,;,. This
forces v 3p @ 1273 (p, 20 — 1) % ((p, ;0) and v 2p @ C(p, 20) x C(p, ¢ — 1;0) to both
come from the component of 7 which has v=%((p, 2¢) x u‘gg(p, () ® o in its sgr. Similarly,
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v p @ votEC(p, 20 — 1) 3 C(p, b 0) and v 2p @ ((p,20) x ((p, £ — 1:0) come from the
component of 7 which gives rise to v*((p, 2¢) x I/_%C(p, () ® o. Thus, all three terms in s,
come from the same component of 7. Thus, m must be irreducible. If « is an integer, we have
a < —2(¢. We can then use exactly the same argument as in the noninteger case-the i = 0, 2¢
terms from sqgp7 are still irreducible and the argument goes through. This finishes the k = 2¢
case.

Case 2: k > 2/

Here, we need to show that 7 is reducible for o € {—¢ — &, —¢ — % +1,... ¢+ %} and
irreducible for all other ar. Again, without loss of generality, we may restrict our attention to
a <0.

We begin with the reducibility points. First, assume o # 0, ¢ — % is a reducibility point.
Then, o+ _k;l, —a+ _k;l, and —¢ + % are all distinct, so Lemma 3.5 may be applied to any
term in s@)m. It is easy to check that at least one of them reduces for any of the o we are
looking at, making 7 reducible there. This shows reducibility for all the reducibility points
except @ = — £, 0 (a = 0 reducible only for k even).

If @ = 0 we can still apply Lemma 3.5 to the term v“t2p ® C(p, k) x C(p, £ — 1;0) (but
not to the others). So, for k even, Lemma 3.5 and the inductive hypothesis give reducibility
for @« = 0. We could try the same approach for a« = ¢ — gfapply Lemma 3.5 to the term
VIR s p @545 ¢ (p,k — 1) x ((p, £; o). However, if k = 20+ 1, this term is irreducible, so the
lemma will not be enough to give us reducibility. Thus, we take a different approach for the
a=10— g case.

We show that l/é_§C(p, k) x((p, ;o) is reducible by comparing it with ((p, 2¢) x((p, k—¥¢;0).
First, we observe that L([v**"2p v=3p], [~ 2p, v 2p], [vT2p,v"2p];0) is a component of
both (cf. Lemma 3.3). However, since S’ 2C(p, k) X C(p, ;0) £ SminC(p, 20) x C(p, ki —{; 0)
(e.g., Vk_f_%p never appears in any term in $,,;,((p,2¢) x ((p,k — ¢;0), cf. Theorem 2.3 et
seq.), we have that

L(W' ™3 p, 073 p), v 2 p, 072 ], [y % 2p, 07 3]s 0) < V75 (p, k) % C(p, b 0)

This gives reducibility for o = ¢ — g and finishes the reducibility points for the case k > 2¢.

We now turn to the irreducibility points. Again, we take o < 0. For o # 0, the same basic
argument as in the k = 2¢ case works. For v = 0 (relevant here only if k is odd), we do not
have a + _k;’l, —a+ = ;’1, —( + % all distinct and must be more careful. (Note that o = 0
with £ even and oo = ¢ — g also have this property but are reducibility points).

Now, suppose we have a # 0 a point where we need to show irreducibility. Then, o + _k;’l,
—a + _k;’l, and —/¢ + % are all distinct, and further, by the induction hypothesis, the three
terms in sy are all irreducible. Again, for such «, the ¢ = 0 and 7 = k terms in sqpm,

namely v=*C(p, k) X V_%C(p, 0) ® o and v*((p, k) X V‘ég(p, {) ® o, are irreducible. Thus, we
(again) have that vt I/O‘_%C(p, k—1)x((p,¢;0) and v Hip® vC(p, k) x((p,t—1;0)
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come from the component of 7 containing v=*((p, k) X y_gC(p, () ® o in its sgr. Similarly,
Vot 5 p @ 1ot C(p, k — 1) x C(p, ;o) and v=3 p @ voC(p, k) % ((p, € — 1;0) come from the
component of 7 containing v*((p, k) X V_§C(p, () ® o in its sgr. Since all the terms in 5@,
come from the same component of 7, we must have that « is irreducible.

We now turn to the case a = 0, k odd. The proof is similar to the general case, but a little
more care is required. Note that if k =25 + 1,

ST =207 p@v73((p,2) % ((p, ) + v HEp @ C(p, 27 +1) % ((p, L — 150).
By the inductive hypothesis, these are all irreducible. Also,

J i L=
serm =2 vTE((p,2j +1—i) x vITT ((pi) x vTE(p, 0) @ o
=0

All the terms in sgp 7 are irreducible as well. Now, s,,;, of any term in sg;7 contains a term
1
of the form v~ 2p® .... Take any component 7, of 7. Since sg;m # 0, we have that s,
1 .
has a term of the form v**2 @ .... Therefore, spm™ > v T2p@C(p, 25 +1) x C(p, L — 1;0).

Since this holds for any component 7 of 7 but V‘H%p ®C((p,2j+1) x((p, ¢ —1;0) occurs in
5(py™ with multiplicity one, we must have that 7 is irreducible. This finishes the case k > 2/.

Case 3: k < 2/

Here, we need to show that 7 is reducible for o« € {—%, 5+ 1 ... S} u{£(0+ £ 1), £(¢+
—2),..., (- g + 1)}, irreducible otherwise. Again, without loss of generality, we may
restrict our attention to o < 0.

We begin with the reducibility points. First, suppose « is a reducibility point with « #
0,—0 + % Then, o + _2+1, —a + #, and —( + % are all distinct, so Lemma 3.5 may be
applied to any term in s@)m. It is easy to see that at least one of them is reducible, so that
the lemma implies 7 is reducible.

Now, take a = 0 with k even. Unlike the @ = 0 case for £ > 2/, Lemma 3.5 is not enough

to give reducibility—in particular, it fails to work if & = 2(¢ — 1). However, for k = 2j, we

k
2

can compare ((p,2j) x ((p,¢;0) and y#((p,f +j) ¥ ({(p,j;0). They have a component
in common, namely L([v=%2p,v=z2p], v T2p, v 2p], [vF2p, v 2p];0) (again, cf. Lemma
3.5). However, ((p,2j) ® ((p, {; o) occurs with multiplicity two in se;,)¢(p,25) % ((p, £; o) and
multiplicity one in s(2jp)1/#(’(p, (+7)xC(p,7;0) (e.g., look at S, ). So, ((p,25)x((p, l;0) >
L(v=T2p,v=3p], v 2p, v 2p], [vT2p, v~2p]; o), hence is reducible.

We now address the case o« = —¢ + g Ifk>¢0, -0+ g > —g so we expect reducibility. In
this case, we get reducibility by comparing 7 with ((p,2¢) x ((p, k — ¢;0). First, observe that
L(lv"2p,v2p], [ 2p,v2p], [V 2p,v72p];0) is a component of both. Further,we have
VEC(p, k) @ Cp, 6 0) < supym but v 2 C(p, k) @ Cp, 6 0) 7 sapC(p,20) X (p k= £0) (e,
there is always a v =72 p before 172 p in sminC(p, 20) 3 ((p, k — £;0)). Therefore,

_k _pal _1 1 _1 _ 1 _1
V20, k) @ C(p, b 0) £ sap L™ F2p,v 2], [ 2p, 073 ], V2 p 072 ) 0)
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hence m must have another component. This finishes the reducibility points.

We now turn to the irreducibility points. Suppose « # 0, —€+§ is an (expected) irreducibility
point. The same argument as in the case k > 2¢ with a # 0 shows irreducibility; we do not
repeat the argument here. Similarly, for « = 0, k£ odd, the k < 2¢ case is the same as the
k > 20 case. Again, we do not repeat it. This leaves a = —¢ + & (with k < ¢).

Suppose @ = —{ + g with k < £, so we expect irreducibility. Then
spm =V Hp@ vt (p,k — 1) % ((p, b 0)

+ R @ 3 (0, k — 1) % ((p, b 0)

+ 2 p @ v C(p k) % C(p, L — 150).

The first two terms are irreducible; the last reducible. Also,

sm_zu 273 C(p,k — i) x VTR (p i) x VT3 (p ) @ 0

All the terms in sgpm are irreducible. Every term in sgpm for ¢ < k has something of the
form ***2p @ ... in its (minimal) Jacquet module, therefore they must all come from the
component of 7 containing v/ ¥*%p @ I/_ZJF%_%C(p, k—1)x{(p,l;0) in its s,). In particular,
7w can have at most two components and if 7 = m 4+ ™o,

squm = Zu 3o,k — 1) x v (p i) x v (p ) @ 0

sarma =vt 5C(p, k) x V‘§C(p, ) ®o
Therefore, we see that any term in s,,;,,m contains one copy of 1/ %p and one copy of
Vi3 while any term in smi,me contains two copies of v~z (and none of v~ '“+2 ).
However, v~ 2p @ v=4a%aC(pk — 1) % C(p,£;0) < sgym is irreducible and s,,,vF2p @
V_“%JF%C(p, k—1)x((p,¢;0) contains both terms with one copy each of v=*~2p and v/ "+ 2
and terms with two copies of v+~ 2 p. Therefore, m; and my cannot be separate components.

This forces 7 to be irreducible, finishing the case £ < 2¢ and the case py = p in the theorem.
O

LEMMA 4.2. With notation as in the theorem, m = ((p,20) x ((p, ;o) is irreducible (€ > 1).
Proof. Let n = 3¢. From Corollary 2.7, we have

spm =203 p @ v 3((p, 20 — 1) 1 C(p, f0) + v Ep @ C(p,20) % ((p, L — 1;0).

+k—
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These are all reducible.
20

soum = 3 vEC(p, 20 — i) x v (p,i) x v (p,0) @ &
=0

-1
=23 vi((p, 20 — i) x v 2 (p,i) x v ((p,0) @ &
i=0

+r73((p, ) x v ((p, ) x vi(p. ) @ 0

All the terms for sgpm are irreducible.

2(
i . Y . ——1
S(n—l)Pﬂ- = E V_EC(pu 26— Z) X v £+2C(p7 7’) XV 2 C(pug_ 1) ®C(p7 170)
=0

20
+Y TEC(p, 20— i) x v (pi — 1) x VT (p, ) @ v px o
i=1

+3075((p,£) x v73(p, ) x 17T ((p, L — 1) @ ((p, 1;0)

/—1
+23 (0,20 — i) x v C(pi — 1) x v (p, () @ v 2 px o

i=1

+2075(p, 0) x V7T ((p, L= 1) x TE(p,0) ® 3(p, 1;0)

This is a decomposition into irreducible components. Two copies of V‘éc (p, 0) x u—ég (p,0) x
v C(p, 0 —1)®((p,1;0) come from the (reducible) ¢ = ¢, ¢+ 1 terms in the second sum; the
other is the ¢ = ¢ term in the first sum.

We show irreducibility by showing that all the terms in sg; 7 come from the same component

of m. Observe that in the expression for sg;m above, we have

Tminy_%g(p> 20— Z) = V_é—"_%p ® V_Z—i_%p ... l/é_i_%p

Zm term Tminl/_é+%<(p> Z) = V_ZJF%P & V_“%P X...Q I/_E—H_%

Pmint " 2((p, ) = v p@ v e @ v ip
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1 [ N § —04+3 (—itt
TminV 2 C(p,204+1—i)=v"T2p@v""2p®...0 v "2p
i— st term { rr T C(pi—1) = v ip@rTip® ... @u i)

rmmy_%C(p, 0) = v tip Rt pR. . QU ip.

From this, one can see that the ith term may be characterized by the fact that s,,;,(ith term)
contains terms of the form ... ® V‘“i_%p@ o. Similarly, the ¢ — 1st term may be characterized
by the fact that sm(i — lst term) has terms of the form ... ® v F2p ® o (for i > 0).
Now, in s((—1)p)7, the term va((p, 20 — i) x v T ((pi — 1) x V‘ég(p, H@vi—spxois
i“3p®0 or
e ® I/Z_H_%p ® o comes from one of the two copies of this. Therefore, if 7wy is a component of
T with sqpmg > ith term, we get

irreducible (1 <4 < ¢ —1). Furthermore, any term in S,,;,7 of the form ... ® v=**

SqLTo = ith term
7 iflU/ £ -1
S(n-1p)T0 = V7 2¢(p, 20 — 1) x v T ((p,i = 1) x v 2(p, ) @ v T Ip o
U

sqrmo > (i — 1)st term.

That is, each copy of V_%g(p, 20—1) x I/_H%C(p, i—1)x I/_%C(p, ) ® =43 p x o “connects”
one copy of the ith and ¢ — 1st terms in s,,;, 7. Using this as ¢ varies for 1 to £ — 1, we get that
7 has at most three components, and further, if 7 = m + 79 + 73, then

—1
SGLT1 = SGLT2 = ZV_%C(Pa 20— i) x v (p, 1) x 1EC(p, ) @ 0
=1

and
sarms = v 2 C(p,0) x vT2C(p,0) x vT2((p, ) @ 0.

Next, we show that there are at most two components, eliminating w3 from above. Observe
that any term in s,,;,73 has only negative powers of v appearing (to see this, take Jacquet
modules in stages starting with sqrms). This means we cannot have swopms > ((p,20) ®
((p, ¢; o) (which has positive powers of v appearing). This contradicts Frobenius reciprocity.
Thus 7 has at most two components, and if 7 = m + m, we have sgrm as above and

4 4 £
sGLe = sgrm + v 2((p, €) X v72¢(p, £) x v72((p, {) ® 0.
Finally, observe that
L=L([v™%p,v 2], [y 2 p, v 3], [y p, 072 )i 0)

is a component of both v=2¢(p, 20 — 1) x ((p, £; 0) (cf. Lemma 3.3) and ((p, 20) x ((p, £ —1: ),
and occurs with multiplicity one in each. Therefore, s, 7 contains yt+s p® L with multiplicity
three. Since Sy 2 p ® L has a term with only negative powers of v appearing, all three
copies must come from the component of 7 containing V_%C(p, ) x I/_%C(p, ) x I/_§C(p, N®o
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in its sgy, which contains all of the “all-negative” terms. That is, s(,ym > 3V_Z+%p® L. On the
other hand, by Frobenius reciprocity, I/_é+%p® C(p,20)@C(p,l—1;0) < s(p,ggp)u_“%p@ L. We
observe (cf. Theorem 2.3 et seq.) that v por i pe. @ i per . RrT po,
which is Syminy T2 p @ C(p,20) @ ((p, ¢ — 1;0), occurs with multiplicity four in $,,;,7. Two
copies each come from each Zf;ll I/_%C(p, 20—1) X V_£+%C(p, i) X V‘ég(p, 0)®o (by symmetry),
so that m; has two copies. Since there are three copies of el p ® L, we must have s, m
containing at least one copy of ytts p @ L. However, we already have that my contains all
three copies of V‘H%p ® L, a contradiction. Therefore, 7 is irreducible. [

We now give the counterpart to Theorem 4.1 for the case where p satisfies (C1). The proof
is essentially the same.

THEOREM 4.3. Let py, p be irreducible unitarizable supercuspidal representations of G Ly, (F),
GL,(F); o an irreducible supercuspidal representation of S,,. Further, suppose p satisfies (C1).
Let m = v*((po, k) x ((p,l;0), a € R.

(1) Suppose pg = p. Then, m is reducible if and only if

c —k+1 —k+1Jrl k—1
(67 N
2 72 2

2

(noting that the sets are not necessarily disjoint) with the exception that if k = 20 + 1
and a = 0, there is irreducibility (i.e., ((p, 20+ 1) x ((p, ;o) is irreducible).

(2) Suppose py % p. Then, 7 is reducible if and only if v*C(po, k) X o is reducible. If
po Z# po, v*C(po, k) X o is irreducible (cf. Note 3.12). For py satisfying (C1/2), (C1),
or (C0), resp., the reducibility points for v*((po, k) X o are given in Propositions 3.6,
3.10, or 3.11, resp.).

k+1 k+1 —k+3
U{i(fjt%),i(ﬁ—l—%—1),...,i(€+ * )}

5. COMPONENTS: THE “RAMIFIED” CASE

In this section, we study m = v*((po, k) x ((p, {; o) for py % p. The main result, Proposition
5.3, relates the components of 7 to those of v*((pg, k) x 0. (In particular, Proposition 5.3
verifies the reducibility claims from Theorems 4.1 and 4.3.) We are particularly interested in
the cases where 7 is a degenerate principal series representation. Let x = |- |*¢y, a € R,
be a one-dimensional representation of F*. Now, 12 # 1 corresponds to py % po, which is
irreducible by Proposition 5.3 and Note 3.12. If 99 = 1, the components of y o det; X tr,
(when reducible) are covered by the next section. Suppose ¥y = sgn (order two). Then we
have py = 99 = sgn, p =1, 0 = 1g,. For SOq,11(F), 1y = sgn satisfies (C1/2). Therefore,
X o dety X try in SOq,.1(F) corresponds to both p and py satisfying (C1/2). Similarly, in
Span(F), 1o = sgn satisfies (C0). So, x odety X tr, in Spy,(F') corresponds to p satisfying (C1)
and py satisfying (C0). These particular combinations of conditions on p and p, are dealt with
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explicitly in Corollaries 5.7 and 5.8, respectively. One key fact in proving the results of this
section is the following: v%p x 1”p, is irreducible for all o, 3 € R.

We have one small obstacle: if py is a representation of GL,,(F') and p is a representation
of GL,(F), we do not necessarily have py = p. Therefore, we use the following to play the role
that s, played in the previous sections.

DEFINITION 5.1. For 7 a representation of S,, let ss.7 denote the sum of all the irreducible
terms in p*t of the form p' @ 7" with p' supercuspidal. In addition, allow S, to mean the
analogue of Spin for this setting—that is, the sum of everything in any Jacquet module which
has all of its terms supercuspidal. (Alternatively, if X denotes the set of all permutations of k
copies of py and £ copies of p, then spin = Y .cx Sa-)
LEMMA 5.2. For w as above, if 1y < 7 with g # 0, then

(1) SscTo S SgcT

(2) S5cT0 7é 0.
Proof. (1) is trivial. For (2), choose m minimal such that s, mo # 0. Suppose p; ® 71 < 5(m)To
with p; ® 7 irreducible. Then, p; is supercuspidal. If not, we have that s.,, )01 > p2 ® p3
for some m; < m. We claim s(,,)my # 0: by restriction in stages this must be true since
S(my,m—my)T0 = p2 @ p3 @ T # 0. This contradicts the choice of m, finishing (2). O

PROPOSITION 5.3. Suppose that o is an irreducible supercuspidal representation of S,, and p
is a representation of GL,(F) satisfying (C1/2). Let m = v*((po, k) x ((p, {;0). Write
vC(po. k) x o= L(Ai(k,a)).
i=1

Further, suppose that this decomposition has multiplicity one, i.e., N;(k,a) # A;(k,«) for
1# 5. Then,

T=> L(v™%%p,v7%p], Ai(k, ).
=1

In particular,  is reducible if and only if ((po, k) X o is reducible.

Proof. Note that the results holds for ¢ = 0 (trivially) and for & = 1 (Theorem 6.1 (i) of
[Tad3]). So, we may make the convenient assumption that £ > 2, ¢ > 1.
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We proceed by induction on k + ¢. Now, by p* (Corollary 2.6) and induction, we have
SscT = VOHF#/)O ® VOH_%g(pOa k — 1) X g(pv 67 O')

+V_a+#p~0 ® Va_%C(p(b k— 1) A C(pa f, U)
+ 42 p @ voC(po, k) % C(p, £ — 1;0)

“k 1
= VT @ Ly e v Ak — L+ )

+Zy_a+7k;1p~0 ® L([V_Z—l—%pv V_%p]u Az(k - 17 Q= _>>

i

+> v ip @ L([v "2 p, 07 %), A(k, ).
We now proceed as in Lemma 3.5. In particular, we show that each component of m contains
1 1
a term of the form v 2p ® L([l/‘“gp, v=z2p|, Ai(k,@)) in its ss.. Suppose m; is a component
of 7. By Lemma 5.2, we have sy m; # 0. By the same lemma, s,.m; < s,.m. Therefore, suppose
—k+1 k+1

vt pg @ L([V_“_%p, V_%p],Ai(k —1,a+ %)) < 84m;. Then, consider $,,;,v*" "2 py ®
L([u_“%p, u_%p],Ai(k — 1, + 3)) (cf. Definition 5.1). By Lemma 2.8, it has terms of the

form 1/‘”#,00 ®01...00; ® I/_“_%p ® terms, where 01, ...,9; involve only py’s. Therefore,

. el el oyl
since v 2p x §; = §; x v 2 p, ete., we can commute v~T2p and §; to argue as follows:

SpminTi > 1/‘”#@ ®0..00® V‘ZJ’%p ® terms

U

SappTi > Va+#p0 ®01...Q (0; X V‘“%p) ® terms
U

SminTi Z VOH_#pO &® 51 e 6j—1 &® I/_é—"_%p &® 5]' ® terms

i3
J

SminTi = VOH_#pO ® I/_H%/) ® (51 ®...R (Sj ® terms
U

SappTi > (I/‘H%po X 1/_“%/)) ®6 ®...0 0 ®terms
g

SpminTi > V_H%p ® yo‘*#po ®0®...Q00; @terms,
where s,,, denotes the Jacquet module taken with respect to the parabolic subgroup of the

appropriate shape. A similar argument holds for y‘”‘*#p}) R ...
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Next, observe that
T — v*(po, k) (I/_H%p X ((p,l—1;0)) = v ey x v (po, k) @ C(p, £ — 1;0).

Set ' = v 2p x 1 (po, k) % C(p, € — 1;0) and 7@ = v~ 3p % L[ 2p, v 2], Ai(k, ).
Observe that 7@ < 7. We claim that v~ 2p @ L([v="2p, v~ 2p], As(k, a)) occurs with
mutiplicity one in s,7m, sg.m’ and Sgem @), Multiplicity one in s, is trivial-s,.m is writ-
ten out above and v*((pg, k) x o decomposes with multiplicity one. That ssn’ contains
v3p @ L[y~ 2 p,v-2p], Ai(k, o)) with multiplicity one follows from p* calculations. This
implies multiplicity (at most, and therefore exactly) one in s,m®, as claimed. From this,
it follows that 7 and 7 have a component in common, characterized by having yt+s p R
L([V‘“gp, I/_%p], A;(k,«)) in its sg. Call this representation ;. By the preceding paragraph,
we have 7 =) 7.

We now identify ;. Since I/_£+%p®L([l/_£+%p, v=2p], Ay(k, @) appears with multiplicity one
in s, 7%, by Frobenius reciprocity, 7(¥ has a unique irreducible subrepresentation, necessarily
;. Thus,

T v Fepx L(vF2p, vz p], Ak, @)

SN V‘“’%p X [([V_H%P; V_%p]v Ai(k’ a))

> (v, v 2], Ailk, @)
by the usual commuting of p and py terms (recall that I(A) is the representation obtained by
inducing the Langlands data A; see section 2). Since I([v="2p,v~2p], A;(k, @) has unique
irreducible subrepresentation L([v="2p, v=2p], Ai(k, o)), we see that
mo= L= 2,07 0], A, @),
as needed. [
LEMMA 5.4. With hypotheses as in Proposition 5.3, let A; = A;(k,«). Then, for m =
v*C(po, k) X ((p, €;0) write m =Y. m; with m; = L(v"2p,v72p], A;). Then,
(1) e
m — v 2((p, ) X L(A;)
In particular, this means s pym; > v=2C(p,0) @ L(A,).
(2) v=5C(p, 0) @ L(A;) appears with multiplicity one in S(ep)TT.-
Proof. For (1),
v=2((p, ) x L(A) — v ipx . x v ipx I(A)

> I([v"2p,v7zp), A)
by the usual argument commuting p-terms around po-terms (v°p x 6 = § x v%p for any
B € R and any § € A;). Note that m; is the unique irreducible subrepresentation of the
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I([v"t*zp, y2 pl, A;). Therefore m; is the unique irreducible subrepresentation of v3( (p,0) x
L(A;). The claim then follows from Frobenius reciprocity.

For (2), observe that in the formula for p*m (cf. Corollary 2.6), we see that to have the form
V_§C(p, () ® ..., we must have j = ¢, t =0, i = k. That gives V_§C(p, 0) @ [v*¢(po, k) % o].
Since L(A;) appears with multiplicity one in v*((po, k) % o, the claim follows. [

COROLLARY 5.5. Suppose that o is an irreducible supercuspidal representation of S,, and p
a representation of GL,(F) satisfying (C1/2). Let m = v*((po, k) x ((p,l;0). Suppose that

v*((po, k) o, u”‘*%(’(po, k—1)xo and l/a_%C(po, k) x o satisfy the multiplicity one hypothesis
wn Proposition 5.3. Then, with notation as in Lemma 5.4, write

S L(A) =Y v¥p @ L(AY)
J

(n.b. the a; need not be distinct, but there are at most two possible values for o). Then,

semi = v @ L, i), A)

> po @ L i p, v pl AT,
J
Proof. First, recall that from the proof of Proposition 5.3, we have s,.m; > v 2 p@ L([v=2p, v=2p], A).
Next, we claim sg.m; > Zj v py ® L([l/_“%p, I/_%p], AZ(-])). First, from Lemma 5.4 above,
supmi 2 v 2 (p,0) ® L(A)
U
_t o ;
Stpo ™ = Y v 2C(p ) © v po ® L(AY)
J
U Z '
S(po,tp)Ti 2 ZVaj/)O @ v 2((p,0) ® L(Az@))-
J

since =2 (p, £) X v py = v py x v=2((p, £) (as both are irreducible, cf. Theorem 2.1). Now,
observe that since

SscT = Va+7k2+1/)0 ® V‘”%C(/Jo, k—1)x((p,t;0)
Um0t oy @ 123 (po, k — 1) % C(p, 4 0)

+V‘Z+%p ® v (po, k) x ((p, £ —1;0),

if a; = o+ =5t then we have that V=3 (p,0) ® L(Agj)) must come from a component of

v+ 2 (pg, k — 1) x ((p, ¢; ) (and similarly for a; = —a + =ELif o = 0 their contributions
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are the same). By Lemma 5.4, this implies

. o ,
Spomi = D v po @ L™ p,073 ), AD).
J
As we run through the different values of 7, this covers all of

-t —k+1 a+l b =ktL a—1
v po @ v 2 (po, k — 1) x ((p, 60) + v po @ v 2((po, k — 1) % ((p, 4 0),
so this covers everything of the form v*py ® ... in sg.m;. Therefore,

semi =@ L, v i), A)

+D V@ Ll 2,07, AY),
J
as claimed. [J

REMARK 5.6. It is also worth commenting on Spyin™, Smin™ (cf- Definition 5.1). It is not

difficult to see that Sy, is as described after Theorem 2.3 (without the restriction py = p, of
course) and

SminTi = Shuffles of 1/_“%/) ®...v"2p and SminL(A;).
More precisely, if SminL(A;) = Zj 6;, we mean

SminTi = Z shuffles of v 2p® ... @ v 2p and 0;.
J
COROLLARY 5.7. Suppose o is an irreducible supercuspidal representation of Sy, p, po irre-

ducible unitarizable supercuspidal representations of GL,(F), GL,,(F'). Further, suppose both
p and po satisfy (C1/2). Let m = v*((po, k) x ((p,4;0), o € R. Then, 7 is reducible if and

only if a € {—g, —g +1,..., g} Suppose 7 is reducible. By Lemma 2.9, we may without loss
of generality assume that o < 0. Write o = —g +7,0<5 < g Since £ = 0 is covered by
Proposition 3.6, we may assume £ > 1.

(1) j=0

T =Ty + Ty with
m = L2 p,v72p), 2 po, v ol 0)

1

m2 = (v~ p, i), [t

PoaV_%Po]§5(V_%/70;U))
(a) k=1

St = v 2p® L2 p,v 2], v 2 pos0) + v 2py ® L[~ 2p,07 25 0)

seca = v 3p @ L([v™ 5 p, v % p; 6(v "2 po; 0)) + vEpo @ L([v™F2p, v %l 0)
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(b) k>1
sem = L2072 0t 0)
+v M3 p0 @ L[~ 3p, 073 p], [V 3 po, v 3 pol; 0)
_ o+ —+3 -1 —k+3 A=Y
Ssey =V 2p@ L([v™" 2 p, v 2], [T 2 po, 172 pol; (172 po; 0))
3 py @ L([v= 3 p, v 3 p], [v 42 po, v 2 pol; 6(v 2 pos )
+uipy @ L([v2p,v 2], [V F 2 pg, v 2 py) 0)

(2)1<j<4%
T =1 + My + w3 with

™ = L([V_H%Pa V_%P]a [V_k+j+%/707 V_%POL [V_j+%/707 V_%Po]; o)
1 1 01 3 01 1 1
my = L([v"2p,vm2p], [ 2 po, w2 pol, [Vt 2 po, v 2 ol 6 (v 2 po; o))

T3 = L([V_é+%p7 V_%p]v [V_k+j+%p07 V_j_%p(]]u V_jé(/)m 2)7 R V_l(s(p(]v 2)7 5(V_%p0; U))
(a) j=1=%L (sok=3)
SscT1 = V_é—"_%p ® L([V_Z+%p> V_%p]a V_%p(b V_%Pm V_%Pm U)
~2po® L([v~2p, 0 =2 o, V"2 o
+v72p0 @ L([v™*2p, 072 p], 072 po, v 2 py; 0)
_3 —¢+1 _ 1
+v72py ® L([v™""2p,v72p

Nl= =
[

]a V_EPO> V_Epo; U)

seemy =V H2p@ L[~ 2p, v 2p], 072 po, v 2 po; 6(v "2 po; 0))
3 1 1 1 1
+v72p0 @ L([v™ 2 p, w2 pl, v 2 po; 6(v 2 po; 0))

ssemy = v F2p@ L([v="2 p,v2 o], v 6(po, 2); (v o 0)
+v73po @ L([v= 2 p, 072 p], v 2 po; 6(1 2 po; )
(b)j=1,k>3
sem =vH2p@ L[y~ 2p,v2p], v po, v 2 pol, v 2 pos o)
v 30 @ L([v="2p, 073 p), [V 3 pg, v 2 pol, v 2 po; )
+v72p0 @ L[ 2 p, v 2], [vE 2 pg, v 2y 0)

Sty = v 3@ L([v= 2,072 0] 2 00, 72 pol 02 p0: 8(v72 03 0)
+v 7 2 p0 @ L([v="2p,v72p), [ 2 pg, 72 pol, v 2 po; (v 2 po; )

STy = u‘“f p@L([v=** %1/), V‘%lp], V=2 po, v 3 po), 16 (o, 2); 0 (V_%lpo; o))
v g @ L2 p, vz pl, [ po, v ol v 6 (o, 2); 6(v 72 pos 0)
+v72p0 ® L[z p, 072 0], [V 2 00, 172 0] 6(v 2 o3 0))
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(c) j =51 k>3 (k odd)

seemi = v Hp@ L2 p, v 2], [V po, v 2 pol, [V po, v 2 ol 0)
1

v 2py @ L[y ep,ve 3o, v pgl, [V 2+ po, 12 pol; o)
vy @ L[y 2p,v72p], [V 2 po, v 2 po), [V 2pg, v 2 po]; 0)

) [V_

SscT2 :V_Z+%p®L([V_Z+%p7V_%p]7[V_§p07l/_%p0]7k L L
) o ) o, vz pol 6072 po; )
+v72p0 @ L= 2p, w72l 072 po, v o], 1 1
~kp T TN
by et . B _§[V 2 " pPo,V 2p0]7 (V Z/JOaU))
o0 ® L[ 2 p, vz 0] [V po, v 2 0 1 1
V=22 po, ™2 pol; 6(v™2 po; 0)
el 3 14 =kl -1 YA
SscT3 =V 2P®L([V 2o, v Qp]’]/ 2 5(p0a2)>"'>y 5(p0’2)?5(1/ 2p070))
k k
—I—I/_§+1p0®L([V_Z—F%p,I/_%p],V_EpO,I/TB(S(pO,2), 1
SRR V_l(S(p(], 2)7 5(V_§p0; U))

(d)1<j<it

sem =V T 3p@ L([v 3 p, v 3 p], [V po, T2 o), [V 2 g, v 2 gl 0)
+v k3 pg @ L[ 2 p, 02 ), [T po, 12 pol, [V 2 po, v 3 ol 0)
v 2y @ L[~ 2 p, 2], [ 2 pg, 12 o], [V po, v 2y )

SseT2 = V_Z+%p ® L([V—Z+%p7 V_%pL [V_k+j+%p07 V_%p(]]a
=92 po, ™2 pol; (v 2 poi 7))
RT3 9 @ L[y~ 2 p, 073 p), [V RS pg, 13 ),
[=9%3 o, v po; 6(v 2 po; )
S01 1 1 -1 3
v ape @ L[y ap v apl T gy, v i), 1
(V7% 2 po, v 2 pgl; 0(v ™ 2 po; o))

Sy = v 2p® L[ 2p, 072 ], [V 492 po, T2 pg), 176 po, 2),
v (po, 2); 5(1/_%/70; 7))
R 2 g @ L([v= 2 p, v 3 p], [V R po, T2 pol, 18 (o, 2),
v (po, 2); 5(1/_%/70; 7))
+v 92 p0 @ L= 2 p, v 2], [V HH42 g, 7972 pol, I (o, 2),
v (po, 2); 5(1/_%/70; 7))

(3) j=2% (k even)
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T =T + T2 with

m = L[~ 2p, 03], [V po, v 2ol [0 po, v 2 pol; o)
o= L([v*2p,073p], [V po, v 2pol, [V 2 po, v 2 pols 6(v 2 pos )
(a) k=2
sem =V 42p@ L([v 2 p, v 2p], v 2 po, v 2 po; 0)
+2v"3pg @ L([v~"3p, 073 p], v 3 pg; 0)
1 1 1 1
+v 720 @ L(lv™"*2p, 072 pl; (v 2 po; 0))
A —e+3 -1 -1 -1 .
SscMy =V 2p ® L([V 2p7 4 2/7]7 2 6(V 2p07(7))
+172py ® L([v2p, v 2p]; 6(v % 0;0))
(b) k> 2
seem = v 2p@ L([v ™ ip,v73p), [vTE po, v pol, [v T2 po, v pol; o)

-mnzm®Lufﬂpuwuv%mmzmu*wmw%mm>
+v75 oo @ L[ 2 p, 073 p], v 5H16(py, 2),

v=15(p0, 2); (v 2 po; 0)

sy =V P ap@ L([v " 2p, v 2p), [V po,v f'?o]
—kt1

== po, 7 2p0); 6(v"2 po; 0))
+2072 pg @ L[~ 2p,v72p), V75 po, v

+v 75 po ® L[y Ep, 3, V‘§+15(p0, ),
15(p0> ) 5(7/ 2p0a ))
Proof. This is an immediate consequence of Proposition 3.6 used with Proposition 5.3 and
Corollary 5.5. [

We now give the counterpart to this for the case p satisfies (C1) and p, satisfies (C0). Note
that if we assume that p satisfies (C1) instead of (C1/2), Lemmas 5.3 and 5.5 still hold. The

only change required is to replace 1/_“%,0, cee u_%p with v=%p, ..., v 1p, resp.

COROLLARY 5.8. Suppose o is an irreducible supercuspidal representation of S, p, po ir-
reducible unitarizable supercuspidal representations of GL,(F'), GL,,(F). Further, suppose p
satisfies (C1) and pgy satisfies (C0). Let poxo =Ty+Ts. Let m = v*((po, k) ¥ ((p,l;0), a € R.
Then, m is reducible if and only if o € {=5E, =ExL 1 EAY Suppose w is reducible. By
Lemma 2.9, we may without loss of generality assume that o < 0. Write a = k“ + 7 with
0<5< % Since £ = 0 is covered by Proposition 3.11, we may assume £ > 1.

(1) j="*4
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T =T + T2 with

= L(v o, vl v po, v ol v po, v ool )
fori=1,2.
(a) k=1
ssemi = v p@ L([wv™" p, v pli o) + po @ L([v~"p,v™"p]; 0)
fori=1,2.
(b) k>1

k41 —k+1

ssei =V ' p @ L([v= o, v 0], [v=7 po, v pol, V=7 po, v pol; T)

+207% o @ L(v~"p, v 40l V% po, v pol, [V TE o, v pal; T
—k+1 0. -1 -k -1 .
tvo2 p0®L([V PV p]vV 2 5(p072)7"'7y 25(/7072)7‘7)
fori=1,2.
(2) 0<j <5
T =171+ T+ 73 with

R g v ol [ po, v ol T)

m o= L([v~'p,v"pl, [v
fori=1,2 and
T3 = L([V_épv V_lp]a [V_k+j+1/707 V_j_zp(]]v

l/_j_%(S(pO, 2), I/_j+%5(p0, 2),..., I/_%(S(po, 2);0).

(a) j=0="232 (k=2)
ssemi =v lp@ L([v=p, v pl, v poy Th)
+v 7o @ L([v~"p,v~"pl; T))
fori=1,2. Further,
ssems = v tp @ L[~ p, vp], v 26(po, 2); 0)

+po ® L([V_épv V_lp]u V_lﬂOQ U)'

(b) j=0, k> 2
sseMi =V p@ L([v=F p, v pl, [ po, v po; Th)

+V_k+lp0 ® L([V_va V_lp]v [V_k+2p07 V_lﬂ0]§ TL)
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fori=1,2. Further,
Sees = v p @ L([v™ 1 p, v p], [vFH po, v2pol, v 28(po, 2); 0)

+v g0 @ L([v=p, v pl, [V po, v o], v 2 8(p0, 2); 0)

+po @ L([v="p,v ™" pl, [V po, v~ pol; 0).
(c) j =52, k>4 (k even)

SscTy = V_Zp ® L([V_Z—l—lpa V_lp]a [V_nga V_1p0]7 [V_%—i_lp()a V_IPO]§ 7—‘7,)
+v72p0 @ L[~ p, v ], [ po, v pl, [ po, v ol T)

=3ty @ L([v~p,v=2p], [v=2 po, v pol [V 3200, v o) Th)
fori=1,2. Further,

Sy = v p@ L[~ p, v, 073 8(po, 2), ..., v 28(po, 2); 0)

—k+3

+7 5y @ L[~ p, v pl, v po, vTE 0(p0,2), -, v 2 0(po, 2); 0).
. k—
(d) 0<j <3

ssei =V p@ L([v=F p, v pl, [ ¥4 po, v pol, [ po, v pol; Th)
+v M po @ L([v=p, v p], [v "2 pg, v pol, [V po, v pol; 1)

+v 7 po @ L([v="p,v =" p], [V 4 po, v pol, [V =7+ po, v pol; Th)
fori=1,2. Further,

Sy = vlp® Ly p, v gl v 2],
]/_j_§5(p07 2)7 R V_ﬁé(po’ 2)7 U)

kg @ L[ p, v=p), [ 9+2py, 1372y
V_j_%é(p(b 2)7 ) v

26(po, 2); 0)
_H/_jpo ® L([V_£p> V_lp]> [V_k+j+1p0> V_j_lpo]’
V_j—l—%(s(p(]v 2)7 SR V_%é(p(b 2)7 U)'
Proof. This follows from Proposition 3.11 and the analogues of Proposition 5.3 and Proposition
5.5 for the case when p satisfies (C1). O
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6. COMPONENTS: THE “UNRAMIFIED” CASE

In this section, we give the components of v*((p, k) x ((p,¢;0), o € R. For p satisfying
(C1/2), the results are in Theorem 6.1; for p satisfying (C1), the results are in Theorem 6.2.
The techniques are basically the same as those used in section 3 to get the components of
v*((p,n) x o-the argument is inductive; s, is the main tool. Of course, things are more
complicated here. Note that Jacquet modules for k£ > 2, ¢ > 1 are given in abbreviated form
in the tables in this section (to save space). The cases k = 1 and ¢ = 0 are both covered in
section 3.

THEOREM 6.1. Suppose o is an irreducible supercuspidal representation of S,, and p is a
representation of GL,(F) satisfying (C1/2). Let m = v*((p, k) x {(p,{;0) with o € R. Recall
that 7 is reducible if and only if a € {£((+5), £(0+5 1), £l -2+ D)}Uu{{-% -L+
1,..., g} \ {0 if k = 20}}. Let Sy denote the first set; Sy the second. Suppose 7 is reducible.
By Lemma 2.9, without loss of generality, we may restrict our attention to o < 0. Note: T 1is
described in Proposition 3.1.

(1) 04651,04¢52

T =T + Ty with
m = Lt =2 p, vt 5 ), [ 3p, v 2] 0)

—k+1

mo = Lt =5 p, v 2], v (p, 2), v 18(p, 2), . .., TE6(p, 2),

et p, v 3]s 0)

(2)0&652,0(%51
Write o = =% +j,0< j <
(@) j=k—L(j<k—j=1)
T =T + T2 with

[N

m = L= 2p, v 2], e p ) [ e p, v ) 0)

Ty = L([V—£+%p7 V—k+£—§p]7 [V‘“%p, I/_%p],
vEHo(p, 2), v F S (p,2), . v T10(p, 2); T)
(b) k—.€<j<§ (j<k—j<?)
(i) j=0

T =T + Ty with

m = L([v ™ 2p, 03], [y 2p, v 3]s 0)

My = L([v**2p,v2p] [y 2p, 0720 T)
(i) >0
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T = T + Mg + T3 with
m = L% 2 p, 072, [ p, w72 p) [ 2 p, 072 ] 0)

72 = Ly 2p, v 2], [ p v R ),
V_]é(p, 2)7 y_]+15(p’ 2)7 o V_lé(p7 2)’ T)

my = L2 p, v 3 p] [y *2p, 073 ),
vE6(p, 2), v (p, 2), . v (p,2): T)

(c) j=2% keven (j=k—j<{)
T = T + T with
m = L™, ),

2 pvap), [ i, v 3]s 0)

m = L([v~"7p, i,—%—%p], [V;kzﬂp, v 3p),
v=20(p,2),v 2"0(p,2), ...

v (p, 2); T)

(3) a € Sl N SQ
Writea:—§+j,0§j§§.
(a) j <=1 <l<k—j)
T =T + T + 73 + M4 with
= L 92 p,07 2], [ 20,072 ] 20,073 ) 0)

my = L([y ™2 p, 775 ] =2, v 3 ],
v6(p,2),v5(p,2), ..., v 10(p,2); T)

my = L(w 5+ sp, v~ 3] [y I+ ap, 03, 1
v(p,2),v1(p,2),...,v 1 0(p, 2);0(v 2 p; 0))

= L(lv ™2 p, 720, v™0(p, 2), =8, 2), ... 0(p,2)
vI720(p,3), v 26(p,3), ..., v720(p, 3); 0)

b)j=L(=0<k—])
T = T + T with
o= L2 p,073 ), v 20,072 0], v 20,020 0)

my = L[y 3 p, 05 ) [y p, 03 ) 1
v16(p,2), v 16(p,2), ..., v 1(p,2); (v 2 p; 0))

() l<j<b(t<j<k—)

49
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T = T + Mg + T3 with

w1 = L™ ool v bl I gl )

my = L[y "t p, 5 ] [y I3 p, 03 ), 1
v49(p,2), v %1(p, 2), ..., v 0(p, 2);0(v 2 p; 0))

my = L[ "4, 73], [ 03 ), 1
vI8(p,2),v718(p,2), ..., v 10(p, 2);0(v 2 p; 0))

(d) j=5% keven((<j=k—)
T =T + o with

mo= L= p,v 20l v pv 2] [ i, 03 i)

—k+1 1 —k+1 3
mo=L([v=z p,v2pl[v e p,v 2],
v(p,2),v-15(p,2),. .., v 0(p, 2);6(v "2 p; 0))
The proof of the theorem also gives us sy, for each component m; of m (summarized in the
tables); for reasons of space, we do not write them out here. (Note that the tables only give
the Jacquet modules for k> 2,0 > 1; for k=1 or £ =0, see section 3.)

Proof. The proof is by induction on k+/¢ (not exactly the rank, but the same basic idea). Note
that the cases £k = 1 and ¢ = 0 are done in section 3, so we may assume k > 2, £ > 1. Also,
we do case 1 (a € 51, o € Ss) last, so we may restrict our attention to cases 2 and 3 for the
time being.

As in Proposition 3.6, the induction focuses on sgym. For 7 = y—éﬂ'g(p, k) x ((p,l;0), we
have

4

ST =V I @ vt IC(pk — 1) % C(p, 4 0)
+ IS p @ I3 (p, k — 1) % ((p, b 0)

- 3p @ v 3 HC(p k) % C(p. L — 1;0)

Let
T = V—k“‘j"‘%p@ y_§+j+%<—(p, k — 1) X C(pu gu U)

T =V It p@ v i TiC(p k — 1) % ((p, £ 0)

" = v ip @ v (p, k) % ((p, L — 1;0)
For 7/, we have k' =k — 1, ¢/ = ¢, 7 = j (in the obvious notation) so that &' — j' =k — j — 1.
Similarly, for 77 we have k" — j" =k —j, 7" =j—1,¢" = { and for 7", k" — j"" = k — j,
j" =4, 0" = € — 1. Further, by inductive hypothesis, we know that 7/, 7", 7" decompose
according to the theorem.
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The proof of the theorem is broken into subcases based on how 7/, 7", 7" decompose (with
respect to the theorem). The particular case of the theorem governing the decomposition of 7/
is given in the second column in the table below, and is easily determined from k'—j’, j', ¢’. One
note: if j = g, in order to avoid having o' > 0, we replace 7 = V#p@)l/%g(p, k—1)x((p,¢;0)
with y#p ® V_%C(p,k‘ — 1) x({(p,l;0) =7" (so then k' — j' = k" — 3" 5 = 3", 0 =1").
The third and fourth columns have the corresponding information for 7/ and 7", respectively.
The final column indicates which components of 7/, 77, 7" are contained in s, m; for each
component 7; of m. Note that this is part of the induction—we assume the table gives the
Jacquet modules for lower values of k 4 ¢ and verify it for k£ + ¢ under consideration.

We note that the notation in the tables is the obvious notation—e.g., if 7/ decomposes ac-
cording to case 3a, then 7 is the second component in part 3a of the statement of the theorem.
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Case (for ) for 7 for 7 for 7" | components
1.
(@) a=—0—1% 1 irr irr S(p)T1 = T}
ST =Ty + 7" + 7"
B)a=—l+£-1 irr 1 1 Spm =T + 71 + 71
SpyT2 =Ty + 13
(v) =€ — g < a, 1 1 1 Spm =T + 71 + 17"
a<—l+%-1 SpT2 =Ty + Ty + 73
2a.
() k=14 2b(i) irr 3a Spm =T + 71 + 715
sgyma = 75 + 7 7 7
B)l<k<20—1 2b(ii) 2a 3a spym =1 + 71 + 1" + 718
Syma =T+ 7+ 7 7Y 7
(v)k=20—-1 2¢c 2a 3b Spym =T +17 +7 +7)
S(pyTa = Ty + T
2b(i).
() k=0—1 2b(i) irr 2a Spym =1 + 711
ST =Ty + 7" + 1)
B)k<t—1 2b(i) irr 2b(i) | spm =T+ 7"
ST =Ty + 7" + 1)
2b(i).

() j=1,k=3,(=3| 2 2b(i) 2a s

/ 7 n

S(p)T2 = Ty + T3
S(p)T3 = Ty
B)j=1,k=3,0>3] 2 2b(i)  2b(ii) | spym =7+ 714 + 7

S(pyTa = Ty + 73"
S(p)Ts = Ty + 74’
(v)j=1,k=1¢¢>3 | 2b(ii) 2b(i) 2a Spm =11+ 71 + 71

(p)

(p)

(p)

(p)

(p)

(p)

(p)

(»)T2 = Té —|—T£/ —0—7'5//

()T = T3
(0)j=1,3<k</t 2b(il) 2b(i) 2b(ii) | sEm =71 + 714 + 7"

(p)

(p)

(p)

(p)

(p)

(p)

(p)

(p)

H
|

/ 7 n
/ n
= 7_3 + 7_3

3
w
|

() j =521, 2¢ 2b(ii) 2a Spm =1 +1 + 17"
k=20-3,0>3 S(pyTa = Ty + 73"
S(p) T3 = Ty + T4

(©)j =" 2c  2b(il) 2b(i) | spym =] + 70 + 17"

9 — Tél +T£N
_ / ! n
S(p)T3 =Ty + 73 + 73
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Case (for ) for 7 for 7" for 7" | components
mj=k—10+1, 2b(ii) 2b(ii) 2a Spm =T + 7 + 10"
(<k<20-3 SpTe =Ty + Ty + 73
S(pyT3 = Ts + T4
(0) 1<j<id jAk—0+1]2b(i) 2b(i) 2b(ii) |spym = 7]+ 74 + 77"
ST =Ty + 73 + 15
ST =Ty + 75 + 73
2c. n.b. 7 =7")
() k=2,0=2 2b(i) 2b(i) irr Spm =T+ 1+ + 7"
S(p)T2 = Ty
B)k=2,0>2 2b(i) 2b(i) 2c ST =T + T+ 71 + 7
S(p)T2 = Tél + Té”
(N k=20—2,0>2 2b(ii) 2b(ii) irr Spm =T+ +T1 +7"
ST = T3+ 7 + 73
(0)2<k<20—2 2b(ii) 2b(ii) 2c Spm =T, + 19+ 71 + 7
ST =Ty + Ty + 74 + 73
3a.
()j=0,0=1k=2 2a 1 3b Spm =1 + 711
S(p)T2 = 75+ 1/
sy = 1
S(p)Ta = Ty
(B)j=0,l=1k>2 3a 1 3b Spm =T + 711
S(p)T2 = Té + T{,
S(pyT3 = T3 + 75’
S(pyTa =Ty + 75
V) j=0,0>1k=(+1 2a 1 3a Spm =1 + 717
ST = Tp + 71 + 15
syms = 74
S(p)Ty = Ty + 1y
(0)j=0,0>1,k>(+1 3a 1 3a Spym =T + 77
Sp)T2 =T+ 11 + 75"
S(pyTy = T3 + 74’
SpyTa =Ty + 79 + 74"
(€)j=k—0—-1>0,k=20 | 2a 3a 3b Spm =7 + 71 + 1"
S(pyTa = Ty + T3
SpTs = T4 + 13’
S(p)Ta = Ty
Q) j=k—0—-1>0,k<20 | 2a 3a 3a Spm =1 + 71 + 1"
Sp)T2 =T + Ty + 75"
S(p)T3 = Té’ + 7'5/5”
(»)

53



54 CHRIS JANTZEN
Case (for ) for 7' for 7 for 7 | components
(n)j=0—1>0, 3a 3a 3b Spym =1 + 7 +7"
jEE—0—-1 SpyT2 = Ty + Ty
Sy = T4+ 7 7
Sp)Ta =Ty + 74
O)0<j<t-1, 3a 3a 3a Spym =1 + 71 + 7"
jEk—0-1 S(p)T2 =Ty + Ty + 75
S(p)T3 =Ty + T4 + 75
SpyTa =Ty + 74 + 74
3b.
() k=20+1 irr 3a 3c ST =T + 1 +75 + 71
ST =Ty + 74 + 75 + 75
(B) k>20+1 3b 3a 3c Spym =T+ 71 +79 +7"
ST =Ty + 75 +7) + 7 + 13"
3c.
() j=L+1, k=20+3 | 3d 3b 3c Spm =1 + 7 + 7"
o2 =74+ 7
oo =71+ 7
(B)j=L+1,k>20+3| 3c 3b 3c spym =71 + 71 + 71
Soyts = 74+ 7
SpT3 =Ty + Ty + 75’
(V) j>0+1,5="41 3d 3c 3c Spm =1 + 7 +7"
SpTe =Ty + Ty + 7'
sgyms =4+ 7
0)(+1<j<iL 3¢ 3¢ 3c spm =1 + 11 + 717
sgyma =15+ 74 + 73
sy = 14 + 74 + 7
3d. (n.b. 7' =1")
() k=20+2 3b 3b 3d Spym =T, + 1o+ 1 + 17
ST =Ty + 75"
(B) k>20+2 3c 3c 3d

)
. ! ! 1! n
ST =T +T3+T + 7
. ! 1! 1! n
S(p)T2 =Ty + Ty + T3 + T

For convenience, we begin with the unitary cases, cases 2c¢ and 3d.

3d (3): k> 20+2
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We have m = ((p, k) x ((p, ¢;0). Again, since I/%C(p, k—1)x¢(p,¢;0) and V_%g(p, k—1)x
C(p, l; o) have the same components, 7/ = 7”. So, by inductive hypothesis, we have (see table)

spm =277 p@vi(pk—1) % C(p, o) + v 2p @ ((p, k) % ((p, L — 1;0)

_g+% _1

=TT p® L([vTT pvip] v E T Ep, v ] v Ep, 07 5] 0)

+72 p@ LT pvT -%p],[v-%+%p,u—%p] -fém 2), ,
v 10(p,2);0(v72p;0))
207 p@ L[ p, w2l 8(p, 2), v 0(p,2)56(v 2 p50)

—k+1

v L(lv ™ pv il [T v Ep) i v 2l 0)

—k+1

v p @ L2 povipl e p v ), v (p, 2), 1
v=19(p,2);8(v "2 p; 0))
First, we check that m has two components. Set 6 = s,,;,,((p, k) ® ((p,;0), i.e

0=1v"2 pRr 2 p@..0vIpv TiperTipe.. v ipo.
From the description of s,,;,,m (cf. Theorem 2.3 et seq.), we see that € occurs in $,,;,7 with
multiplicity two. Therefore, ((p, k) ® ((p, ;o) occurs in sq,ym with multiplicity two. Since
7 is unitary and reducible, Frobenius reciprocity tells us that 7 must have (exactly) two

components. By Lemma 3.3, one component is
—k+1 1

= p, v ap), [, v ) o).

m =L pv il v
Let w5 denote the other component.

We now determine sp,)m and sg,)m. By Lemma 3.3, sgym > 71 + 71 + 7" (n.b. 7'{ =17).
Frobenius reciprocity tells us spi,m > 6 and s, m > 6. Since both copies of 7] are in
51, we have 0 £ 85, 71. Therefore, 6 < 5,75 or 0 < 54,73 (again, note 75 = 75/ and
75 = 74). We determine which by a comparison: by Lemma 3.3, m; is also a component of
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T=v" ég(p, {4+ ) x C(p, g; o). Further, by inductive hypothesis, we can decompose s, 7:

spt =V pRUT 4+2+2<(p C+5—1)x((p,5;0)
+v7 “2p®v 4+§‘§C(p,€+ —I)NC(p,S;U)
—k+
+rE pR YT 4+2C(p,€+2)><<’(p,§—1;0)

ket —k41

=v5 p@ L(v™7 pv il v e, v 2] v p, v 3]s 0)

3 —k+3

+r T p@ L(v ™ povr 2, v o, v i g, v (0, 2), .. v 8(p,2); T)

+u 5 p@ L[ ip,v3p), v 3416(p, 2), ..., v 10(p, 2); T)

—k+1

e p @ LT pv il e, i gl T vk 0)

1 —k+1

@ Ly s v ip) [V pv 2 v (p,2), . v (0, 2): T)

+ 1 1 —k+3

2o, v 3], [vT5 pv2p)i0)

v p® LT v 3], [

—k+3

+vEp@ L(vTE v 3 [T pv 3, v 6(p,2), . v 0(p,2)T)

+v 7 p@ L p,v 2], v 5 0(p,2), . v (0, 2):0(v 2 ps )

+rE p@ L(v 3t10(p,2), .. v 20(p,2), 07 20(p,3), ..., v 20(p, 3); 0)

A comparison of 54,7 and s(p)fr tells us that sgm < 71 + 75+ 71 + T{” . Therefore, we must
have 0 < 5,73 and spym = 71 + 75 + 71 + 71" This gives s,m = 75 + 7 + 75 + Té” . Thus
the Jacquet modules work out as needed.
It remains to identify m,. First, observe that by Lemma 2.8 (or the s, results applied to
73)
—k+1 —k+ —k+ —— 3 —k+3

S(p,p)ﬂ-2ZV 2T pRVT2 p®L([ Sz p v Ep]v[VTpul/—%p]v
v5(p,2),. .., v716(p, 2);0(v 2 p ).
Furthermore, we claim that (up to multiplicity) this is the only term of the form e PR

—k+1

vz p®...in Sy me. To see this, consider 7/ = 7" = v =5 pov 2 (p, k—1)x((p, t: o) (the
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induced part of which is case 3c(a) or (7), i.e., j/ = £71). Then, by the inductive hypothesis

—k+

SppT =V T ,0®{V T p@C(pk—2) % C(p. o) +v7E p@vTIC(pk —2) % ((p, b 0)
+ 2 p @ vT3C(p,k — 1) % C(p, £ — 1;0)}

—k+1 - —k+3 —k+3

=v s p@v s p@L(v2 pvipl [vTE pvEp) [V Ep, v 5] 0)

—k+3

T pe v p@ L(vTE pv i) T pvTRg),
1
v=4(p,2), ., v (p,2);0(v 2 pr o))

—l—l/#p ® Vﬁp terms + VﬁkﬁHp ® V_”%p terms.

Now, we know (from case 3¢ («) and (), by induction)

—k+1 —k+ —k+ —k+3 1 1 1

ST 2V 2 p®VTE p@ LT pv zp] v o) v g v )i 0)

/ —k+1 —k+1

ST >V 2 p@v 2 p@ L2 pr i) v e g v
45(/), 2),...,v710(p,2);0(v"2p; ).

From this, it follows that

v pev s pL(lv e pv

3 —k+3 _1 _ _ _1
ol v pvEpl, v 0(p,2), v (0, 2):0(v 2 s 0)
7k+

is the only term of the form v 5= PRV p@...In spp,me (up to multiplicity). By Lemma
3.2 and Frobenius reciprocity, we have

—k+1 —k+1 k3 _¢_3 —k+3
M v T px v px L(vTE pvT ) [T pv ),
v 5(p,2), v (0, 2); 60 pr )
"
Ty — I/%p X I/%p X [(v =5 p XV kﬁp) X ... X (I/_é_%p X I/_Z_%p) x v3p
xvt8(p,2) x v 2 p x v (p,2) X ... x v 6(p,2) X vTEp x 0(v 2 p; 0)]
4
—kt1 1 ket 3
m=L(v = pvapl, e p v i p), v 6(p,2), .. v (p, 2);6(v 2 i )

by the uniqueness of the Langlands subrepresentation. With 7y properly identified, 3d(5) is
done.

3d(a): k=20+2
The same arguments work as those used for 3d((3), save for the identification of my, which
is easier. In particular, we get

spm =vTip@ (v Ep,v73p,v746(p, 2), .. v (p, 2); (v 2 p; 0)

v p@ Ll 2,2 pl v g, v (p,2), . 16 (p, 2):6(v 2 3 0))
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Therefore, Lemma 3.2 and Frobenius reciprocity imply
my = v 2 L, v 3], v76(p, 2), . v (0, 2);6(v 2 s 0))
which then forces
my = L[~ 2p,072p),v76(p,2), ...,v0(p,2); 6(v "2 p; 0)
as above.

2c(0):2<k<20—2
Again, we have 7 = 7", so that (by inductive hypothesis)

spm =272 p@v i(p,k—1) % ((p, o) + v 2p@ ((p, k) % ((p, L — 1;0)

—k+1 1 —k+3 1

=w 2 p@ LT pv gl v e v i) v a2 ) 0)

+277 p@ L[y g v

2 p @ L, 0], 5 p, v ), v 0(,2), v 10, 2): T)

—k+1 —k+1 1

@ LT pv il VT p v T3], [ R p, v 3]s 0)

—k—3 —k+1

S 509, 2), v 8,25 T)
At this point, Lemma 3.5 (applied to the e p—terms) tells us that

+ 2 p @ L([vip,v

m =L 7 pv 3], 7 p v p) v 0,02 p);0)

—k+1

mo = Ly 2w pl v v il v 20(p,2), v (0,2 T)
are both components of 7. Next, we can use the same arguments as in 3d(/3) to see that 7 has
only two components and to show that spym = 7 + 75 + 7 + 7", 5472 = 73 + 7 + 73 + 7,
finishing this subcase.

2c(0): k=2,0>2
The proof for this subcase parallels that for 2¢(9).

2(y): k=20—-2,0>2
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Here, we have

ST =2 @ L([v 2 p,v 73] [y Ep, v p), [ 2 p, v 3 ) 0)
+2V_é+%p ® L(V_Z+%p> [V_H%Pa V_%p]a V_é+25(pa 2)7 SRR V_l(s(p> 2)7 T)
+2 3 p @ L3 p, v 30, v 15(p,2), ..., v716(p,2); T)

v p @ L[y, v p), [ i, 2p), [T R, v ) 0)
(n.b. 7" is irreducible). The same arguments as in 3d(3) tell us that 7 has two components
and spym =7 + 7+ 7 + 7" and spym = T3 + T + 75
The identification of 7 is similar to that in 3d(8) (m is, of course, given by Lemma 3.3).
First, we claim

SppT > v T2 p@ v p @ L2 p, 02 ), v 4%(p, 2), .., v 6(p, 2); T)

and that this is the only term of the form v=“2p®@v~*2p®... in s(,,)ms. This follows from
the same basic argument used in 3d(f3). Therefore,

Sepme > v 16(p,2) @ L([V‘ZJ’%/), V_%p], v 28(p,2), ..., v 8(p, 2); T).
Since this is the only term in s, m with this central character, Lemma 3.2 and Frobenius
reciprocity imply
Ty = v H6(p,2) ) L([v 2 p, 73 p), v 28(p, 2), ..., v 16(p,2); T)
U
Ty — v (p,2) x [V e p x 128 (p, 2) X v p x 38 (p, 2) X
X vTEpx vL(p,2) x T
U
My = L([v™2p, v 2, v 18(p,2), .. v 10(p, 2): T)

by the uniqueness of the Langlands subrepresentation. This finishes 2¢(7).
2c(a): k=2,0=2
The proof for this subcase parallels that for 2¢ ().

This finishes up the unitary cases. We next turn to cases 2a and 3b; the other cases in which
k — 7, 7, £ are not all distinct.

3b(a): k =20+ 1
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In this subcase, ™ = V_%g(p, 20+ 1) x ((p,¢;0). By induction,

ST =v " 2p@C(p,20) % (p, Lo) + v FEp @ v (p, 20) % ((p, ()
+r 3 p@ 72 ((p, 20+ 1) % ((p, L — 1;0)

N A

v p@ L[y 8 p,v 5] 3 p, v ], [, 073 ) 0)
v p@ Ly 2p, v 2p), [V 2p, v 2p), [V 2 p, v 2 ) 0)
T+ 3p @ L 5p, [V 2p, 02 p), v 0(p, 2), ... v 0(p, 2): T)
+r - ap@ L= 2p,v2p, v 08(p,2), ..., 0(p,2); (v 2 p; o))
+r e p @ L(v=26(p, 3),. .., v 28(p, 3); 0)
+ i L b bl b bl o)
+r e p @ L(v="2p, [v 2 p, v 2p), v (p, 2), .. v 0(p, 2); 6 (v 2 p; o)

v Ep @ L([v ™2, v 3p,v6(p,2), . v 0(p, 2);6(v 2 i ).
First, by Lemma 3.3,
m = L([v™" "2, 2] T g, w2 ], [, v 2 ) 0)

is a component of . Observe that 7 is also a component of ((p,2¢) x ((p,f + 1;0) (covered

by case 2c). Since case 2c has already been done, we know that spym = 7"+ 7' + 7 + 77"
The next step is to show there is only one more component. To this end, observe that 7" is

3a(a) or (e) and 7" is 3c(a) or falls under Proposition 3.6. In particular, this tells us that

ST =V Trp@uTape Ll e, v p, v 2 p), v, 2),

v 16(p,2);6(v 3 p; 0))
_H/—Z-i-%p ® V—H%p ® ... (this term is missing if £ = 1)

sopTi =V p@ v Lv™6(p, 2), v 50(p,3), ..., v38(p, 3); 0)

SemTs =V p@ v i p@ L(lv g, v p), v 6(p,2), . v (p, 2); (v 2 p; 0)
g tipe ... (this term is missing if £ = 1)

mwoo_ "o mwo___n
Sep)T3 = S(pp)T3 (since 73" = 73).
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First, let 7 be a component of 7 such that s,m > 73'. Then,

ST 2V T p @I p® Ly Ep, v i p, v p), v 15 (p, 2),
L vT(p,2);0(v 2 p; 0)
I (since v 2p x v=*3p is irreducible)
Sepm > (V2 p x v p) @ L2, [V 2 p, v 2 p], 15 (p, 2),
. v716(p,2);6(v 2 p; )
|} (since r(pm)zf”%p x v ep =22 p @ v ap)
ST = 2 I p @ v p @ L(v™ i, [V p, v p] v 6(p, 2),
v (p,2);: 0(v2p; o).
Thus, sgym > 75 + 735", Note that these are the only terms of the form v putipe. ..
in S(p,p)(ﬂ' — 7T1).
Next, observe that
ST 2V P p U i p @ v p @ LT p, v 2], v 16(p, 2),
v (p,2): 0(v 2 p; o).
Now,
vapx g x v ap = v l(p,2) x v 2p 4+ 708(p, 2) x v,
where both terms on the right-hand side are irreducible. Therefore, if 7y is the component of
7 such that sgymo > 75", we must have either

sapmo > (C(p,2) x v 3p) @ L[y 5 p, 072 p), 07 18(p, 2), ..., v 0(p, 2); (v 2 p; o))
or
sapmo > (0(p,2) x v Ep) @ L™ 2p, 2], v 8(p, 2), ..., v (0, 2); (v E ps o).

Z_%,O ® I/_H%p ® V_Z"'%,O and there are no terms of the form

vip® ... in S (m — m), it must be the latter. Then, since r@,r“6(p,2) x vty >

Since Ty C(p,2) x v 2p > 1~

(v 2p x v%2p) @ 172 p, we have
sepmo > (0(p,2) x v 2p) @ L[y 2 p, v p], v 18(p, 2),
v, 2);8(v 2 p )
U
Sepp™o = (V2 p x v ) @ v p @ L([v 2 p, v 2 p], 16 (p, 2),
v, 2);8(v 2 p )
U

sepm > (V2 p x v p) @ L(v™ 2 p, [V 2 p, v 2 p], 16 (p, 2)

v, 2);8(v 2 )
since this is the only term of the form (v~"2p x v ™" 2p) ® ... in S(ap)(m — m1). Therefore
S(p)To > Ty + T3 —i.e., Ty = mp. This gives us spyme > 74 + 75" + 73"
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We use the same basic argument to deal with 7}
Sppp)Th = viaputipeutip Lv 2, v 26(p,3), ..., v 28(p, 3); 0).
Now,
I/_H%p ” I/_H%p ” I/_H%p _ V_ZHC(P, 2) x I/_H%p + I/_H_l(S(p, 2) x V_“%p.

Both terms on the right-hand side are irreducible. Again, let w9 be the component of 7 such
that s)my > 7. Then either

sEnmo = (0, 2) x v p) @ L(v™ 2,07 58(p,3), .., v 20(p, 3); 0)

or 1 1 3 1
s@apm0 = (v 0(p,2) x v 2 p) @ Ly 2 p, 07 26(p,3), ..., v 20(p, 3); 0).

(i

Since rminy 18(p, 2) x v 2p > v 2 p@ Ui p@ 2 p and spm—m (in fact, s@ym) has

no terms of the form 3 @ ... , it must be the former. We have
sapmo > (v HC(p,2) x v p) @ L(v™2p,v738(p, 3), ... v 28(p, 3); 0)
U
SeppyTo = (T p x v Ep) @ v p @ L(v T2 p, v 36(p, 3), ., v 20(p, )5 0)
U

S(pTo > T3 + 75"

again since s(g,)(m — 71) has only one term of the form V‘“ép X I/_£+%p ® .... Thus my = mo
and we have sgym = 73 + 74 + 7 + 75", Note that since we have now accounted for all of
S(p)T, we know there are no additional components; 7 = 71 + 7.

It remains to identify mo. Observe that

SpayT2 >V p@v i p@ L([v e p, v 2 0], v 8(p, 2), ., v 0(p, 2): (v 2 p; )
\
sepm = v0(p,2) @ L([v™2p,v73p,, v 18(p, 2), ..., v716(p, 2); 6(v 3 p; 0).
A glance at s(,,)75, etc., calculated earlier tells us that this is the only term in s(y,)m with
this central character. Therefore, by Lemma 3.2 and Frobenius reciprocity

Ty = v(p,2) } L([v=*2p, v 20, v~ 18(p, 2), ..., v 18(p, 2); (v 2 p; )
4
To = v8(p,2) 3 (2 p x v (p,2) x v Ep x . x v 0(p,2) X vTEp X 8(v 2 p; o)
\’
m = L[ p, v p],v(p,2), ..., v0(p, 2);6(v 2 p; 0))

by the uniqueness of the Langlands subrepresentation. This finishes 3b(a).

3b(B): k> 20+ 1
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We have 7 = I/_g_MC(p, k) x ((p,¥; o) and by inductive hypothesis,

spm =V p@ Ut (p k — 1) % ((p, L 0)
+ 3 p@ vt 3C (0, k — 1) % ((p, b 0)
+ 3 p @ v (p k) % ((p L — 1;0)

= v p @ L2 p,vmap], [V 3 p, v, [ 2 p, 073 )5 0)

@ L[ g v R ), [, k] w8 (p, ),
L v(p,2);8(v 2 p; o)

a2 © L2 v i) i p, w3 ) [ R, 073 ) 0)
+r e p@ L[y 2 p, v p), [V e p, v 2 ), v (p, 2), L v 0 (p, 2); T)

i@ L[ 30,073 ), [ p, v 3 )6 (p, 2),
(0, 2):6(v 2 p; o))

+v 3 p @ L™, v, w5 6(p, 3), ., v E6(p, 3); 0)
—04+1 —k+o+3 . —1 —+i -1 —+3 -1 .
o @ Lk p, 3], [, R ], [, v R o)

—H/_H%P ® L([V"”H%p, V—é—%p]’ [V—£+%p’ I/_%p], v=415(p, 2),
(0, 2);0(v 2 p; 0)

+V—é+%p ® L([V_HH%P, y_é_%p], [V_H%Pa V_%PL v='9(p, 2),
v (p, 2); (v s 0)

By Lemma 3.5 3 applied to the v=**+2 p-terms, we have 7 = m; + mp with
m = L[ 2,075 [ p, v 3 ) [ R p v )i 0)

my = L(v ™2 p, 075 ) [ 5,075 p) 16 (p, 2), L v (p,2);6(v E pr o).
Finally, observe that m; is also a component of ((p,2¢) x ((p,k — ¢;0) (case 2¢ () or (6)).

This tells us (since case 2c is already done) sgym = 7 + 71 + 75 + 71" and therefore s¢,)m =

the rest = 7 + 75 + 7/ + 75" + 73", This finishes 3b(/3).

2a(f): b <k <20—1
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Here, 7 = v~T5((p, k) x ((p, l; o) and, by inductive hypothesis,

S(p)™T

— v 2p @ v Eta((p,k — 1) % ((p, (; 0)

+r R p @ p +%-%<<p, k—1)xC(p. t;0)

+ 3 p @ v 3 (p, k) % C(p, 0 — 1;0)

= v p @ L= p,vmp), [ i p v 2l [, 02 )5 0)

+ 3 @ L[y~ 2 p, v MR ] [ 3 p, v ), v (p,2), L v 0(p, 2): T)
+r 3@ L([l/_’”“%p, I/_%p], v=165(p,2), ..., v (p, 2); T)

v p @ L[y 3 p, v p), [ R R p, v ) [ R p, v R ) 0)

B p @ L[ e p, v s ] [0 a0 2 p), v ML (p,2), L v 0(p, 2); T)
v 2 p @ L2 p, v p), [ R p 2 ), [V R, v 3]s 0)

+ @ L[y 2 p, v MR ] [ 3 p, v ), v (p,2), L v 0(p, 2): T)
+ 2 p @ L[y 2 p, v ] v 18(p, 2), . w0 (p, 2): 6(v 2 p; 0)

+ %2 @ L(v=15(p, 2), ..., v H25(p,2), 17 36(p, 3), . v728(p, 3); 0)

By Lemma 3.3,

m = L™ 3,07 %], R 73] [ p, 07 ) o)

is a component. Furthermore, 7; is also a component of ((p, 2¢) x ((p, k — ¢; o) (which is case
3d(f); already done), so we know spym =11 + 717 + 71" + 73"

Let m5 be the component of 7 with sgym > 7. We claim s)m = 7 + 75 + 7 + 75 + 74"
For example, consider 75. Let my be the component of © with s, mo > 75. Then, noting that
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v=3 p x 3 s irreducible,
Spp)T2 = v @ Rt p @ Lyt p, vtz p] [ p, 2 gl
\|%
SepTo = (V3 p x 3 p) @ L[y~ 2p, v h 2] [ p, v 5 ],
V_k?+€+15(p7 2)7 . V—l(s(p’ 2)7 T)
U
SpayTo > v p @ v p @ L[y ap, v ] [y R p, 07 ),
V_k?+€+15(p7 2)7 . V—l(s(p’ 2)7 T)
\|%

S(p)To > Ty

Thus my = my, 50 5T > Ty + 75. The same argument applied to 7" (n.b. 75" = 735) and 7"

gives symy > Ty + 15 + 1 + 74"

Next, if 7 > 1, the same argument gives us 75 < si,)me. If j = 1, we show that 75 < 50,7
in a similar, though slightly more involved way (using s(,,p), as in the proof for 3b(a)). In
particular, if 7 = 1, we have kK = £ + 1, so that

=" p @ L 6(p,2), ..., v0(p,2); T)
and X
SpanTs 2V T2p@v T (p,2) @ L™ 6(p,2), .. v 1(p,2); T).
Therefore, if 7 is the component of m with 73 < 5,7,
SwapT >V Pp@ v p@ i L 20(p,2), ., v 10(p,2); T).
Now,
1/_”%/) 5¢ V_H%p 5¢ V_H%p _ V—zerlc(p7 2) x y_“%p + V_“lé(p, 2) x V_“%p
with both terms on the right-hand side irreducible. Therefore, we must have
_ ol _ _
s@apmo > (V- (p,2) x v 2p) @ L(v™*%0(p,2), ..., v 10(p, 2); T)
or )
sapmo > (V" H8(p,2) x v Ep) @ L™ 6(p,2), .. v (p, 2); T).
Since rmir~18(p, 2) x v 2p > v @t p@ 2 p and S(p)7 has no terms of the form
v 3p® ..., it must be the former. Now,
sapTo > (4, 2) x v Ep) @ L(v=%26(p,2), ..., v716(p,2); T)
\
ST 2 v @ p @ v p @ LvTH25(p, 2), .., v 16(p, 2); T).
Observe that (noting that 7’ is 2b(ii) («) or (7))

SepTh =V FIp @2 p @ L0, 07%25(p,2), ..., v 1 6(p, 2); T).
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In particular, s(,, 73 has no terms of the form V‘“%p ® V‘“ép ® .... Since s, ;)T does, we
must have s, m > 75. This forces my = 9, so that spym =7 + 75+ 75 + 7' + 7"

The last step is to identify mo. This follows a familiar pattern; it is the same argument used
to identify 7o in 3b (a). Observe that

ST > v T p @t p @ Ly p, v M ] [t p v pl v RS (p, 2),
v 0(p,2);T).

Further, this is the only term of the form V_“%p@ V‘£+%p®. .. (up to multiplicity) in s, )7o.
So, by Lemma 3.2 and Frobenius reciprocity,

K2 ), [t R p, v R ),

HG(p,2), ., 6(p, 2); T)

1 1 3
= v Tapx v x L([v 2,0

\
My = L([v= 2 p, M3 p) [ 5 p, v, v (p, 2), . v 0(p, 2); T)
by the uniqueness of the Langlands subrepresentation. This finishes 2a (/3).

2a(a): k=1
This is essentially the same as 2a (3).

2a(y): k=20—-1
Here, we have 7 = v~2((p,20 — 1) x ((p, ¢:5) and

spm =T Ip®C(p, 20— 2) % ((p, o) + v p@ v I(p, 20 — 2) % ((p, ()
+ 2 p @ v2((p, 20— 1) x C(p, £ — 1;0)

= v %3p @ L([vip, v 3p), v p, v 3], [V p, 3 i 0)
+r%3p® L([V‘“gp, u_%p], v=16(p,2), ..., v (p, 2); T)

+v 3@ L2073 ), [ 3 p, 073 p), [V 3p, v 3 )5 0)
T p @ L 2, [ 20,2 p], v 26(p,2), v (0, 2)5T)
+ 4 3p @ L[y ip,vsp), [ R, v ), [V 2, 03] 0)

2@ L2 p, v pl v H18(p,2), . v (p, 2):8(v 25 0)).
Now, by Lemma 3.3,
T = L([V_Z—i_%p, V_%/)], [V_Z—i_%pa V_%p]v [V_é—"_%pu V_%p]a U)'

Comparison with ((p,2¢) x ((p,{ — 1;0) gives us spym =7 + 71 + 71" + 75"
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Let m, be the component of m with s¢,)m > 75. Then, the same sort of argument used in
3b () (using s(ppp)/Sesp)) gives US S To = Ty + 75':

SwonT > VT p@ U T p@ v i p @ LT p, v p), v H2(p,2), . v (p,2); T)
\
sepm > (V16(p,2) x v 2p) @ L[y 5 p, v 3 p], v H25(p, 2), .. .,v716(p, 2); T)
4
SwanT 2V P p@ i p@ i p@ Ly i p, v p], v 26(p, 2), . v (p, 2); T).
Therefore, s(,)m has a term of the form ytts p® ..., necessarily 7. Finally, by Lemma 3.2
and Frobenius reciprocity,

Ty = v p ) LT, v, v (p,2), . (0, 2); T)
U
my = L([v™3p,v7 30, v 18(p, 2), ..., v 10(p, 2); T)

(uniqueness of Langlands subrepresentation). This finishes 2a (7).
2b(ii) (a): j=1,k=3,{=3
Here, 7 = v~2((p, 3) x ((p, 3;0) and

spT = 1p®@((p,2) % ((p.3;0) + v 2p@v(p,2) % C(p, 3;0)
5 1
+v2p@ v 2((p,3) X ((p,2;0)

=v 2 p® L(v ip,v 3p,v 2p,v 3p, v 3 p0)
+u 8 p® L 3p,v8(p, 2): T)

T p @ LV p, v p, v 2 p, v, v 2 p0)
+v72p@ L(v~2p, v 2p, v 2p;T)

i p @ L(v ™ 2p, v 2p, v 2p, v 2 p, v 205 0)

+r3p @ L(v~2p,v7'8(p, 2); T).
First, by Lemma 3.5 2,
5 3 3 1 1 1
=L 2p, v ip, v 2 p, v 2p, v 2p, v 25 0)
M= L(v 3p,v72p,v70(p,2); T)

are components of 7. Lemma 3.3 implies s¢,)m > 71 + 71 + 7{". Then, Lemma 3.5 1 tells us
sym =1 +7{ 17"
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Next, consider # = v~1((p,4) x ((p,2; o). By induction,

st =1 2p@v3((p,3) % ((p,2:0) + v 2p@ v 2((p,3) % ((p, 2 0)
_3 1
+r72p@v((p,4) @ ((p, 1;0)

=v 3 p@ L(v 2p, v 2p, v 2p,v 2 p, v 205 0)
+5p®@ Lv2p, v 26(p,2); T)

+v2p @ L(v 3 p,v i p, v 2 p, v 3,02 0)
+u73p® Lv~2p,v3p, v 2p; T)

+v72p @ L(v20(p, 2),v'0(p, 2); 6(v ™2 p; )
+v72p® L(v=28(p,2), v"20(p, 3); o)

+ i p® L(v 3p, v 2p, v Ep, v p, v 3 p;0)

+v72p® L(v3p,v710(p, 2), v 25 6(v 2 p; ).
By Lemma 3.5, my is also a component of 7 (as is ). A comparison of sgym and s, 7 tells

us that spm < 7' + 75", We can use the same sort of s(,,)/5(2p) argument as in 2a (3) to get
S(p)T2 = Ty + 75'. In particular, let my denote the component of m with s,)m9 > 5. Then

S(pp)T2 = V_%,O ® V_%,O ® L(l/_%p, y_%p; T)
I
SepTo > (VIp x v Ep) @ L(vip,v2p; T)
U
S(pp)T0 = V_ép ® V_%P X L(l/_%p, I/_%p; T)
so that S(p)To > Té”. Thus Ty = To and S(pyT2 = Tél + Té”-
Let m3 denote the final component, so that sgym3 = 7. We identify 3 using now-familiar
methods (cf. 2¢ (), 3b («)):

ST =V 2 p@v 2p@ L sp,v g T) +v 2p@ v 2p®@ L(v'8(p,2); T)

Y
Sepm™s =1 1C(p.2) ® L(v ip, v 3p; T) + v720(p, 2) @ L(v=16(p,2); T)
4
Ty — v20(p,2) x L(v™16(p,2);T)
y

™ = L(v=24(p,2),v7'0(p, 2); T),
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finishing 2b(ii) ().

2b(ii) (0): 1<j <™t j#k—0+1
By induction, we have

ST = v Y @ L[ p w3 ] [Vt Ep, 03 ), [V 3,073 ) 0)
B @ L[y p, v ), VMR 0,02 0], vI8(p, 2), . v 6 (p, 2); T)

kI @ L[y p, v ) [T p, w2 p), T (p,2), L 016 (p, 2);: T)

1 1

vt p @ ([ e p, v 3 ), [V i p, v 3] v R p, v 3 ) 0)

vt p @ L[ p, v 2] [T p w2 p) v I8 (p,2) L v (p, 2)T)
v @ L[ 20, v, [ R 0,072 0] TR (p,2), v (0, 2)5 T)
v p @ L F e pvm2pl, v w2 ), [ e g0 2 ) 0)

@ L[ 2,02 pl 0,3 v I8(p, 2), v (0, 2): T)

i p @ L[y 2 p, v MR p] [ it e p v pl v RIS (p,2), . v (p, 2) T).
By Lemma 3.5 3, 7 = my + my + 73, where
m = L] [ v [ R, R )
my = L([v™"2p, v p] [y 0 070 ) 0 T8(p,2), . v (0, 2): T)
T3 = L([v™ 2 p, v MR ) [T 0, 072 p) T8, 2), L v (0, 2): T).
By Lemma 3.3, 7 > 7 + 71 +7". By Lemma 3.5 1, s,»ym = 7| + 7 + 7". To identify

ST and s, 3, we use the same sort of s(,,)/5(p) argument already used a couple of times.
By induction (noting that 7’ is 2b(ii) (¢) or (@), 7" is 2b(ii) (§) or (9), 7" is 2b(ii) (n) or (7)),
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we have
/ —k+j+3 —e+1 —+3 . —j-3 —k+j+3 -3
Sy = v p© v p @ L+, i), [t p )
vI6(p,2),...,v0(p,2); T)

senTs v p @@ L([v g, I3 it Ep, R ),
v (p,2), . v 8(p,2): T)

ST >V Itip@uTtip @ Ll rp, v 3], v R Ip 073 ),
vt (p,2), .., v0(p,2); T)

STy v ITip@uTip@ L[y p, v, v p 2 ),
vki5(p,2),. .., v (p, 2); T)

Spp T2 = v ap@uRtitap @ L[yt p, v ), ,[V—k+j+g,0> V2],
vi5(p,2), ..., v 10(p,2);T)
trtep@uitipe L[y tep, vz ), [V—k+j+%p’ v,
vIt5(p,2), ..., v0(p,2);T)

SppTh =V Ep@uEItip @ L([v 2 p, v R3] [yt p, v 3 ),
V_k+j+15(p, 2)’ e V—lé‘(p’ 2)’ T)
@ vt p @ L3 p, v k3 ), [t p, 3 ),
vEI6(p,2), .. v 6(p,2); T).
By Lemma 3.5 1 applied to 7/, 7", 7", we see that each term above appears only once in s, 7.
Now, we argue as usual. For example, we know s(,)ms > 75”. Therefore, since v =" 1 kit ! )
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1 -1 . .
and v~2p x v7*3p are irreducible, we have

SppT2 2V i p@ U p @ L[y i p, v R gl [T, ”_lgp],
1 . . o V‘Jé(p,?)l,...,ug_ 8(p,2);7)
+vip@uTitip @ (v ap, v 2], [V R p v E )
v It(p,2), ..., v 16(p,2); T)
U
sepT > (VT Ep x v ) @ ([ e p, v TR ], TR p 0 ],
1 . . . V‘Jé(p,?)l,...,ug_lé(p, 2);7T)
+Hv HrpxvItEp) @ L(lv i p, v T3], v M p v )
vIt(p,2), ..., v 16(p,2); T)
U
Spp™ 2 VI p @ U p @ L[ p, IR ], TR p bR )
. 1 . . V_]é(p,_2)1,...,1/3_15(/),2);7')
vt p@uTtp@ L(lv e p, v ) [y R p v ),
vIt(p,2), .. v 8(p, 2); T)
U

S(pT2 > Ty + T4

71

Thus 5T > 75+ 75 + 75", By Lemma 3.5 1, 5,72 = 75 + 75 + 75" A similar argument gives
ST = 75 + 74 + 73'. (One could also use this argument to get sq,m.) This finishes 2b(ii)

(6).

2b(ii) (B):j=1,k=3,(>3
This subcase parallels 2b(ii) (0).

ob(ii) (e): j=0—2,k=20—3, (>3
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Here, m = V_%g(p, 20 — 3) x ((p, ¢; 0). By inductive hypothesis,

spm =T Ep®C(p, 20— 4) % ((p, o) + v p@ v I(p, 20 — 4) % ((p, (3 0)
+ %2 p @ v2((p, 20— 3) x C(p, £ — 1;0)

= v 3p@ L[y p, v 3p), v p, v 3], [ p, v 3 i 0)

N s PY) L(v=tt2p, [l/_“_%p, I/_%p], v=26(p,2),...,v75(p,2); T)

+v 3@ L% 2p,v73p), [ Ep, 073 p), [V 3p, v 3 ) 0)

+r 3@ L([y—“%p, y‘£+%p], [V_H%p, I/_%p], v=36(p,2), ..., v 5(p,2); T)
b0 L+, da] v 00, 2), 00,2 T)

+H3p @ L([v 2 p, v 3], [ R, 03], [ 2,073 ) 0)

v Ep @ L[ i p, v, v 426(p,2), . vt (p, 2); T).
By Lemma 3.5 2,
m o= L2 p,v 2], [ R p v ] v, 070 ) o)

m = L([v"F2p, v 2p], v 425(p,2), ..., v 8(p,2); T)

are components of 7. By Lemma 3.3, s ym > 7 +77+7{"; by Lemma 3.5 1, 5,7 = 7/ +7)+7".
The same s, )/5(2p) argument as above (cf. 2b(ii) (6)) tells us s@)m > 75 4+ 75", Observe that
T 1s also a component of v (p, 20 —2) x((p, £ —1;0) by Lemma 3.5 2. A comparison of s
and s 1C(p, 20 —2) x ((p, £ — 1; 0) shows that sq,)me < 75 +75"; therefore sm = 75 + 75"

Next, take w5 with spyms > 75, We claim spm3 = 75 + 75, To see this, use the same
S(p.pp)/ S(3p) argument as earlier (cf. 3b (), 2a (/). If my is the component of 7 with s, m9 > 73,
then (by inductive hypothesis)

Saa)To = 207 T p @V p @ v R p @ Ly p, v ], [, 3 ),
VS (,3). .. 1 16(,2): T).

o . - .
This implies s(,)y contains a term of the form v=*2p® ..., ie., 7/, 74, or 7§. As 7 and 7J
are accounted for, we have sqymg = 75 + 74

Finally, we show that

w5 = L™ 3,073 p),v75(p,2), ..., v 16(p, 2); T)

in the usual way for something having the lowest exponent in the Langlands data attached to
a d(p,2) term (cf. 3b (a), et. al.). From s, )73, we can see that

S(2p)T3 = l/_”lé(p, 2)® L([l/_”%p, I/_%p], 1/‘“25(;), 2),..., 1/_15(,0, 2);7).
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Since this is the only component of s,y m3 with this central character, Lemma 3.2 and Frobenius
reciprocity imply

T3 = v (. 2) 3 L[y~ 2 p, v 2 p), 428 (p, 2), ..., v 6(p, 2): T).

By the uniqueness of Langlands subrepresentations, 73 is as claimed. This finishes 2b(ii) (e).

2b(ii) (y):j=1,k=40,0>3
This subcase is similar to 2b(ii) (¢) above, but a bit easier. Here, we can determine s,)7s,
S(p)T3 just using s, p)/s(2p) arguments; there is no need to go to s¢pp)/Sep)-

(i) (8): j=1,3 <k < ¢
This subcase parallels 2b(ii) (6).

2b(ii) (¢): j =521, 3<k<20-3
This subcase also parallels 2b(ii) (6).

2b(il) (n):j=k—0+1,0<k<2(—-3
This subcase parallels 2b(ii) (7).

2b(i) (a): k=0—1

Here, m =v=2 ((p,{ — 1) x {(p,{;0) and

—0+2

ST = V‘“lgp @v 2 ((p,L=2) x((p,lo) + vip@ v 3((p,l —2) x ((p,l;0)
+rF2pe v ((p,l—1) % ((p, 0 —1;0)

= v 3@ L[y Ep, v 2p), V2 p, v 3] 0)
+ 2@ L3 p,v2p), v 2,03 ) T)
i —+3 -3 —+3 0 -3
+vip@ L([v~*2p,v72p], [V 2p, 072 )5 0)
+ 4 3p @ L3 p,v73p), V3 p, 072 p]; 0)

v rp@ Ll 2p, 03], v 2,02 ) 7).
Lemma 3.5 2 tells us
m o= L(v "2 p,v ), [ 2 p, v %) 0)
my = L(v "2 p, v 2p] [ e p, w2 ) T)
"

are components of 7. Lemma 3.3 gives spym > 71 + 7". We claim spm = 7 + 77 + 7/,

implying s, m = 7 + 77"). The usual s S(ap) argument gives sg,me > 74 + 7 + 7-in
Yng S(p) 1 1 (p,p)/ 5(2p) () 2 2
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particular, it shows that the component of 7 containing 74, (resp. 73") necessarily contains 7”.
This finishes 2b(i) ().

2b(i) (B): k< l—1
This can be done the same way as 2b(i) («).

Jc(a)j=0+1,k=20+3

We have ™ = v~2((p, 20 + 3) x ((p, {; o) and
spT =V p@C(p,20+2) X C(p. o) + v 2 p @ v (p, 20+ 2) % ((p, £ 0)
+ 2 p @ vT3C(p, 20+ 3) % ((p, L — 1;0)

3 1 1

=v i p@ L[ p, v 2p) [ g, v ) [ R p, v 2 ) 0)

3

@ L 2,02, v0(p, 2), .. v 0(p, 2):6(v 2 p; 0)

1

v rp@ L(lv 3 p,v 3], v ap, v 3 ), v e p, 03l 0)

1

+r 2 p@ Ly 2 p, [V 2p, v 2p), v 48(p,2), . .., v 8(p, 2): 0(v 2 p; o))

v 3@ L5 p,v 2l v 3 p, v 3] [V w3 ) 0)
+vip@ L(v 2 p, v 2], [V 2 p, 072 ), v 18(p, 2),
v (p, 2);0(v 2 )

e p @ L[ 2,02, v 16(p,2), . v (0, 2); (v 2 pr ).
The argument here is like that in 2b(ii) (¢). By Lemma 3.5 2,

S pwapl [ v o)

Ty = L(v ™" "2 p, v 5 p],v76(p,2), ..., 16(p,2); 6(v 2 p; 0))
are components of 7. By Lemmas 3.3 and 3.5 1, spym = 71+ 7/ +7{". An 5(,,)/5(2p) argument
shows s@me > 75 + 75", Suppose 73 is the component of 7 such that s@)m3 > 73", Then, we

may use an S, ,)/S@p) argument to get sp)ms > 75 + 75"

m o= L(v""2p, v %), v

Sowp T >V T ip@ v Ip@ v ip@ L[ i p, v 2] [ 3 p, 03 ),
v16(p,2), ..., v716(p,2); 6(v 2 p; o))
a2
senms > (V20 x (0, 2)) @ L™ "2, v 20l 2 p, 072,
v8(p,2), .., v (p, 2);8(v 2 p; o)),
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choosing v =2 p x v=((p,2) over v x v=6(p,2) because (7 contains no terms of the
form I/_“_%p ® 1/_“%;) ® .... This implies s(,)m3 contains a term of the form I/_é_%p ...
necessarily 5. Thus, we have sq)m = 75 + 75" and s@ym3 = 7' 4 75", The usual argument for
identifying a component whose lowest exponent in the Langlands data is attached to a d(p, 2)
gives

3 = L™ 2p, 072 p], 07 75(p,2), ..., v718(p, 2); (v 2 ps ).

This finishes 3¢ ().

3¢ (B):j=0+1,k>20+3
This subcase may be done the same way as 2b(ii) ().

3¢ (7): j =52 (kodd), j > (+1
This follows 3¢ (a) except that the s(,,)/5(2p) arguments are enough to determine s,
573 (i.e., it is not necessary to use any s, p)/S(sp) arguments).

3¢ (0): 0+1<j<iL
This subcase is done like 3¢ (f3).

Ba(0):0<j<l—1,j#k—0—-1
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Here, 7 = v~ 2T ((p, k) x C(p, ¢ 0) and

spT = v T p@ vt C(p,k — 1) % C(p, £ 0)
VIS p @ v (p, k= 1) % C(p, £ 0)
+v 2 p @ v EHC(p, k) % C(p, £ — 1;0)

= vt p @ L9+ 2 p, v 3], [y tap, 02 ), [ 5 p, v 3l o)
R @ L[y s p, v 3 p) [y Ep, 073 0], vI6(p, 2), . v 6(p, 2): T)

B p @ L[y Rt e p v ) [T e p v R )
v6(p,2),..., v 0(p, 2);6(v "2 p; )

+v TRt p @ LR p v ] v (p, 2), . v 26(p, 2),
v=36(p,3),...,v733(p,3); 0)

+r e p @ Lyt p, e, [Tt p, v ), [, v )i 0)
b Ly =] g d ] v 8(0,2), o6, 2):T)

i Lyt Rl v bl
v6(p,2),..., v 0(p, 2);6(v 2 p; )

+u it @ L[y itap 3], v06(p, 2), ..., v 18 (p, 2),
vit38(p,3),...,v728(p,3);0)

+3p @ L[y kit p, v 3] [y itap, v ) [ i p, v ) 0)
+r e p @ Ly e p,v=i=2p] 2 p, v 2p], v 98(p, 2), ..., v 6(p, 2); T)

@ L 2 p, 0 2 ), [T 2 p, v ),
v 16(p,2), .., v (p, 2); (v 2 ps )

+r3p @ L[ " 2 p, 072 p], v 415 (p, 2), ..., 725(p, 2),
vI726(p,3),...,v720(p, 3); 0).
Lemma 3.5 3 (applied to the I/_k“*%pfterms) gives ™ = 7y + my + w3 + M4, where
m = L%, 072 ] 72 p,v73p), [y 2 p, 072 ) 0)

my = L([v ™2 p, 775 p] [y %2 p, 072 p) v T(p,2), . v 0(p, 2); T)
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5 = L™ %2, 073 ) [y 742 p, 075 p), v746(p, 2), .. v 6(p, 2): 6(v 2 p; )
mi= L™ 2,073 v76(p,2), . ..,v%6(p, 2), v 26(p, 3), ... ,v"25(p, 3); 0).
We now identify s¢,m;. Rather than using an s pp / S(2p) argument, we can argue as follows:
observe that 7 and my are both components of =2+ “Clp, L+7) 3 C(p, k—j;0) (case 2b) and m

and 73 are both components of I/Tjg(p, k—j+10)x C(p,], o) (case 3c). Since cases 2b and
3c are already done, we know s, 71 = 7] + 7 + 7", S(T2 = To+ 75 + 73, Sym3 = T4+ 74 + 73"
Necessarily, s my = 74 + 74 + 7;". (Note that the comparison of these generalized degenerate
principal series plays an important role in section 7.)

3a(a):j=0,0=1k=2

This subcase for ordinary degenerate principal series (i.e., p = 1 on F'* and o the trivial
representation of SO;(F)) is done in Theorem 4.5 of [Jan2]. The same argument works here.
(Note: the argument is very similar to that used in 3a () below; the comparison used in 3a
(0) above plays an essential role.)

3a(8): j=0,0=1Fk>2
The same argument as in 3a (6) works here.

3a(y):j=0,0>1k=0+1
Here 7 = v~ ((p, £+ 1) x C(p,
-4y

and

o)
p0) % C(p o) +vip@ v 27 (p,£) x C(p, £; 0)
(p, 0+ 1) % ((p, 0 = 150)

SpyT =1V 2p®1/

e Y- C(
=v "2 p@ (v 2p, v p], [V 2,073 ) 0)

+v " 3p@ L[y ip, v 3], [ 3, 03] T)

+vip@ L([v""2p,v 3], [V 3p, vl 0)

Trip® L(v=%(p,2),...,v7%(p,2); 0)

+H3p@ L([v 2, v ), [ v ) 0)

v ip®@ L2, v p), [V 2 p, v 2] T)

@ L p 150, 2), 60, 2): 60 i)

—I-V_H%P &® L(V_Z_%p> V_Z+15(pa 2)7 BRI V—25(p’ 2)’ V_%(S(p’ 3)’ 0-)'
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First, Lemma 3.5 2 tells us
m = L(lv™"2p,v 20, v 2p, 072 ) 0)

my = L([v™" "% p, v %), [ 2 p, 075 ) T)
are components of 7. The first comparison used in 3a () gives spym = 7{ + 7" and s)m =
75+ 1 + 74", Further, Lemma 3.5 1 tells us that 7 has at least four components. Choose 73
and 7y such that sgyms > 73" and s,)m4 > 7)”. The usual argument for identifying components
when that lowest exponent in the Langlands data is attached to a d(p,2) (cf. 3b («), et. al.)
tells us
T = L 8(p,2),...,v ' 8(p,2): 6(v 2 p: 0))
m=Lw5(p,2),...,v728(p,2),r 28(p,3): o).

Then, the second comparison from 3a (6) gives spym3 = 75'. Finally, the usual s¢,,)/52p)

argument shows that 7' comes from the same component as 74", i.e., spymy = 75 + 74"

3a(0):j=0,0>1k=0+1
This subcase may be done the same way as 3a (0).

Ba(e):j=k—0—-1, k=20
Here, 7 = v=1((p,2¢) x {(p,{; ) and
s =v " 2p@v73((p,20 — 1) x C(p, o) + v p @ vT2((p, 20 — 1) % ((p, b 0)
+rH2p @ v (p, 20) x C(p,{ — 1;0)

1

=v2p@ L([v " T2p,v2p), [T p, v 2p), [T 2 p, v 2 p): 0)

+1/_é_%,0 ® L([l/_“_%p, u_%p], v 15(p,2), ..., v 6(p, 2); T)

@ L3 p, v, v i p, v 3 ), [ e p, v 3 ) 0)

+r %3 ® L([y_é_%p, 1/_“%;)], [l/_“_%p, u_%p], v=26(p,2),...,v7(p,2); T)
+ 3@ L[ 3p, v 2], v70(p,2), ..., v 0(p, 2); (v 2 p; o))

+ 2 p @ L(v'5(p,2), v%28(p,3),...,v"28(p, 3); 0)

v p@ Ly 2p, 03], [ p, v 3], [ p, 03l 0)

+Ep® Lv=ap, v p, v, v 6 (p,2), . vt (p, 2); (v 2 s 0)).
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By Lemma 3.5 2,
m=L(lv™2p,v2p), v 2 p, 02 p] [ 2,07 2 s 0)
my = L™ "2 p,v7 %), 5(p,2), ..., v 16(p, 2);T)

are components of 7. Since 7 and 7, are also both components of V_%g(p, 20—1)x((p, l+1;0)
(one of the comparisons used in 3a (6)), we get that sgym = 7 + 7' + 7" and spym = 7+ 177
If we choose 73 such that si)m3 > 73", the usual argument for identifying components when
the lowest exponent in the Langlands data is attached to a d(p, 2) tells us (cf. 3b (a), et. al.)

3= L([v42p,073p,076(p,2),....v710(p, 2): 6(v Epi ).
Again, as in 3a (), w3 is also a component of I/_%C(p, 20+ 1) x ¢(p, ¢ — 1;0), so we get
syms =4 + 74
This leaves a fourth component, with s m, = 77/. We use the same basic idea to identify
my—whose lowest exponent in its Langlands data is attached to a d(p, 3)—as we would if the

lowest exponent were attached to a d(p,2). The only difference is that we have to use sy
instead of s(g,y. In particular,

ST =V T2p@ v T ip@ L p, v 30(p,3), .., v 26(p, 3); 0)
T+ p@u o L. . .)
3 1 IU/ 3 1
SpppTa >V T2p@u T p@uv2p® L(v™246(p, 3),...,v728(p, 3); 0)
()
SenTa > v36(p,3) @ L(v™%26(p,3), ...,v725(p, 3); 0)

and this is the only term in s(3, 74 with this central character. Therefore, by Lemma 3.2 and
Frobenius reciprocity,

T = v 28(p,3) x L(v~*25(p,3), ..., v 28(p, 3); o).
The uniqueness of Langlands subrepresentations gives
mo= L 25(p,3),...,v728(p,3); 0).
This finishes 3a (¢).

3a(Q):j=k—(0—-1>0,k<2(
The proof for this subcase parallels that for 3a (7).

3a(n):j=0—-1,j#k—(—-1
The proof for this subcase parallels that for 3a (6).

We now return to case 1.

1(y):—l—t<a<—l+5-1
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Here,

ST = V“*%:lp ® V”%IC(,O, k—1) x((p, b;0)
T e p@ vt ((p k= 1) xC(p, o)
+r i p @ vC(p, k) X ((p, £ — 15 0)

= vt p @ L[t 5 p, v ), [ p, v 2l o)

—k+1

+ 72 p® L([l/"+7162+3p, v2pl, v 0(p, 2), . v T2 6(p, 2), [VO‘JF%p, v2p);0)

Lot ) @ Lot 5 p, vt ) [, v i gl o)

—k+1

L g =k+1 _y_3 —
—|—V + 5 p®L([V + 2 p’y £ 2p]7]/ (6(p72)7 X k41 1
VT (p,2), R p, v ) 0)

e p @ Lt p, vt gl [ 2 p, vl 0)
+r 2@ L([l/‘”%p, v v (p, 2), L vt 8 (p, 2), [VO‘JF%p, v2p);0)

k41

First, by Lemma 3.5 3 (applied to the v*T =2 p-terms), we get ™ = m; + T with
m = Lt =2 p, vt 55 pl, 3 p, 078 ) 0)

—k

mo = L[5 p, v 2], v (p, 2), ..., v E8(p, 2), [T E p, v 2 ) o).
Further, since

o k k
™ = V§_§+§<(p>€+a+ 5) A C(p> —a+ 5;0)
"

(irreducible), we have s@,)m = 71 + 7' + 7". Necessarily, sp)m = 75 + 75 + 75"

1(a)a=—(-1%
In this case, the same argument as in 1 () works. Note that here we have m = ((p, k+/¢;0),

which gives s@)m = 7/,

1(B):a=—(+%5—-1
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Here
spT =v ip@uttaTaC(p k— 1) x ((p, b 0)
RS p @ T3 C(p k — 1) % C(p, £ 0)
i p @ v (p, k) % ((p, L — 15 0)

= v i@ L[ T ap, v 2] [y p, 072 s 0)

@ L2 p, v Sl e p, w3 ) o)

+1/€_k+gp ® L(v=5(p,2),..., v 25(p,2), [1/‘“’“_%;), u_%p]; o)
e L2 p, v R ) R p, 05 ) o)

+r e p @ Ly 2 p, 07 8(p, 2), .. v TR (p, 2), [V R 2 p, 2 ) )

By Lemma 3.3, m; = L([V_Z_%p, V_Hk_gp], [I/_H%p, I/_%p];O’) and sgym > 7 + 71", The
usual 5, ,)/5(2p) argument tells us spm > 7' + 77 + 7" s0 sym =7 + 70 + 7.

The usual s(,,)/52p) argument tells us that sgym = 77 + 7”. The identification of
follows the usual argument for a component which has the lowest exponent in its Langlands
data attached to a d(p, 2).

This finishes the proof of the theorem. [J

We now give the counterpart for the case where p satisfies (C1).

THEOREM 6.2. Let o be an irreducible supercuspidal representation of S,, and suppose p is a
representation of GL,(F') satisfying (C1). Let m = v*((p, k) x((p, {; 0) with o € R. Recall that
7 is reducible if and only if a € {£(0+51), £(0+ 52 —1), ..., £(0+ L) U {{=5, =EH 4
Lo, S\ {0 if k = 20+ 1}}. Let Sy denote the first set; S the second. Suppose w is
reducible. By Lemma 2.9, without loss of generality, we may restrict our attention to a < 0.
Note: T is described in Proposition 3.10.
(1) OéGSl,Oé¢52
(a) a < =
T = T + T with

—k k—
m o= L([pot 5 p, vt ) [ lp, vl o)

~—

ap Skl g -1
2 :L([V M lpul/ ¢ 2p]7y ¢ Zké(p,2 ) ris
v=20(p,2), .., v 26(p, 2), [Vt v pli o)

(b) @ = =
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T =T + T2 with

m = L([v*p,v="p], v p, v )i 0)

my = L([v~*p, v 2, v 26(p, 2), v 20(p, 2), ..., v 20(p, 2); 6(v 1 p; 0)
(2) OéGSg,Oé¢51
Writea:%—l—j,ogjg%.
(a) j=k—l—-1(<k—j5—-1=1)
T =T + T2 with

m = L[~ p, v p], [ v ), [, vl p 2 0)

m = L([v~"p,v=2p], [v"p, v+ ), V—k-l—é-i—%(;(p’ 2),
v EH26(p,2), . v 20(p, 2); 0)
by k—l—-1<j<El(j<k—j—-1<Y)
T = T + Mg + T3 with

m = L™ p, v ] v p, vl [0 p, v pls p ) 0)

my = L(lv™ p,v 7 pl 9 p v ol v 26(p, 2),
vIt20(p,2),...,v720(p,2);0)

3 = L([v=4p, v "] [T p, v L], v 26(p, 2),
vRI35(p,2), ... v 20(p, 2); 0)
j="tkodd(j=k—j—1<Y)
T =T + T2 with
—k

+1

_ —k+1 _ — _
ﬂ-l:L([V 2 pv 1p]7[1/ 2 pv 1p]7[1/ épvy 1p];p>40-)

¢ —k—3 —kt1

T = L([vp.v7s pl[v5 pv v 30(p,2), v 30(p,2), .., v E0(p, 2); 0)

() j<l—1(<l<k—j—1)
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T =T+ To + T3 + Ty with

m = L™ p, v ] [ p, vl v p, v pls p ) 0)

ma = Ly 4,2 v 8 2),
V_J+§5(pa 2)7 ) V_ié(pa 2)? U)

w3 = L9402l v p, v ol w20, 2), 3
v25(p,2), ..., v726(p,2); T)

my = L([v "9 v=2p) v=25(p, 2), v 28(p, 2), .., v 30(p, 2),
v=i16(p, 3),v96(p, 3), ..., v 10(p,3); 6(v " p; )

b)j=t0=0<k—-j—1)

T = T + T with
m = L(v o, v ) [ o, v ) [ p vl p 2 0)
1
m = L p, =2 ), [0, 071l ™20 (p, 2),
v*26(p,2),...,v726(p,2); T)

() l<j<EL(<j<k—j-1)
T = T + Mg + T3 with

m = L™ p, v ] [ p, vl v p, v pls p ) 0)

my = Ll 40,072, [ p, v, 36, 2)
v=26(p,2), ..., v

M\W\.

3(p,2);T)

w3 = L[ p, v 2p], [ p, vl w7 “24(p, 2),
vIt25(p,2), ..., v720(p,2); T)

(d) j="" kodd ({ <j=Fk—j—1)
T =T + T2 with
—k+1 —k+1

m = L([v=z pv='pl v p, v ol [V o, v )i p o)

—k+1 ——2

_ —ktl o1
7T2:L([V 2 psv p]>[l/ 2 pv 11p]>7/ ¢ 25(pa2)3
v*26(p,2),...,v726(p,2); T)
The proof of the theorem also gives us s)m; for each component m; of ™ (summarized in the

tables); for reasons of space, we do not wmte them out here. (Note that the tables only give
the Jacquet modules for k> 2, > 1; for k=1 or £ =0, see section 3.)
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Proof. The proof is basically the same as that for Theorem 6.1, so we will not go into any
detail. However, we do include the counterpart to the tables of Jacquet modules used in the

proof. Note that for 7 = I/#—HC(p, k) x ¢(p,l;0), we have
spT = v M@y (o k — 1) x ((p, ;0)

+ I p @ vEHC(p, k — 1) % ((p, b 0)

—k+1

+rp@ v Hl(p, k) x {(p, £ = 1;0).
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Case (for ) for 7 for 7 for 7" | components
la.
() a = —04 =£H la irr irr ST = T,
ST =Ty + 7" + 7"
(B) a=—t+ 53 irr la la spm =T +1 +71
syt = + 7
(v) =0+ =L < q, la la la Spym =T + 7 +1"
o< —(4 53 ST =Ty + Ty + 73
1b.
() l=k—1 irr la 1b Spm =7 +1 +7"
S(p)T2 = Ty + 13
B)l<k—-1 1b la 1b ST =T +7 +7"
ST =Ty + Ty + 7
2a.
() k=2,0=1 2c irr 3b ST =T +7 + 7
SpyTe = Ty + 7"
B)k=t+1,0>1 2b irr 3a ST =T +7 + 75
SpTe =Ty + 13+ 7 + 7 + 77
(V) k=2(,0>1 2c 2a 3b Spym =T + 7 +7" + 1
S(p)T2 = Ty + T
(0)l+1< k<20 2b 2a 3a Spm =1 +1 +1" + 75
SpT2 =Ty + T4+ 7 + 13 + 17
2b.
() j=0,k=2,{=2| 2 irr 2a Spm =1 + 71
S(p) T2 = S/ 7_é//
8(p)7T3 = Té
(8)j=0,k=2,0>2]| 2 irr 2b ST =T + 7
sgyma = 4 7
Sy — T4+ 7
(7)j=0,k=¢¢>2|2b irr 2a ST =T + 7
ST =Ty + 7" + 1)
S(p)T3 = T3
(0)j=0,2<k</ 2b irr 2b ST =T + 7
ST =Ty + 7" + 1)
STy = 74+ 7
() j=10—-2, 2c 2b 2a Spym =T + 7 + 7"
k=20-20>2 Sp)T2 = T9 + 75"
Sp)T3 =Ty + T3

85
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Case (fOI‘ 7T) for 7 for 7" for 7" COHlpOHeIltS

Qj=%t-1,2<k<20-2 |2¢ 2b 2bh ST =Tl T T
S(p)T2 = Tél + Té”
ST =Ty + 74 + 75’

(mMj=k—0l<k<20—2 |2b 2b  2a ST =T+ T T
ST =Ty + Ty + 73
S(p)T3 = Ty + T4

B)0<j<bi-1,j>k—¢ ||2b  2b  2b |suym =1+ +1
ST =Ty + Ty + 7'
S(p)T3 = Ty + 74 + 75’

2c. nb. 7 =17

() k=20—-1 2b 2b irr Spm =1 + 14+ 1] + 7"
sy = 1+ 74 + 78

(ﬁ) k<20—1 2b 2b 2c S(p)T1 = 7—{ + Té + 7_{/ + ,7_{//
S(p)T2 = T3 + 79 + 73 + 73

3a.

() j=0,0=1,k=3 2a 1b 3b ST = Tj + 7"
S(pT2 = Ty + T
s =1
S(p)Ta = Ty

B)7=0.£=1k>3 B b B sym =T
S(p)T2 = Ty + T
S(p)T3 = T3 + T’
S(p)Ta = Ty + T

) j=0l=k-2k>3 2a 1b 3a ST =T, + 1"
S(p)T2 = Té + ’7'{/ + Té//
sya = 74!
S(pTa =Ty + 714"

(0)j=0,1<l<k-2 3a 1b 3a T
ST =Ty + 7 + 7
S(p)T3 = T3 + T35
SpyTa =Ty + 7y + 74

(€ j=0—1k=20+1,0>1)2a 3a 3b |spym=r+7+7"
S(pT2 = Ty + T3
S(p)T3 = Té/ + Té”
S(p)Ta = T4

Q) j=k-t-2 2a 3a 3a Spym =T + 7 +T17

£+2<k<2£—|—1 8(p)7T2:T£—|—T£/—|—T£”

S(p)T3 = T3 + T3
S(p)Ta = T4 + T4
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Case (for ) for 7/ for 7" for 7" | components
mj=t-11<l<%l13a 3a 3b spm =1 + 1 + 17"
S(p)T2 = Ty + T
S(p)Ts =Ty + 73 + 15"
S(p)Ta = Ty + 74
O)0<j<t-1, 3a 3a 3a Spm =T + 7 + 1"
j<k—0-—2 S(pT2 =Ty + 79 + 75
S(p)Ts = T3 + 73 + 73
SpyTa =Ty + 74 + 74
3b.
() k=20+2 irr 3a 3c ST =T + 1 +715 + 7
SpTe =T34 + 7 + 75 + 74
(B) k> 20+2 3b 3a 3c ST =T +7 +7 + 11"
SpTe =Ty + 74 + 74 + 713" + 715"
3c.
() j=Cl+1, k=20+4 | 3d 3b 3c Spym =T + 7 + 7"
sgyma =75+ 7
sy =74 + 70
B)j=L+1,kE>20+4 | 3c 3b 3c Spm =1 + 71 + 71
S(p)T2 = T+ 1
S(p)T3 = T + Ty + 75’
(Mj=%-1k>20+4 |3d 3c 3c ST =T +7 +7"
ST = Ty + Ty + 7'
sy =74 + 70
) l+1<j<t-1 3c 3c 3c Spym =T + 7 +1"
ST =Ty + 75 + 15
S(p)Ts = T3 + 73 + 73
3d. n.b. 7 =7")
() k=20+3 3b 3b 3d ST =T +T+ 7 +7
S(p)T2 = Ty 4+ 1
(B) k>20+3 3c 3c 3d Spm =1+ 15 +7 + 11"
SpTe = Ty + Ty + 73 + 15

7. COMPOSITION SERIES

In this section, we give the composition series for 7 = v*((pg, k) x ((p,{;0). If p satisfies
(C1/2) and py = p, the components of 7w are given in Theorem 6.1; the composition series
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are described in Theorem 7.1 below. Theorem 7.1 also gives composition series when py 2 p
but pg satisfies (C1/2) (i.e., the representations whose components are described in Corollary
5.7). Similarly, if p satisfies (C1) and py = p, the components are given in Theorem 6.2; the
composition series in Theorem 7.2 below. Theorem 7.2 also gives the composition series when
po Z p has pg satisfying (CO) (i.e., the representations whose components are described in
Corollary 5.8). The main tool is Frobenius reciprocity, using a comparison between different
generalized degenerate principal series which have common components (cf. proof of 3a in
Theorem 6.1) to isolate key Jacquet module components.

THEOREM 7.1. Let o be an irreducible supercuspidal representation of S,, and suppose that
p is a representation of GL,(F) satisfying (C1/2). Let m = v*((p, k) x ((p,¢;0), a < 0, be
reducible. The components of m are described in Theorem 6.1. In the notation of that theorem,
we have the following:
case 1: my is the unique irreducible subrepresentation; my the unique
irreducible quotient.
case 2a: Ty 18 the unique irreducible subrepresentation; o the unique
irreducible quotient.
case 2b(1): my is the unique irreducible subrepresentation; mo the unique
irreducible quotient.
case 2b(ii): m @ w3 is a subrepresentation; wy the unique irreducible quotient.
case 2c: m= 1 D mo.
case 3a: Ty 18 the unique irreducible subrepresentation; w4 the unique
irreducible quotient. mo @ 3 is a subquotient.
case 3b: my is the unique irreducible subrepresentation; wo the unique
irreducible quotient.
case 3c: m B my 1S a subrepresentation; w3 the unique irreducible quotient.
case 3d: w™=m P MWy
Suppose py % p is a representation of GL,,(F) which also satisfies (C1/2). Let m =
v*((po, k)% (p, l;0), a <0, be reducible. Then, the components of  are described in Corollary
5.7. In the notation of that corollary, we have the following:
case 1: mq is the unique irreducible subrepresentation; wo the unique irreducible
quotient.
case 2: my P my 1S a subrepresentation; w3 the unique irreducible quotient.
case 8: w™=m D ™y
For a > 0, the order of composition series is reversed from that of —a.

Proof. We start with the last claim first—in particular, we begin by relating composition series
for v=*C(po, k) X {(p, {; o) to composition series for v*((po, k) X ((p, ¢; o). For example, suppose
T o= V‘gﬂf(p, k) x ((p,t;0) 0 < j < % decomposes according to case 3a. Then m is
the unique irreducible subrepresentation, w4 the unique irreducible quotient, and my @ 73 a
subquotient. We claim that ysi C(p, k) x ((p,¥;0) has m as unique irreducible quotient, my
as unique irreducible subrepresentation, and m @ 73 as a subquotient. To see this, consider

T= V‘gﬂg(p, k)x((p,¥; ). Then T also decomposes according to case 3a. So, 71 is the unique
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irreducible subrepresentation, 74 the unique irreducible quotient, and 7 @ 73 a subquotient.
Now, by Lemma 2.9, 7, = 7; for i = 1,2,3,4. Since 7 = ué—jg(p, k) x ((p,¢;0), taking
contragredients gives the composition series claimed.

We address the case py = p first. Note that cases 2c and 3d are clear.

We start with the most difficult part of the proof: cases 2b, 3a, and 3c. We do these together
to make use of the following observation (which was also used in the proof for 3a in Theorem
6.1): if 7 = V‘gﬂf(p, k) x ((p,¢;0) is case 3a, then 7’ = V#C(p,ﬁij) X ((p,k—j;0) and
= y’k?“g(p,k + 0 —j) x((p,j;0) (cases 2b and 3c, respectively) have m = 7] = nf,
o = my, and w3 = 5. Further, every representation from case 2b (resp. case 3c) arises as such
an (resp. 7).

We start by addressing 7. For the time being, let us assume 7! 1s case 2b(ii). We begin by

showmg that 7 is the unique irreducible quotlent Recall that 7/ = v'2” 7( (p, 0+j)xC(p, k—j; o),
7 =w59((p, ) x C(p,0;5), and 7 = v C(p,/{:—i—ﬁ—j) x ((p, j; 7). Now, observe that
(1) S((e4j)p)™ contains 1/22JC(p, {4+ 7)®((p, k — j; ) with multiplicity one.
(2) S(e+j)p )7‘(‘ contains v 2 “C(p,l —l—j) ® ((p, k — j;0) with multiplicity one.
(3) s((e4j)p) ™" does not contain v ZJC(p, (+j)®C(p, k—j;0).
(To see thls consider SpminT’, SminT, Sminm": cf. Theorem 2.3 et seq.) Now, (3) implies that
S((¢+5)p) 7r1 does not contain v 23((p,€ +7) ®((p, k — j; 7). Next, observe that since
kit
7o v (p U ) 0 (0T 2 ok — § = 0) % ((p. 45 0)
T (T k=G = 0) x v 2 C(p 4 ) 2 C(p. o),
we have 7, 7' < V%C(p,fj&]) Xy C(p, k—j—10)x((p,¥;a). Since s((gﬂ)p)u%(’(p,f—l—j) X

k—j+e

vz ((p,k—j—0)x((p,;7) contains v ZJC(,O,E—G—])N_C(p,k’ J; @) with multiplicity one (again,

cf. Theorem 2.3 et seq.), we see that the copies of V%C(p, (+7)@C(p, k—7; ) in s((e4j)p)m™ and
S((¢+4)p)™ must come from a common component of 7 and 7T’ necessarlly Ty = 7r2 By Frobenius
reciprocity, an irreducible subrepresentation of 7 must contain v Clp,l+7)®C (p, k—j;a)
in its s((¢44)p)- Therefore, 7 is the only possible irreducible subrepresentation of 7/, making
74 the unique irreducible quotient of 7’.

Next, we turn to the task of showing that 7] @ 74 is a subrepresentation of 7. We work
inductively, so we begin by assuming ¢ = j + 1. Then, 7’ = 1/_%((,0, 274+ 1) x{(p, k — j;0).
Observe that o

= (v T2p x ((p,25)) x ((p, k — j; o)

=~y I75p % (Cp, 25) % C(p,k — j; o))
which admits both

v L 2,02, [ p v ) [ p v ) 0)

and
v L[ p v ] [T R v p) 6, 2), . v (0, 2): T)
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as subrepresentations (noting that ((p,27) x ((p,k — j;o) is case 2c¢). The usual argument
using Lemma 3.2 and Frobenius reciprocity tells us that 7] is a subrepresentation of the first
and 74 is a subrepresentation of the second (n.b. Theorem 6.1 gives us s, 7}, s¢,)7s; see 2b(ii)
(), (B), (€), (¢) in the table). Further, a u* calculation tells us that

v 2@ L g0 3], [T p 3] [ g0 2l o)
and .1 " .3 L1 3 .
v 2 p@ L[ 7 2 p, v i) v p, w2 pl v 6 (p, 2), v (0, 2); T)
each appear in s(p)y_j_%p x C(p,27) x ((p,k — j;o) with multiplicity one. Therefore
and 74 each appear in vi=3p x C(p,25) % ((p,k — j;o) exactly once. Since 7', m] @© 7}
are subrepresentations of v772p x ((p,27) % C(p,k — j;0) and 7}, 74 appear only once in
i3 x C(p,27) ¥ C(p, k — j;0), we see that 7' must contain 7] @ 74 as a subrepresentation,
as needed. (To see this, just consider the subspace of the larger representation formed by
image (') + (Vo @ Vy).)
Next, suppose £ > j + 1. Observe that

7o v (T (p 4+ = 1) 2 Gk = i),
with zfuzﬂlg(p,f +J — 1) x {(p,k — j;0) a case 2b(ii) representation. By the inductive

—0tj+1

hypothesis and exactness, we see that v 2px v 2 ((p, 0+ j — 1) x C(p, k — j: o) has

v L) I e R M o)
and
v L p v E ) [ p v R gl 80, 2), v 6 (p,2): T)

as subrepresentations. Again, the usual argument using Frobenius reciprocity and Lemma 3.2
tells us that 7] is a subrepresentation of the first and 7} a subrepresentation of the second.
Further, a p* calculation tells us that

v @ Ly g i) v e v Rl g o)

and

v @ LR, v 3 ) [ p w3 ), 6 (p, 2), L v (p,2) T)
each appear in s(p)y_“%p X V%C(p, (4 7—1)x((p, k —j; o) with multiplicity one. There-
fore, @} and 7} each appear only once in V_H%p X 1/72+23+1C(p,€ +j—1)x(p,k—7j;0); as

—04j+1

subrepresentations. Since 7’ < V_H%p xv— 2 ((p,l+7—1)x((p,k—7j;0), we again get
that 7} @ 7} is a subrepresentation of 7', as required. This finishes up the analysis for 7" when
7' is 2b(ii).

When 7’ is 2b(i), things are much easier. The same proof shows that 7} is the unique
irreducible quotient. This forces 7] to be the unique irreducible subrepresentation.

The argument for 7" (case 3c) is the same as that for 7’ above (when 7’ is 2b(ii)).
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We now consider m. The fact that m, is the unique irreducible quotient is similar to the
proof that 7} is the unique irreducible quotient of 7/, only easier. Here, we have
(1) s(kpm does not contain vaiC(p, k) @ C(p, ;).
(2) S(kp)T contains vE=iC(p, k) @ C(p, £; &) with multiplicity one.
(3) s(kp)™" does not contain ve=iC(p, k) @ C(p, ;).
Therefore, v3~9¢ (p, k) @ ((p, ;) comes from 7,. By Frobenius reciprocity, this forces 7, to
be the unique irreducible subrepresentation of 7, hence 74 is the unique irreducible quotient
of .
Next, we show that m; is the unique irreducible subrepresentation. We do this by showing
that none of the other components can appear as subrepresentations. First, observe that
<wamﬂammmv%ﬂQmM®<@Aahmh{iﬁﬁ§§g§§§>8
multiplicity 2 if 7 =0
multiplicity 3 if 7 > 0
(3) s@py™” contains v=2t¢(p, k) @ C(p, ¢; o) with multiplicity 2.
Further, as before, we have 7/, 7 < 7*, with

(2) s(kp)m™ contains v=2ti¢(p, k) ® C(p, £ o) with {

— kit

T =v 7 ((pk—j—0) xv72 ((p.l+]) x((p.l;0)
and m, 7" < 7, with

T = v (p, k) x v ((p, L~ §) } ((p, G 0).
We also observe that

(4) Sgpym* contains v=2tC(p, k) @ C(p, £; o) with multiplicity 2if j =0

multiplicity 3 if 7 > 0
s . _k4j _ . multiplicity 2 if j =0
(5) S@kpym™™* contains v=277((p, k) ® ((p, {; o) with { multiplicity 3 if j > 0
Now, (1), (2), and (4) imply that 7 4 7 contain all the copies of v=2((p, k) ® ((p, {;0) in
SakpyT™- Then, (2), (3), and (5) imply that s m contains two copies of v2 ¢ (p, k) ®C(p, by 0).
In short, we have
S(kp)T1 contains V‘gﬂf(p, k) @ ((p, £; o) with multiplicity 2
. _ky ) . multiplicity 0 if 7 =0
S(kp) T contains v 277((p, k) @ ((p, {; o) with { multiplicity 1 if 7 > 0
S(kp)Ts and ()T do not contain v ¢ (p, k) @ ((p, b5 0).
Therefore, by Frobenius reciprocity, the only other possible irreducible subrepresentation of 7
is 9.
Next, we show that ms is also not a subrepresentation of 7. First, observe that

T VT (p, k) x 1T (p, 0) ¥ 0
Therefore, by Frobenius reciprocity, if 7y is an irreducible subrepresentation of w, we have

saumo > v (k) x v (p,0) @ 0
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(note that this is irreducible). By taking Jacquet modules in stages, this means $,,;,m contains
terms of the form
V—k-i—j-i—%p Q V—k+j+§p Q... V—é—%p ® (1/‘“%/) ® V—z+§p) Q (V—z+gp Q V‘H%p) Q...
L@ p@uiTip) @
On the other hand, we claim that s,,;,m does not have any terms of this form. Suppose this
were not the case. Then, we would have

@ (et ... 0 (v ipe e @ L(A)

for some Langlands data A. By Lemma 3.2 and Frobenius reciprocity,

Ty v T % I/_é_%p X (I/_“_%p X I/_“_%p) X ... X (l/_j_%p X I/_j_%p) x L(A)

Cpigl
S(ppyep) T2 2V k+]+2f> R...Q0UV

for some such A. Note that s,,;, L(A) contains no terms of the form v*p with @ < —j + %
Therefore, v "tz px ... xv " 2px (T2 pxvT2p) x ... x (U 2px v I72p) x L(A) has

L(v=+itap v=i=5p] [+ 2p, 17972 ], A) as its unique irreducible subrepresentation, so that
my = L(l ™92 p, 2], [ 2 p, 03] A,

a contradiction. Therefore, s,,;,m has no terms of the form V‘k“*%p@. ) .®1/_‘]_%p® (I/_£+%p®
41 _5_1 i1 . .

v p)... @ (17T 2p@rTIT2p)®. . ., hence cannot be a subrepresentation of 7. This leaves

7 as the unique irreducible subrepresentation of 7.

Let m,.; denote the restriction of m to the maximal proper invariant subspace, so that
Tres = M1 + Ty + m3. We show that mp @ 73 is a quotient of m,..,. First, we claim that
v C(p, L+7)®C(p, k—7; o) is the only term in s((e4j)p) 7" with this central character; from above
it is part of s((s44)p)me. Further, we claim that no term in s 7T” has this central character.
To see these clalms consider the description of s,,;,7" and s,,;,7" as shuffles. From this, one

can see that v 2JC(p, (+7)@((p, k—7; a) and v =7~ C(p, €+])®((p, k—7j;0) have the “highest”
central characters in sy, S((e+5)p)T > resp. Therefore, v 5 C(p, l+7)RC(p, k—j;0)is the
only term in s(s4j)p)Tres With this central character. Therefore, by Lemma 3.2 and Frobenius
reciprocity,
.
Home(myes, v 2 C(p, £+ §) % C(p, k = j30)) # 0,

ie., Tjg(p,ﬁ +7) x ((p, k — j;0o) has a subrepresentation which is a quotient of ;. Now,
VZTC (p, €4 7) x((p,k — j;0) has my as its unique irreducible subrepresentation (from above).

™
So, the quotient of 7., must be either m or | (i.e., a representation having 7, as its unique

T2
subrepresentation and 7 as its unique quotient). Since we can rule out the latter, we have 7, as
a quotient of m,..s. We apply a similar argument for m3. We claim v B Clp, k+l—7)RC(p,7;0)
is the only term in 5((k+£ _jypy™" with this central character, and is part of s(xs—j))ms. Further,
nothing in s((x4e—j)p,) 7 has this central character. Thus, as above,

Home(Tres, v 2 Clpy ki + £ — §) % C(p, j; o)) # 0.
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So, yE C(p, k+€—7)xC((p, j; o) has a subrepresentation which is a quotient of 7., necessarily
T

w3 or | . Again, we can rule out the latter to conclude that 73 is also a quotient of 7.
3

Therefore, m @ w3 is a quotient of m,.,, as claimed.

We now consider case 2a. Let m = v2~‘C(p, k) x C(p, l;0) (case 2a) and 7« = ((p,2() x
C(p,k — £;0) (case 3d). We note that 7 = m. We show that my is the unique irreducible
quotient of 7w using the same kind of argument as above. Observe that

(1) Sqp)T contains Vi=5¢(p, k) ® C(p, ¢; 5) with multiplicity one

(2) s(p)™ does not contain V5 C(p, k) ® Cp, 4 5).
Therefore, s contains the copy of vi=5¢ (p, k) ® C(p,¢;5). By Frobenius reciprocity,
is the unique irreducible subrepresentation of 7, hence m, is the unique irreducible quotient
of w. Therefore, m is the unique irreducible subrepresentation of 7, finishing case 2a. A
similar argument works for case 3b (use 7 = v/"3((p, k) x C(p,l;0) (case 3b) and 7' =
C(p,20) x ((p,k — £;0) (case 2c)) and case 1 (use m = v*((p, k) x ((p,l;0) (case 1) and
7 =t (p, 4+ a+ ¥)x¢(p, —a+ £; 0) (irreducible)). This finishes the last of the cases
for pg = p.

Now, suppose pg 2 p. We focus on the case where m = v*((po, k) x ((p,¥;0) has three
components (i.e., « = —% +jwithl1<j< g) Then, write

v (o0, k) % 0 = LAY + L(Ag) + L(As),

with o ) o )
L(Ay) = L([v=*%2 pg, v 2 pgl, [V 72 pg, v 2 pol; 0)

L(A) = L([v 93 pg, v po), [v 772 po, v~ 2 pol; 6(v 2 po; 7))

L(As) = L([v™"*9%2 po, 192 po, 198 (po, 2), . .., v 8(p0, 2); 6(v 2 po; 7).
Note that by the results already verified above, we have that L(A;) & L(A,) is a subrepresen-
tation of y—%ﬂ'g(po, k) x o; L(As3) is the unique irreducible quotient.
We now turn our attention back to 7. First, we claim that m5 = L([v=T2p,v"2p], A3)
is the unique irreducible quotient of 7. We do this by showing 73 = L([u‘“é 0, v p],A},)

(where Aj is defined by L(A3) = L(A3)) is the unique irreducible subrepresentation of # =
v=%C(po, k) ¥ ((p,¢;0) (n.b. m reducible implies py = pp). Now, since L(A3) is the unique
irreducible quotient of v*((po, k) X o, we have v™*C(po, k) © 6 < S(py) L(A3). Thus, by Lemma
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5.4,

Stpot)Ts = 1 C(po, k) @ v 3¢ (p, £) @ 6.

Now, by p* computations (or by considering $,,:,), we have that v=*((po, k) ® u—ég(p, ) ®a
appears with multiplicity one in sy, ¢, 7. Therefore, the above implies

S(kpo)T3 > V" “C(po, k) @ ((p, £;0).

Since S(kp,) 73 contains the only copy of v=*C(po, k)®((p, {; ), it must be the unique irreducible
subrepresentation of 7, as needed.

Finally, we show that m; @ 7y is a subrepresentation of 7. Now, from above, L(A1) ® L(As)
is a subrepresentation of v*((pg, k) x 0. Next,

™ 73 (p. 0) % (1 (po k) 2 0).
Then, by exactness and induction in stages, v 2((p,£) x L(A;) and v=2((p, £) x L(As) are
subrepresentations of v=2((p, ) x (v*C(po, k) x o). Further, by Lemma 5.4, m — v~2((p, £) x
L(A;) and 7 — v=5((p, £) x L(As). Now, we note that v=5¢(p, £) @ 1v°C(po, k) @0 occurs with
multiplicity two in S(gp’kpo)l/_ég(p, 0) x v*((po, k) x 0. Therefore, m; and 7y appear only once
in I/_%C(p, 0) x v*((po, k) x 0. Since the only copies of m and 75 in V‘ég(p, 0) x v*((po, k) X o

appear as subrepresentations, and ™ — V_%C(p, 0) x v*((po, k) x o, we see that m @ m is a
subrepresentation of m, as claimed.
The two-component cases are easy; their proofs are omitted. [

THEOREM 7.2. Suppose that o is an irreducible supercuspidal representation of S,, and p is a
representation of GL,(F) satisfying (C1). Let m = v*((p, k) x {(p,¢;0), o < 0, be reducible.
The components of ™ are described in Theorem 6.2. In the notation of that theorem, we have
the following:
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case la: Ty is the unique irreducible subrepresentation; o the unique irreducible

quotient.

case 1b: w1 1s the unique irreducible subrepresentation; mo the unique irreducible
quotient.

case 2a: Ty 18 the unique irreducible subrepresentation; o the unique irreducible
quotient.

case 2b: w1 @ w3 is a subrepresentation; wy the unique irreducible quotient.
case 2c: = P mo.
case 3a: T 18 the unique irreducible subrepresentation; w4 the unique irreducible
quotient. my P w3 is a subquotient.
case 3b: my is the unique irreducible subrepresentation; mo the unique irreducible
quotient.
case 3c: m b Ty 1S a subrepresentation; w3 the unique irreducible quotient.
case 8d: W™= m B My
Suppose py is a representation of GLy,(F') satisfying (CO). Let m = v*((po, k) x ((p,;0),
a <0, be reducible. Then, the components of w are described in Corollary 5.8. In the notation
of that corollary, we have the following:
case 1: m=1m D moy.
case 2: m @ my is a subrepresentation; w3 the unique irreducible quotient.
For o > 0, the order of composition series is reversed from that for —a.
Proof. The proof for pg = p is essentially the same as its counterpart in Theorem 7.1. We note
that if 7 = I/#“C(p, k) x((p,?; o) is case 3a, then 7’ = V#C(p,jj%—i— x{(p,k—j—1;0)
(case 2b) and 7" = VWC(p,k + 0 —j) x((p,j;0) (case 3c) have m; = 7] = 7}, M = 7
and 73 = 4. Thus, the same sort of comparisons used in Theorem 7.1 may be used here.
Suppose py Z p. We start by considering the case ¢ = 0. In this case, 7 = I/#“C(po, k)xo.
We claim that 7 @ 7y is a subrepresentation of m and w3 is the unique irreducible quotient. If
7 =0, this follows from the same argument used in the proof of Proposition 3.11, case 2a. For
7 > 1, observe that

T v it (po, k— 1) x vipy 1o
> p3HC(pg, k— 1) x vipy Mo

>~ yipy x v (pg, k — 1) X 0.
Proposition 3.11 tells us

ST = v pg @ L{[v™* %2 pg, v~ pol, [ po, v pol; Th)

+V_jp0 ® L([V_k+j+1p0> V_1p0]> [V_j+1p0> V_lpo]; T‘Z)
for i = 1,2. By induction (on j), we have that L([v=*t71py v=2po], [ po, v 1pg]; T;) is a
subrepresentation of ys+i ((po, k—1) xo. By Lemma 3.2 and Frobenius reciprocity, we know
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that , , .
T = v po X L([v M po, v pol [v I po, v pol; Th)

— vipy x (12 (po, k — 1) X 7).

Now, 7;, i = 1,2, has multiplicity one in v~ pg x V‘gJ’jC(po, k—1)xo (in fact, m; has multiplicity
one in v * gy x o x v pg x (v pg X v pg) X ... x (Vi pg X v pg) X pg x o). Then,
by considering the subspace V. + V,, + V;, in the space of v77py x l/_g"'_jC(po, k—1) %o, we
see that m @ 7y is a subrepresentation of w. That 73 is the unique irreducible quotient is then
easy—the usual Jacquet module argument shows that there is a unique irreducible quotient;
necessarily it is 3.

From this point, the argument now follows that of the py % p case in Theorem 7.1. (In
Theorem 7.1, it was not necessary to do the case ¢ = 0 separately—since py satisfied (C1/2),
the ¢ = 0 results followed from the work already done.) O
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