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ABSTRACT

A brief description of the problem under consideration follows. Let F
be a p-adic field (we take char F'=0, odd residual characteristic), G = Sps.(F).
Let P = MU be a maximal parabolic subgroup of G, and x a one-dimensional
representation of M. We may extend x trivially to P. The question we investigate
is whether 7 =Ind§x ® 1 is irreducible or not.

Two different approaches to this problem are used. The first, based on
the work of Casselman and subsequent work by Gustafson, reduces the problem to
the corresponding question about an associated finite-dimensional representation
of a certain Hecke algebra. We use this method to do the case where M = F* x
SPan-1)(F). The second approach is based on a technique of Tadi¢, and involves
an analysis of Jacquet modules. This is used to prove a more general theorem
on induced representations, which may be used to deal with the problem when y
satisfies a regularity condition. We use.th‘is method and ad hoc arguments to work

out the low rank cases completely.

key words and phrases: p-adic field, symplectic group, induced reiaresentation,

Jacquet module, Hecke algebra.
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INTRODUCTION

We begin the Introduction with a short description of the problem to be
considered in this paper. Let F' be a p-adic field with char F=0 and odd residual
characteristic; O its ring of integers. Set G = Span(F'). Let P = MU be a maximal
parabolic subgroup of G, so M = GlIi(F) x Spyn-r)(F), for some k, 1< k < n.
A (quasi)character on M is of the form x o det, ¥ € F*, and may be extended
trivially to P. We also denote the resulting characters as x. It will be helpful
to decompose x as x =| - |° xu, With X, coming from a character of ®%. The
question we investigate is whether 7 =Ind$y is irreducible or not, where induction
is normalized so that unitary representations induce to unitary representations. In

the following paragraphs, we describe some techniques for attacking this problem.

In his unpublished notes on admissible representations [Cas 2], Casselman
used Hecke algebras to determine reducibility for Sly(F) = Spo(F) with x un-
ramified. In his thesis, Gustafson [Gus] extended these techniques to the maximal
parabolic in Spy,(F') with Levi factor M = GI,(F), x unramified. In the second

chapter of this thesis (the first consisting of notation and preliminaries), we apply
' these Hecke algebra methods to determine reducibility for the maximal parabolic in
Span(F) with Levi factor M = F* x Spy,_1)(F) and arbitrary . In the third and
fourth chapters, we use a technique of Tadié¢ [Tad 2] involving Jacquet modules to

obtain some general results, as well as some specific ones for small n.

We now describe how Hecke algebras are used to show irreducibility. Let
@ be a uniformizer of F. Then, O/(w0) is a finite field which we denote by F,.
To the parabolic subgroup P, we may associate a parahoric subgroup B by taking
P(F,) and lifting it back to Sp,,(F). To the character x on P, we can associate an

open compact subgroup B, contained in B which has the following property:

*) every subquotient of 7 is generated by its B, — fixed vectors.

vil
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We remark that B, depends only on x,, and not on s. The proof that B, has
this property is based on a similar statement in [Gus] for the case where X is
unramified. This, in turn, is based on the results of Borel and Casselman that state
that a subquotient of an unramified principal series is generated by its Iwahori-
fixed vectors. Let H = H(G, B,) denote the algebra of compactly supported B,-
biinvariant functions on G. Associated to the induced representation (r,G,V) is

the representation (7, H,V5x), where H acts on the B,-fixed vectors by
n(f)o = [ Fg)n(g)vdg.
G

It is known (cf. [Gus]) that *) implies the map W — WBx gives a bijective
correspondence between subquotients of (7, G, V) and subquotients of (m, H,V Bx),
As VBx is a finite-dimensional space, we can explicitly compute certain operators
7(h1), 7(hy), with hy,hy € H and show that they can admit no common invariant
subspace except at a finite number of potential reducibility points. For order of
Xu > 2, there are no potential reducibility points—r is always irreducible. If order
of xu = 2, reducibility can only occur if s = 0 or iw/Ing. For order of x, = 1, the
points where reducibility is possible are s = +1,0,i7/Ing. The next problem is to
show that there is reducibility at the potential reducibility points. We note that in
the unramified case, if s = 41, the trivial representation is a subquotient, so there
is reducibility.

This leaves us with the potential reducibility points where X 1s unitary.
Now, if x is unitary, then 7 is unitary as well. We show that 7 is reducible by
showing that dim Homg(n, #)=2, where #=contragredient of 7 =Ind8x~!. To show

this, we observe that by Frobenius reciprocity,

Homg(7, #) & Homp(ny, x71),

where 7y is the Jacquet module of 7 taken with respect to P = MU. If we let

My = M N By, we get a representation (wy, H(M//M,),(Vy)"x). We can show
that

Homp (7, X_l) ~ HOIHH(M,MX)(WU, X_l),
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We note that the components of 7y have one-dimensional spaces of M, -fixed vectors.
By considering the central characters of the components of 7y, one can show that
only two of them contain x~!. The question is whether they arise as a direct sum
(to get dim=2) or only as composition factors (so dim=1). For s near the point in
question (either 0 or in/Ing), the action of H(M, M, ) diagonalizes. It turns out
that the eigenvectors may be analytically continued, so the action of H(M, M,) on
(Vu)Mx will diagonalize at the point in question. Thus, dim=2. The Hecke algebra
results are summarized in Theorem 2.32., which we now state. If n > 2, # = igax
is reducible if and only if x is of the form |- |*" or x? =1. If n = 2, in which case
the group is just Sl3(F'), reducibility occurs if and only if x is of the form x = |- [*!
or x? =1 with x # 1. When reducible, 7 has two components.

The computations required to use the Hecke algebra approach are too
complicated for an arbitrary maximal parabolic subgroup, so in chapter 3 we intro-
duce a different approach based on a technique of Tadié¢. As an example, suppose
that 7=Ind$y is a degenerate principal series representation of Spa.(F) and that
the Jacquet module of X, treating x as a fepresentation of M, is a regular char-
acter on the split torus A of G. The basic idea for showing irreducibility is as
follows. Let rsg(m)ss denote the semisimplification of the Jacquet module of =
with respect to the minimal parabolic subgroup. For P; an intermediate parabolic
subgroup, let ra,c(7)ss denote the semisimplification of the Jacquet module com-
puted with respect to P; (see chapter 1 for a summary of the Bernstein-Zelevinsky
notation for Jacquet modules). Suppose that 1,9, € rag(m)ss. Now, suppose
that we can choose P; so that rpng(7)ss has an irreducible component o such
that both ¢, and v, are in rap,(0)ss. Then, if 7y is a composition factor of 7
with ¢ € rae(mo)ss, we claim that 1o € rae(m0)ss as well. To see this, look at
My 6(7T0)ss.  Since Y1 € 746(70)ss, Tmc(mo)ss will have to contain at least part
of o-by regularity, there is only one copy of ¥; around. Since o is irreducible,
erg(wo)ss must contain all of o, so that 1,9 € rae(m)ss. We then argue as
follows: suppose 1 € rag(mo)ss. By working with ras,¢(70)ss, we conclude that

Yg € 746(m0)ss- Then, by using ras,a(mo)ss, we conclude that 13 € rag(mo)ss, ete.
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until we end up with r4g(mo)ss = rag(m)ss. Therefore, we conclude that = must
have been irreducible.

We now describe how Jacquet modules are used in pursuing reducibility.
In this case, one of the rjs, g7 will have a reducible composifion factor which would
“normally” (i.e., for generic x) be irreducible. Suppose the composition factor has
components 01,0, with ¢, € TAM*(UI)SS,¢2 € Tam,(02)ss, where P, = M, U, is the
appropriate parabolic subgroup. Then, let wi:Indg*ai We get 11 € r46(71)ss, V1 ¢
T4c(72)ss, and similarly for +,. If m were irreducible, then © would have to be
a subquotient of either 7y or ;. Therefore, rag(m),s C T46(71)ss OF Tag(m)ss C
r46(m2)ss- But, this is not the case—just look at w1, ¥;. Thus, we have that = is
reducible.

The main theorem in chapter 3 is Theorem 3.1.2, which is based on a
generalization of the argument above. The theorem gives necessary and sufficient
conditions for reducibility of 7 = igarp, where p is an irreducible admissible rep-
resentation of M such that rqap # 0 and the characters appearing in r4pp are

regular. First, we associate a graph to m as follows:

vertices: the vertices are the elements of r4g()s,

edges: two vertices ¢y, 1, are connected by an edge is there is some Levi N and

some 7 € rng(7)ss such that the following hold:

1. 7 is an irreducible representation of N.

2. 11Z)17 "/)2 € TAN(T)ss-

where r4n(7)ss denotes the semisimplification of 7. Under these conditions, Theo-

rem 3.1.2 states that the following are equivalent:
1. 7 is irreducible.

2. the graph of 7 is connected

3. the composition factors of rygm as computed using the results of Bernstein-

Zelevinsky/Casselman (cf. Theorem 1.2.4) are all irreducible. In particular, it *
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is sufficient to check those where the Levi N is generated by A and one simple

reflection. Note that one must incorporate the reducibility of r45p into these

computations.

The third condition reduces the problem to analyzing the reducibility of certain
induced representations of GL;(F') and Spy(F) = Sly(F), where the results are
known.

As indicated, Theorem 3.1.2 is a generalization of the preceding arguments,
but it still requires a regularity condition. In the final chapter, we look explicitly at
degenerate principal series for Spy(F) and Spe(F'), in general, modifying the kind
of arguments used in chapter 3 (including the definition of the graph for 7) to allow
us to work out the non-regular case. .

I would like to take this opportunity to thank some individuals who have
contributed to this paper, which is essentially my dissertation. First, I would like to
express my gratitude to Paul Sally Jr. for doing a fine job as advisor— it has been a
pleasure to work with him. This paper owes much to an idea of Marko Tadié, and I
would like to thank him for taking the time and effort to explain it to me. Finally, I
would like to thank Timothy Steger for carefully reading the first draft and making

many valuable suggestions, and the referee, for similar reasons.






CHAPTER 1
NOTATION AND PRELIMINARIES
1.1. Spgn(F)

The purpose of this chapter is to introduce notation and review some

preliminary facts that will be of use in the rest of this thesis.

Let F be an nonarchimedean local field of characteristic zero. Let O denote
the ring of integers, P the prime ideal in @ and @ a uniformizer. Then, O/P is a
finite field. Let ¢ denote the number of elements in @/P. We normalize the Haar

measure on F' so that vol(O)=1.

Suppose that x is a quasicharacter of F* (i.e., a multiplicative homomor-
phism from F* to C* - not necessarily unitary). If z € FX, z may be decom-
posed as ¢ = wrzg, with 2o € O@%. We can then decompose x as x = | [*x. by
x(z) = |@*|*xu(z0), where x, is a character of O%, 0 < Res < 2nt/Ilngq. It may
be convenient, at times, to view x, as a character on F'* (by Xu(@F20) = xu(z0)).
We shall use 1 for the trivial character and sgn to denote a nontrivial character

satisying sgn?=1.

As most of this thesis concerns induced representations for S pan(F), we
- next discuss Spy,(F') and induced representations. In this section, we review some

of the structure theory for Sp,,.(F).

Recall that we may take

Spon(F) = {z € GLon(F)FXJX = J},

1Received by the editor Jan. 18, 1991
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where

I,

(entries left vacant are zeros). Let K = Sp;,(O). This is a maximal compact

subgroup of Spz,(F). It has a filtration of open compact normal subgroups

..a4K;<q K <K,

where
K; = {X € K|X = ImodP'}.
Let

a

\ /

be a maximal split torus in Spy,(F). Then, the Weyl group of S pan(F) is
W = Ng(A4)/A,

where Ng(A) denotes the normalizer of 4 in G. The Weyl group of S pan(F') has 2™.n!
elements and may be viewed as W = {permutations and sign changes of{es,...,eq}}.

W is generated by the simple root reflections {si,...,s,}, where

1 \

1.

1

§1 =
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1. (1 \

Sp—-1 = 1. ySn =

1 1
\ \ )
We now review the parabolic and parahoric subgroups for Sp,,.(F). A standard
minimal parabolic subgroup for Sp,,(F') is the following;:

X Y . .
P = Tyt € Spa(F)|X € GL,(F) is upper triangular } .

Note that X~ will be lower triangular so that P, is not the upper triangular
matrices in Sp,,(F') (we could arrange for Py, to be upper triangular had we chosen
a different J in defining Spy.(F)). Let ® C {si,...,s,}. The standard parabolic
subgroups of Spyn(F') are parameterized by such subsets of the simple reflections.
Associated to @ is the parabolic subgroup Py =< Py, ® >.

If P = MN is the Levi factorization of P then

M = GLkl(F) X GL;W(F) X e X GLk;_l(F) X Ska;(F)a

with ki + k2 + ... + k; = n. This will be embedded in Span(F) as

Ay
' Ay A; e GLki(F)
M =« A B A B
AT and € Spor,(F)
a1 C D
A
\ \ C D J

We note that in terms of the parameterization of parabolic subgroups by subsets of

{s1,...,8n}, this parabolic subgroup corresponds to

¢ = {317 ceey sn} \ {3k173k1+k2> coe sy Skitki_gs }
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We also remark that the modular function for P is given by
5(m) — |detA1|2n+1-—k1 . |detA2l2(n—k1)+1—k2 .. IdetAl_lI2(n—k1—...—kl_2)+1—-k¢_1 .

The parahoric subgroups may be constructed in a similar fashion. A stan-
dard Iwahori subgroup for Sp,,(F) may be constructed as follows: let ¥ : K —
Span(F,) be the reduction mod P homomorphism (where F, is the finite field O/P).
Then, take I = U=(P,,;,(F,)) as the standard Iwahori subgroup. Let

_w—'l .

Sog =

1
so that {sg,s1,...,5,} generate the affine Weyl group. The standard parahoric

subgroups are in bijective correspondence with the subsets ® of {so, s1,...,5,}, the

correspondence being given by
By =<I1,%>.
Note that if ® C {s1,...,8,}, then
Bg = U1 Pg(F,)).

These are the parahoric subgroups we shall be most interested in.

1.2. Induced representations and Jacquet modules

We now review the construction of induced representations and Jacquet
modules.

We start by reviewing the construction of induced representations. Let G
- be a reductive p-adic group and P = MU a parabolic subgroup of G. Let (p, X) be
an admissible representation of M. Then p may be extended trivially to U to get a

representation of P, p ® 1. The induced representation Ind%p ® 1 acts on the space

f smooth }

V= {f 1C = X fmug) = 8 (m)p(m)f(g) VmeM, uel, ge G
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where 6 denotes the modular function for P. The action of G on this space is

by right translation. We shall give some more convenient notation for induced

representation after we discuss Jacquet modules.

We now describe the construction of Jacquet modules. Again, suppose G
is a reductive p-adic group and P = MU a parabolic subgroup of G. Let (7, V) be
a representation of G. The Jacquet module of 7 with respect to P, denoted my, is

a representation of M on a space which is denoted by Viy. The space is
Vo =V/V(U),
where V(U) = span{n(u)v — v|v € V,u € U}. The action of M is given by
my(m)(v + V(U)) = 672 (m)r(m)v + V(U)

(one checks that this defines a representation).
We shall frequently use the notation of Bernstein-Zelevinsky [B-Z] for in-
duced representations and Jacquet modules. If P = MU is a parabolic subgroup of

G, (p, X) an admissible representation of M, (7, V) an admissible representation of
G, then set

iam(p) =IndEp 1
é,nd
rvc(T) = my.
The following notation for induced representations in Sp,,(F)will also be
convenient. It is just an extension (cf. [S-T]) of the shorthand notation of Bernstein-

Zelevinsky for induced representation in GL,(F). Suppose P = MU is a standard
parabolic subgroup of Sp,,(F), with

M = GLy,(F) X -+ x GLy,_,(F) x Spa, (F).

Let p1,...,p1-1 be admissible representations of G'Ly, (F),...GLy,_,(F), and 7 an
admissible representation of Spyr,(F). Then, let

PLX . X P g XT=1gMp1®...Q pi_1 QT.

&
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The sign o is used only to indicate that the last factor comes from a symplectic

group. If k; = 0, the representation will be denoted

P1 X ...pi-1 x 1.
The trivial representation of S pg;l(F ), n > 0, will be denoted ¢r,, so there will be
no confusion.

We close these preliminaries with four theorems on induced representations

and Jacquet modules.

THEOREM 1.2.1 (Frobenius Reciprocity) Let G be a connected reductive p-adic

group, P = MU a parabolic subgroup,'p an admissible representation of M,  an

admissible representation of G. Then,
Homys(raa(n), p) = Homeg(m, igap)-
Proof. cf. [B-Z2].
THEOREM 1.2.2 Let (7,G, L) be an irreducible subquotient of Indg_ 4 (¢ a char-

acter).Then, there is a w € W s0 that T embeds in Indgmjnwzﬁ. Moreover, all

Indgminwz,b for w € W have the same components.

Proof. See [Cas2] for references for the first part and [B-Z2] for the second.
We next recall the following theorem, which says the constructions of in-

duced representations and Jacquet modules may be done in stages.
THEOREM 1.2.3 Let L < M be standard Levis for G. Then
1. 1gr =1t6M O tML

2. g =TLM OTMG.

Proof. cf. [B-Z2].

We close with a theorem of Bernstein-Zelevinsky, Casselman. Let M,N
be standard Levis for a connected reductive p-adic group G. Set WMN = {w ¢
W w(Pmin N M) C Puyin, w"l(Pm‘in N N) C Puin}. We remark that these correspond
to the elements of shortest length in the double-cosets W \W/Was (Wi = Weyl
group of M, etc.).
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THEOREM 1.2.4 (Bernstein-Zelevinsky, Casselman) Let p be an admissible rep-

resentation of M. Then, ryg o igump has a composition series with factors
iNN’OwOTM’Mp, w € WMN
where M' = M Nw™'(N),N' = w(M)NN.

Proof. See [Cas2], chapter 6 or [B-Z2] “geometrical lemma” (Lemma 2.12), proved
in chapter 6.



CHAPTER 2

THE HECKE ALGEBRA APPROACH

2.1. General theorems

The goal of this chapter is to analyze reducibility /irreducibility in the case
where the inducing subgroup has Levi factor M = F* x Spy(,,_1)(F'). We attack this
problem using Hecke algebra methods. In particular, we construct an open compact
subgroup B, and to the representation (7, G, V'), we associate a representation of the
Hecke algebra H(G//B,) of compactly supported B,-biinvariant functions on the
finite-dimensional space VBx. This representation, denoted (w, H(G//B,),VBx),
has the property that the subquotients of (w, G, V') and those of (7, H(G//B,,), VBx)
are in bijective correspondence, the bijection being implemented by X C V G-
invariant goes to XBx C VPx H(G//B,)-invariant. Once this correspondence is
established, we can do our analysis on the Hecke algebra side, where the finite-
dimensionality of the representation facilitates computations.

We now describe the contents of this chapter in a little more detail. For
purposes of this discussion, let us assume that n > 1-the case Spy(F) = Sl(F))
behaves a little bit differently. The first section of this chapter consists of construct-
ing B, and establishing the aforementioned correspondence. In the second section,
we explicitly construct a basis for VBx. This construction breaks the problem into
three cases: (order of x, = 1), (order of x, = 2), and (order of x, > 2). In section
2.3, we look at the case (order of x, > 2). We compute a pair of operators n(h;),
n(he) with hy, he € H(G//B,) and observe that they do not admit a common in-
variant subspace, so that in this case, m# must always be irreducible. In section
2.4, we do similar computations for the case (order of x,) = 2 and conclude that
if x* # 1, then = is irreducible. The fifth section uses a variation on this theme
for the case where x is unramified to show that if x? # 1 or x # v*!, then 7 is

irreducible. In the last two sections, we show that if x2 = 1 or x = v*!, then = is

8
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reducible. If x = v*!, then 7 has the trivial representation as a subquotient, hence
is reducible. If x? = 1, we show that 7 is reducible by showing that Homg(r, %)
is two-dimensional. Again, the analysis is broken up into cases depending on the
order of x,~the case (order of x, = 1) is done in the sixth section, the case (order
of xu = 2) in the seventh. The results are summarized in Theorem 2.7.2.

The goal of this section is to establish the bijective correspondence between
the subquotients of (7, G, V') and those of (7, H(G//B,), V 5x) for a suitably chosen
By. We start by choosing Byand discussing (7, H(G//B,),VBx). We then show
that any subquotient of (7,G, V') has a nonzero B,-fixed vector. The last part is
to show that since every subquotient of (7, G, V) has a nonzero B, -fixed vector,
there is a bijective correspondence between the subquotients of (7,G,V) and those
of (=, H(G//By), VEx). We note that although we are interested in the degenerate
principal series coming from a maximal proper parabolic subgroup in Pan(F), the
results are more general. Everything should work for an arbitrary parabolic in G a
reductive p-adic group. We shall work in the more general situation.

Let P C G be a parabolic subgroup, with P = MU its Levi decomposition.
Let x be a character of M and set m = igarx. The subgroup B, which we use may

be described by its Iwahori factorization with respect to P. In particular,
‘BX = UI_MX U()

where Up = U N K,U = U~ N K, with [ the smallest positive integer for which
X\, is trivial (M; = M N K;), and M, = M, Nker x. We normalize our measures
so that |By| = |U| = |My| = |Us| = 1.

We check that B, is a group. In fact, we show that B, = KKM\Uy =
M,UoK;. From this and the fact that K, is normal in K, it is easy to check that
B,is closed under multiplication and inverses. To show B, = K;M, U, = M, UyK;,
it is enough to show K; C B,. Suppose k € K. Since K; C K, C B, we have a
factorization of k as k = u=mu with u~ € U7, m € My, u € Uy. We claim u— € Ur.
We use the reduction mod P' homomorphism to get u"mu = I mod P'. Now,
suppose u~ # I mod P'. Then, mu = (u~) 'mod P'. But, this cannot occur since

it would imply that P(O/w'O) and U~(0/w'0) had nontrivial intersection. Thus,
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u” € Uy . A similar argument shows u € U;. This forces m € M;. Consequently,
K, Cc U MU, C B,, as needed.

We now describe the representation (w, H(G//B,),VBx). By definition,
H(G//By) is the (convolution) algebra of compactly supported B,-biinvariant func-
tions. VBx is the space of B-invariant functions in V; finite-dimensional since B,

is open compact. The action is given by
n(R)V = [ hg)n(g)vdg
G

for

h € H(G//By),v € VBx,

Our next task it to show that every subquotient of (7,G, V) contains a

B, -fixed vector. We start with the following result of Casselman.

PROPOSITION 2.1.1 (Casselman) Let (w,G,V) be an admissible representation of
G (G as above). Let B be a compact subgroup of G with an Iwahori factorization
B = UgMpUp with respect to P = MU (where Uz = U~ N B, etc.). Then,

rmc 2 VE = (rua(V))M?
18 surjective.

LEMMA 2.1.2 (Jacqet via Casselman) With hypotheses as above, suppose that
v € VM8Us. Then, vy = Prg(v) = Pryy(v) satisfies v — vy € V(Ug) (where
Pri(v) = TIl{TfK m(k)vdk)

Proof of Lemma. Using the Iwahori factorization,

vo = [m(b)vdb
B
= [ [ [ (b

Ug MpUp

= [ w(u)vdu (since v € VMaUz)

= Pryg(v),

which is the first claim. The second claim follows immediately from this.
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LEMMA 2.1.3 With hypotheses as above,

’I“Mg(VB) = ’r‘Mg(VMBUE).

Proof of Lemma. Since v —vg € V(Ug), we have v — vg € V(U). Thus, v and vo

have the same image in rapg(V).

Proof of Proposition. Let X C (rpa(V))M® be finite-dimensional with X ¢ VM=
a finite-dimensional subspace mapping onto it. Since X is finite-dimensional, there
is a compact U~ C U~ such that X c VMsUs, Now, there exists a € Ap, the
maximal split torus in the center of M, such that a='Uga C U-. This implies that
m(a)X C VMeUs (Check: m(mu)m(a)v = n(a)r(a *ma)r(a~ua)v = m(a)r(m)v =

m(a)v for m,u,a as described.) By the preceding lemma,
WU(G)X = ng(w(a)X) C T'Mc;(VMBUE) = T'MG(VB)

Thus, dimX < dimV?® < oo by admissibility. Consequently, dim(rpa(V))Me <
dimV? < oo.

Next, let X = (rpma(V))M2. Then, we must have my(a)(Vy)Me = (Vy)Me,
Since a was chosen so that my(a)(Vi)M® C rya(VB), we have (Viy)MB = (rya(V))ME C
rac(VE), as desired.

The second ingredient toward establishing that every subquotient of (7, G, V')
contains a B,-fixed vector consists of extending the results of Borel/Casselman to

get the proposition below.

PROPOSITION 2.1.4 Any subquotient (7,G,L) of Indgminz/) has a nonzero I-fized
vector. For Ppyn = AN, I, = N7 AyNo with Ay = Ao N Nuew kerwyp and | =

smallest positive integer such that |4, = 1.

Proof. See [Bor| 4.9 for the unramified case (where I,= Iwahori, G semisimple).
By .the preceding proposition, it suffices to show that Lﬁ"’ # 0.

First, suppose 7 is actually a subrepresentation of Ind}Ggminpb. Then, Frobe-

nius reciprocity =

HomA(TN> d)) g HomG(T’ Indgminzp) # O
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Thus, 75 contains a vector which transforms under A according to v, hence is fixed
by Ay. So, Ly # 0.

Now, suppose that 7 is just a subquotient. By Theorem 1.2.2, there is a
w € W so that 7 is a subrepresentation of Indgminwt/). Then, as above, Tx contains
a vector which transforms under A according to wy, hence is fixed by A,. So,

Lﬁ,"’ # 0. The conclusion follows.

This brings us to our proposition.

PROPOSITION 2.1.5 Any subquotient of (7,G,V') has a (nonzero) B, -fized vector

Proof. First, let (p,G,Y) be a subquotient of (7, G,Y ). We claim that (p, G,Y) has
an I,-fixed vector (using x|4 to get I,). This follows since x is a subrepresentation
of Ind}]p . 671/%(x|a) with § the modular function for M N Pyy,.

We now proceed as in [Gus].

LEMMA 2.1.6 Any K -invariant subspace (w,K,Q) of (7,G,V) has a nontrivial
P N B, -fized vector. '

Proof of Lemma. Since G = PK (Iwasawa decomposition), 7|x = IndE . x. By
Frobenus reciprocity,
[IndFexx : w] = [wlpax : X,

so w|pnk has a vector which translates according to y, hence is fixed on M, (and

trivial on Up). The lemma follows. Note that we are writing x for x|pnx, etc, above.

LEMMA 2.1.7 Any nonzero K -invariant subspace X which contains a montrivial

K;-fized vector contains a nontrivial B, -fized vector.

Proof of Lemma. K; 4« K => KX is a K-subrepresentation of x. By the preceding
lemma, it has a PN B,-fixed vector. Since B, is generated by PNB,,U;” (U C K;),
the lemma holds. |
Now we finish the progf of the proposition. From the first paragraph, we
know that (p,G,Y) contains an I,-fixed vector. As K; C I, it is K;-fixed. By the

preceding Lemma, (p, G,Y) contains a B,-fixed vector, as claimed.
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We now begin the final task of this section— establishing the bijective cor-
respondence between the subquotients of (7, G, V') and those of (7, H(G//B,), V.B).

The lemma and theorem that follow have been culled from various places (cf. [Cas2],
[Gus], [Bor)).

LEMMA 2.1.8 Let V1, V2, V3 be smooth G representations, B an open compact sub-
group. If
i-V-VW

18 an ezact sequence of G-modules, then,
B B B
Vil Ve -V

is ezact as well (as vector spaces).

Proof. See [Cas2], 2.1.7.

LEMMA 2.1.9 LetV be a smooth finite length representation of G, B an open com-
pact subgroup of G. Suppose that every subquotient of V has a nonzero B-fized
vector. Then, every subquotient of V is generated by its B-fized vectors.

Proof. Suppose not. Let V' be a subquotient of V and set V"= G - V' = subspace
of V' generated by V'Z under the action of G. V" is a subrepresentation of V'; by
assumption, not all of V’'. By the previous lemma,

. . ! . .
But, this cannot happen since % is a nonzero subquotient of V.
s PP Vv q

THEOREM 2.1.10 The map W — WP5x gives a bijective correspondence between
subquotient of (1,G,V) and subquotients of (v, H(G//B,),V5x).

Proof. By Proposition 2.1.5, every subquotient of V' has a nonzero B, -fixed vector.

Therefore, by the preceding lemma, every subquotient of V' is generated by its



14 Chris Jantzen

B,-fixed vectors. We now check that W — WP5x gives a bijective correspondence
between subrepresentations of (7, G, V') and those of (7, H(G//By), V.2).
injective: Suppose that V;,V; are subrepresentations of V satisfying VIB" = VzB".
Then G- V2 = G- V2B" (where G - V}B" denotes the subspace of V generated by V}B"
under the action of G). Since every subquotient of V is generated by its B,-fixed
vectors, G - V;-B" = V;. Thus V; = V,, as needed.

surjective: Let W C VPx be an H(G//B,)-invariant subspace. Set Vo = G - W.
We claim VOB" = W. Suppose not - then VI)B" D W. Suppose v € V[)Bx but v ¢ W.

Since v € G - W, we can write

v= Y w(g)w; w;€W,g;€G
finite

We claim v = 3 7(xB * ¢; * xB)w;, where xp = charp, . Note that xp * g; * x5 €
H(G//By) so this will express v in such a way that it must lie in W. Check:

D om(xB*gi*x xp)wi =Y w(xp)m(g:)w; = m(xB)[D_ m(g:)wi] = (xB)v = v.

We also need the following corollary of the proof.

COROLLARY 2.1.11 Suppose (m;,G,V;),t = 1,2 are such that every nonzero sub-

quotient of each V; contains a nontrivial B-fized vector. Then,

Homg(Vi,V2) & Homp /ey (ViE, ViP)

Proof. (cf. [Cas2], Proposition 2.2.2)

2.2. Basis for V5«

~ The goal of the rest of this chapter is to use the preceding theorem to
analyze reducibility for a specific example. Let G = Sp,,(F), F p-adic of charac-
teristic zero, odd residual characteristic. Let M = F* x § Pa(n-1) and P = MU the
corresponding parabolic subgroup. We identify characters of F* with characters
on M via the F* part. We set ™ = igamx, and analyze the reducibility of (7, G, V)
by analyzing reducibility for (7, H(G//B,),VBx). The goal in this section is to
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construct a basis for VBx. The problem breaks itself into three cases. If we write

X = |- |°xu (see chapter 1), the cases are
Case 1 (order of x,) =1
Case 2 (order of x,) = 2
Case 3 (order of x,) > 2

We shall approach these three separately and summarize the results in Theorem
2.2.4. The reader is advised that the third case is substantially longer than the
other two.

We start with the following lemma, which is sort of a Bruhat decomposi-
tion. We let B be the parahoric subgroup corresponding to P (obtained by adjoining
82,...,8n to the Iwahori). (It is By for x = 1)

LEMMA 2.2.1 Let woo = identity,

1 \ ( 0, [ \
i :

Wi = 7 w1 = 7 0

-1 0
\
(w0 = s1). Note that for n = 1, wyo does not exist. Then,
K=BU (BU)IQB) U (BwnB) fO’I’ n _>_ 2
and

K =BU(BwnB) forn=1.

Proof. See appendix.
At this point, we give a brief description of the process. First, using the
preceding Bruhat decomposition as a starting point, we obtain a decomposition

K = UsesPoaBy, so that G = PK = UuesPaB, (S finite). Thus, ® € VBx is
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determined by its values on @ € S. The natural first attempt at a basis would then

be {fa}aes, where

_ §'%x(p) if g = pab € PaB,
Tol8) = { 0  ifg¢ PaB,.
However, these are not always well-defined. Thus, once we have determined a set
S of representatives of Py\K/B,, we must determine which of the a’s in S actually

“work” .

Case 1:

In this case, By = B, so we can just use the Bruhat decomposition K =

Ug,5) Powi; B from the lemma. We claim that

| 8x(p) if g = pwi;b € Pw;;B
fle) = { 0 ifg¢ PuwyB.
are all well-defined, hence constitute a basis for VE. We remark that {(£,7)} =
{(0,0),(1,0),(1,1)} for n > 2, {(0,0),(1,1)} for n = 1.

We check well-definedness. As the double-cosets are disjoint, we have only
to show that pw;;b = p'w;b = §/2x(p) = 6'/2x(p'), or equivalently, &2 (p'1p) =
1. However, p'"'p = wi;b'b~ w;;' € (wi;Bwj;') N P C Py, so this holdvs. Thus, we
have a basis for V5.

Case 2:

In this case, By = Uy M, U,, with M, = M, Nkery. We claim that

K = U; jPow;;B,. In particular, suppose

€

1

satisfies x(€) = —1. Then, we have B = B,U(eB, ). Thus, we get K = Us,; Pow;( By U
(eB,)). However, since wl-jew{jl € Po, we have Pow;; B, = Pow;;j(eB,) = Pow;;B,

and the claim holds.
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To address the question of well-definedness, we start with the following

lemma.

LEMMA 2.2.2 Let ® € VBx. Then, if i # j, ®(wi;) =0, i.e., ®(wy) = 0.

Proof. Let € be as above. Then, since x(e) = —1, we have

—®(w10) = P(ewyo)
= ®(wyo€’)
= (I)(wlo)a

where

’ —_
€ = wiyewyo =

\ )
Thus, ®(w10) = 0. Note that for n = 1, this lemma is unnecessary.

Now, any ® € VB must be zero on the double-coset associated to Wip.

We claim that {f;}i=01 below constitute a basis for VBx:

1/2 — e ..
fio) = { 6'%x(p) for g = pwisb € Pw;;B,

0 if q ¢ Pwiin.

These will be a basis once we know that they are well-defined.

We now check that these are well-defined. Suppose pwi;b = p'w;;b' , with
p,p' € P and b,b' € B,. We must show that §'/2x(p) = §/2x(p), or equivalently,
51/2x(p"1p) = 1. Observe that p"~'p = wib'b~'w;! € M, Uy (woo,w;; normalize

M,). The conclusion follows.

Case 3:
In this case, By = U, M, U,. By the Bruhat decomposition, K = Ui ; Pow;;B.

Now, B = Uy- u"mB,, where u~,m run over representatives of U~ /Uy and
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Mo/M, (M, normalizes Uy ). Next, since any m € M, may be written in the

form

(@ )

1

with m' € M,, we get B = Ugy-u~aBy = Uy ,~u~aB, as a runs over O%/kery
and u~ runs over Uy /U, . Note that we are not claiming this is a disjoint union (it

does not matter- see the upcomming lemma).

If we combine this with the Bruhat decomposition, we get

K = Ui,j,a,u—Pgw.,-jau"BX

= Ui ju- Powiju™ By

since w,-jawi_jl € P;. We now examine w;;U “wml— this allows us to reduce the
number of u™’s needed in the above expression (e.g. some of the u=’s used above

will conjugate into P, hence be unnecessary). We do the two nontrivial cases:

[, ) (. \
wq 1
wy 1
In—l .
Wn—1 -1 __ Wn—1 1
Wi Wio =
X Y1 .- Yn—1 1 —wy ... —wWp_1 1 1
" Y1 T y2..Yn—aifbwi 1 .. —wnp_g
. Y2
. In—l : .
Yn-1 \ Yn—1 1 /
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1 1 —y1...=Yn-1 | w1 Wn—1
wq w1
In—l In—l
Wp—1 1 Wn—1
w11 w1 =
T Y1 ... Yn—1 1 —wi ... —wp_1 1
1 1
In—l : In-—-l
Yn—1 ) Yn—1

Of course, wqo acts trivially. We now write down our decomposition more

explicitly, removing unnecessary duplications:
K= (Uu—Po’woou—BX) U (pro’wloyBx) U (Po’wlle)

where ™~ runs over U; /U, and

with y running over P/P".

LEMMA 2.2.3 If u™ ( resp. y) is a double-coset representative with u~ (resp. y)

nonzero mod P* and ® € VBx, then

Q(woou~) =0 (resp.®(wioy) = 0).

Proof. The general style of the argument is as follows (using u~’s for u~ or y): we

have

(wiju”) = S(wiu"u) u € Uo
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We find a u so that u~u = pi~mod P* with u~ = ¢~mod P* and w,-jpwi'jl € P but
not in ker x. Then

S(wiju™) = P(wijpd~)
= ®((wijpwi; wi;a~)

= x(wijpwj;" ) ®(wiju~)

Since x(wijpwj;') # 1, we must have ®(w;;u~) = 0. The difficult part it to find an

explicit choice of u (it will depend on u~). There will be three cases.

To expedite matters, we use the following notation: if X is a matrix,

max(X) is the largest norm that occurs as the norm of an entry of X. Let

W In—l
X Tyj1 -Tw

Y In—l
with X = X — w7Zv.
Case A: W, X = 0(mod P*).
Let
1 Tz )

I.4\Z
U =

1

In—l

We will place conditions on Z as we go along. For now, the entries of Z are in O.
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Now, letting I = I,,_4,

<I>(w,-ju’) = Cb(w;ju‘u)

( 1 TZ \ \
I Z

= | wg Ty l14Tyz

Y I1+Y7TZ )
/ Ta+Tyz)—? Tz
TI+YTZ)-1| =z
= w
® 4 1+TY2Z
I+YTz

I

(1+TY2z)-1Ty| 1

YT(I4+TYZ)?

Next, suppose that the largest entry of Y is in P'\ P! (i.e. maxY = ),
1 <1< h. Then, we insist that the largest entry of Z lie in P*~*~! (i.e. maxZ =

g~ M+1). We claim that this implies

YT(14+7YZ)™! = Ymod P*

(1+7Y2)'TY =TYmod P"

21

Observe that the largest entry of 7Y Z must lie in P*~'. Thus, (1 +7Y 2)! €
1+ P*=1. Consequently, Y7 (1 +7Y Z)"! = Ymod P" (since Y has entries in P).
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The other half of the claim is similar. In particular, the second matrix in ® above

is congruent to u~mod P*. Thus we have,

T(14+Tyz)-1 Tz \ \

TI+YT2)-1| 2z
S(w;u” )= i -
(%) (wiu™) Wij 1Ty z u

I+Y7TZ

Subcase 1: w;; = wy;

Then, (*) above gives us

e(u) =x("QA+TYZ)™")®(u")
= x"'(1 +7Y Z)®(u")

(62 = 1 on PN K). Now, we allow Z to run over its prescribed set (max Z <
g "M*1). Then, 1 +4T7Y Z will cover all of 1 + P*~! Recall that Xli4pr = 1 but

X|14pr_1 # 1. In particular, there exist choices of Z giving 1 +7Y Z ¢ ker x. Taking
such a Z,

®uT)=xTT1+TYZ2)®(u)

implies ®(u~) = 0, as claimed.

Subcase 2: w;; = wg
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We note that case A is the only one in which wyg occurs for the proof of
the lemma. In this case, 7Y = (y 0...0). We now further restrict Z to be of a

similar form: 7Z = (2 0...0). Then, (*) becomes

(1+yz)? 2 0...0
(14 y2)—? z
1 0
1] o

@(wmu“) = & (’wlo) u-
(1+yz)
1+ v2)
1 .
\ 1

(1+yz)"? z 0... 0 \ \
(1+yz)_1 z
1 0
1 o
= & : Wil ™~
(14 yz)
1+ yz)
l .
' 1

= X1+ y2)®(wiou”)

Again, as we let z run over P*~'~1, 14+ yz runs over 1 + P!, In particular, we can

find a z so that x7'(1 + yz) # 1. Thus, ®(wiou~) = 0, as claimed. This finishes

case A.

Case B: max X > maxW

We note that in this case, we are dealing with w;; = wgo only.



24 Chris Jantzen

Write Uz = 1 . We restrict Z € O for now. More

I
\ /

restrictions/specifications about Z will be made as we proceed.

Suppose that X € P!\ P*1. Then, we will want Z € P*~*-1, We compute:

B(um) = B(uzupui)

= P(uxuypupuz)

I |\wz -wzTw

= @ |uyuyuzuy

1
I
\
= ®(ujupuzup)
1 -z7y \
I
= @ | ujuzuy 1 Uy
Yz |-vyz I

Now, if we conjugate this matrix around uy;,, we get

1 =ZTy 1 ( 1 ZTy
I w1 I
1 1 -Tw 1
YZTY |YZ I I -YZTy|-vyz 1
/ )
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( 1-ZTyw -ZTywzTy \
w I+wZzTy
- Wy zTy 14T WY Z _Tw
\ Y ZTYW YZOIYW +TWY)ZTY| YZTWY Z 1-YZ™W
1
wooI
= " mod P
I

since max X > max W and the constraint Z € P*~'~! ensures that ZX, ZW, etc.,
lie in P"~!. Multiplying by Y then puts them in P*.

Thus, we get

®(u”) = d(uzuzuyuy)

1 Z
I
=2 X 1+XZ u;uﬁ/
I
/ ]
1+x2-' |z \ ( 1 \
I I
=@ 1+X2Z 1+x2)7t |1 Uy U
I I
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since XZ € P*!, (1 4+ XZ)'X = Xmod P*. Thus,

( 1+x2)7! | z \ \

®(u~) =9

Uy Uy U
1+XZ X*Yew

\ / /

=x"1(1+X2)®wu")

The rest of the argument is similar to case A. As Z runs over P*1 X7
runs over P!, Then, ®(u~) = x~}(1+X Z)®(u") for all such Z implies ®(u~) =0,

since y is not constant on 1 4+ P!, This finishes case B.

Case C: maxW > max X
1 A

Write uy = T 1. Again, if the largest entry of W is

Tz I

in P!\ P+, we will want the largest entry of Z to be in PF-I-1,

We compute:

@(u™) = @(upuxuy)

= ®(upuxuyuz)

=® | upuxuzuy

NYZ)+YZ I

= S(upuyuzuy)
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since the last matrix is in M, C B,. Continuing,

[ 1 )

®(u”) = |upuzuy

u
xz |1 Y

Tzx TzxZ I

Since Z C P*'-! and max W > max X, the matrix above lies in P*. Thus
?

Q(u”) = Q(upuzuyxuy)
) z \ \
W I+W2Z
= Uy Uy
142w -Tw X7y
-Tz I
(14 zw)—1 z
I+w2z
=9
14 2ZW
-Tz TI+wz)-!
[
(I+WZzZ)~'w I

Ux Uy
1 -TwT(I4+wz)-t| XY

I
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Again, we have WZ C P!, so the second matrix is congruent to ujy mod P*.

Continuing,

Q+zw)-' z \

I+WZ

d(u”) =9 e U U Uy

-Tz T(I+wz)-!

/ /

= X1+ ZW)B(u)

As before, under the conditions given, we can arrange that x~'(1+ZW) # 1. Thus,
we must have ®(u~) = 0. This concludes Case C and the lemma.

Let us now summarize where we are at in Case 3 (i.e., order (x0)>2).
The above lemma tells us f, is not well-defined (cf. p.16) for all our double-coset
representatives of P\G/B,, except possibly a = wqo, w10, w11. We claim that f,,, is
not well-defined— the proof is exactly the same as in Case 2. This leaves us with the
task of showing that f, is well-defined for o = wgo, w11. First we check that fo = fu,,
is well-defined. Suppose pb = p't’ € PB,. We must show that §'/2x(p) = 6'/2x(p'),
or equivalently, §'/?x(p'~'p) = 1. However, p'~'p = ¥'p~' € PN B, = M,U,, so
812x(p'~'p) = 1. Thus, fo is well-defined.

Finally, we check fi; = fu,,. Suppose pwy1b = p'wy1b’ € Pwy;B,. We must
show that §'/2x(p) = 6'/2x(p'), or equivalently, §'/2x(p'~1p) = 1. However,

Plp = wnbbwn
€ PN (w11 Bywsy)
= P N Uy M, Up)
= M, U,

so 6/2x(p'~'p) = 1. Thus, f; is well-defined. This concludes Case 3.

We summarize our results in the following theorem:
THEOREM 2.2.4 The following list gives a basis for VBx,

1. (order of xu) = 1
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A basis for VB consists of

§'%x(p) if g = pwi;b € Pw;;B

fii(g) = { 0 ifgd PuyB

(note that By, = B), for (i,5) = (0,0),(1,0),(1,1). The pair(1,0) does not
occur for n = 1.

2. (order of xu) = 2
A basis for VBx consists of

Filg) = 51/2X(P) if g = pwiib € Pw;; By
' 0  ifg ¢ PwyB,
fore=0,1.
3. (order of x,) > 2

A basis for VBx consists of

fig) = §x(p) if g = pwiib € Pw;By
0 if g & Pwi;By

for1=10,1.
REMARK 2.2.5 Cases 2 and 8 look the same for the particular parabolic we’re look-
ing at. However, that is not the case in general. If the Levi M = GL; x SPa(n—k)

and x is a character, identified with a character of M through the determinant, the
following describes which f,’s are well-defined: (Cases 1, 2, § as above)

1. a=w; for all the w;;
2. a=wy 26{0,,]{3}
3. a = woo, Wkk-

Thus, the distinction exists in general.

NOTE 2.2.6 It will be important, for future use, to realize that in Cases 2 and 8,
if @ € VBx and z ¢ (PugyBy) U (Puyy By), then &(z) =0 .
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2.3. Irreducibility when (order x,) > 2

We now start on the task of analyzing reducibility. The problem splits into
the same three cases that occurred in the preceding section, classified by (order of
Xu)- The purpose of the present section is to do the analysis for the case (order of
Xu)> 2.

Let us start by describing our analysis for this case. From the first section
of this chapter, we need only look at (7, H(G//B,),VBx). By the preceding section
{fo, f1} constitute a basis for VEBx. We let

Awu = (lewllBXD_l Cha’erwqu

Am = (lemBXD_IChaerme

with

-1

1

and m € O*. We observe that A,,,A, € H(G//By) (in fact, they are in
H(K//By)). We shall explicitly compute m(A,,,) and 7(A,,) with respect to the
basis {fo, fi}. It will then be clear that m(A,,,) and 7(A,) admit no common
proper invariant subspace. Therefore, the representation (7, H (G//By),VEx) is
irreducible. This tells us that (7, G, V) is irreducible.

LEMMA 2.3.1 With respect to the basis {fo, f1},

W(Am):(x(m) 0 )

0 x7'(m)

Proof. Let w be woo or wy; (by Note 2.2.6, these are the only double-coset repre-
sentatives of P\G/BX on which @ € VBx can be nonzero). Then,
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7(Am)®(w) =Bf ®(wbm)db
X
= [ ®(wm)db (since m normalizes U}, M,, and Up).
By

= ®(wm)

Thus, 7(Am)@(we) = ®(weemn) = x(Mm)P(weo) and 7( Ay )@(wi1) = @(wyym) =
®(m~twy;) = x(m)®(wy1). This tells us that

m(An) = x(m) 0 )
) ( 0 x7'(m)

LEMMA 2.3.2 With respect to the basis {fo, f1},

0 1
W(-Awn) = ( X(_l)q(—2n+1)h 0 ) .

Proof. Again, let w be wqo or wy;. Then,
T(Auw, )2(w) = [ ®(wbwyy)db
Bx
= [ [ [ ®(wumu~wy;)du~dmdu
Uo My U,;‘
= f@(wuwu)du
Uo

since wi;' Mywi; C By, and wi!Uy wyy C B,.

1. w= Woo

(A, )®(wo0) = [@(uwn)du

Uo
= <I>(w11).

2. w= w11

7(Aury)B(wir) = [@(wiuwn)du

Uo

= X(—l)/@(u")du".

Us
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We write u~ =

\

Chris Jantzen

w I
X Ty |1 -Tw
Y I

as before. Then,

7(Awy)®(wi1) = x(=1)[ / / ®(u)du™ + / / &(u)du™]

We now observe that [ [(u~)du™ = ¢(=?"*D &(wq,). This follows from the fact
(see the Appendix) that if all of the entries of W,Y are also in P, then u~ €
PwooB,, (this case contributes g(=2"*D2®(wqg)). If not, then u~ € [(PweB) U
(Pw1oB)\(PwgoBy), so ®(u~) = 0 by Note 2.2.6. It now remains to show that the

XeP

second integral is zero.

Xep

Xeox

To see that the second integral is zero, we factor u~ as

X1 X-1Ty X 1Tw
I-wX-Ty| w wX-1Tw
u- =
-YX-1Ty I+YX1Tw
/ 1 X-1Ty -X-1 X-1Tw
I -wX-1
W11
1
-YX-1 I
Thus,
[ o )du = X(X_l)q)(wu)du"
Xeox Xeox
=0

since X, is nontrivial. This finishes the lemma.

€ P’quo
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It is clear that 7(A,) and m(Ay,;) admit no proper common invariant
subspace. Thus (7, H(G//By), V5x) is irreducible, so (7, G, V') must be irreducible

as well. We close this section with the following remark.

REMARK 2.3.3 In the general case, where P = MU with M = GL; x SPa(n-k), @
basis for VBx when (order x,)> 2 consists of {fs} for a = Woo, Wik. With respect

AL =(x(m) 0 )

0 x7'(m)

0 1
i .Aw - )
m(Aw) ( X(_l)kq—kh(2n—%k+%) 0 )

with Ay, = (|BymBy|)~!charp,mp, (m as before), Ay,, = (|BywirBy|)~? charp B, -

The arguments are similar, ezcept for the following complications. In order to com-

to this basis,

pute (A )P (wrr ), write

m(A)@(wre) =x(=1)[ [ [@w)du" + [  [®(u")du-

rankpsX=0 o<ranky X <k
+ [ [®(u)du].
rankp X=k
where rankpX is the rank of X when reduced mod P. The first integral gives the
nonzero contribution, an in the case k = 1. The second integral is zero because
1< rankpX <k implies that u~ € Pw;; B with1 # 0, k- in particular, u~— & PwgoB,
or PwgrBy. Since ® = 0 on these double-cosets, the integral is zero. The last

integral 1s also zero, but here a lemma s needed:

LEMMA 2.3.4 Let S = GLi(O)N{symmetric matrices}. Suppose p is an irreducible
representation of GLy(O) such that p % po 6, where 8 is the automorphism given
by 6(g) =T g~'. Then,

/ m(g9)dg =0

S

We need to use this and some additional arguments in the general case as a substi-

tute for [ x(X ~1)®(wy1) = 0 in the case k = 1. Thus, we have irreducibility in
Xeox
general for (order y,)> 2.
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REMARK: We actually have something stronger than (7, H(G//B,),V5x) irre-
ducible, namely (7, H(K//B,), V5x) is irreducible. This tells us something about
finite groups.

We start by noting that K/K;, = G(O/P"). We can interpret x as
a character on M(O/P*) (actually, x, is all that will matter). If we look at

T = IndIG,Egﬁ:; X, we can ask about reducibility. This corresponds to analyzing re-

ducibility for (7, H(G(O/P")//P(O/P")), XP(OIP")), where X is the induced space.
But, this is isomorphic to (7, H(K//B,, V?x) above, hence irreducible.

2.4. Irreducibility conditions for (order y,) = 2

In this section we shall analyze irreducibility for the case when (order Xu)
= 2. The analysis is similar to the previous case, but more complicated (e.g., there

are some reducibility points). The first step is to compute a pair of operators,

m(A,), m(Ay,, ) on VBx where

Awn = (IwallBXD_l Cha‘erwlle

A, =( le’)’Bxl)_IChaer’yBx

with

We then see that these operators admit no common invariant subspace, except for
s = 0,7m/Inq. This gives us irreducibility except at those points. At s = 0,in/Inq,
we can show reducibility by showing dim Homg(7, %) = 2. This requires some work,
so we wait until section 2.7 to show the reducibility at these points. In this section,
we just show irreducibility elsewhere.

We start by computing the operators.
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LEMMA 2.4.1

Proof. Let w denote woo or wy;. Then, for ® € Vf

H(A)8(w) = [ B(wby)db
= [ [ ®(wumy)dmdu (since y~'Uyy C Uy)
My Uo
= [ ®(wuy)du (since M, commutes with v)
Uo

Case 1: w = wqg

T(Ay)®(woo) = 2(7)
= ¢7* 7" ®(woo)

Case 2: w = wy1

For notational convenience, denote m(.A4,)®(wy1) by S.

b

S =/<I>(wuu7)du
Uo

1 w‘lwg...w"lwn w‘2x1 w_lzg...w

.1
‘:/q) ’U)ll’)/ 1
Uo

(conjugating v around u)

du

35
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( 1 w’lwg .. .w“lwn w"2:c1 w-la:g wlzy,
1 w_lxg
: wlz,
s+n 1
=gq P | wi - du
Uo —w~lw, 1
=1
\ w™ wn 1 /

1
=gt [ & wiy | du
q / w_2zl w‘1w2 ...w"lwn 1 —w"l:r:g ...—w‘l:cn 1
Uo w_1w2 1
w1 Wn

- S

Now, write M, = M, x My, where M} =kerx C F*, M{' = Sp(3n_2)(0).
If any of z5,...,z, € O, we can conjugate by a matrix in the Weyl group of
M (noting that M commutes with w;;) to arrange that z, € OX. This will
permute the w;’s (as above, if m € My is the matrix, ®(u~w11) = (mu~wiym™1) =
®(mu~m~'w,1), so we are just conjugating the unipotent matrix) thus, we can split

up the integral as

- X
S = q‘"”q””/ / o) wq; | dzdw
w’2z1 w‘lwz ...w_lwn 1,
1 w; €0 w"lwg .
w_lwn

wT Ty 1
4¢*tn i) wiy | dzdw
g w_2x1 w—lwg cewlwgl 1 —w"lxg i —w gy, 1
R

wT T wr 1
o lw, ' 1 )
where the first integral simplifies because 3,...,z, € P and the second integral

has domain R’ = {(1,...,%n,ws,...,w,)| at least one of z,,...,z, isin OX}. We
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can decompose R’ as R’ = R, U ... U R), according to the minimum j for which
z; € OX. Then, after a suitable conjugation from M/, each R’ will have z, € O,
plus some conditions on the remaining z’s. Denote the resulting sets by R; and let

J = [ +...4 [ this gives the same result as integrating over R’, but it is convenient
R R, Rn

to have arranged x, € O*. Note that |Rz| + ...+ |R,| = 1—;3;—2;.

As above, we can conjugate the unipotent matrix in the second integral

by
(1 0 \
1 -1
. —Tn T2
""1';1-'1771—1
1 MII
1 € Mo
1
1
0z, 1:2....‘5;1xn_1 1 /

and split up the first integral according to whether any w; € O or not (just as we
split it up above according to whether any 5, ...,z, € O*). Using R to denote the

analogue of R for the w’s (arranging for w,; € OX), we get

Ty
S :q‘2”+2qs+n/fb — W11 dz
z€0 )

+q—n+1qs+n/ /(I) - - _11 wyy | dzdw

T
..a
L
S
N




38 Chris Jantzen

. L
stn i) wy | dedw
+q // w‘2x1 w‘lwg ...w"lwn 1, —w"l:vn 11
R .

Now, we conjugate by the following matrices in M/

for second integral for third integral
(o \ (s
1 w; 1.U3...’LU2_ Wy .
1.
1 ) 1
1 0o |1
1 z5lw,
—wylws :

. -1 T -1 ‘—1 :

\ —wy " Wn 1 } \ 0 zo w2...o5 wn 1

We get
(( 1. )
1
S: C]/‘I’ Y. 1 W11 dz
z€O
\ b
(1 '
+C2/ ./ e w2z wlw, = .1 w1 | dwdz
z€0 wp €OX w—lw, s
\ )
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+03/ / d > ! _1. w11 dwdz

wT 1, - Ty
€0 z,€0%

\ )

If we conjugate the second integral by

e M",
1 0 0

\ ! .O/

it becomes the same as the third. Thus,

1 .
.
S =c¢ [ @ ~ wy | dz
wT 1,
€@ .
1
1,
w—lw . -
¢+ ¢ 0] wiy | dedw
+(c2 + 3)/ / Ry T p—— 11
€O wedx .
\ o /

n g~ sin —g= "t s4n
where ¢; = ¢72"*2¢**t" ¢y = g~ +1-11—E-qTq *tn and c3 = 1—137;1—11 +" (from |R|,etc.).
We now break up each of the integrals into three integrals according to whether
z € P’z € wOX, or z € OF — write ¢ = w# if z € @OX, (s0 & € O%). We

then Iwahori factor the matrix. Note that if £ € P2%, z may be removed since
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w1 will conjugate it into Up. To save space, we let o = w™lwz™!, o = wwz™?,

& = wlwi!, and & = ww™1%7! for the remainder of this computation. We get
S :dlé(wll)
( w z—1 / —z=1 \ \
1 , 1
1 T
+d2 / (6] o1 p - (wll) dfé
Z€eOX 1 1
VAN ' /
/ / w? z—1 —z—1 \
1 1
T T
+d3 / ) -2 - o2 ('LUH) d{IZ
zeOX 1 1 )
1 \ 1 /
( w w1 —w™1 \ \
1 1
1 1
w1 w w
+d4 / o o1 - — (wu) dw
wEOX 1 1
1 1
—w1 w \ w1 )
w & w —w™1t \
1 1
1 1
F—1 w1y T —w
+ds / / o —— ————— | (wn) | dwdz
w,z€OX 1 1
1 1
—w™1 z w1 o
/ w? z—1 o! \ —z—1 \
1 1
) 1|a . 1o z—1w?
+d6/ / i3 — - T (w11) | dwdz
w,z€OX 1 1
b ' /
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\/.
~

- \)
1
' 1
w -z
vy
—z—1 \
1
' 1
w? -
. ) /
—w—1 \
1 .
.'1
w
w —w
‘1
w1 /
1-
. )
—w T
w —F —y
1-
1 1 1 i !
wwT ET —w™
/
[ o
1
—wwz—1 ' 1 w2zl
w? -z —w
1

dz

dw

41

dwdZ

dwdz
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where we use dy = ¢7*"¢"*", dy = ¢TI, dy = g7 IgAngTR R ) =

—2n+42 —p—2n+2

1— -2 —s5— 1 -1 ) —s— ) __ 1—g—2nt2 —25-2
Sttt dy = F T, dg = gt

We now claim that the second, third, and sixth terms above are all zero.

This is because they all contain an expression like [ x~!(z)dz when evaluated.
zeOX
For example, we write out the computation for the sixth term. Since

- \ - \ (1 \
1 1 *
—wwz—?! 1 z—1w? 1 —wwz—! 1 z—1y?
w? -z —ww - -z —w2g—l 1 wwz—1
1 1
1 1 1

and the last matrix is in B,

([ o

—wwz—! ) =12
/ / ) —o? 1 — _— dwdw =/ / X(—fl?—l)‘I)(woo)dwd:c

w,z€O X 1 w,c€0X

since x is nontrivial on O*.

We next claim that the fourth and fifth terms (from page 41) are also
zero. This is because the matrices where @ is being evaluated at all lie in Bw,;oB C
PwioB, (see Appendix), and & is zero in Pw;oB, (see Note 2.2.6). Thus, we have
m(Ay)®(wy1) = ¢7"¢**"®(wyy). This finishes Case 2 and the lemma.

LEMMA 2.4.2 With respect to the basis { fo, f1},

' 0 1
(A, ) =
(o) ( g x(-1) 0 )
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Proof. Let w denote wgo or wy;. Then, for & € VBx,

W(Awn )@(w) -—'—Bf q)(wbwll)db

= [ [ [ ®(wumu~w;)du~dmdu
Uo My ur

= f @(wuwn)du
Uo

since wy; ' M, Uy wy; C B,.

Case 1: w = wgyg

W(Awn )(I)(wOO) = (I)(wll)

Case 2: w = wyq

For notational convenience, let R = 7(A,,, )®(w11).

R :/@(wuuwll)du
Uo

1
zo 1
1) /(I) Tn T
=X F R 77 S Wn 1 —zo..00von.. —Zn
UO wy 1
wn

) 1
since wy;~! = wiy.

du
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We can reduce this using the same reductions that we used in computing

7(A,)®(w11) in the last lemma. We get

W(Awn)@(wn) zx(_l)q—Zn-{-Z/@ i
z€O .

—2n+2

—x(-nEEEE [ [ e . dzdw

1—g—1

weOXzeO

We split up {z € O} into {z € P} U {z € O*} and decompose according to PowB,,

to get
R = 61@(’(1)00)
z—1 1 \ 1 z—1 \
1
1 .1
+eg / ® - w11 T dzx
zeOX 1
1 1

+e3 / (0] ad ! dw
weOX ‘
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Tzt 1 wx_l\ 1 z=!  —wz—l \
1 .
) 1 w ) 1 lwz=! wiz—!
+ey / / ] w11 : drdw
x
w,c€OX 1 :

1 1
)\ )

—a—2n-—-2

where e; = x(—1)¢7""*2¢7%, €2 = x(-1)¢7>"*?, e3 = x(-1)FE—q7", s =

X(—l)l;lq_qT-. Finally, we clalm that that three remaining integrals are zero. The

first and third contain [ x(z) = 0. The second integral is zero because @ is
z€eOX

identically zero on the domain of integration (see Note 2.2.6).

PROPOSITION 2.4.3 For (order x.) =2, m will be irreducible unless s =0, im/Ing.

Proof. Clearly, m(A,) and m(A,,,) admit no common invariant subspace unless
m(A,) is scalar, which occurs when s = 0, inlnq. Thus, (7, H(G//By),V5x) is
irreducible when s # 0, iw/lnq, so (7, G, V) will be irreducible there too.

2.5. Irreducibility conditions for (order y,) =1

This section brings us to the case where x is unramified, i.e., (order of
X«) = 1. The analysis has a general format similar to that of the last case,
but there are differences. As usual, we analyze the Hecke algebra representation,

n,H(G//B,),V5x) (here, B, = B). We start b computing 7 , where
X X Y
Ay = (IB'yBI)"lcharBWB, ~ as before.

Then, we give a lemma of [Gus] which tells us that if H(G//B) - VK = VB and
H(G//B)-VK = VB (V = space of contragredient), then  is irreducible. It turns
out that except for s = 0, im/Ing,+n (or s = iw/Ing,+1 if n = 1), we have V5
spanned by V& under powers of 7(.A,). Thus, we have irreducibility at those points.
It is easy to check that 7 is reducible for s = +n. To show reducibility for Res = 0,
we use the same kind of argument as for the (order x,)=2 case to show Hom(r, #)

has dimension 2, which we do in Section 2.6.
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Recall that dimV? = 3 for n > 2 and dim VB = 2 for n = 1. We shall do
the n > 2 case and just state the results for the n = 1 case. One can find the n = 1

case in [Cas2] or [Gus]. The n > 2 case is very easy to adapt to n = 1, anyway.
LEMMA 2.5.1 For n > 2, with respect to the basis {foo0, fr0, fi1},

g " 0 0
m(A) =] Q=g hg g " 0
(1 _ q—l)(q—s-—n + q—2n+1) q—l(l _ q—2n+2) q—2nqs+n

For n =1, with respect to the basis {foo, fi1},

q

—-s5=1 O
W(A'y) - ( (1 _ q_l)(q_s_l +q_1) q_2q5+1 ) .

Proof. As indicated above, we shall just do the case n 2> 2. Let w denote wqo, wig,
wy1. Then, for € VB,

m(A7)B(w) = [ B(wby)db

=[
B
= [ [ [ ®(wumu~y)du~dmdu
Uo Mo U~
=/

Uo

@ (wuy)du

since y~'u~y.€ U; and m'y = ym.

Case 1: w = wqo

m(Ay)2(woo) = @(7)
= ¢~ " ®(woo)
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Case 2: w = wyg

For notational convenience, we set T' = 7(Ay)®(w1o).

T =//<I> (w10)

UL Uy

/ 1 1 xz...mn\ 1 wy...wn \ \
: T3 1
1|z, 1
du
1 1 7
—wp 1
1 — Wy, 1 /

= / Wio

1"
UO

— Wy

—wy 1

since wioUgwio C B (where Uy and U} are as indicated). Since wjo conjugates

ws, ..., W, into B as well, this reduces to

T = [0

weO

W10

WiopY

( 1w lw

—w 1

dw

Fow—lwl




48

Wio

Chris Jantzen

’ ( 1 w—lw

1

- wo—lwl

dw

(since wioyw1;O~! has w in the second diagonal entry). Thus,

Il
~
=]

weO

+ [

weOX

1
w—lw1
1
1-w—lw
1
([ 1
w—lw1l
1
1-w—lw
1
1
w—1

wl

W10

Wio

W10

dw

dw

dw
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= ¢ ' ®(wyo) + / d

weOX 1

Wio0

dw

49

since w € P implies w™lw € O, so that conjugating the w;o around the matrix in

the w € P integral gives a matrix in Up.

Finally, using an Iwasawa decomposition,

T = q"lé(wlo)

/ w w?! \
=1
1. 1.

1 1
+[e —

weOX - wlw

=q'®(wi0) + ¢ / ®

weOX

= ¢ ' ®(w10) + (1 — ¢7")g™* " ®(woo)

as the matrix inside always lies in B (see appendix).

Case 3: w = wy;

For notational convenience, we set S = w(.A4,)®(wy).

Wio0

Wio

dw

dw
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We can use exactly the same computations as were used in Lemma 2.4.1

to compute 7(A,)®(w11) in the case (order of x.) = 2 to get

S — q—2nqs+nq)(,w11)

+q—2n+1qs+nq—s—n / @ di)

zeOXx 1

([ - \
1
1
—2n42 . s4+n ,—25—2n
+q ¢° g / ® = — dz
zeOX 1
1
0 —w—1
1
.
1—¢=27+2 9 sin_—s—n il
+ 5= ¢ - o | | 9w
weOX 1'
‘1
w1 0
( 0 —w~1
1
o
1—g—2n+2 _4 e —w T "
+ 53 et ® - dwdz
w - —w
w,Z€OX 1.
"1
ww—1z"1 w1 0
\
1
1-g=2742 4o oc o & —wwz~! 1 z—1w?
+—9—1_q_1 g — E— dwdzx
w,z€0X 1
Y,
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From the appendix, we can read off which double-cosets Pyw;;B = Bw;;B each of

the matrices above lies in. This gives us

S =g "¢t ®(wn)
+g 2 Hlgtngme (1 — g7 B(woo)
+q72 2ot g2 (1 — g7 )@ (woo)
IS g2 tngo (1 — g1 (wio)
i

+155 =97 T (1 — ¢71)?@(wio)
+_1q%+_2_qs+nq-—2s (1 — q¢71)2®(woo)

=q gt ®(wyy) + ¢ (1 - q"2"+2)‘1>(w10) + (1 — ¢ Vg + ¢7*7]®(woo).

This finishes Case 3 and the lemma.

The next step is to show that 7 is irreducible except possibly at s =

0, in/lng, £nforn > 2 (or s =im/Ilng, £1 for n = 1). The following lemma from

Gustafson will be useful.

LEMMA 2.5.2 Suppose that VX, VE generate VB, VB, respectively, under the ac-
tions of H(G//B). Then w (also %) 1s irreducible.

Proof. Let V, be a proper invariant subspace of V. By Theorem 2.1.10, V2 is a
proper H(G//B)-invariant subspace of VB. Since V¥ is one-dimensional, there are
two possibilities: VE C V£ or VANV = 0. In the first case, since VE generates
VB, we get V2 = VB. This is a contradiction. In the second case, any [ € VK
annihilates V2. Since VX generates VB, this tells us that V? annihilates V;Z. Thus,
V£ = 0, also a contradiction. Therefore, 7 (and %) must be irreducible.

We now state the irreducibility result as a proposition.

PROPOSITION 2.5.3 Forn > 2, if s € {0, in/lngq, £n}, then 7 is irreducible. For
n=1,if s¢ {ir/Ilnq, £1}, then 7 1s irreducible.

Proof. Let us begin with the n > 2 case. By the previous lemma, it suffices to check
that VX, VX generate VB, VB under the action of H(G//B).
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We start by seeing when vy, = K-fixed vector and 7(A,) are enough to

generate VB. With respect to our basis for VB,

1
v=1]1
1
Then,
0
v = m(Ay)vo — ¢ Moo = (1—¢7°") ¢!
‘ g1+ g~2ngetn
Also,
| 0
vy =7(Ay)or — ¢ o = ¢ (L= ¢ T - 1) | 0
1

Clearly, {vo,v1, vz, } will span VB if (1 — ¢™*"") # 0 and (¢7*"¢***?" — 1) # 0, that
is, for s £ n, 0, ir/lngq.

Now, recall that if 7 = Ind$|- |°, then # = Ind$|-|~* (in general, Ind$s =
Inﬁ_ga). Thus, VE will generate VB for s # —n,ir/Inq (im/1n g is identified with
—i7/1Inq). Combining these, we see that VK, VK generate VB, VP as long as s ¢
{0, ir/lng, £n}

In the case n = 1, we have

()

with respect to the usual basis. Then,

| 0
v = (A )vo — ¢ v = ¢ (g* — 1)g Y ( , ) :

Thus, {vy,v,} span VB as long as s # i7/Ing, —1. The condition VK spans VB
gives s # iw/lng, 1. The proposition follows.
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2.6. Reducibility conditions for (order x,) =1

The purpose of this section is to prove the following proposition, which
will give us reducibility for s =0, in/Ing (or s =im/lng, if n = 1) in the case of

x unramified.

PROPOSITION 2.6.1 x unramsfied. Then, for n > 2.

2 ifs=0,ir/Ilng

dim Homg(m, %) =
1 if not.

Ifn =1, the dimension will be 2 if s=1in/lngq, and 1 otherwise.

Proof. First, we claim that if s ¢ {0, ¢w/Ing, £n} forn > 2, or s € {in/Ingq, +n},
for n = 1, then the dimension is one. In this case, 7 (and 7) is irreducible by
Proposition 2.5.3. Now, & = iéMx‘l. Let ¥ = rap(x®1tr) (which is just x®@v "1 ®
...®v71). Then, w11 = ram(x~! ® tr). Observe that 7 is a sﬁbrepresentation of
tca¥ and 7 is a subrepresentation of igawq19. Theorem 1.2.2 tells us that these
have the same components. Each has exactly one component admitting a K-fixed
vector. In one case this is 7, in the other, #. Thus, 7 and # must be equivalent.
We next turn to the problem of showing that dim = 2 at the appropriate
places, and return to the case s = £n afterwards. Briefly, we reduce the problem
to a Jacquet module problem via Frobenius reciprocity, then to a corresponding
Hecke algebra question. We will wish to know whether the abelian Hecke algebra
H(M//My) acts diagonally in a yet-to-be-specified two-dimensional subspace Q of
(Vy)Mo. (It turns out to be the case that acting diagonally corresponds to having
dim Hom = 2). Essentially, we show that it is true for s near 0, i7/lng (or s near
im/In g, if n = 1) by projecting the operator n(4,) down to (Vy)Me. Then, we shall
show that we can analytically continue in s to obtain the result for s = 0,¢7/Ingq

We begin with the following simple fact.

LEMMA 2.6.2 (cf. Gustafson) Suppose (p, M, X) is an admissible representationb
of a reductive p-adic group M. If \ € Z, where Z denotes the center of M, let

X = {z € X|there is an r € N such that [7(z) — A(2)]'z=0Vz € Z }
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Then, V = @, Vy, a direct sum of M- invariant subspaces.

We now apply Frobenius reciprocity and the preceding lemma to get the
following:
Homg(7w, %) = Hompm(7y,x™ @ trap-1))
& Homum(7ul@, X! @ tra(a-1))
where Q@ = (Viy)y-1 (recall that # = IndSx~1).
We now convert the problem into a Hecke algebra question. By Bernstein-

Zelevinsky, Casselman, we know that Vi has composition factors

X ® tram-1) X' ®tramory v Q (X X try(n-2))

w = Wgo w = Wi w = Wio

Note that the third of these does not occur for n = 1. When s € {0, in/Ilnq}, we
have x = x~!, so the first two (but not the third) occur in 7y|g. In particular, Q
is two-dimensional and our question is whether @ is a direct sum of two copies of
X! @ trym-1)) , or just a composition series. We observe that every subquotient of

@) has an My-fixed vector, so by Corollary 2.1.11 we get

Homg (7, #) = Hompg(m//me)(mulg, X @ tran-1))

(note that @™ = Q). Thus, our problem is to show that the action of 7y on Q

diagonalizes.

We recall the following well-known result of Satake:
LEMMA 2.6.3 (cf. [Car] ) H(M/[/M,) is abelian.
We shall also need the following lemma due to Casselman:

LEMMA 2.6.4 The Jacquet functor ryq gives a vector space isomorphism between
VB and (Viy)Me.

Proof. By Proposition 2.1.1, ryrg : VB — (V)Mo is a surjection. We know that V?
is three-dimensional (resp. two-dimensional, for n = 1), so if we knew that (V)Mo

were also three-dimensional (resp. two-dimensional), we would be done. However,
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this is reasonalbly clear since x ®1ry(n_1), and v ™"t @ (x x ®try(n_z)) (resp. the first
two if n = 1) each admit exactly one My-fixed vector. Note v~ @ (x x ®tra(n-2))
has exactly one since it results from parabolic induction of something ‘unramified.’

We are going to define an operator on (Vi)™ which behaves like 7(A,).

We shall want to know the eigenvectors of 7(A,), so we write them down now. For

n > 2, they are

1 0 .
1— -1}y,—8—n _ _
v = £—L-——qq_8_r?_1 Vg = 1 U3 =
=1y, —s~n —8—n_ —2n_s+n —=1(1_g—2n+2
(1-g97%)q g 972" 97 (1-g
q—s—n_g—1 * q—s—n_g—2ngstn q—l_q-—znqs-f-n

For n =1, they are

1 0
(—g71) g=s-14g-1 and 1 )
1_q—s q—-s—1+q—1

We now define the aforementioned operator. We define it via the isomor-
phism VB = (V4;)Me but it will turn out to be an operator from H(M//My). For
expediency, let r denote the Jacquet functor ryg : VB — (VU)M°. We define S on
(V)M by

S(r(®)) =r(r(A,)®) for ® € VB.
Then,

S(r(®)) =r(r(A)2)

=r([ [ [ m(umu~vy)®du~dmdu)
Uo Mo U~

=r() J m(umy)®dmdu) (since v~ U7y C Uy)
Us Mo
= [ my(my)r(®)dm (7yly, is trivial)
My
= mu(A4})r(®)

where 4] = charayyym, € H(M//Mo). Thus, with respect to the basis 7(foo), r(fio),
r(fi1) (or the counterpart for n = 1), 7y(A/) has the same matrix as n(A,). It
must then have the same eigenvectors.

Next, let so be 0 or iw/Ing, where we’re trying to show dim Hom = 2.

Let T be a suitably small neighborhood of so not containing so. Then, for s € T,
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the eigenvalues of my(A!) = 7(.A,) are distinct, and r(vl),f(vz),'r(vg) (resp. image
of eigenvectors above) give a basis for (V) o, Since H(M//Mjy) is abelian, these
will be eigenvectors for all of H(M//M,), i.e, the action diagonalizes. A brief
examination of the eigenvectors shows that they have “nice” limits as s — s5. We
wish to use this to show that the action diagonalizes at so. This brings us to the

following lemma (cf. [Gus]).

LEMMA 2.6.5 Let {foo,fm,fn} correspond to { foo, fi0, f11} under the isomorphism
VE = (Wy)M. Let A € H(M//My) and consider my(A) written with respect to
the basis {foo, fio, fi1} of (Vu)Me. Then, the entries of my(A) are holomorphic as

functions of s.

Proof of Lemma: Before starting the proof proper, we remark that although the
space Vi depends on s, the identification of (V)Mo with C2 via the basis { foo, fio, fi1}
does not.

We start by observing that it is sufficient to check the lemma when A is
of the form charasan,, @« € M. Fix such an A.

First, we shall find a nice expression for a matrix coefficient of mu(4),
then show it is holomorphic in s. Let f € {foo, fi0, f11} and f € { foo, f10, f11}
corresponding to f. Choose m sufficiently large so that o’ = y™a has the property
that o/~1U; o' C K;. Then

(q"“")mﬂy(charMoaMo)f = wU(charMo,,maMo)f (since v and M, commute)

= raa(m(chary, pyon, ) f
= rye(m(charp,wp)f) (since f € 48]
= 'ng(ﬂ’(charBa'B)f)

since the choice of m ensures Pya’B = Boa'’B. Thus, the matrix for my(charagan )
is just (¢°t™)™ times the matrix for 7(charg,p) (when these matricies are written
with respect to the bases above). Therefore, it suffices to check that the matrix
coefficients of 7(chargag) (on V?) are holomorphic in s.

Let w € {woo, w10, w11}. A matrix coefficient for n(chargyp) is

o(w) zBo{,B(W(m)f)(w)d:c = c-gf(wba')db,
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where ¢ = vol(Ba’B). We show that this is holomorphic as a function of s. Suppose

f = fij. Then, we set

wba' € Pw;; B and for wba' = pw;;b,
Si =14 b€ B |the F* entry of m, where p = mu € MU,

lies in w'O*.
In particular, we will have f;;(wba') = ¢'C+™ for those b € S;. Thus,
o(w) = m(chargap)fij(w) =c- Zvol (Sl)q'(3+“)
]

Once we have argued that this sum is finite, the lemma will follow. However, this
is clear: p € wBa'Bw{jl, which is compact (so the number of I’s for which S; is
nonempty is finite and determined by o/, w, w;;). Thus, the lemma holds.

We now finish the proposition. We observe that the eigenvectors (see p.
55) have nonzero limits as s — 0, ¢w/Ilng (s — in/Ilng for n = 1). Thus, the
eigenvectors analytically continue to eigenvectors for H(M//M;) at s =0, iw/lng
(s =im/Ilng for n = 1). In particular, the action of H(M//M,) diagonalizes there.
This finishes the dim = 2 case. For s = +n, @) is one-dimensional so the intertwining
algebra can be (at most) one-dimensional, so will be one-dimensional. This finishes

the proposition.

2.7. Reducibility conditions for (order x,) =2

In this section, we shall give the analogue in the case (order x,) = 2
to Proposition 2.6.1, and give the main theorem of this chapter, summarizing the

reducibility criteria for the degenerate principal series we’ve been looking at.
PROPOSITION 2.7.1 (order x.) =2. Then

2 ifs=0,ir/lng,

dim Homg(w, %) =
1 if not.

Proof. We shall not include the proof because it is essentially the same as that of

Proposition 2.6.1 (in fact, a bit easier). The only new fact needed is that H(M//M,,)
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is abelian. If we write M, = M) x My C F* x M", it follow from the fact that F*
commutes with everything and H(M"/ J/M{) is abelian.

This brings us to the main theorem of this chapter.

THEOREM 2.7.2 The representation m = igax (M = F* X Spyg,_1)(F)) is reducible
of and only if
x € {v™™,1,sgn,v"} forn >2
or x € {v71,sgn,v} forn=1

If w is reducible, 1t has two components.

Proof. By the results of Sections 2.3-2.5, m is irreducible for all other y. It
is reducible with two components for x = 1,sgn (or x = sgn if n = 1) since
dim Homg(7,#%) = 2 in this case, from Sections 2.6 and 2.7 (note that = = # for
such x). m is reducible when x = v*" since the trivial representation is a compo-
nent. When n = 1, v*! « 1 has at most two components (since dim VB = 2), so
there will be exactly two. This leaves us with checking that v+ « tra(n-1) has two
components for n > 2.

There are at least two ways to check that v*" tr2(n-1) has two com-
ponents. One could apply Corollary 3.2.3 (the next ghapter is independent of this

one). Alternatively, one can compute 7(A,,,) with respect to {fo0, f10, f11} to get

0 0 1
W(Awn) = 0 q—l 1-— q—l
q—2n+1 q—l _ q—2n+1 1— q—l

One can directly check that the only invariant subspace of m(A,) and 7(A,,, ) for
1

x=v""is C 1 (the span of the K-fixed vector). Thus, there can be only two
1

components in ¥~" tra(n—1)- This finishes the theorém.



CHAPTER 3

IRREDUCIBILITY OF CERTAIN
REPRESENTATIONS A LA TADIC

3.1. A general theorem on
reducibility /irreducibility (in the regular case)

In the first section of this chapter we shall obtain some necessary and
sufficient conditions for irreducibility of an induced representation. In the second
section, we apply this to the degenerate principal series we are interested in.

For this section, we wish to work in a more general setting. To this end, let
G denote a split connected reductive p-adic group, P = MU a parabolic subgroup
of G, p an irreducible admissible representation of M. Set m = igpp. We shall
use a technique of Tadié¢ (see [Tad2]) involving Jacquet modules as a basis for our
theorem.

We introduce the following notation: let sq,..., s, be the simple reflections
in W. Let P, = AUnin denote the minimal parabolié, and set M; =< A,s; >,

which is the Levi factor of a larger parabolic subgroup P;.

We now recall a theorem of Bernstein-Zelevinsky, Casselman. Let M, N
be Levi factors of standard parabolics for G. Set

WHMN = {w € W|w(Po N M) C Py, w Y (PoNN) C Pp}.

We remark that these correspond to the elements of shortest length in the double
cosets Wy \W/Wyy.

THEOREM 3.1.1 Let p be an admissible representation of M. Then, ryg o igump

has a composition series with factors
iNN,oworM,Mp w e WMN,
where M' = M Nw™(N), N =w(M)NN.

59
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For notational convenience, we shall denote by BZy() the collection of represen-
tations ¢yns 0w o 7 as 7 runs over the components of rysp and w runs over WMN,
(If all the iyns 0 w o 7 were irreducible, this would just be the components of the
semisimplification of ryg(7), rye(7)ss).

We now proceed to set up the main theorem in this chapter. We shall
require three things of p. First, we want p irreducible. Second, we want r4a(p) # 0.
Finally, we require a regularity condition on p. Let 3 be a character in T4a(p)ss.
We require that 1 be regular with respect to W (not just Wjs). Note that if this is
true for one character in raar(p)ss, it will be true for all of them.

We now associate a graph to 7 as follows:

vertices: the vertices are the elements of rag(7)ss

edges: two vertices vy, ¢, are connected by an edge is there is some Levi N and

some 7T € rng(7)ss such that the following hold:

1. 7 is an irreducible representation of N.

2. vy, Yo € TAN(T)ss.

This brings us to the main theorem.

THEOREM 3.1.2 Under the conditions above, the following are equivalent:
1. 7 18 wrreducible.
2. the graph of 7 is connected

8. T € BZp(m) = 7 is irreducible (for any i and 7).

Proof. We show 1 =3 —2 —1.

1 =>3: Suppose not- that is, suppose 7 is irreducible but there is a 7 € BZs,(7)
which is reducible. Let 7y, 7, denote the components of 7. Let 1; = rap(7;),
J = 1,2. Note that the Weyl group of M; has two elements, namely 1 and s;. Thus,

Yo = si91. Set m; = igm, T
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To obtain a contradiction, we show two things. First, we show that if 7
is irreducible, we must have # C m; or m C 72 (as a subquotient). Then, we show
that rag(m)ss € Tac(m1)ss and rag(7m)ss € rag(m2)ss. As these two statements are
incompatible, we must have 7 reducible.

We start by showing that if 7 is irreducible, it must be a subquotient of m;
or my. First, we show that if ¢ € r4¢(7) and 7 is irreducible, then 7 is a subquotient

of tga. By Frobenius reciprocity,

Homeg(7m,iga¢) = Hompr(7a, 6).

Take any ¢ so that this is nonzero (such a ¢ exists since m4 is nonzero). Then, 7
is a subquotient of iga¢. Also, since ¥ € rag(iga¢), we have p = w¢ for some
.w € W. By Lemma 1.2.2, 1g4¢ and :g4% have the same components. Therefore,

must be a subquotient of 1g4%.

Now, either 7 = ia4%1 Or T = iar,4%2, SO suppose T = tp5,4%;. Thus,
inducing in stages, we have 7 C 1g4¥1 = tgar, 7. Since 7 has 7y and 7, as components,
the components of igp, 7 are just the components of igar, 71, taa, 72. Thus, # C m
or w C o, as claimed.

We now show that r46(7)ss & rac(m1)ss and r46(7)ss € rag(m2)ss. First,
we show that r4g(igm, 7)ss 1s the disjoint union of ryg(m)ss and rag(m2)ss. Since
Py = si11, we have 746(71)ss = {wipilw € WM} and ra6(12)s = {wihs]w €
WMAY = Ly |w € WMids,}. Since W is the disjoint union of WMi4 and WM,
it follows from regularity that rag(igm;T)ss is the disjoint union of rsg(m)ss and
rac(m2)ss. Now, observe that ¢; € rag(m)ss but Y1 € rag(m2)ss, and similarly for

2. Since 1,1y € rag(7)ss, We cannot have r46(m)ss C Tac(m1)ss OF Tag(T)ss C

rac(m2)ss. This finishes 1=3.

3 ==2: This is essentially just a Weyl group computation.

First, suppose ¢ € r4g(7), but ¢ is not in the Jacquet module for r4p(p).
Then, ¢ = wpy for some g in rap(p), w € WMA and by our regularity hypothesis,
these are uniquely determined. We shall connect ¥ by an edge to some w'ty €

rag(m) with [(w') = I(w) — 1. Iterating this process will then tell us every o
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is connected to some %o in r4a(p). Since p is irreducible, all these 1g’s will be
connected to each other (p comes from 1 € WMN),

We now determine w’ as described. Write w = s;,,... ,$i, 1n terms of
the simple roots. We claim that w’ = 8i, ... 8;, works. First, we must check that
w' € WMA, This is equivalent to showing that if w is the shortest element in w- Wiy,
w' is the shortest element in w’- W)s. (Note that w-Was and w'- W), will be distinct
since w is of minimal length in w - Wi and w’ has I(w') = I(w) — 1). This is easy:
if w" € w'- Wi had {(w"”) < l(w'), then s;,w” € w - Wis and l(s,;lw”) =l(w")+1<
I(w")+1 = l(w), contradicting the fact that w is the shortest element in that coset.
Thus, w’ € WMA4,

Finally, we claim % = wi), shares an edge with 1’ = w'i. In particular,
we claim 7 = i, 49’ is the connecting representation. Certainly, o, 1’ € r amy, (7).
If we show 7 € BZu,(7), 7 will be irreducible by hypothesis (3), so they will
be connected. Observe that (w - W) U (w' - Wyy) = Wag,, w'Wiag, so w' is the
shortest element in that double-coset, hence w’ € WMMi, We now check that
(W) ' Myw'NM = A. If (w')" M, w' C M, then (w')"s;,w' € M, sow-M = w'-M.
However, w and w' lie in distinct cosets, so we must have (w')"!M;,w' N M = A.

The B-Z composition factor arising from w’ € WMMi is therefore
. ' . / . '
iM A = iM; A 0w 0th C iM;, 40w oTapr(p),

as claimed. This finishes 3 =2.

2 =1: Let m be a subquotient of 7. We shall show 7 is irreducible by showing
that 7 and 7 have the same semisimplified Jacquet modules, that is r4g(7)s =

746(70)ss- The key ingredient is the following
LEMMA 3.1.3 Suppose that o1, 12 € rag(m) satisfy the following conditions:
1. 1, 12 share an edge.

2, '(/)1 € TAg(WO).

Then, ¥y € Tac(mo).
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Proof of Lemma. Suppose that 7 is a component of ryg(7) which gives rise to the
edge, so that 7 is an irreducible representation of N with ¢y, 13 € ran(7).

Now consider ryg(m). Since 11 € rag(mo) = ran o rng(mo) and there is
only one copy of ¥; in rag(7), we must have ryg(m) N7 # 0 (as ¢, is in there).
Since 7 is irreducible, we must have 7 C ryg(m). Then, ¥ € ran(7) C rag(m),
as needed. Since the graph of 7 is connected, repeated application of the lemma

shows 746(m0)ss = Tac(7)ss, finishing the theorem.

COROLLARY 3.1.4 The number of components of m is less than or equal to the

number of components in graph of .

3.2. Applications to degenerate principal series
for Sps,(F) (in the regular case)

In this section, we shall apply the theorem from the last section to the

case of degenerate principal series for G = Sp,,(F'), with F' p-adic of odd residual

characteristic.

Let us start by recalling some notation, due to Tadié (see Chapter 1).
This will expedite matters somewhat in this section, more so in the next chapter.
Suppose ki+...+k; = n. Suppose that p; is an admissible representation of G Ly, (F)
for 1 <7 <1 —1 and 7 is an admissible representation of szkl(F ). Let P = MN
be the standard parabolic subgroup of G with

M = GLy,(F) X ... X GLg,_,(F) X Spar,(F).
Then, we set
Pky X Py X +o X ppy_y X T =1gM(p1@p2 @ - ® pi_1 @T).
We also use the following notation:
[X]k = x o det on GL(F)
v=1-|

try = trivial representation on Spox(F).
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In this notation, we can write our degenerate principal series representation as
7 = [x]r o trn_p (recall that we are most concerned with the case where P is a

maximal (proper) parabolic).

We start by checking when ran([x]x ® tro_r) is regular (where M =
GLk(F) X SPg(n_k)(F)).

LEMMA 3.2.1 Let
Si={-n+8 nt148l n_k} g = [=ki ke -

(note that if n =k, S; C S, ). We claim that ram([X]e ® trn_i) is nonregular

precisely when
X € {v¥a € Si} U {v*Yla € Sy},

where ? = 1.

Proof. We start by claiming

ram([x]e @ trp_x) = v Y®vS 3x®...®v55_1xv“”+k®.. R - S

This follows from the fact that [x]x is a subrepresentation of =5 X X y_k;sx X
X v X, trn_k is a subrepresentation of v~"** x ... x v~! « 1 and Frobenius
reciprocity.

In general, the character x1 ® x2®...® x» will be nonregular for S pan(F)
if either of the following conditions holds:

) Xi = X;j for some %, j with ¢ # j
or 1) x;= X?l for some 1, 5

Now, the particular form of our character precludes certain possibilities. Our char-

acter will be nonregular if any of the following hold:
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1) u—_';‘i""x = y~ntktm for some I,m with 0 <1< k-1,
0<m<n-—-k-1

2) (V__';ﬂ'”x) T yntkEm g some I,m with 0 <1< k-1,
0<m<n-k-1

k] ks -1
or 3)v~z +’x=(u kzl*'mx) for some I,m with 0 <I,m <k — 1.

Note that cases 1) and 2) do not occur when n = k. This is accounted for in the

lemma by the fact that if n = k, §; C S,.

We now observe that case 1) contributes nonregularity at

S Py TE Y E=3
XE{V T Ty 2}

and case 2) contributes nonregularity at

——162;{:3 —-k2;{:3 +1
)

vels o)

yV RN

Together, they contribute x € {v*|a € S1} (when k = 1, these both miss +°, but it
is in .57 so the lemma still works out). Case 3) contributes x € {v*¢|a € S,}.

This finishes the regularity lemma. We now give the lemma on reducibility
of the B-Z composition factors of the Jacquet modules raq(7). This will tell us
when condition 3 of the theorem is satisfied.

We pause to note that the representation y; x x» is reducible if and only

if x1 = v*ly,. Also, x « 1 is reducible if and only if x = v*! or x? =1 with y # 1.

LEMMA 3.2.2 All the B-Z composition factors of the Jacquet modules raa(m), 1 <
© < n, are irreducible (i.e., condition § in the theorem holds) ezcept (possibly) when

X has one of the following forms:

PP S Gy _k=1
XE{V AR RS i RV 2}
or x’e {V_k+1,U_k+2,...1/k-l},

with the exception that when k = 2, x? = 1 does not satisfy condition 3. Note that

the two sets above are not disjoint.
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Proof. First, recall that M; takes the following forms:

i<n: Mi=F*X...Xx F* XGLy(F) x F* x ... x F*

-1 n—t—1

t=mn: M, =F*Xx...x F*x Spy(F).

We remark that Sp,(F) = SLy(F).
Now, the B-Z compositions factors of rag,e(7) = raa © tem([X]k ® trn_k)

are ipfp: 0 W O ram([X]k @ trn_g). This will take one of the following forms:

a) a4 0w o Tap([X]k ® trak)
or b) wory-1anm(Ixlk ® trai),

depending on whether M = M; or A. For the moment, let us write x; ® ... ® x»

for rarm([X]k ® tra_i) and set xu1) ® ... ® Xump) =W (X1 Q...Q xn) for w e W
(note that w(i) > n if the character has been inverted). Then, we claim that the
B-Z composition factors take one of the following more explicit forms of a), b) from

above:

l.1<n

a) Xuw1) ® -+ ® Xu(i-1) ® (Xw(i) X Xuw(i+1)) ® Xuw(i+2) ® - - ® Xaw(n)
b) Xw@) ® - ® Xu(i-1) ® ([X]2) ® Xuw(i+2) ® - - - ® Xu(n)

for some suitable ' € Fx

a) Xu@) ® - ® Xuwn-1) ® (Xwmx) x 1)

b) Xw(1) ®...0 Xw(n-1) & (trl)-
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For 1a), 2a), this is immediate. For 1b), 2b), it is clear since ragm([X]x ® trn_)
must be one-dimensional.
Next, we claim that all the B-Z composition factors of the Jacquet modules

ru,c(m) are irreducible if the following representations are irreducible:

7) (v'__’;"_lﬂx)oc 1 for 0<I<k-1
i) (V__lczﬂ“x)xv"m for 0<I<Ek-1,1<m<n-—k
31) (V:kf_l“x)xvm for 0§l§k-—1,1§m§n—k

) (vTF Hy) x (EHmNT for 0<I,m<k—1,1#m.

(Note that 1) and #7) do not occur if £ = n). In particular, we claim that condition
i) is sufficient to ensure that a representation of the type in 2a) will be irreducible,
while 44)-1v) guarantee that a representation of the the type in 1a) will be irreducible
( 1b), 2b) automatically contain only irreducible representations). To see that this

is true, we start by remarking that

x <1  irreducible x~ ! « 1 irreducible

and x; X x2 irreducible X2 X X1 irreducible

1

X2 1% X7 irreducible

[

Xl_l X Xg ! jrreducible.

With this, we see that conditions 7)-1v) are enough to get irreducibility of the rep-
resentations from la) or 2a) unless the induced part of the representation is ei-
ther of the form v™ x 1 for 1 < m < n—k or (V:"gﬂ‘*'lx) X (v#“"mx) for
I <1< m < k-1 (or something with corresponding irreducibility from above).
The first of these will be irreducible for m # 1, the second for m # [+ 1. We
now claim that those representations which are automatically reducible, namely,
v~! « 1, and (V:%ﬂ+lx) X (y:'j?'l“"‘lx), do not occur as the induced part of one

of the B-Z composition factors. Once we have checked this, it will follow that if
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the representations in )-iv) above are all irreducible, then all the B-Z composition

factors of the ra,¢(7)’s were irreducible, as claimed.

Next, we argue that a representation of the form v=! « 1 or (z/ =5 1+1X) X

(l/_+—_k2 F+1 X) does not occur generically as the induced part of a B-Z composition

factor, that is, these can only arise in the nonregular case where they can arise as

the representations in 1)-iv). Suppose not— e.g., suppose that x; ® ... ® (v 5 x x
I/#'HX) ® ... ® xn were a B-Z composition factor of rasg(7) (leaving the x;’s
unspecified). Then, since rac = ram; o rag, we must have y; ® ... ® (y'_ﬁzix ®
__kzﬂ“x)@. ..®xn and 1 ®.. ;®(u__"2i'1‘+1x®u'__lc2ﬂx)®. ..®@Xn in rge(7). Suppose
that y1®.. .®(1/':%ﬂx®u;k—2ﬁ+lx)®. ..®Xn arises as wor ap ([x]k Rtrn_k), w € WMA,
Then, x1 Q.. .®v__);"_1+1x®u__gﬂx®. .. ®Xn must arise as ws; o am([x]k @trn_x) (in

the regular case). However, we claim that this cannot happen because ws; ¢ WM4

v

In particular, ws; lies in the same W/Wjs coset as w, but only one element from
each such coset is in WM4, Thus we have a contradiction, as needed. We note

that although this was a specific example that we argued, the reasoning clearly

generalizes to cover our claim.

Thus, we now know that all of the B-Z compositions factors of the rpg(7)
will be irreducible if the representations in 7)-1v) are all irreducible. It is a straight-
forward matter to check when this happens. We check iv) as an example— the others

—k+1 -—‘l'—""2 14 41, =kt g

.. k=1 1 - s
are similar. Now, v™2 t'y x v°7 ™y~ is reducible if v x = vy T3 X

or x% = vF=1#m=I+1 This corresponds to

x2 € {vFt Tk L v1Y ifE>2
x> e {v v} ifk=2

(This case does not occur if k = 1). If we do similar computations for 7)-11), they

combine to give the lemma.

The “possibly” may be removed from the statement of the lemma. If y is
one of those characters, then there is a reducible B-Z composition factor for some

rac(m). However, we do not need this for the following corollary.
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COROLLARY 3.2.3 The only values of x for which m = [x]x  trn_; have ram([X]x®

trn_x) regular and w reducible are

_n+£:2:.1. n— k=1

X =V or v 2

In either case, the trivial representation is a component of .

Proof. Combine the two preceding lemmas to get the first claim. The second is

straightforward.



CHAPTER 4

IRREDUCIBILITY CRITERIA FOR
DEGENERATE PRINCIPAL SERIES IN SP(F),
SP;(F), A LA TADIC

4.1. Extending definitions to the nonregular case

In this chapter, we analyze degenerate principal series in Sps(F) and
Spe(F') using the methods of the last chapter. We start by modifying the defi-
nition of the graph associated to the degenerate principal series. We then look at
Sps(F). In this case, we already run across an irreducible representation with a
disconnected graph, so Theorem 3.1.1 does not extend to the nonregular case. Al-
though it does not occur in the examples we consider here, it is also the case that
the converse fails; that one can construct a reducible representation with a con-
nected graph, and we briefly describe such a representation. We close by analyzing
degenerate principal series for Spe(F') (induced from maximal para,bolics);

We start by redefining the graph of 7 in a fashion more suitable for the
nonregular case. This definition will have the disadvantage of being useful only
when the inducing representation has a one-dimensional Jacquet module (e.g., if
the inducing representation is a character or Steinberg). If # = igapp for such a p,

we define the vertices and edges as follows:

vertices: the vertices are the elements of WM4,

edges: two vertices wy,w, share an edge if there is a standard Levi N and a w €

WMN such that

1. wy,wy € WywWyy

2. INN’ O W O rpppp is irreducible
both hold.

70
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4.2. Degenerate Principal Series in Spy(F)

In this section, we look at degenerate principal series for S p4(F") using the
techniques of the last chapter. We remark that the analysis of such representations
has already been done using Hecke algebra methods, except for [x]; o 1 with X
ramified (see chapter 2 of this thesis and [Gus]). _

Let L = F* x Spy(F) and M = GL,(F) be the Levi factors of the standard
maximal parabolic subgroups of G = Spy(F). Then, the subsets of W which are

used in Theorem 1.2.4 are

W = {1> 81,82, 8182, 8251, 815281, $25182, 81528189 = 32818231}
MA
w = {1,32,8182, 323132}

LA
W™ = {17 81, 8281, 318231}

Any of the the other subsets of W which arise may be obtained from these using

the following two observations:
L WYY = {wtw € WYX}
2. WXY = wXAnway

where XY are standard Levis for G.

We can use these and Theorem 1.2.4 to construct the composition factors
of the Jacquet modules for Sps(F). The results are summarized in Tables 1 and 2.

Note that the tables are set up to respect taking Jacquet modules in stages.
In particular, consider any entry in the right column. It lies in the J acquet module
of the first entry in the left column which is at the same height or higher (e.g.,
z("%x X v“]fx‘l is a B-Z composition factor of raa([x]s 1) and ‘T‘AM(V—%X X
y"%x'l) contains v~y @ v=3y~! and voiyvl@ u‘%x). One can also read off which
Weyl group element a given B-Z compositions factor is constructed from. For TAG,

the corresponding Weyl group elements is listed in parentheses. For TMG O TLg, it
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Table 1. Jacquet modules for x o try

™™g TAG
X xtrg x x vt x Q@vl (w=1)
viex  (w=s)
v x x v Rx (w=s281)

X '®vt (w=s18281)

LG TAG
X X try X ® try x®@v?t (w=1)
vl (xxl) vl@x  (w=s)
v X (w = sp81)

X! ®tr, X_l Qv (w = s15281)
1
(x =1,v7%)
818281 81
(x =1,v?) // (x = vt sgn)
8281

Figure 1. Graph of x o try
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Table 2. Jacquet modules for [x]2 x 1

73

'™Ma . TAG
IX]ox1 [x]2 v‘%x ® v%x (w=1)

V“%x X 1/_12')(“1 I/—%X ® V_J?“X"1 (w = s3)

vixl@uiy  (w= 8182)

X7z V—%X—1 ® V%X_1 (w = s28137)
TLg Tag
[Xl2ox1 v73x® (vix x 1) vTix @iy (w=1)

v ixl@ (riy « 1) vixl@uty (w = s182)

1 _ 1 _
vTix Tl @uiy! (w = s25182)

828132\ S92

Figure 2. Graph of [x], « 1
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will just be the shortest w occurring upon Jacqueting to A (e.g., for V—%X X I/—%X'—l,
it will be the shortest of {ss, s182}, 1.e., {s2}).

We next construct the graphs for x o try and [x]; « 1 for the non-
regular cases. Recall from section 3.2 that nonregularity for x o tr; occurs at
x = v~1,1,sgn, v and for [x], « tre, it occurs at ¥ = v~ %, visgn, 1,sgn,v3, v sgn.
The graphs are in Figures 1 and 2. They are the graphs for general x. The edges are
“colored” according to whether they come from a B-Z composition factor for rra(n)
or ryg(m). In parentheses are the values of x for which that edge disappears, i.e.,
for which the corresponding B-Z composition factor is reducible.

We start with the following observation. If x € {v~!,v}, then the graph
of x o try is disconnected. However, the results of chapter 2 tell us that the rep-
resentation is irreducible. Thus, it is not true in general that having an irreducible
representation implies that the graph is connected.

At this point, we also mention the fact that one can construct a reducible
representation with a connected graph. For example, suppose 7 is obtained by
inducing a unitary charater from the minimal parabolic subgroup of SO, (F). Note
that the Levi of a parabolic obtained by adding one simple reflection to the minimal
parabolic subgroup is a product of F'*’s and either GLy(F') or SO3(F). Since unitary
induction in GLy(F) and SO5(F’) is always irreducible, the graph of 7 is connected.
However, m can be reducible (cf. [Keys] or [Win] for these claims).

The other nonregularity points for x o try are y = 1, sgn. These have dis-
connected graphs and are reducible. We can show reducibility using an argument
like that from chapter 3. For x = sgn, the missing edge corresponds to the reducibil-
ity of ¥™! ® (sgn o< 1). Let 7 and 73 be the components of v=! ® (sgn o 1). Then,
racTi = v~ ®sgn (for both ¢). Set m; = igr7;. By Theorem 1.2.4, 746(71)ss consists
of v"1®sgn, sgn®@v~1, sgn®v, v@sgn. Now, if sgn  tr, were irreducible, it would
have to be a subquotient of 7, or 7, since together they contain all the components
of v~ x sgn o 1 (which has the same components as sgn x v~! o« 1 D sgn o« tra).
However, rag(sgn o« try) contains two copies of v=! ® sgn, so this is not the case.
Thus, sgn o try is irreducible. The argument for reducibility for 1 « tr, may be

done the same way— the missing lines correspond to the reducibility of 1 x »=!. Let
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71, T2 be the components and set m; = igy7i. A comparison of rac(l o try),, with
T4c(71)ss and rac(m2)ss shows that 1 o try cannot be a subquotient of either, so it
must be reducible.

We now look at [x], o« 1. Since [x]; o< 1 is irreducible iff [x~1],
1 is irreducible (they are contragredierits of each other), we shall consider X =
1,sgn, v, v~%sgn. We start by arguing that [x]; o 1isreducibleif y = v-3, y‘%sgn.

1
z, one of

The argument is like that above for 1 « tr; and sgn « try. For y = v~
the missing lines corresponds to the reducibility of v 3 ® (v < 1). Let 14 75 be
the components of this and set m; = igy7;. Comparing rAg([u‘%]z x 1) with
r4c(71)ss and rae(ms)ss tells us [v‘%]z o 1 is not a subquotient of m; or m,, hence
must be reducible. Similarly, for y = V"%sgn, let 7, 7 be the components of
v~lsgn @ (sgn o 1) (the reducibility of which corresponds to one of the missing
lines) and argue the same way.

We now look at x = 1, sgn, which we claim make [x]; o 1 irreducible. The
easiest way to show this is essentially the irreducibility argument from chapter 3.
Let x be 1,sgn and # = [x]; & 1. We note that r46(7)ss consists of two copies
each of 1™y ® vy and rTiy ® y'%x. Let mo be a subquotient of 7 such that
r46(mo)ss contains a copy of u‘;%x ® viy. Then, rr6(70)ss must contain a copy of
=iy ®(1/%X x 1) (since viy o 1 is irreducible). Thus, V_%X® u‘%x € rAL(v‘lz“X ®
(v3x o< 1))as C 74z 0 726(T0)ss = 4G (70 )as-

Next, if one copy of u‘%x ® z/‘%x is in rag(mo)ss then rase(mo),, must
contain V_%X X V_%X (since =iy x V‘Jix is irreducible). Thus, since rAM(V‘;zLX X
V"%X)sg C r4(mo)ss, We see that raps(mo)s, Will contain both copies of IJ_%X®I/'—%X.
Finally, if r46(70)ss contains both copies of v‘%x ® vt X, then rre(m)ss must
contain both copies of v"%x®(1/12“x x 1). Thus, we conclude that r 46(™o)ss contains
both copies of u_%x ® u%x. Since we now have r46(mp),, = r4c(7)ss, ™o cannot be
a proper subquotient. This tells us 7 must be irreducible. We summarize this in

the following theorem:

THEOREM 4.2.1 1. x o< try is reducible iff x € {v*?,1,sgn}.

2. [x]2 o< 1 is reducible iff x € {Vi%,yi%,yi%sgn}.
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528182\ So
(x =v3,v8,078sgn) | (x = v, %5 sgn)
8182

Figure 3. Graph of St, « 1

Let St, be the Steinberg representation of GLy(F') with central character
x (so that [x], and St, are the components of v=%y x u%x). We can analyze St, « 1
in exactly the same fashion as [x]; o 1. Since rap(Sty) = vix ® v=3y, we get the
graph in Figure 3.

The same arguments then tell us that St, o 1is reducibleiff y € {Vi% ,vEt
Vi%sgn}. A similar analysis for x « St; would be inconclusive at x = v*! (where
this approach breaks down for y o try, which is irreducible but has disconnected

graph).

4.3. Degenerate Principal Series in Spg(F)

We now look at Spg(F). Let L,M,N be the standard Levis with L =
F* x Sps(F), M = GL,y(F) x Spa(F), and N = GL3(F). The following subsets of

W are useful in computing Jacquet modules:
WA = {1
= { y 81,8281, 838281, 828382381, 8132333231}
1,89,5182, 8352, 515352, 525352, S2518352,

wMA = { }
= 1 S1525352,53525818352, 8152818382,

8385182815382, 82535152815332
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NA
%% = {1, 83,8283, 535283, 818283, 81835283, S2581838283, 338281338233}.

As in section 4.2, any other subsets of W which arise may be obtained from these

using the following three observations:
1. WXY = {w~w € WYX}
9. WXY — XA WAY
3. WEMA — XA ppra

where X, Y are standard Levis for G.
Now, L, M, N are the Levis for maximal parabolics. Let L; = M; =
F* X F* X Spy(F), Ly = N1 & F* x GLy(F), and My = N, & GLy(F) x F* be the
Levis for the intermediate parabolics. Tables 3-11 give the B-Z composition factors
for x oc try (Tables 3, 4, 5 ), [x]2 o try (Tables 6, 7, 8), [x]s < 1 (Tables 9, 10, 11).
We next construct some graphs for these (see Figures 4-19. Again, since
chapter 3 covers the regular cases, we shall be concerned with the nonregular cases.

Note that although the vertices are defined to be elements of W, we label them by

the corresponding action on a general character, which is equivalent and and a little

more intuitive. By chapter 4, these are

x o«<ctrg:  x € {vF? vt 1, sgn}
[X]z o try 0 x € {vEF, 0%, vEisgn, 1, sgn}

[Xlsex1: x € {v%,vilsgn, vtisgn, vs 1,sgn}.

Since 7 is irreducible iff % is irreducible, it suffices to analyze those y for which
Res > 0. These are in Figures 4-19. Note that to construct the graph, we will need
to know when induced répresenta,tions in GL3(F') such as [x1]z X X2 are irreducible.
This is in [Zel]- it is irreducible unless x, = y3 X1-

First, we look at the irreducible cases. All the representations with con-
nected graphs are irreducible. This may be demonstrated using the same arguments

as in the last section. We make the following observation: the connectedness of some
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of these graphs (e.g., [V_%]g o 1) require B-Z composition factors from the maximal
parabolics, not just the parabolics obtained by adding one simple reflection to Puy;y.
This contrasts with the regular case (see condition # 3 of Theorem 3.1.1).

We now look at reducibility. The arguments will be like those in section
4.2. We shall not go through all the details, but merely indicate a reducible B-Z

composition factor which yields suitable choices for 71, 5. Here is a list:

1 o try 2@ tx1) in rp,g(m)
sgn o try v 2Qv71®(sgn x 1) in rp,g(m)
[v= 5]2 o try v~ x [v%]g in ryg(m)
[v —§sgn]2 xtry v lsgn @ v ® (sgn « 1) in rg,g(m)
Iz %]2 o try v 1® ([1/_%]2 o« 1) in rre(m)
Mzl %], ® (v < 1) in rayg(m)
[sgn]s < 1 vlsgn @ vlsgn ® (sgn < 1) in rr,g(7)
[v715ex 1 1ev2@(rtol) in rp,g(m)

[v7lsgnlzx1l  v72sgn @ v lsgn ® (sgn o< 1) in rp,g(7)
We summarize the observations above and the results on the regular case
from chapter 3 in the following theorem:
THEOREM 4.3.1 1. x o try 1s reducible if and only if x € {v*3,1,sgn}.

+2 41

2. [x)2  try is reducible if and only if x € {vi%,vEs v ,viisgn}.

8. [x]s < 1 1s reducible if and only if x € {v*?, il,vilsgn,l,sgn}.
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Table 3. F* x Spy(F) parabolic in Sps(F), i.e., x o try

79

Jr Ji, B
X ® try X Qv try XxXQrigu!
v 2R (xoxtry) v?Q@x @ try rigy vt

v2Rrle(xxl) v?2rley
V_2 ® V—l ® X—l

V—2 ® X—l ® t'l"g V_2 ® X—l ® V——l
X1 @try xTRvI@tr x'@r?gut
Jr Ji, pi

X ® try X ® [, XxQ@v 2@y
v (xxtry) v (xxvY) vl y@ut
v 2l y

V_2 ® (V—l X X-—l) V—2 ® V—l ® X-—l

X1 Qtry v x vt

A P XT@vIeyr
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Table 4. F* x Spy(F') parabolic in Sps(F),i.e., x  try

Iu Iy pA
(xXxv™H)®trs xQvi@tr X@vi2ev!
v Qx ®try v RxQu!

i@ (xxl) v2erle(xxl) v iurley
v2Qut@x!

W 2xx H@tr;, v 2Qx 1 ®tr, vy teu?
X TRr?Qtr X '@r?eu!
Im Imy z
(xxvH)Rtr,  (xxv2)rvt yvigu!
v?@x Qv
e (xxl) ik ex v @vley
3, ®x? v2urteyxt

P 2xxHRtr, (v ixxyHr! vy lou!
X-—l ® 1/_2 ® Z/—l
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Table 5. F* x Sp,(F) parabolic in Sps(F),i.e.,x o try

In Iny L
xx 3 x®p i), x@v?ev!
2R (xxvY) v 2@yxy@v!
vr2ule X
[1/_%]2 x X—l 2 ® (V—-l % X_l) 1 ?2Qrle X—l

V—-2 ® X—l ® 7/_1

X7 O Xter?ert
Ny bi
XX (xxv)ert x@urley
V—-Z ® % ® V—l
3, ® x r2urlyx
il x xt [ @ x vyt !

(V_2 X X—l) ® 7/_1 V_2 ® X-—l ® 7/_1
X_l ® V_2 ® V—-l
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Table 6. GLy x Span(F') parabolic in Sps(F),i.e., [x]2  try

Jr I, I

V—%X®(V%X0(t7'2) VTIY @ Uiy @ try Vi @ viy ® v}
V‘%X®u‘1®(y%xocl) iy @uvleuly
iy @ul@uiyt
vTEx @ vTix Tl @ty vTix @iyl @ vl
vt ® ([x]2 < 1) vlevix®@(vixx1)  vleuvixevix
vlRu iy @u-iy!
vleriyle (rixxl) vluriyle v-iy
vr1® v"%x_l ® V%X_l
u’%X‘l ® (V_%X o try) u‘%x_l ® z/‘]z“x ® tre v_%x‘l ® I/_%X vl
v ixlerl® (v=%y o 1) v iyl le viy
v iyl @ul @ul x!

V~%X_1 Qviy~l @ try vTiyl® v‘zlx"l Qv!
JL Jr, Jz
u‘%x®(y%xo<tr2) y‘%x®(1/12"xxy“1) riy @iy @ vl
I/_%X ®@v-1 & v%x

v‘%x ® (v~ x V_%X_l) V_%X Rr-l® V—%X_l
V‘Jz“x ® V_%X'—l vt
v @ ([x]2 < 1) v ® [x]2 vleuTiy @iy
vrl® (u‘%x X u‘%x“l) vl ® u"%x ® V_%X—l
1R V-%X—l ® V—%X
v 1® [X-1]2 -1 ®~V_%X_1 ® V;X_l
v iyl ® (V—%X x try) v iyl @ (u“%x x v71) v iyl iy @ vl
v iy l@uleuty
u‘%x’l ® (v~1 x uéx'l) v‘%x‘l vl uéx"l

v iyl ® viy-l @yl
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Table 7. GL; X Span(F') parabolic in Spe(F),i.e., [x]2 o try

Im
[x]2 ® try
(v Exx v )@ (vix o« 1)

(v=2x x v=ix"1) @ try

(" xvix ) @ (v ix 1)

Xt ®tre

[x]z ® try
(v ix x v )@ (vix o 1)

(v=%y x v i) @ try

(v x v i) @iy o 1)

X712 ® try

Im

V—%X & I/%X & tre
v iy vl (viyx 1)

vl ix @ (viy 1)

v iy ® v=iy=l @try
vEixTl @ uTiy @ty

v ixlerle (v=7x « 1) viyleurleuiy

vixl@uixl@tn

I,

X ® vt

(v ix x v ) @vix

(v ix x v ) @uiyt

(V_%X X v‘%x_l) ® vt

(v xvTEx ) @ vy

(W Ixv iy @iy v luiyleuiy?

x e @v!

J

i 1 -1
vT2x Qurix Qv
u‘%x®u‘l ®V%X

V‘Jz“x Rrle V"%X‘l

vl u iy @uiy

rl® V_%X ® V_%X—l
y‘%x ® v_%x‘l Quv-t

v iyl Uiy ® v
v1® V—%X"l ® (V”%X x1) v1® v‘%x"l ® 1/’12")(

1

vrl® V_%X_l (4 V%X_l

u“%x‘l Rl V%X_l

u_%x‘l ® vt x1@uv-

L

v iy @ viy @ vl
V_fo ® v ® I/%X
1@ v‘%x ® I/%X
v‘%x Qr-lE V_%X_l
vlQu iy @u-iy!
V-%X ® V_%X_l Q@uvt
I/_%X—l ® I/—%X Q@uv1!
v 1 ® V‘%X‘l ® V“%X
v‘%x‘l Qrl® u‘%x

v‘%x‘l ® vt ® V%X_
y‘%x‘l ® V%X_l Qu~

1

1

1
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Table 8. GL; x Spyn(F) parabolic in Spe(F),i.e., [x]z o try

-1

-1

x [x7 2

x [x7 2

Iny

vEix @ (vix x vY)

v~ ® [x]2

vEx ® (v x voix )

r1® (V_%X X v‘%x"l)
vt @ (o x )

v [x72

J

iy @iy vt
V_%X RrlE V%X
p-1 ® V‘%X ® V%X

r iy @ule vyl
viy@uviyt@ut
vlQuTiy®@uiy!
vl@u iy l@uiy
iy leuiy @l
u‘%x’l Rrle V—%X
vr1® V_%X—l ® ulfx‘l

V_%X_l ® (v x ij"x“l) V_%X_l Rrle U%X_l

I,

[X]z vt
(v ix x v ) @uiy

(b x ) @ umhy
(V_%X X u‘%x‘l) ® vt

(=t x v i) @ vy

(v x i) @iyt

x ' ®@v?

u‘%x“l ® I/%X_l ® vl

g

iy @uviy@u!
y_%x Qv ® V%X
vlQuTiy @iy
y‘%x Rrl® y‘%x‘l
vl V—%X ® V_%X_l
V_%X ® u"%x“l Qv
vmiyl@ v iy @ vt
v l® v‘%x‘l ® V‘Jix
1/—12“)(_1 Qrle v‘%x
vl R V-%X_l ® V%X'—l
viyleurle viy-l
u‘%x‘l ® I/%X_l vt
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Table 9. G L3 parabolic in Spe(F),i.e., [x]s < 1

JL Jr, z
v @ ([vixls < 1) vIx®x ® (vx o« 1) vIx® x @ vy
vy ® y ® vlyl
riIx®@rIxTTe(xx1)  rix®rixleyx
v ly® iyl @yl
vixt @ ([vT 2x])z x1) v IxT@rlx®(x 1) v‘lx‘1®u X®x
-1 —l®y X®X
plyl @yl ®(V‘1xo<1) V1—1®X ® vty
vyl @yl ® vyl

JrL Ji, Jz
vix @ ([vix]s o 1) vlx ® [vix]2 X ® x ® vx
vIiIx®@(x xvixT)  vrIx@x®vix!
vix®@vixTT®x
vx @ v Ex s vIix@vTixTt e xT!
vIxT @ (i) x 1) v @ i vIIxTT@rTIx ® X
riIxTTR (T lxy x x7) vrixle@r iy @yt
—1 -—1 ®X—l ® V- X
v @ [vixl; viIxTTex !t ux!




86 Chris Jantzen

Table 10. G L3 parabolic in Spe(F),i.e., [x]s o 1

Iu Imy 4
["3x]2 ® (vx o 1) vIx ®x ® (vx x 1) vIIX® X ® vx
v X@X@V—l -1

(ixxrIx e (xocl) v Ix@rixTR(xxl) rixerixlex
V—IX ® v -1 —1 ® X
vixTTRrix®(xxl)  vrixlerly®y

vy 1@ ly @ 1

ix ke xxl)  rixlex'erlxxl) rixlexlerl X
—l —1 ® X—l ® VX

Im Im, Jz
[V=ix] ® (vx o 1) [v=ix], ® vx vIx @ x ® vy
[v=ix], ® v=1x~! rilx®@x@uvlxTt

(ixxv xR (xxl) (ixxvrIxHex vrixvixley
IX—l ® V—IX ® X
(V—-IX X V—lx_l) ® X_l V—IX ® 1/_1 -1 ® X
vixTt@urlxy @ x!

i Lo ixxl)  [pEixhevly vIXTT@x T @ v x
[ix, @ vx? IxtTex vyt
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Table 11. G L3 parabolic in Spe(F),i.e., [x]s o< 1

In Iy z
[X]3 v X ® Vi, vIX @ X ®vX
ixe x v X v @ (xx v vl @x @ vy
vilxy@v iyl ®x
v X @ i v X ®rTIX ® X
v x i v TP e (i x x7Y) vixT @ vy @ X!
V—IX—I ® X—1 Q v-1 x

vx® [ ix 7, vIx@rixT @ x“
x™'s v ix1 @ [vix1, xR x Tt @uyxt
IN Ing L
[x]s [v=ix], ® vx r'Ix®@x ®vy

iy x v ixt (xx iy ) @) rix@rixley
-1 -—1 ® v X ® X
[vix], @ v ix~! vIIx®@x @uTix?
v x i (ix x v iy @xTt vy @ v iyl @ x
xTTevlx®xt
X_1}2 ® V—lx —1 —-l ® X—l ® v X
“ix M @vx ! riIxtex vyt
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X1 ® x2 ® x3

X2 ® X7 ® x3

X2 ® X3 ® X7
....... JL] _JM1 JL
Ji, = JIn, i Jps
e T =_—— Jy

Figure 4. Graph of x « try, x generic
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X1 ® x2 ® x3
'~
N
N
N
-1 ~
X1 ®X2®Xar \'Xz ®x10® xs3
x2 ® X7 ® xaé X2 ® X3 ® x1
.
X2 ® x3 ® x7!
....... JLI -JM1 2 Jr
Jo, = JN, =

Figure 5. Graph of x «x try, x =1
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X1 ® x2 ® x3

\'Xz ®x10x3

x2 ® x7! ® xa

X2 ® x3 ® X7’
....... JL]=JM, .......JL
JL:—JNJ —_— JM
___JM2=JN: ———-—JN

Figure 6. Graph of x « try, x = sgn



Degenerate Principal Series

X1 ® x2 ® X3

x'{1®X2®X3 \

X2®X1-1®X3

X2 ® X3 ®X1—1

Figure 7. Graph of x & try, x = v1!
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X1® X2 ® X3

X2 ® X3 ® X7

....... JL, - JM; JL
Jr, = JN, e * o’ i J D g
—_——— U =N, === Uy

Figure 8. Graph of x o try, x = v™2
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X1 ® x2 ® x3

....... Jo, =Jpm JL
Ji. = Jn i e i J g
—_—— e M, =N, === Jy

Figure 9. Graph of [x]2 o tra, x generic (also x = 1,sgn)
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X1 ®x2® X3

x;'®xi! ®x

x3'®xs®xi’

x{‘@x:a@)u X3 ®x1®x2

V1
\|

‘Xa ®x1®x3!

x3® x5! ®xile

X3 ®x3! ® 10 o1 ® X3! ® xa

X3! ®x18 X3
....... JL) - JM; . JL
Ji, =JIN, e i it I g
—_——— Um, =N, == Jy

Figure 10. Graph of [x]; « try, x = v-3%
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X1 ® x2 ® X3

X3® x5! ®x1%

95

1)(369)(1@)(;7l

X1 ®x7' ® X3

x;' ®x1®x3
....... JL; = JM1 2 Jr
JL; =JN i i’ i J g
"—'—"'-JM:—JN2 = Jy

-1
Figure 11. Graph of [x]; & try, x = v™2sgn
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X1 ® x2 ® x3

X3 ® x10® x2

....... JL] = ‘]M:[ JL
Ji, = IN, —— i’ et Jpp
— = Im=Jn = JN

Figure 12. Graph of [x]; & try, x = v~ %
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X1 ® x2 ® X3

.
B
o

xlexstex! .

x31®x7'®x1

x5 ®x18 x5!

....... JL: ’JMx JL
JLJ_JA) s * " a— JM
———‘JM2=JN2 = Jy

Figure 13. Graph of [x]s o 1, x generic
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X1® X2 ® X3

X3 ' ®x;' ®@xile

x5'®x:'®x

Xx10x3' ®x;!

....... JL] - JM] JL
JL; = Jn, QRO S S £V
— = Jm, =N == Jy

Figure 14. Graph of [x]3 x 1, x = 1
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X1 ®Xx2® X3

X3  ®x7 ®xi'e A ® X2 ® x5!

X3 ®x71®x14

X3! ®x1®x5 X3! ® x1® x2

x19x3' ® x5!

....... JL) = ‘]Ml JL
JL; = ‘],\] —— i S
—— — Jp, =, —— e Jy

Figure 15. Graph of [x]z < 1, x = sgn
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X1 ® x2 ® X3

N

- - -1
X31®X21®X1

x3'®x7'®x1

Glexi®xi'h -

x1®x3' ®x;'

....... JL1=JM1' .......JL
JL;»:JN; s e a— JM

—_——— Uy =N, = Jy

Figure 16. Graph of [y]s x 1, xy = v~3
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X1 ® X2 ® X3

X3t ®x;' ®xi!

x3'®x;'®x

X3 ' ®x1®x;!

xX1© x5 ® x5!

....... JL) - JM] . JL
JL, =JN1 g /Y,
— — — Jm.=Jy =_——

Figure 17. Graph of [x]s 1, x = v=%sgn
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X1 ® x2 ® X3

X' ®xs'®xi'e

x3'®x7'®xa

X3 ®x1®x3!

x1® x5 ®x7!

Figure 18. Graph of [x]s x 1, x = v

Tex1®x2®x3!

,Xl ®x3' ®x2

/
/
/

&3l ®x1 ®xz
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X1 x2 ® X3

x3'®x:t e xi! ox1 ®x2® X3’

-1
X3 ' ®x7 ®x1 /.7X1®X3 ®x2

/

xs'®x10x;5!

x1®x3 ®x5'

....... Jr, = Im, Jr
Ji,=Jn i i’ it J
—_— = I, =JN == JN

Figure 19. Graph of [x]s x 1, x = v~1sgn



APPENDIX

Recall that in Sp,,(F"), there is a Bruhat decomposition
K = UyewlIwl

(this is just the usual Bruhat decomposition of Spy,(F,) lifted back to K ). Suppose
B = Bg is the parahoric subgroup with ® = {so,s1,...,5,}\{s,, s}, so that B is
the inverse image of a maximal parabolic subgroup of Sp;,(F,) under the reduction
modP map. The goal of this appendix is to give a similar decomposition of K into
B double cosets, and characterize the elements of K lying in each double-coset.

This is contained in the following lemma:

LEMMA A.3.2 Let

I;_.
L7’

I T g_i_j

I
L’
I,'_j

I g_ij

Then, K = U; jBw;; B. Moreover, suppose 7 € K has the form

( * * | * *
W x| % *
T =
X * | % *
Y * | % *
w
(W is(n—k)xk, X is kxk,Y 1s (n—k)x k). Definer () =rank| X |modP,
Y

ro(7) = rank Xmod P. Then, T € Bwrl(f)rz(T)B'

104
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Proof. We start with the following notation:
Wo = Weyl group for Spy,(F) Wﬁ = Weyl group for GLg(F)

Now, since B =< I, Wk X Wher > (Wk X Wn_r C W, in the obvious
way), finding a set of representatives for B\K/B is equivalent to finding a set of
representatives for Wi x W,_;\W, /(Wi x W,_1). To verify that {wi;} is a set of

representatives, we must show two things:

1. no two of the w;.’s lie in the same Wk X w,_r double-coset
J

2. everything in W, lies in a double-coset associated to one of the w;;’s.

To check #1, we shall show that r; and r, are constant on double-cosets
of B. This suffices since they are different for distinct w;;’s. In particular, we show
that r; and r; are unchanged under right and left multiplication by members of

Wk X Wy_k. This is straightforward:

left:
* * | *x * M ( * * | % *
W % |x * A B . WM x | % *
X ox |x * Tpr-1 WX x | *
Y * | % * C D WY * |x* *
\ /
right:
/ M * * | % * [ * * | % * \
A B W x| % * _ AW + BY | * *
Tpr-t X x |x * TM-1Xx | * *
C D Y * | % * ) CW+ D% | * *
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. A B
with M € Wy, ( c D ) € Wy_k. Clearly, r; remains unchanged— X, X M, T M1

all have the same rank mod P since M is invertible. Similarly, r; remains unchanged

WM w AW + BY A B w
since | XM | =] X | M and Tpr-1x — Tpf-1 X
YM Y CW + DY C D Y
A B
and M and Tyt are invertible.
C D

Thus, #1 holds. Note that the claim 7 € Bwy, (ryry(r)B follows easily once we have
established #2. We proceed to that task.

The first step in this process is to show that any two matrices in W,, with
the same first k columns lie in the same double-coset of Wk X Wy_r. We then show
that we can take any element in W, and by suitable left and right multiplications
with elements of W, x W,_k, obtain a matrix with the same first £ columns as one

of the w;;’s.

The first step is fairly straightforward. We claim that for w € W,,, every el-

[, \

ement of W,, with the same first k£ columns is of the form w-

C D )

A B
with ( c D ) € Wy_i. If w’ has the same first k columns as w, then w=! has the

same first rows as (w’)™! (since they are permutation matrices). Then, w=lw’ is of

the desired form, and since w’ = w(w~w’), the claim now holds.

Now, we take an element w € W, and describe how to use right and left
multiplication by Wi x W,,_ to get it equal to a w;; (at least up to £1’s as entries,
which suffices since it won’t change the Weyl group element being represented).

Suppose ri(w) = 2, ro(w) = j. We then claim that by multiplying by a suitable
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element of Wi, x W,_. on the left, we get a matrix with the first k£ columns of the

form
0]z
* | k—1
i
Oln+7—k—:
|
Olk—7
\Tn-—k
M M
First, we can find M; = I = d € Wk
Tpf-1 M
I I

so that m; moves the j nonzero rows in the third block to make them the first j rows
there, and moves the k — ¢ nonzero rows in the first block to make them the last k —:
rows there. We remark that by symplecticity, the nonzero rows in the first block and

those in the third block will not be in corresponding positions, thus we can rearrange

I

both as claimed. Similarly, we can find M, = € Wa_k

C D
which moves the ¢ — j nonzero entries in the second/fourth block into the first 7 — j
rows of the second block. Again, note that if a row in the second (resp. fourth)
block is nonzero, then the corresponding row in the fourth (resp. second) block is

zero. The fact that M, is symplectic means that if the ath row of the second block

d
is moved to the Bth row of the Secons block, then the ath row of the fourth
fourth
. fourth .
block is moved to the Ath row of the block. In any case, as the 1 — j
second

rows do not occupy corresponding positions, we can find an M, as desired.
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Next, right multiplication moves columns. A tedious argument similar to
the proceeding (which will be omitted) allow us to move the columns to arrange
that the first k£ are the same as those in w;;, as needed. Since any first k£ columns
lie in the same W} x W,_; double-coset, the {w;;} will form a set of representatives
for (Wi X Wn_i)\Wo/(Wi x W,_1), hence for B\K/B.

Finally, we observe that as no two distinct w;;’s have the same (ry,72)

they characterize the B double-coset. In particular, r € K lies in Bwy,(r)r,(-)B, as

claimed.

COROLLARY A.3.3 Let P =PNK. Then, K = U,-,J-Pow,-jB.

Proof. Use Bw;jB = Pyw;; B and the lemma.
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