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Abstract. Let G be a classical p-adic group. If T is an irreducible tempered representation
of such a group and ρ an irreducible unitary supercuspidal representation of a general linear
group, we can form the parabolically induced representation IndGP (|det |yρ ⊗ T ). The main
result in this paper is the determination for which y ∈ R the induced representation is
reducible. The key technical result in establishing this is the determination of a certain
Jacquet module subquotient.

1. Introduction

Let G be a classical p-adic group of the type consided in [20]. If T is an irreducible
tempered representation of such a group and ρ an irreducible unitary supercuspidal
representation of a general linear group, we can form the parabolically induced
representation IndGP (ν yρ ⊗ T ), where ν = |det | as in [6]. The main result in this
paper is the determination for which y ∈ R the induced representation is reducible.
The key technical result in establishing this is the determination of a certain Jacquet
module subquotient μ∗{νxρ} (discussed later in this introduction and dealt with at
length in the paper).

The results are somewhat reminiscent of those on representations induced from
discrete series in [22], though the approach is a bit different. Part of the purpose
of this paper is, in fact, to demonstrate a different approach. The results could also
serve as a starting point to a more general analysis of induced representations, with
a long-term goal of understanding when a standard module reduces. However, our
immediate purpose is in analyzing the duality operator of [2,23] for the groups
under consideration. In fact, both the μ∗{νxρ}(T ) results and the reducibility results
obtained from them are central to [13].

To start, we recall a key definition. Let Gn(F) be from one of the families
of classical groups under consideration (symplectic, odd special orthogonal, even
orthogonal, unitary—see Sect. 2). For 1 ≤ m ≤ n, we have a (maximal proper)
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standard parabolic subgroup with Levi factor M(m)
∼= GL(m, F)×Gn−m(F). For

π a representation of G, set

μ∗(π) =
n∑

i=0

rM(i),G(π),

with the sum in R ⊗ R[S]—see Sect. 2.1. This was originally defined in [28], and
has many useful properties, discussed in more detail in the next section. However,
the definition is sufficient for the purposes at hand. In particular, it enables us to
define the following (Definition 3.1.1 [12]):

Definition 1.1. For X a set of (not necessarily unitary) supercuspidal representa-
tions of general linear groups, let f = fπ (X) be the largest value such that a (mini-
mal nonzero) Jacquet module of π has a term of the form νx1ρ1⊗· · ·⊗νx f ρ f ⊗· · ·
with νx1ρ1, . . . , ν

x f ρ f ∈ X (where ν = |det | as in [33]). We let

μ∗
X (π) =

∑

i

λi ⊗ θi ,

where the sum is over all irreducible λi ⊗ θi ≤ μ∗(π) for which the (minimal
nonzero) Jacquet module of λi contains a term of the form νx1ρ1 ⊗ · · · ⊗ νx f ρ f ,
with νx1ρ1, . . . , ν

x f ρ f ∈ X

Suppose X has the property that νxρ ∈ X ⇒ ν−x ρ̌ /∈ X . If π is irreducible,
we have the following key properties (Sect. 3.1 [12]):

• μ∗
X (π) consists of a single representation, denoted λπ(X) ⊗ θπ (X).

• π ↪→ iG,M (λπ (X) ⊗ θπ (X)) as unique irreducible subrepresentation.
• If μ∗

X (π1) = μ∗
X (π2), then π1 ∼= π2 (follows from above).

(1.1)

Note that we have |X | = 1 for most applications.
To illustrate how these results can be used to analyze reducibility, we look at

the example of iG,M (ν
1
2 ρ ⊗ T ), T tempered (in the more interesting case, when

the cuspidal reducibility is in − 1
2 + N; see Sect. 2.1). First, observe that we have

π = Lquot (ν
1
2 ρ; T )—the Langlands quotient of iG,M (ν

1
2 ρ ⊗ T )—as the unique

irreducible quotient. In the reducible case, we show there is also a tempered subrep-
resentation T ′. We do so by providing the data for T ′, then using Theorem 3.1—

which gives μ∗
{ν 1

2 ρ}
(T ′)—and (1.1) to show that T ′ ↪→ iG,M (ν

1
2 ρ ⊗ T ). In the

irreducible case, Proposition 4.1 tells us that if iG,M (ν
1
2 ρ ⊗ T ) has another irre-

ducible subquotient, it must be tempered. Were there such a T ′, it is not difficult
to show that for X = {ν 1

2 ρ}, one would have θT ′(X) = θT (X). However, one can
also use Theorem 3.1 and the observation that fT ′(X) = fT (X) + 1 (with f (X)

the f in Definition 1.1) to show that exactly one of θT ′(X) and θT (X) is tempered,
a contradiction.

The arguments in this paper are ultimately built from the Mœglin–Tadić classi-
fication of discrete series ([20]) and themachinery needed for that classification.We
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therefore make the assumptions needed for [20]; the results then apply in the gen-
erality of [20], that is, to the symplectic, odd special orthogonal, even orthogonal,
and unitary groups considered there.

We close by briefly describing the contents of this paper. In the next section, we
introduce notation and give some background results. In Sect. 3, we give the result
for μ∗{νxρ}(T ), where T is tempered (Theorem 3.1). Section 4 contains the main
reducibility results (Theorem 4.7; also Note 4.8).We close with an appendix, which
offers a characterization of admissibility (in the sense of [20]) designed to make
claims of admissibility more transparent. We also take the opportunity to thank the
referee for suggestions and corrections which helped improve the paper.

2. Notation and preliminaries

2.1. Notation and preliminaries

Wefirst discuss some structure theory from [33] and [3,28]. First, let S(n, F) denote
the rank n member of one of the families of classical groups under consideration
and set

R =
⊕

n≥0

R(GL(n, F)) and R[S] =
⊕

n≥0

R(S(n, F)),

where R(G) denotes the Grothendieck group of the category of smooth finite-
length representations of G. We define multiplication on R as follows: sup-
pose ρ1, ρ2 are representations of GL(n1, F),GL(n2, F), resp. We have M =
GL(n1, F) × GL(n2, F) the Levi factor of a standard parabolic subgroup of
G = GL(n, F), where n = n1 + n2, and set τ1 × τ2 = iG,M (τ1 ⊗ τ2) (nor-
malized parabolic induction—see [6]). This extends (after semisimplification)
to give the multiplication × : R × R −→ R. To describe the comultiplica-
tion on R, let M(i) denote the standard Levi factor for G = GL(n, F) having
M(i) = GL(i, F) ×GL(n − i, F). For a representation τ of GL(n, F), we define

m∗(τ ) =
n∑

i=0

rM(i),G(τ ),

the sum of semisimplified Jacquet modules (lying in R ⊗ R). This extends to a
map m∗ : R −→ R ⊗ R. We note that with this multiplication and comultiplica-
tion (and antipode map given by the Zelevinsky involution, a special case of the
general duality operator of [2,23]), R is a Hopf algebra. There are two analogues
for general linear groups of the μ∗

X discussed in the introduction: m∗
X and Xm∗.

For an irreducible representation π , we let f = fπ (X) (resp., g = gπ (X)) be the
largest value such that a minimal nonzero Jacquet module of π has a term of the
form νx1ρ1 ⊗· · ·⊗νx f ρ f ⊗· · · (resp., of the form · · ·⊗νxgρg ⊗· · ·⊗νx1ρ1) with
all νxi ρi ∈ X , 1 ≤ i ≤ f (resp., 1 ≤ i ≤ g). The analogue of (1.1) holds without
restriction on X (Lemma 2.1.2 [10]); we define m∗

X and Xm∗ accordingly.
Recall that for a, b with a ≤ b and b − a ∈ Z, δ([νaρ, νbρ]) denotes the

generalized Steinberg representation associated to the segment [νaρ, νbρ], i.e., the
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unique irreducible subrepresentation of νbρ×νb−1ρ×· · ·×νaρ ([33]). The unique
irreducible subrepresentation of νaρ×νa+1ρ×· · ·×νbρ is denoted ζ([νaρ, νbρ]).
Note that ζ([νaρ, νbρ]) is dual to δ([νaρ, νbρ]).

Next, suppose τ is a representation of GL(n1, F) and θ a representation of
S(n2, F). We have M = GL(n1, F) × S(n2, F) the Levi factor of a standard
parabolic subgroup ofG = S(n, F), with n = n1+n2, and set τ �θ = iG,M (τ ⊗θ).
If one extends � to a map � : R ⊗ R[S] −→ R[S], we have R[S] as a module
over R. To describe its comodule structure, let M(i) = GL(i, F) × S(n − i, F), a
standard Levi factor forG = S(n, F). For a representation π of S(n, F), we define

μ∗(π) =
n∑

i=0

rM(i),G(π),

the sum of (normalized) semisimplified Jacquet modules (lying in R⊗ R[S]). This
extends to a map μ∗ : R[S] −→ R ⊗ R[S]. In addition to μ∗

X introduced earlier,
there is another variant of this which is needed occasionally in what follows. For an
irreducible representation λ of a general linear group and a representation π of one
of the classical groups under consideration, we let μ∗

λ(π) be the sum of everything
inμ∗(π) having first factor isomorphic to λ.More precisely, ifμ∗(π) = ∑

i λi ⊗ξi ,
we let μ∗

λ(π) = ∑
i∈Iλ λi ⊗ ξi , where Iλ = {i | λi ∼= λ}.

For unitary groups, let ξ denote the nontrivial element of the Galois group of the
underlying quadratic extension. For a representation π of S(n, F), we then define

π̌ =
{

π̃ ◦ ξ for unitary groups,
π̃ otherwise,

where ˜ denotes contragredient. Using this, we may give R[S] the structure of an
M∗-module over R ([3,20,28]):

Theorem 2.1. Define M∗ : R −→ R ⊗ R by

M∗ = (m ⊗ 1) ◦ (ˇ ⊗ m∗) ◦ s ◦ m∗,

where m denotes the multiplication × : R ⊗ R −→ R and s : R ⊗ R −→ R ⊗ R
the extension of the map defined on representations by s : τ1 ⊗ τ2 �−→ τ2 ⊗ τ1.
Then

μ∗(τ � π) = M∗(τ ) � μ∗(π),

where � on the right hand side is determined by (τ1 ⊗ τ2) � (τ ⊗ θ) = (τ1 × τ) ⊗
(τ2 � θ).

We now take a moment to review cuspidal reducibility values. Suppose ρ is
an irreducible unitary supercuspidal representation of a general linear group and
σ an irreducible supercuspidal representation of a classical group. If ρ � ρ̌, then
νxρ � σ is irreducible for all x ∈ R; if ρ ∼= ρ̌, then there is a unique nonnegative
x ∈ R such that νxρ � σ reduces ([27] and Corollary 4.4 [4]), which we denote
by red(ρ; σ). The values for red(ρ; σ) for Sp(2n, F) and SO(2n + 1, F) have
been determined (assuming certain conjectures) in [18] and [34]; in the generic
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case, it is known that they must lie in {0, 1
2 , 1} ([24,25]). Further, in the quasi-split,

characteristic zero case, the reducibility values are now known to be half-integral
([1,19]).

We next review the Casselman criterion for S(n, F) (see [8,32], which extends
easily to the non-connected group O(2n, F)). Suppose π is an irreducible repre-
sentation of S(n, F). Suppose νx1ρ1 ⊗ · · · ⊗ νxkρk ⊗ σ ≤ rM,G(π) has ρi an
irreducible unitary supercuspidal representation of GL(mi , F) for i = 1, . . . , k, σ
an irreducible supercuspidal representation of S(m, F), and x1, . . . , xk ∈ R. The
Casselman criterion tells us that if π is tempered, the following hold:

m1x1 ≥ 0
m1x1 + m2x2 ≥ 0

...

m1x1 + m2x2 + · · · + mkxk ≥ 0.

Conversely, if these inequalities hold for any such νx1ρ1⊗· · ·⊗νxkρk⊗σ (i.e., ρi an
irreducible unitary supercuspidal representation ofGL(mi , F) and σ an irreducible
supercuspidal representation of S(m, F)) appearing in a Jacquet module of π , then
π is tempered. The criterion for square-integrability is the same except that the
inequalities are strict.

We also take a moment to review the Langlands classification ([7,14,26]; also
the appendix of [4] for the non-connected group O(2n, F)). We work in the sub-
representation setting of the Langlands classification as it is the most convenient
for applying Jacquet module methods. Suppose τ1, . . . , τk are irreducible tempered
representations of general linear groups and x1 < · · · < xk . Then the induced rep-
resentation νx1τ1 × · · · × νxk τk has a unique irreducible subrepresentation which
we denote L(νx1τ1, . . . , ν

xk τk). Every irreducible admissible representation of a
general linear group may be written in this way, and the data νx1τ1 ⊗ · · · ⊗ νxk τk
are unique. Turning to classical groups, if τ1, . . . τk are irreducible tempered rep-
resentations of general linear groups, τ an irreducible tempered representation of
S(n, F), and x1 < · · · < xk < 0, the representation νx1τ1 × · · · × νxk τk � τ has a
unique irreducible subrepresentationwhichwe denote L(νx1τ1, . . . , ν

xk τk; τ). Fur-
ther, any irreducible admissible representation of a classical group may be written
in this way, and the data νx1τ1 ⊗ · · · ⊗ νxk τk ⊗ τ are again unique.

The next lemma is Lemma 5.5 of [9].

Lemma 2.2. Suppose π is an irreducible representation of G, λ an irreducible
representation of M and π ↪→ iG,M (λ). If L > M, then there is an irreducible
representation ρ of L such that

(1) π ↪→ iG,L(ρ)

(2) ρ is a subquotient of iL ,M (λ).

We pause to note that for X = {ρ} with ρ ∼= ρ̌, the hypotheses for (1.1) do not
hold. In this case, the first property in (1.1) holds, but only up to multiplicity. The
second property also holds, but the third does not. For the first two, the proofs are
essentially the same; for the third, an easy counterexample occurs when ρ � σ is
reducible—the two components are inequvalent but have μ∗{ρ} the same.
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Lemma 2.3. Suppose fπ (νxρ) = f . If

π ↪→ (νxρ) f × λ1 × · · · × λk � T

with λ1 ⊗ · · · ⊗ λk ⊗ T satisfying the conditions for Langlands data (subrepresen-
tation setting), then

μ∗{νxρ}(π) = (νxρ) f ⊗ L(λ1, . . . , λk; T )

(up to multiplicity if x = 0).

Proof. ByLemma2.2,π ↪→ (νxρ) f �θ for some irreducible θ ≤ λ1×· · ·×λk�T ;
necessarily θ = θπ (νxρ). Also, as μ∗{νxρ}(π) = (νxρ) f ⊗ θ (up to multiplicity if

x = 0), and rM,G(π) ≥ (νxρ) f ⊗ λ1 ⊗ · · · ⊗ λk ⊗ T (by Frobenius reciprocity),
it follows from Lemma 3.1.3 and Remark 3.1.4 [12] that rM ′,G ′(θ) ≥ λ1 ⊗ · · · ⊗
λk ⊗ T (where θ is a representation of G ′ and M ′ < G ′ is the appropriate standard
Levi). However, the only irreducible subquotient of λ1 × · · · × λk � T containing
λ1 ⊗ · · · ⊗ λk in its Jacquet module is L(λ1, . . . , λk; T ) ([5] or [9]), finishing the
lemma. 
�

2.2. The extended Mœglin–Tadić classification

In this section, we review the extension of the construction of [20] to tempered
representations. The extension used here is from [12]; we also note the somewhat
different extension available in [31].

Recall that the Mœglin–Tadić classification is a bijective correspondence
between (equivalence classes of) discrete series for a family of classical groups and
(equivalence classes of) admissible triples. An admissible triple is a triple of the
form (Jord, σ, ε). Here Jord consists of pairs (ρ, a), with ρ an irreducible unitary
supercuspidal representation of a general linear group and a ∈ N subject to a parity
condition from ρ, σ the “partial cuspidal support" (the supercuspidal representation
of a classical group which appears in any minimal nozero Jacquet module term),
and ε a function defined on a subset of Jord∪(Jord× Jord) taking values in {±1}
which essentially distinguishes between discrete series having the same supercus-
pidal support (or equivalently, by Lemma 2.1.1 [12], the same Jord). Information
about induced representations into which the discrete series embeds is also encoded
in the data. This classification and its properties havebeen summarized in [20],many
of the references for this paper (e.g., [11,12,21,22,29–31]), as well as many other
places. We forgo doing so again and simply refer the reader to these sources, as
well as to the characterization of admissibility in the appendix of this paper.

To extend theMœglin–Tadić classification to tempered representations, we first
consider the elliptic case. Suppose

Tell ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1
2 ρ1

])
× · · · × δ

([
ν

−c�+1
2 ρ�, ν

c�−1
2 ρ�

])
� δ, (2.1)

with δ a discrete series for a classical group. Let (Jord(δ), σ, εδ) be the Mœglin–
Tadić data for δ, with Sδ ⊂ Jord(δ) ∪ (Jord(δ) × Jord(δ)) the domain for εδ .
Intuitively, we construct Jord(T ) from Jord(δ) by adding two copies each of
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(ρ1, c1), . . . , (ρ�, c�) (one for each end of δ([ν −ci+1
2 ρi , ν

ci−1
2 ρi ]), even if ci = 1).

More precisely, we introduce a fourth datum, mT—the multiplicity—so have T
associated to (Jord(T ), σ, εT ,mT ). Then,

Jord(T ) = Jord(δ) ∪ {(ρ1, c1), . . . , (ρ�, c�)}
and

mT (ρ, a) =
{
1 if (ρ, a) ∈ Jord(δ),

2 if (ρ, a) ∼= (ρi , ci ) for some i.

Again, we have εT : ST −→ {±1}, with the domain ST ⊂ Jord(T ) ∪
(Jord(T ) × Jord(T )). We have ST ⊃ Sδ , and εT |Sδ = εδ . The additional values

of εT effectively distinguish the 2� components of δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · ×

δ([ν −c�+1
2 ρ�, ν

c�−1
2 ρ�]) � δ. In particular, we have the following extension of the

basic embedding property of [20]: for (ρ, a) ∈ Jord(T ), let a− be the largest value
of b < a satisfying (ρ, b) ∈ Jord(δ) if it exists. Then (Proposition 2.3.2 [12])

(1) if m(ρ, a) = 1,

ε ((ρ, a), (ρ, a−)) = 1 ⇔ T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1
2 ρ

])

�θ for some irreducible θ.

(2) if m(ρ, a) = 2,

ε ((ρ, a), (ρ, a−)) = 1 ⇔ T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1
2 ρ

])

×δ
([

ν
a−+1

2 ρ, ν
a−1
2 ρ

])
� θ for some irreducible θ. (2.2)

Other basic properties of the Mœglin–Tadić classification also have counterparts
in the extension to the tempered case; we forgo including them here but include
citations when used.

For more general tempered representations—i.e., no longer assuming elliptic—
we construct Jord(T ),mT in a similar manner. Write

T ∼= δ
([

ν
−d1+1

2 ρ′
1, ν

d1−1
2 ρ′

1

])
× · · · × δ

([
ν

−dm+1
2 ρ′

m, ν
dm−1

2 ρ′
m

])
� Tell (2.3)

(irreducibly induced) with Tell elliptic tempered. We construct Jord(T ),mT from
Jord(Tell),mTell by adding one copy each of (ρ′

1, d1), (ρ̌
′
1, d1), . . . , (ρ

′
m, dm),

(ρ̌′
m, dm) (so two copies of (ρ′

i , di ) are added if ρ̌′
i
∼= ρ′

i ); ST and εT match STell
and εTell (noting that the corresponding induced representation is irreducible so we
do not have components to distinguish). We then have an extension of the above
embedding: for (ρ, a) ∈ Jord(Tell), let a− < a be the largest value such that
(ρ, a−) ∈ Jord(Tell) if it exists. Then

ε ((ρ, a), (ρ, a−))

= 1 ⇔ T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1
2 ρ

])
× · · · × δ

([
ν

a−+1
2 ρ, ν

a−1
2 ρ

])

︸ ︷︷ ︸
m(ρ,a)

�θ
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This is not explicitly stated in [12], but is a straightforward consequence of (2.2)
and the irreducibility of (2.3).

We add one notational convention: as defined in [20], Jordρ = {a | (ρ, a) ∈
Jord }. By abuse of notation,we also allow this to be interpreted as {(ρ, a) | (ρ, a) ∈
Jord } as this interpretation is useful when dealing with the domain of ε.

Before closing, we note one immediate consequence of the definitions in
Sect. 2.3 [12] which is needed later:

Lemma 2.4. Suppose T is an elliptic tempered representation with (ρ, a) ∈
Jord(T ) and m(ρ, a) = 2. Let T ∗ be the elliptic tempered representation with

T ↪→ δ([ν −a+1
2 ρ, ν

a−1
2 ρ])�T ∗. Then, T ∗ satisfies Jord(T ∗) = Jord(T )\{(ρ, a)}

with mT ∗ and εT ∗ given by restriction (and partial cuspidal supports the same).

3. Jacquet modules of tempered representations

In this section, we prove the main Jacquet module result of this paper, Theorem 3.1.
The elliptic case is covered by Proposition 3.4 (for a > 2) and Lemma 3.7 (for
a = 1, 2). The general tempered case follows from (2.3) and the elliptic tempered
case. Note that the discrete series case is already known (Theorem 3.2.2 [12] or
Theorem 8.5 [17]). We begin by stating the result, then proceed to prove it in a
sequence of lemmas.

Theorem 3.1. Suppose T is irreducible tempered with (ρ, a) ∈ Jord(T ). If a > 2,
we have the following:

(1) If ρ � ρ̌, then

μ∗{
ν
a−1
2 ρ

}(T ) = (ν
a−1
2 ρ)mT (ρ,a) ⊗ L(δ

([
ν

−a+1
2 ρ, ν

a−3
2 ρ

])mT (ρ,a) ; T1),

where mT1(ρ, a) = mT1(ρ̌, a) = 0, mT1(ρ
′, b) = mT (ρ′, b) for all other

(ρ′, b), and εT1 = εT (noting that (ρ, a) /∈ ST ).
(2) If ρ ∼= ρ̌ but a−1

2 �≡ red(ρ; σ)mod 1,

μ∗{
ν
a−1
2 ρ

}(T ) =
(
ν

a−1
2 ρ

)mT (ρ,a) ⊗ T2

where mT2(ρ, a) = 0, mT2(ρ, a − 2) = mT (ρ, a), mT2(ρ
′, b) = mT (ρ′, b)

for all other (ρ′, b), and εT2 = εT (noting that (ρ, a) /∈ ST ).
(3) If ρ ∼= ρ̌ with a−1

2 ≡ red(ρ; σ)mod 1 and either (i) (ρ, a − 2) /∈ Jord, or
(ii) εT (ρ, a)εT (ρ, a−)−1 = 1, then

μ∗{
ν
a−1
2 ρ

}(T ) =
(
ν

a−1
2 ρ

)mT (ρ,a) ⊗ T3,

where mT3(ρ, a) = 0, mT3(ρ, a − 2) = mT (ρ, a) + mT (ρ, a − 2), and
mT2(ρ

′, b) = mT (ρ′, b) for all other (ρ′, b). If mT (ρ, a − 2) > 0, εT3 is
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just given by restriction; if mT (ρ, a − 2) = 0, it is given by substituting
(ρ, a− 2) for (ρ, a). More precisely, if m(ρ, a− 2) = 0, εT3 is determined by
the following changes: εT3(ρ, a − 2) = εT (ρ, a) if defined, and εT3(ρ, a −
2)εT3(ρ, b)−1 = εT (ρ, a)εT (ρ, b)−1 for all other b.

(4) Ifρ ∼= ρ̌with a−1
2 ≡ red(ρ; σ)mod 1, a− = a−2, and εT (ρ, a)εT (ρ, a−)−1 =

−1, then

μ∗{
ν
a−1
2 ρ

}(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ν

a−1
2 ρ

)mT (ρ,a)−1 ⊗ T4 if mT (ρ, a) odd
(
ν

a−1
2 ρ

)mT (ρ,a)−1

⊗L(δ
([

ν
−a+1

2 ρ, ν
a−3
2 ρ

])
; T5) if mT (ρ, a) even.

Here, mT4(ρ, a) = 1, mT4(ρ, a − 2) = mT (ρ, a − 2) + mT (ρ, a) − 1,
mT4(ρ

′, b) = mT (ρ′, b) for all other (ρ′, b), and εT4 = εT ; for T5,
mT5(ρ, a) = 0, mT5(ρ, a−2) = mT (ρ, a−2)+mT (ρ, a)−2, mT5(ρ

′, b) =
mT (ρ′, b) for all other (ρ′, b), and εT5 the restriction of εT .
If a = 2, we have the following:

(5) If ρ � ρ̌, then

μ∗{
ν
1
2 ρ

}(T ) =
(
ν

1
2 ρ

)mT (ρ,2) ⊗ L((ν− 1
2 ρ)mT (ρ,2); T1),

where mT1(ρ, a) = mT1(ρ̌, a) = 0, mT1(ρ
′, b) = mT (ρ′, b) for all other

(ρ′, b), and εT1 = εT (noting that (ρ, 2) /∈ ST ).
(6) If ρ ∼= ρ̌ but red(ρ; σ) �≡ 1

2 mod 1,

μ∗{
ν
1
2 ρ

}(T ) =
(
ν

1
2 ρ

)mT (ρ,2) ⊗ T2

where mT2(ρ, 2) = 0, mT2(ρ
′, b) = mT (ρ′, b) for all other (ρ′, b), and

εT2 = εT (noting that (ρ, a) /∈ ST ).
(7) If ρ ∼= ρ̌ with red(ρ; σ) ≡ 1

2 mod 1 and εT (ρ, 2) = 1, then

μ∗{
ν
1
2 ρ

}(T ) =
(
ν

1
2 ρ

)mT (ρ,2) ⊗ T3,

where mT3(ρ, 2) = 0, mT2(ρ
′, b) = mT (ρ′, b) for all other (ρ′, b), and εT 3

just the restriction of εT .
(8) If ρ ∼= ρ̌ with red(ρ; σ) ≡ 1

2 mod 1 and εT (ρ, 2) = −1, then

μ∗
{ν 1

2 ρ}
(T ) =

⎧
⎪⎨

⎪⎩

(
ν

1
2 ρ

)mT (ρ,2)−1 ⊗ T4 if mT (ρ, 2) odd,
(
ν

1
2 ρ

)mT (ρ,2)−1 ⊗ L(ν− 1
2 ρ; T5) if mT (ρ, 2) even.

Here, mT4(ρ, 2) = 1, mT4(ρ
′, b) = mT (ρ′, b) for all other (ρ′, b), and εT4 =

εT ; for T5, mT5(ρ, 2) = 0, mT5(ρ
′, b) = mT (ρ′, b) for all other (ρ′, b), and

εT5 just the restriction of εT .
If a = 1, we have the following:
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(9) If ρ � ρ̌, then

μ∗{ρ}(T ) = (ρ)mT (ρ,1) ⊗ T1,

where mT1(ρ, 1) = mT1(ρ̌, 1) = 0, mT1(ρ
′, b) = mT (ρ′, b) for all other

(ρ′, b), and εT1 = εT (noting that (ρ, 1) /∈ ST ).
(10) If ρ ∼= ρ̌ but red(ρ; σ) �≡ 0mod 1,

μ∗{ρ}(T ) = 2
mT (ρ,1)

2 · (ρ)
mT (ρ,1)

2 ⊗ T2

where mT2(ρ, 1) = 0, mT2(ρ
′, b) = mT (ρ′, b) for all other (ρ′, b), and

εT2 = εT (noting that (ρ, 1) /∈ ST ).
(11) If ρ ∼= ρ̌ with red(ρ; σ) ≡ 0mod 1, then

μ∗{ρ}(T ) =
{
2

mT (ρ,1)
2 · (ρ)

mT (ρ,1)
2 ⊗ T3 if mT (ρ, 1) even,

2
mT (ρ,1)−1

2 · (ρ)
mT (ρ,1)−1

2 ⊗ T3 if mT (ρ, 1) odd,

where mT3(ρ, 1) =
{
0 if mT (ρ, 1) even
1 if mT (ρ, 1) odd

, mT3(ρ
′, b) = mT (ρ′, b) for all

other (ρ′, b), and εT3 = εT if mT (ρ, 1) odd, εT3 the restriction of εT if
mT (ρ, 1) even.

The following lemma is covered by the results of [22], but corrects an error. We
remark that the results could also be obtained using the approach from Sect. 4 for
the tempered case, noting that the Jacquet module results obtained in this section
for tempered representations (and used in the arguments in Sect. 4) are known in
the discrete series case (Theorem 3.2.2 [12]).

Lemma 3.2. Let δ be a discrete series representation and a ≥ 1. Then ν
a−1
2 ρ � δ

is reducible if and only if one of the following occurs:

(1) a > 2, (ρ, a − 2) ∈ Jord(δ), and either (i) (ρ, a) /∈ Jord(δ) or (ii)
εδ(ρ, a)εδ(ρ, a − 2) = 1,

(2) a = 2 and either (i) (ρ, 2) /∈ Jord(δ) with red(ρ; σ) ≡ 1
2 mod 1, or (ii)

εδ(ρ, 2) = 1,
(3) a = 1 and (ρ, a) /∈ Jord(δ) with red(ρ; σ) ≡ 0mod 1.

Lemma 3.3. Let T be an elliptic tempered representation. If (ρ, a) /∈ Jord(T ),

we have fT (ν
a−1
2 ρ) = 0. If (ρ, a) ∈ Jord(T ), we have the following:

(1) If a− exists,

fT
(
ν

a−1
2 ρ

)
=

{
mT (ρ, a) if either a > a− + 2 or εT (ρ, a)εT (ρ, a−)−1 = 1,
mT (ρ, a)−1 if a− =a − 2 and εT (ρ, a)εT (ρ, a−)−1=−1.

(2) If a− does not exist,

fT
(
ν

a−1
2 ρ

)
=

{
mT (ρ, a) if either a > 2, or a = 2 and εT (ρ, a) = 1,
mT (ρ, a) − 1 if either a = 1, or a = 2 and εT (ρ, a) = −1.
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Proof. That fT (ν
a−1
2 ρ) = 0when (ρ, a) /∈ Jord(T ) follows immediately from the

embeddings of T into induced representations [(Eq. (2.1)] and the corresponding
property for discrete series (e.g., Remark 1.3.2 [12]). More generally, we have

fT (ν
a−1
2 ρ) ≤ mT (ρ, a) for a > 1.

For (1), if a > a− + 2, we use

T ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1
2 ρ1

])
× · · · × δ

([
ν

−ch+1
2 ρh, ν

ch−1
2 ρh

])
� δ, (3.1)

with δ discrete series. If mT (ρ, a) = 1, then (ρ, a) ∈ Jord(δ); the result then
follows fromProposition 3.2.2 [12] and a commuting argument (resp.,μ∗ argument)

for fT (ν
a−1
2 ρ) = 1 (resp., fT (ν

a−1
2 ρ) = 0). If mT (ρ, a) = 2, then without loss of

generality, suppose (ρ, a) = (ρh, ch). Then,

T ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1
2 ρ1

])
× · · · × δ

([
ν

−ch−1+1
2 ρh−1, ν

ch−1−1
2 ρh−1

])
� Th,

(3.2)

for some irreducible Th ≤ δ([ν −ch+1
2 ρh, ν

ch−1
2 ρh]) � δ. The result when

fT (ν
a−1
2 ρ) = mT (ρ, a) then follows from Lemma 3.3.3 [12] and a commuting

argument. Now, suppose a = a− + 2 and εT (ρ, a)εT (ρ, a−)−1 = −1. It fol-
lows from Proposition 2.3.2 [12] that fT (ρ, a) < mT (ρ, a); an easy commuting

argument with (3.1) then tells us fT (ν
a−1
2 ρ) ≥ 1 ⇒ fT (ν

a−1
2 ρ) = 1.

We now look at (2). For a = 1, the result follows from (3.1): if mT (ρ, 1) = 2,
then (ρi , ci ) = (ρ, 1) for some i , and the result is clear. If mT (ρ, 1) = 1, then
(ρ, 1) ∈ Jord(δ). Therefore, μ∗{ρ}(δ) = 0 by the Casselman criterion, from which
fT (ρ) = 0 follows. For a = 2 and εT (ρ, 2) = 1, the result follows from Lemma
2.3.5 [12]. If εT (ρ, 2) = −1, it follows from Lemma 2.3.5 [12] that fT (ν

1
2 ρ) <

mT (ρ, 2). If εT (ρ, 2) = −1 and mT (ρ, 2) = 1, we have (ρ, 2) ∈ Jord(δ). That
εδ(ρ, 2) = εT (ρ, 2) = −1 ⇒ fδ(ν

1
2 ρ) = 0 follows directly from the Mœglin–

Tadić classification; that fT (ν
1
2 ρ) = 0 then follows from (3.1). If mT (ρ, 2) = 2

and εT (ρ, 2) = −1, we must have (ρi , ci ) = (ρ, 2) in (3.2). It then follows
(easy commuting argument) that fT (ν

1
2 ρ) ≥ 1 ⇒ fT (ν

1
2 ρ) = 1. If a > 2 and

mT (ρ, a) = 1, it follows from (3.1), Proposition 2.1.2 [12] and and easy commuting

argument that fT (ν
a−1
2 ρ) = 1. If mT (ρ, a) = 2, the result follows from (3.2),

Lemma 3.3.3 [12], and an easy commuting argument. 
�
Proposition 3.4. Let T be an elliptic tempered representation, (ρ, a) ∈ Jord(T ).

Suppose fT (ν
a−1
2 ρ) �= 0 (see Lemma 3.3) and a > 2.

(1) If (ρ, a − 2) /∈ Jord(T ),

μ∗{
ν
a−1
2 ρ

}(T ) =
(
ν

a−1
2 ρ

)mT (ρ,a) ⊗ T1

where T1 has Jord(T1) = (Jord(T ) ∪ {(ρ, a − 2)}) \{(ρ, a)}, mT1(ρ, a −
2) = mT (ρ, a), and remaining multiplicities matching those for T . We obtain
εT1 by substituting (ρ, a − 2) for (ρ, a): εT1 is determined by εT1(ρ, a − 2) =
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εT (ρ, a) if defined, εT1(ρ, b)εT1(ρ, a − 2)−1 = εT (ρ, b)εT (ρ, a)−1, and
εT1 |ST1∩ST = εT |ST1∩ST .

(2) If (ρ, a − 2) ∈ Jord(T ) with εT (ρ, a)εT (ρ, a − 2)−1 = 1,

μ∗{
ν
a−1
2 ρ

}(T ) =
(
ν

a−1
2 ρ

)mT (ρ,a) ⊗ T2,

where Jord(T2) = Jord(T )\{(ρ, a)}, mT2(ρ, a − 2) = mT (ρ, a − 2) +
mT (ρ, a), remaining multiplicities the same as for T , and εT2 = εT |ST2 .

(3) If (ρ, a − 2) ∈ Jord(T ) with εT (ρ, a)εT (ρ, a − 2)−1 = −1, in order to have
fT (ν

a−1
2 ρ) �= 0, we must have mT (ρ, a) = 2 (and then fT (ν

a−1
2 ρ) = 1).

Further,

μ∗{
ν
a−1
2 ρ

}(T ) = ν
a−1
2 ρ ⊗ L(δ

([
ν

−a+1
2 ρ, ν

a−3
2 ρ

])
; T3),

where T3 has Jord(T3) = Jord(T )\{(ρ, a)} and mT3 , εT3 given by restriction.

Proof. The values of fT (ν
a−1
2 ρ) are given in Lemma 3.3.

We start with (3), which is the easiest of the remaining cases. Here, we have

T ↪→ δ
([

ν
−a+1

2 ρ, ν
a−1
2 ρ

])
� T3 ↪→ ν

a−1
2 ρ × δ

([
ν

−a+1
2 ρ, ν

a−3
2 ρ

])
� T3

with T3 as in the statement of the proposition. Lemma 2.3 then gives the result for
(3).

We now turn to (1), in which case fT (ν
a−1
2 ρ) = mT (ρ, a). Write

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1
2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� δ.

In what follows, we essentially reduce to the case k = 1, which is then addressed
in Lemma 3.5 below. Thus, suppose k > 1.

First, for 1 ≤ j ≤ k, let

� j = δ
([

ν
−a1+1

2 ρ1, ν
a1−1
2 ρ1

])
× · · · × δ

([
ν

−a1+ j−1
2 ρ j−1, ν

a j−1−1
2 ρ j−1

])

×δ

([
ν

−a j+1+1
2 ρ j+1, ν

a j+1−1
2 ρ j+1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
.

Then,

T ↪→ � j × δ

([
ν

−a j+1
2 ρ j , ν

a j−1
2 ρ j

])
� δ

⇓
T ↪→ � j � Tj

for some irreducible Tj ≤ δ([ν
−a j+1

2 ρ j , ν
a j−1
2 ρ j ])� δ. By definition, εT |S j = εTj ,

where S j denotes the domain for Tj .
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Write μ∗
{ν a−1

2 ρ}
(T ) = (ν

a−1
2 ρ)m ⊗ T ′, where m = mT (ρ, a). Set

δ′
j =

{
δ if mT (ρ, a) = 2,
δ′ if mT (ρ, a) = 1,

where for mT (ρ, a) = 1, the δ′ is that of Theorem 3.2.2 [12] (noting that this
δ′ is elliptic tempered, but need not be square-integrable). We define �′

j = � j

if mT (ρ, a) = 1 or (ρ j , a j ) = (ρ, a). If not, we let i be such that (ρi , ai ) =
(ρ, a) and replace δ([ν −ai+1

2 ρi , ν
ai−1
2 ρi ]) with δ([ν −a+3

2 ρ, ν
a−3
2 ρ]) in the defini-

tion of � j (with the rest of the terms remaining the same). Finally, set a′
j ={

a j − 2 if (ρ j , a j ) = (ρ, a)

a j if not.
Then

T ′ ↪→ �′
j × δ

([
ν

−a′
j+1

2 ρ j , ν
a′
j−1

2 ρ j

])
� δ′

j

⇓
T ′ ↪→ �′

j � T ′
j

for some irreducible T ′
j ≤ δ([ν

−a′
j+1

2 ρ j , ν
a′
j−1

2 ρ j ]) � δ′
j . Again, we have εT ′ |S′

j
=

εT ′
j
.

Fix j . First, suppose mT (ρ, a) = 1 or (ρ j , a j ) = (ρ, a). Note that in this case,
Jord(T ′

j ) = (Jord(Tj )\{(ρ, a)}) ∪ {(ρ, a − 2)}. If we knew that μ∗
{ν a−1

2 ρ}
(Tj ) =

(ν
a−1
2 ρ)mT (ρ,a) ⊗T ′

j , the k = 1 case (Lemma 3.5 below) would imply that εT ′ |S′
j
is

as claimed. As the values of εT ′ on ∪ j S′
j determine εT ′ (Sect. 2.3 [12]), the result

follows for this case. Thus to finish this case, it remains to show μ∗
{ν a−1

2 ρ}
(Tj ) =

(ν
a−1
2 ρ)mT (ρ,a) ⊗ T ′

j .

Observe that we have �′
j = � j and

T ↪→ � j � Tj

↪→ � j ×
(
ν

a−1
2 ρ

)mT (ρ,a)

� θTj

∼=
(
ν

a−1
2 ρ

)mT (ρ,a) × � j � θTj ,

noting that θTj is tempered. Since μ∗
{ν a−1

2 ρ}
(T ) = (ν

a−1
2 ρ)mT (ρ,a) ⊗ T ′, we have

T ′ ↪→ � j � θTj

⇓
θTj = T ′

j ,

as needed.



36 C. Jantzen

Now, suppose (ρ j , a j ) �= (ρ, a) and mT (ρ, a) = 2. Note that in this case, we
have Jord(T ′

j ) = Jord(Tj ) and must show T ′
j = Tj . We have

T ↪→ � j � Tj

⇓
μ∗{

ν
a−1
2 ρ

}(T ) ≤
(
ν

a−1
2 ρ

)2 ⊗ �′
j � Tj

⇓
T ′ ≤ �′

j � Tj

⇓
T ′
j = Tj ,

as needed. This finishes (1).
For (2), the argument is fairly simple if either (ρ, a) or (ρ, a−2) hasmultiplicity

two. If mT (ρ, a) = 2, we have

T ↪→ δ
([

ν
−a+1

2 ρ, ν
a−1
2 ρ

])
� T ′,

where the data for T ′ are obtained by removing both copies of (ρ, a) and restricting
εT (Lemma 2.4). As

μ∗{
ν
a−1
2 ρ

}
(
δ
([

ν
−a+1

2 ρ, ν
a−1
2 ρ

])
� T ′)

=
(
ν

a−1
2 ρ

)2 ⊗
(
δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])
� T ′) ,

and fT (ν
a−1
2 ρ) = 2, it follows that (noting the irreducibility of δ([ν −a+3

2 ρ, ν
a−3
2 ρ])�

T ′)

μ∗{
ν
a−1
2 ρ

}(T ) =
(
ν

a−1
2 ρ

)2 ⊗
(
δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])
� T ′) .

As δ([ν −a+3
2 ρ, ν

a−3
2 ρ]) � T ′ ∼= T2, the result follows. If mT (ρ, a) = 1 but

mT (ρ, a − 2) = 2, the argument is similar: by Proposition 3.4.3 [12], we have

T ↪→ δ
([

ν
−a+3

2 ρ, ν
a−1
2 ρ

])
� T ′′,

where the data for T ′′ are obtained by removing one copy each of (ρ, a) and
(ρ, a − 2) and restricting εT . Here, we have

μ∗{
ν
a−1
2 ρ

}
(
δ
([

ν
−a+3

2 ρ, ν
a−1
2 ρ

])
� T ′′) = ν

a−1
2 ρ ⊗

(
δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])
� T ′′)

⇓
μ∗{

ν
a−1
2 ρ

}(T ) = ν
a−1
2 ρ ⊗

(
δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])
� T ′′) .
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Again, the conclusion follows from theobservation thatT2 ∼= δ([ν −a+3
2 ρ, ν

a−3
2 ρ])�

T ′′.
If mT (ρ, a) = mT (ρ, a − 2) = 1, the argument is based on combining a pair

of embeddings. First, by Proposition 3.4.3 [12], we have

T ↪→ δ
([

ν
−a+3

2 ρ, ν
a−1
2 ρ

])
� T ′,

with T ′ having Jord(T ′) = Jord(T )\{(ρ, a), (ρ, a − 2)} and mT ′ , εT ′ given by
restriction. Then,

T ↪→ δ
([

ν
−a+3

2 ρ, ν
a−1
2 ρ

])
� T ′ ↪→ ν

a−1
2 × δ

([
ν

−a+3
2 ρ, ν

a−3
2 ρ

])
� T ′.

By Lemma 2.3, letting θT = θT (ν
a−1
2 ρ), we then have

θT ≤ δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])
� T ′. (3.3)

Note that it follows from Eq. (3.3) that θT (ν
a−1
2 ρ) is tempered.

In the embedding

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1
2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� δT ,

we have (ρ, a), (ρ, a − 2) ∈ Jord(δT ). By Theorem 3.2.2 [12], we have

δT ↪→ ν
a−1
2 ρ � T ′′,

with T ′′ having Jord(T ′′) = Jord(δT )\{(ρ, a)},mT ′′(ρ, a−2) = 2 with remain-
ing multiplicities and εT ′′ given by restriction. Then, by a commuting argument
(noting the obvious irreducibilities involved)

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1
2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
× ν

a−1
2 ρ � T ′′

∼= ν
a−1
2 ρ × δ

([
ν

−a1+1
2 ρ1, ν

a1−1
2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� T ′′.

Again, by Lemma 2.3,

θT ≤ δ
([

ν
−a1+1

2 ρ1, ν
a1−1
2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� T ′′. (3.4)

Recall ([12]) that εθT is defined as follows: we have

θT ≤ δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])

× δ
([

ν
−a1+1

2 ρ1, ν
a1−1
2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� δθT .

For notational convenience, let (ρ0, a0) = (ρ, a−2). Then, for i = 0, . . . , k, there

is a unique Ti ≤ δ([ν −ai+1
2 ρi , ν

ai−1
2 ρi ]) � δθT such that

θT ≤ δ

([
ν

−a0+1
2 ρ0, ν

a0−1
2 ρ0

])
× · · · × δ

([
ν

−ai−1+1
2 ρi−1, ν

ai−1−1
2 ρi−1

])

× δ

([
ν

−ai+1+1
2 ρi+1, ν

ai+1−1
2 ρi+1

])
× · · · × δ

([
ν

−ak+1
2 ρk , ν

ak−1
2 ρk

])
� Ti .
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If Si denotes the domain for δ([ν −ai+1
2 ρi , ν

ai−1
2 ρi ]) � δθT , by definition (Sect. 2.3

[12]) we have

εθT

∣∣Si = εTi .

Observe that it then follows directly from (3.4) and the description of the data of
T ′′ that

εθT

∣∣S0 = εT ′′ = εT
∣∣S0 .

Also, it follows directly from (3.3) and the description of the data of T ′ that

εθT

∣∣Si = εT ′ |Si = εT
∣∣Si

for i = 1, . . . , k. Combining these, we have

εθT

∣∣Si = εT
∣∣Si

for i = 0, . . . , k.
As εθT is determined by its values on SθT ∩ [Jordρi (θT ) ∪ Jordρi (θT ) ×

Jordρi (θT )], i = 0, 1, . . . , k, it suffices to show that εθT |Si determines εθT on
SθT ∩ [Jordρi (θT ) ∪ Jordρi (θT ) × Jordρi (θT )] for i = 0, 1, . . . , k. Fix i ∈
{0, 1, . . . , k}. If red(ρi ; σ) = 0 or red(ρi ; σ) ≡ 1

2 mod 1, then εθT is defined
on Jordρi (θT ); by Lemma 2.3.1 [12], its values there determine εθT on SθT ∩
[(Jordρi (θT ) ∪ (Jordρi (θT ) × Jordρi (θT ))]. If red(ρi ; σ) ∈ N, then εθT is not
definedon individual elements of Jordρi (θT ).However, it still follows fromLemma
2.3.1 [12] that εθT is determined on SθT ∩[Jordρi (θT )∪(Jordρi (θT )×Jordρi (θT ))]
by its values on Si , i = 0, . . . , k (more precisely, those having ρ j ∼= ρi ) as long as
Jordρi (δθ ) �= ∅. (To see this, fix (ρi , b) ∈ Jord(δθT ) and observe that for ρ j ∼=
ρi , εθT (ρi , ai )εθT (ρi , a j )

−1 = εθT (ρi , ai )εθT (ρi , b)−1 · εθT (ρi , b)εθT (ρi , a j )
−1.)

However, that Jordρi (δθT ) �= ∅ follows for red(ρi ; σ) ≥ 1 as in Example 14.4.0
[20], finishing this case and the proposition. 
�
Lemma 3.5. Proposition 3.4 holds in the case k = 1 and (ρ, a) satisfies either (i)
a− < a − 2 (or does not exist), or (ii) εT (ρ, a)εT (ρ, a−)−1 = 1.

Proof. Write μ∗
{ν a−1

2 ρ}
(T ) = (ν

a−1
2 ρ)m ⊗ T ′, where m = mT (ρ, a). Note that as

in the proof of Proposition 3.4, it suffices to show that εT ′ is as claimed. Further, if
we let ST (ρ) be that part of ST supported on Jordρ(T )∪(Jordρ(T )× Jordρ(T )),
and similarly for Sδ(ρ), ST ′(ρ), etc., it suffices to show that εT ′ |ST ′ (ρ) is as claimed.

We note that the case where (ρ, a−) exists is covered by Lemma 3.3.3 [12].
Thus we assume (ρ, a−) does not exist. The proof is broken into three main cases:
(1) Jordρ(T ) = {(ρ, a)} with red(ρ; σ) half-integral, (2) Jordρ(T ) = {(ρ, a)}
with red(ρ; σ) integral, (3) (ρ, a+) exists, where a+ is the smallest value of b > a
satisfying (ρ, b) ∈ Jord if it exists.
Case 1 Jordρ(T ) = {(ρ, a)} with red(ρ; σ) half-integral
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Observe that by supercuspidal support considerations (Lemma 2.4.1 [12]),
mT ′(ρ, a − 2) = m. Now, in one direction,

εT ′(ρ, a − 2) = 1
⇓ (Lemma 2.3.5 [12])

T ′ ↪→ δ
([

ν
1
2 ρ, ν

a−3
2 ρ

])m
� θ ′

⇓
T ↪→

(
ν

a−1
2 ρ

)m × δ
([

ν
1
2 ρ, ν

a−3
2 ρ

])m
� θ ′.

By Frobenius reciprocity, rM,G(T ) ≥ (ν
a−1
2 ρ)m ⊗ δ([ν 1

2 ρ, ν
a−3
2 ρ])m ⊗ θ ′ for the

appropriate standard Levi factor M . As the only irreducible representation of a

general linear group having (ν
a−1
2 ρ)m ⊗δ([ν 1

2 ρ, ν
a−3
2 ρ])m in its Jacquet module is

δ([ν 1
2 ρ, ν

a−1
2 ρ])m , we get μ∗(T ) ≥ δ([ν 1

2 ρ, ν
a−1
2 ρ])m ⊗ θ ′. It now follows from

Note 2.4.2 and Lemma 2.3.5 [12] that εT (ρ, a) = 1.
In the converse direction,

εT (ρ, a) = 1
⇓ (Lemma 2.3.5 [12])

T ↪→ δ
([

ν
1
2 ρ, ν

a−1
2 ρ

])m
� θ ↪→

(
ν

a−1
2 ρ

)m × δ
([

ν
1
2 ρ, ν

a−3
2 ρ

])m
� θ

⇓
rM,G(T ) ≥

(
ν

a−1
2 ρ

)m ⊗ δ
([

ν
1
2 ρ, ν

a−3
2 ρ

])m ⊗ θ

for the appropriate standard Levi factor M . As μ∗
{ν a−1

2 ρ}
(T ) = (ν

a−1
2 ρ)m ⊗ T ′. It

follows thatμ∗(T ′) ≥ δ([ν 1
2 ρ, ν

a−3
2 ρ])m⊗θ . As above, this then implies εT ′(ρ, a−

2) = 1, as needed.
Case 2 Jordρ(T ) = {(ρ, a)} with red(ρ; σ) integral

First, observe that |Jordρ(T )| ≤ 1, so |Jordρ(δ)| ≤ 1. This implies
red(ρ; σ) ∈ {0, 1} (e.g., see Sect. 14.4 [20]). If red(ρ; σ) = 1, we have
ST (ρ) ⊂ Jordρ(T ) × Jordρ(T ). Thus, ε = ∅ (see Example 14.4.1 [20], e.g.)
and there is nothing to prove. We therefore assume red(ρ; σ) = 0 in what fol-
lows. Recall that in this case, one makes an arbitrary enumeration of components
ρ �σ = τ1(ρ; σ)⊕ τ−1(ρ; σ) (see [29,30]) as part of the classification of discrete
series.

In the notation of Definition 2.3.6 [12],

εT ′(ρ, a − 2) = η

⇓
T ′ ↪→ λ � T (δ

([
νρ, ν

a−3
2 ρ

])m ; τη(ρ; σ))

⇓
T ↪→

(
ν

a−1
2 ρ

)m × λ � T (δ
([

νρ, ν
a−3
2 ρ

])m ; τη(ρ; σ))

∼= λ ×
(
ν

a−1
2 ρ

)m
� T

(
δ
([

νρ, ν
a−3
2 ρ

])m ; τη(ρ; σ)
)

⇓
rM,G(T ) ≥ λ ⊗

(
ν

a−1
2 ρ

)m ⊗
(
ν

a−3
2 ρ

)m ⊗ · · · ⊗ (νρ)m ⊗ τη(ρ; σ),
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with the irreducibility of (ν
a−1
2 ρ)m × λ immediate from supercuspidal support

considerations. Now, observe that by the Langlands classification, L((ν
−a+1

2 ρ)m,

(ν
−a+3

2 ρ)m, . . . , (ν−1ρ)m; τ−η(ρ; σ)) is the unique irreducible representation con-

taining (ν
−a+1

2 ρ)m⊗(ν
−a+3

2 ρ)m⊗· · ·⊗(ν−1ρ)m⊗τ−η(ρ; σ) in its Jacquetmodule.

It then follows from duality that T (δ([νρ, ν
a−1
2 ρ])m; τη(ρ; σ)) is the unique irre-

ducible representation containing (ν
a−1
2 ρ)m ⊗ (ν

a−3
2 ρ)m ⊗· · ·⊗ (νρ)m ⊗ τη(ρ; σ)

in its Jacquet module. Thus,

μ∗(T ) ≥ λ ⊗ T (δ
([

νρ, ν
a−1
2 ρ

])m ; τη(ρ; σ)).

By Lemma 2.2.8 [12] for m = 2 and a similar argument when m = 1, this then
implies

εT (ρ, a) = η,

as needed.
Case 3 (ρ, a+) exists

We first consider the case mT (ρ, a+) = 1.
In one direction,

εT ′(ρ, a+)εT ′(ρ, a − 2) = 1
⇓

T ′ ↪→ δ
([

ν
a−1
2 ρ, ν

a+−1
2 ρ

])
� λ

⇓
T ↪→

(
ν

a−1
2 ρ

)m × δ
([

ν
a−1
2 ρ, ν

a+−1
2 ρ

])
� λ

∼= δ
([

ν
a−1
2 ρ, ν

a+−1
2 ρ

])
×

(
ν

a−1
2 ρ

)m
� λ

↪→ δ
([

ν
a−3
2 ρ, ν

a+−1
2 ρ

])
× (ν

a−1
2 ρ)m+1

� λ

⇓
εT (ρ, a+)εT (ρ, a)−1 = 1.

In the other direction, by Proposition 3.4.3 [12]

εT (ρ, a+)εT (ρ, a)−1 = 1
⇓

T ↪→ δ
([

ν
−a+1

2 ρ, ν
a+−1

2 ρ
])

� T ∗ ↪→ δ([ν a−1
2 ρ, ν

a+−1
2 ρ]) × δ

([
ν

−a+1
2 ρ, ν

a−3
2 ρ

])
� T ∗

⇓ (Lemma 2.2)

T ↪→ δ
([

ν
a−1
2 ρ, ν

a+−1
2 ρ

])
� ξ

for some irreducible ξ ≤ δ([ν −a+1
2 ρ, ν

a−3
2 ρ]) � T ∗. From this embedding and the

irreducibility of δ([ν a−1
2 ρ, ν

a+−1
2 ρ])×ν

a−1
2 ρ, we see that fT (ν

a−1
2 ρ) = fξ (ν

a−1
2 ρ),
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so fξ (ν
a−1
2 ρ) = m. It then follows that ξ ↪→ (ν

a−1
2 ρ)m � ξ ′ for some irreducible

ξ ′. Then,

T ↪→ δ

([
ν
a−1
2 ρ, ν

a+−1
2 ρ

])
×

(
ν
a−1
2 ρ

)m
� ξ ′

∼=
(
ν
a−1
2 ρ

)m × δ

([
ν
a−1
2 ρ, ν

a+−1
2 ρ

])
� ξ ′

⇓
rM,G(T ) ≥ (ν

a−1
2 ρ)m ⊗ δ([ν a−1

2 ρ, ν
a+−1

2 ρ]) ⊗ ξ ′

for the appropriate standard Levi factor M . It then follows from (1.1) that

μ∗(T ′) ≥ δ
([

ν
a−1
2 ρ, ν

a+−1
2 ρ

])
⊗ ξ ′

⇓ (Note 2.4.2 [12])
εT ′(ρ, a+)εT ′(ρ, a − 2)−1 = 1,

as needed.
It remains to address the case mT (ρ, a+) = 2. Note that as k = 1, this has

mT (ρ, a) = 1, so (ρ, a) ∈ Jord(δ). The implication εT ′(ρ, a+)εT ′(ρ, a−2)−1 =
1 ⇒ εT (ρ, a+)εT (ρ, a)−1 = 1 is similar to the argument when mT (ρ, a+) = 1.
In the other direction,

εT (ρ, a+)εT (ρ, a)−1 = 1
⇓

μ∗
δ

([
ν
a+1
2 ρ,ν

a+−1
2 ρ

])2 (T ) = δ

([
ν
a+1
2 ρ, ν

a+−1
2 ρ

])2
⊗

(
δ
([

ν
−a+1

2 ρ, ν
a−1
2 ρ

])
� δ

)
,

noting that

μ∗
δ

([
ν
a+1
2 ρ,ν

a+−1
2 ρ

])2

((
δ
([

ν
−a++1

2 ρ, ν
a+−1

2 ρ
])

� δ
)

= δ
([

ν
a+1
2 ρ, ν

a+−1
2 ρ

])2
⊗

(
δ
([

ν
−a+1

2 ρ, ν
a−1
2 ρ

])
� δ

)
.

has the right-hand side irreducible (since (ρ, a) ∈ Jord(δ)).As f
δ([ν −a+1

2 ρ,ν
a−1
2 ρ])�δ

(ν
a−1
2 ρ) = 3, we get

T ↪→ δ
([

ν
a+1
2 ρ, ν

a+−1
2 ρ

])2 ×
(
ν

a−1
2 ρ

)3
� θ

⇓ (Lemma 2.2)

T ↪→ δ
([

ν
a+1
2 ρ, ν

a+−1
2 ρ

])
× λ1 ×

(
ν

a−1
2 ρ

)2
� θ

for some irreducible θ and some irreducible λ1 ≤ δ([ν a+1
2 ρ, ν

a+−1
2 ρ]) × ν

a−1
2 ρ.

The two possibilities for λ1 are δ([ν a−1
2 ρ, ν

a+−1
2 ρ]) and L(ν

a−1
2 ρ, δ([ν a+1

2 ρ,

ν
a+−1

2 ρ])). In either case, we have ν
a−1
2 ρ × λ1 is irreducible ([33] and Lemma 3.6

below). We now have
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T ↪→ δ
([

ν
a+1
2 ρ, ν

a+−1
2 ρ

])
×

(
ν

a−1
2 ρ

)2 × λ1 � θ

⇓ (Lemma 2.2)

T ↪→ λ2 × ν
a−1
2 ρ × λ1 � θ ∼= ν

a−1
2 ρ × λ2 × λ1 � θ

for some irreducible λ2 ≤ δ([ν a+1
2 ρ, ν

a+−1
2 ρ]) × ν

a−1
2 ρ. Now, if λ2 =

L(ν
a−1
2 ρ, δ([ν a+1

2 ρ, ν
a+−1

2 ρ])), the embedding above would immediately imply

fT (ν
a−1
2 ρ) ≥ 2, a contradiction. Thus, λ2 = δ([ν a−1

2 ρ, ν
a+−1

2 ρ]). Since

δ([ν a−1
2 ρ, ν

a+−1
2 ρ]) × λ1 is irreducible for either possibility for λ1 ([33], Lemma

1.3.3 [10]), we have

T ↪→ ν
a−1
2 ρ × δ

([
ν

a−1
2 ρ, ν

a+−1
2 ρ

])
× λ1 � θ

∼= ν
a−1
2 ρ × λ1 × δ

([
ν

a−1
2 ρ, ν

a+−1
2 ρ

])
� θ.

Applying the same argument again tells us λ1 = δ([ν a−1
2 ρ, ν

a+−1
2 ρ]). Arguing as

in the case mT (ρ, a+) = 1, we now get

T ↪→ ν
a−1
2 ρ × δ

([
ν

a−1
2 ρ, ν

a+−1
2 ρ

])2
� θ

⇓
rM,G(T ) ≥ ν

a−1
2 ρ ⊗ δ

([
ν

a−1
2 ρ, ν

a+−1
2 ρ

])2 ⊗ θ

⇓
μ∗(T ′) ≥ δ

([
ν

a−1
2 ρ, ν

a+−1
2 ρ

])2 ⊗ θ

⇓ (Note 2.4.2 [12])
εT ′(ρ, a+)εT ′(ρ, a − 2)−1 = 1,

as needed. 
�
Lemma 3.6. The following representations are irreducible:

(1) ν
a−1
2 ρ × L(ν

a−1
2 ρ, δ([ν a+1

2 ρ, ν
b−1
2 ρ])) for b ≥ a,

(2) L(ν
−a+1

2 ρ, δ([ν −a+3
2 ρ, ν

a−3
2 ρ]), ν a−1

2 ρ) × ν
a−1
2 ρ for a ≥ 2,

(3) L(ν
−a+1

2 ρ, δ([ν −a+3
2 ρ, ν

a−1
2 ρ])) × ν

a−1
2 ρ for a ≥ 2.

Proof. (1) is a special case of Lemma 4.1 (or more generally, Proposition 4.3) of
[15]. For a = 2, (2) and (3) follow from [33]. For a > 2, (3) is immediate from
Lemma 1.3.3 [10].

This leaves (2) when a > 2. In this case, observe that by Lemma 1.3.1 [10], the

only possible irreducible subquotients ofL(ν
−a+1

2 ρ, δ([ν −a+3
2 ρ, ν

a−3
2 ρ]), ν a−1

2 ρ)×
ν

a−1
2 ρ are the following:

(1) π1 = L(ν
−a+1

2 ρ, δ([ν −a+3
2 ρ, ν

a−3
2 ρ]), ν a−1

2 ρ, ν
a−1
2 ρ),

(2) π2 = L(ν
−a+1

2 ρ, δ([ν −a+3
2 ρ, ν

a−1
2 ρ]), ν a−1

2 ρ)

(3) π3 = L(δ([ν −a+1
2 ρ, ν

a−3
2 ρ]), ν a−1

2 ρ, ν
a−1
2 ρ)
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(4) π4 = L(δ([ν −a+1
2 ρ, ν

a−1
2 ρ]), ν a−1

2 ρ) (i.e.,π4 = δ([ν −a+1
2 ρ, ν

a−1
2 ρ])×ν

a−1
2 ρ).

By the Langlands classification, π1 appears with multiplicity one. We now show
that the remaining possibilities cannot occur.Observe that by Proposition 2.1.4 [10],

L(ν
−a+1

2 ρ, δ([ν −a+3
2 ρ, ν

a−3
2 ρ]), ν a−1

2 ρ) has f (ν
a−1
2 ρ) = 0, so any irreducible sub-

quotient of L(ν
−a+1

2 ρ, δ([ν −a+3
2 ρ, ν

a−3
2 ρ]), ν a−1

2 ρ) × ν
a−1
2 ρ has f (ν

a−1
2 ρ) ≤ 1.

However, Proposition 2.1.4 [10] tells us fπ2(ν
a−1
2 ρ) = fπ4(ν

a−1
2 ρ) = 2. Thus, they

do not occur. Further,m∗(π3) contains a term of the form δ([ν −a+1
2 ρ, ν

a−3
2 ρ])⊗· · · ,

whereas m∗
(
L(ν

−a+1
2 ρ, δ([ν −a+3

2 ρ, ν
a−3
2 ρ]), ν a−1

2 ρ) × ν
a−1
2 ρ

)
does not (as the

ν
−a+3

3 ρ appears after the ν
−a+1

2 ρ in any Jacquet module term). Irreducibility fol-
lows. 
�
Lemma 3.7. Suppose T is elliptic tempered.

(1) If (ρ, 2) ∈ Jord(T ), then

μ∗{
ν
1
2 ρ

}(T ) =

⎧
⎪⎨

⎪⎩

(
ν

1
2 ρ

)mT (ρ,2) ⊗ T1 if εT (ρ, 2) = 1
(
ν

1
2 ρ

)mT (ρ,2)−1 ⊗ L(ν− 1
2 ρ; T1) if εT (ρ, 2) = −1

where Jord(T1) = Jord(T )\{(ρ, 2)} with remaining multiplicities matching
those of T and εT1 given by restriction. Note that if εT (ρ, 2) = −1, we must

have mT (ρ, 2) = 2 to have fT (ν
1
2 ρ) �= 0.

(2) If (ρ, 1) ∈ Jord(T ), then we must have mT (ρ, 1) = 2 to have fT (ρ) =
mT (ρ, 1) − 1 nonzero. In this case

μ∗{ρ}(T ) = ρ ⊗ T2,

where Jord(T2) = Jord(T )\{(ρ, 1)} with remaining multiplicities matching
those of T and εT2 given by restriction.

Proof. The claim for (2) follows directly from the definition of Jord(T ).
For (1), the proof in the case where εT (ρ, 2) = −1 is similar to that for Propo-

sition 3.4 (3); the proof in the case where εT (ρ, 2) = 1 andmT (ρ, 2) = 2 is similar
to that of Proposition 3.4 (2) in the case wherem(ρ, a) = 2. The proof of (1) in the
case where εT (ρ, 2) = 1 and mT (ρ, 2) = 1 reduces to k = 1 in the same manner
as in the proof of Proposition 3.4 (2) when m(ρ, a) = 1. Thus we are reduced to
showing (1) in the case where εT (ρ, 2) = 1, mT (ρ, 2) = 1, and k = 1.

In this case, we have

T ↪→ δ
([

ν
−c+1

2 ρ, ν
c−1
2 ρ

])
� δ

for some discrete series δ. Then, writingμ∗
{ν 1

2 ρ}
(δ) = ν

1
2 ρ ⊗δ′ as in Theorem 3.2.2

[12], we have

T ↪→ δ
([

ν
−c+1

2 ρ, ν
c−1
2 ρ

])
× ν

1
2 ρ � δ′ ∼= ν

1
2 ρ × δ

([
ν

−c+1
2 ρ, ν

c−1
2 ρ

])
� δ′

⇓
μ∗{

ν
1
2 ρ

}(T ) = ν
1
2 ρ ⊗ T ′
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for some irreducible T ′ ≤ δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ′. T ′ clearly has the same par-

tial cuspidal support as T ; that Jord(T ′) and mT ′ are as described follows from
supercuspidal support considerations (Lemma 2.4.1 [12]). It remains to show that
εT ′ is as described. For this, it suffices to show that εT ′(ρ, b) = εT (ρ, b) for
(ρ, b) ∈ Jord(T ′) (so b > 2). We do this in two cases.
Case 1 (ρ, b−) does not exist in Jord(T ′).

Noting that mT ′(ρ, b) = mT (ρ, b), Lemma 2.3.5 [12] tells us

εT ′(ρ, b) = 1
⇓

T ′ ↪→ δ
([

ν
1
2 ρ, ν

b−1
2 ρ

])mT (ρ,b)
� θ ′

⇓
T ↪→ ν

1
2 ρ × δ

([
ν

1
2 ρ, ν

b−1
2 ρ

])mT (ρ,b)
� θ ′

∼= δ
([

ν
1
2 ρ, ν

b−1
2 ρ

])mT (ρ,b) × ν
1
2 ρ � θ ′

↪→ δ
([

ν
3
2 ρ, ν

b−1
2 ρ

])mT (ρ,b) ×
(
ν

1
2 ρ

)mT (ρ,b)+1
� θ ′

⇓ (Lemma 2.2)

T ↪→ δ
([

ν
3
2 ρ, ν

b−1
2 ρ

])mT (ρ,b)
� θ ′′

⇓
εT (ρ, b)εT (ρ, 2)−1 = 1

⇓ (Lemma 2.3.1 [12])
εT (ρ, b) = 1

as we have εT (ρ, 2) = 1. Conversely,

εT (ρ, b) = 1
⇓

εT (ρ, b)εT (ρ, 2)−1 = 1
⇓

T ↪→ δ
([

ν
3
2 ρ, ν

b−1
2 ρ

])mT (ρ,b)
� θ ′′.

Further, by iterating Proposition 3.4, we see that θ ′′ is tempered with mθ ′′(ρ, 2) =
mT (ρ, b) + 1 and εT ′′(ρ, 2) = 1. In particular, fθ ′′(ν

1
2 ρ) = 1 + mT (ρ, b). Thus,

noting T ↪→ ν
1
2 ρ � T ′ by (1.1),

T ↪→ δ
([

ν
3
2 ρ, ν

b−1
2 ρ

])mT (ρ) ×
(
ν

1
2 ρ

)mT (ρ,b)+1
� θ ′′′

⇓
μ∗(T ) ≥ δ

([
ν

1
2 ρ, ν

b−1
2 ρ

])mT (ρ) × ν
1
2 ρ ⊗ λ for some irreducible λ

⇓
μ∗

(
ν

1
2 ρ � T ′

)
≥ δ

([
ν

1
2 ρ, ν

b−1
2 ρ

])mT (ρ,b) × ν
1
2 ρ ⊗ λ

⇓
μ∗(T ′) ≥ δ

([
ν

1
2 ρ, ν

b−1
2 ρ

])mT (ρ,b) ⊗ λ
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by a standard μ∗ analysis. As mT ′(ρ, b) = mT (ρ, b), this implies εT ′(ρ, b) = 1
by the same argument as in Corollary 2.2.7 [12], as needed.

Case 2 (ρ, b−) exists in Jord(T ′).
By Lemma 2.3.1 [12] and the preceding case, to show εT ′(ρ, b) = εT (ρ, b),

it suffices to show εT ′(ρ, b)εT ′(ρ, b−)−1 = εT (ρ, b)εT (ρ, b−)−1. The proof that
εT ′(ρ, b)εT ′(ρ, b−)−1 = 1 ⇒ εT (ρ, b)εT (ρ, b−)−1 = 1 is very similar to the
proof that εT ′(ρ, b) = εT (ρ, b) in the previous case. The converse direction is
easier than in the previous case:

εT (ρ, b)εT (ρ, b−)−1 = 1
⇓

μ∗(T ) ≥ δ
([

ν
b−+1

2 ρ, ν
b−1
2 ρ

])m(ρ,b) ⊗ λ for some irreducible λ

⇓
μ∗

(
ν

1
2 ρ � T ′

)
≥ δ

([
ν

b−+1
2 ρ, ν

b−1
2 ρ

])m(ρ,b) ⊗ λ

⇓
μ∗(T ′) ≥ δ

([
ν

b−+1
2 ρ, ν

b−1
2 ρ

])m(ρ,b) ⊗ λ′ for some irreducible λ′,

(as 1
2 /∈ { b−+1

2 ,
b−+3
2 , . . . , b−1

2 }). As mT ′(ρ, b) = mT (ρ, b), it then follows that
εT ′(ρ, b)εT ′(ρ, b−)−1 = 1, as needed. 
�

4. Reducibility results

In this section, we determine when ν
a−1
2 ρ � T is reducible. We focus on the case

where (ρ, a) ∈ Jord with a ≡ 2red(ρ; σ)+1mod 2, with the final result given in
Theorem 4.7; Note 4.8 discusses the (much simpler) case when this fails. We start

with a general lemma, then turn to the task of analyzing ν
a−1
2 ρ � T .

Proposition 4.1. Suppose π ≤ (ν
−a+1

2 ρ)k × δ([ν −a+1
2 ρ, ν

a−3
2 ρ])� � T is irre-

ducible. Then, π has the form

π = L(
(
ν

−a+1
2 ρ

)k′
, δ

([
ν

−a+1
2 ρ, ν

a−3
2 ρ

])�′
; T ′)

with k′ + �′ ≤ k + �.

Proof. Write π = L(�; T ′). If � = ∅, we are done. Thus, suppose

δ([ν −d+1
2 ρ, ν

c−1
2 ρ]), c < d, is a generalized Steinberg representation appearing

in �. Then, if we write μ∗(T ) = ∑
h λh ⊗ θh , it follows from Theorem 2.1 that

δ
([

ν
−d+1

2 ρ, ν
c−1
2 ρ

])
≤

(
ν

−a+1
2 ρ

)x1 ×
(
ν

a−1
2 ρ

)x2

×
(

k∏

s=1

δ
([

ν−is+1ρ, ν
a−3
2 ρ

])
× δ

([
ν jsρ, ν

a−1
2 ρ

]))
× λh,



46 C. Jantzen

where −a+1
2 ≤ is ≤ a+1

2 and is ≤ js ≤ a+1
2 . We first claim that d = a. If

ν
−d+1

2 ρ came from (ν
−a+1

2 ρ)x1 , we would have d = a, as claimed. We clearly

cannot have ν
−d+1

2 ρ coming from (ν
a−1
2 ρ)x2 . If −d+1

2 = −is + 1, then we must
have c−1

2 ≥ a−3
2 ⇒ c ≥ a − 2. Therefore, d ≥ a, so is ≥ a+1

2 ⇒ is = a+1
2 . This

again corresponds to d = a. If js = −d+1
2 , we must have c−1

2 ≥ a−1
2 ⇒ c ≥ a.

Therefore, d ≥ a+2. This forces js ≤ −a−1
2 , a contradiction. Thus we cannot have

js = −d+1
2 . Similarly, ν

−d+1
2 ρ cannot come from λh as λh must have nonnegative

central exponent (by the Casselman criterion).
Next, we claim that c−1

2 = −a+1
2 or a−3

2 . Again, consider the possible sources

of ν
c−1
2 ρ. If it came from (ν

−a+1
2 ρ)x1 or δ([ν−is+1ρ, ν

a−3
2 ρ]), we would have

c−1
2 = −a+1

2 or a−3
2 , as claimed. The condition c < d = a immediately elim-

inates (ν
a−1
2 ρ)x2 and δ([ν jsρ, ν

a−1
2 ρ]) as possible sources. The remaining possi-

bility is that ν
c−1
2 ρ comes from λh . As λh must contribute to δ([ν −a+1

2 ρ, ν
c−1
2 ρ])

and must satisfy the Casselman criterion, we have λh = δ([ν −e+1
2 ρ, ν

c−1
2 ρ])

with e ≤ c < a. This leaves δ([ν −a+1
2 ρ, ν

−e−1
2 ρ]) to be accounted for. We

have −e+1
2 ≤ c−1

2 ≤ a−3
2 , so −e−1

2 < a−3
2 . Therefore, none of (ν

a−1
2 ρ)x2 ,

δ([ν−is+1ρ, ν
a−3
2 ρ]), δ([ν jsρ, ν

a−1
2 ρ]) can contribute to δ([ν −a+1

2 ρ, ν
−e−1

2 ρ]). The
only remaining possibility is that δ([ν −a+1

2 ρ, ν
−e−1

2 ρ]) = ν
−a+1

2 ρ. Then e = a−2.
Since a − 2 ≤ c < a, we must also have c = a − 2, finishing the claim.

As for the bounds on k′, �′, from the discussion above, each lower segment end

of ν
−a+1

2 ρ appearing in (the GL part of) L((ν
−a+1

2 ρ)k
′
, δ([ν −a+1

2 ρ, ν
a−3
2 ρ])�′ ; T ′)

comes from a ν
−a+1

2 ρ in (ν
−a+1

2 ρ)k or δ([ν −a+1
2 ρ, ν

a−3
2 ρ])�. It then follows that

k′ + �′ ≤ k + �. 
�
We attack the reducibility conditions for ν

a−1
2 ρ �T , a > 2, through a sequence

of lemmas.

Lemma 4.2. If mT (ρ, a − 2) > 2, then ν
a−1
2 ρ � T is reducible.

Proof. Write T ∼= δ([ν −a+3
2 , ν

a−3
2 ρ]) � T ′ (irreducible as mT (ρ, a − 2) > 2).

Then

ν
a−1
2 ρ � T ∼= ν

a−1
2 ρ × δ

([
ν

−a+3
2 , ν

a−3
2 ρ

])
� T ′,

whose reducibility follows from that of ν
a−1
2 ρ × δ([ν −a+3

2 , ν
a−3
2 ρ]). 
�

Lemma 4.3. Suppose (ρ, a − 2) /∈ Jord. Then ν
a−1
2 ρ � T is irreducible.

Proof. FromProposition 4.1, the only possible irreducible subquotients of ν
a−1
2 ρ�

T are L(ν
a−1
2 ρ; T ), L(δ([ν −a+1

2 ρ, ν
a−3
2 ρ]); T ′), and T ′′. The first occurs with mul-

tiplicity one by the Langlands classification. The second has a term of the form

ν
a−3
2 ρ ⊗· · · in its s(1), so cannot occur. Thus if the third does not occur, irreducibil-

ity follows.



Jacquet modules and irrreducibility of induced representations 47

That the third cannot occur essentially reduces to supercuspidal support con-
siderations. In the notation of Lemma 2.4.1 [12], if a−3

2 ≥ red(ρ; σ),

0 = mT (ρ, a − 2) = nT

(
ρ,

a − 3

2

)
− nT

(
ρ,

a − 1

2

)

⇒ nT

(
ρ,

a − 3

2

)
= nT

(
ρ,

a − 1

2

)
,

where nT (ρ, x) denotes the number of times ν±xρ appears in a term in the super-
cuspidal support (i.e., if νx1ρ1 ⊗ νx2ρ2 ⊗ · · · ⊗ νxk−1ρk ⊗ σ is in the minimal
Jacquet module for T , then nT (ρ, x) = |{i | ρi ∼= ρ and xi = ±x}|). A tempered

subquotient of T ′′ would have an extra ν± a−1
2 ρ in its supercuspidal support, so

mT ′′(ρ, a − 2) = nT ′′
(

ρ,
a − 3

2

)
− nT ′′

(
ρ,

a − 1

2

)

= nT

(
ρ,

a − 3

2

)
−

(
nT

(
ρ,

a − 1

2

)
+ 1

)
= −1

a contradiction. The argument for a−3
2 < red(ρ; σ) is similar. The lemma now

follows. 
�
Lemma 4.4. Suppose mT (ρ, a − 2) > 0 and either (1) mT (ρ, a) = 0, or (2)

εT (ρ, a)εT (ρ, a − 2)−1 = 1. Then, ν
a−1
2 ρ � T is reducible.

Proof. Let T ′ have data given by

mT ′(ρ′, b) =
⎧
⎨

⎩

mT (ρ, a − 2) − 1 if (ρ′, b) = (ρ, a − 2),
mT (ρ, a) + 1 if (ρ′, b) = (ρ, a),

mT (ρ′, b) otherwise,

and εT ′ the restriction of εT to ST ′ (ifmT (ρ, a) > 1,we have Jord(T ′) = Jord(T )

and the restriction is an equality). We claim that such a T ′ exists, i.e., that the data
given is admissible. Recall that for (Jord(T ′), σ, εT ′ ,mT ′) to be admissible, we
need the underlying triple (Jord(T ′)ds, σ, (εT ′)ds) to be admissible in the [M-T]
sense, where

Jord(T ′)ds = {
(ρ′, b) ∈ Jord(T ′) | b

≡ 2red(ρ; σ) + 1mod 2 and mT ′(ρ′, b) odd
}

and (εT ′)ds is given by restriction of εT ′ , which in turn is the restriction of εT . The
admissibility may then be checked in cases based on the parity of mT (ρ, a) and
mT (ρ, a − 2). In all four cases, admissibility is immediate from Proposition A.1
in the appendix.

Now, observe that by Theorem 3.1,

μ∗
{ν a−1

2 ρ}
(T ′) =

(
ν

a−1
2 ρ

)mT (ρ,a)+1 ⊗ T ′′,
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wheremT ′′(ρ, a−2) = mT (ρ, a−2)+mT (ρ, a),mT ′′(ρ, a) = 0, and εT ′′ given by

restriction.Observe that Theorem3.1 also tells usμ∗
{ν a−1

2 ρ}
(T ) = (ν

a−1
2 ρ)mT (ρ,a)⊗

T ′′, so

μ∗
{ν a−1

2 ρ}

(
ν

a−1
2 ρ � T

)
=

(
ν

a−1
2 ρ

)mT (ρ,a)+1 ⊗ T ′′.

By Lemma 2.2, T ′ ↪→ ν
a−1
2 ρ � ((ν

a−1
2 ρ)mT (ρ,a)

� T ′′) ⇒ T ′ ↪→ ν
a−1
2 ρ � λ for

some irreducible λ ≤ (ν
a−1
2 ρ)mT (ρ,a)

� T ′′. Since fT ′(ν
a−1
2 ρ) ≤ 1 + fλ(ν

a−1
2 ρ),

we have fλ(ν
a−1
2 ρ) ≥ mT (ρ, a). Further, since fT ′′(ν

a−1
2 ρ) ≤ mT ′′(ρ, a) = 0,

we have fλ(ν
a−1
2 ρ) = mT (ρ, a). Therefore, μ∗

{ν a−1
2 ρ}

(λ) = (ν
a−1
2 ρ)mT (ρ,a) ⊗

T ′′ ⇒ λ = T by (1.1). As we also have L(ν
−a+1

2 ρ; T ) ≤ ν
a−1
2 ρ � T , reducibility

follows. 
�
Lemma 4.5. SupposemT (ρ, a−2) = 2and (ρ, a) ∈ Jord with εT (ρ, a)εT (ρ, a−
2)−1 = −1. Then, ν

a−1
2 ρ � T is reducible.

Proof. Let π = L(ν
−a+1

2 ρ; T ). Observe that if ν
a−1
2 ρ � T were irreducible, we

would have π ∼= ν
a−1
2 ρ � T , hence fπ (ν

a−1
2 ρ) = 1 + fT (ν

a−1
2 ρ). Thus, to show

reducibility, it suffices to show fπ (ν
a−1
2 ρ) = fT (ν

a−1
2 ρ). Note that fT (ν

a−1
2 ρ) =

mT (ρ, a) − 1 by Theorem 3.1.
As mT (ρ, a − 2) = 2, we have

π ↪→ ν
−a+1

2 ρ � T ↪→ ν
−a+1

2 ρ × δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])
� T ′,

where the data for T ′ is obtained by removing the two copies of (ρ, a − 2) and
restricting εT (Lemma 2.4). By Lemma 2.2,

π ↪→ L
(
ν

−a+1
2 ρ, δ

([
ν

−a+3
2 ρ, ν

a−3
2 ρ

]))
� T ′

or

π ↪→ δ
([

ν
−a+1

2 ρ, ν
a−3
2 ρ

])
� T ′.

As the latter has L(δ([ν −a+1
2 ρ, ν

a−3
2 ρ]); T ′) as its unique irreducible subrepresen-

tation, the former must hold.
Now, let m = mT (ρ, a) = mT ′(ρ, a). Since (ρ, a − 2) /∈ Jord(T ′), we have

T ′ ↪→
(
ν

a−1
2 ρ

)m
� T ′′, T ′′ as in Theorem 3.1. Thus,

π ↪→ L
(
ν

−a+1
2 ρ, δ

([
ν

−a+3
2 ρ, ν

a−3
2 ρ

]))
×

(
ν

a−1
2 ρ

)m
� T ′′.

Applying Lemma 2.2 and Lemma 3.6, we have

π ↪→
(
ν

a−1
2 ρ

)m−1 × L
(
ν

−a+1
2 ρ, δ([ν −a+3

2 ρ, ν
a−3
2 ρ]), ν a−1

2 ρ
)

� T ′′
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or

π ↪→
(
ν

a−1
2 ρ

)m−1 × L
(
ν

−a+1
2 ρ, δ([ν −a+3

2 ρ, ν
a−1
2 ρ])

)
� T ′′.

If the latter held, we would have

π ↪→
(
ν

a−1
2 ρ

)m−1 × ν
−a+1

2 ρ × δ
([

ν
−a+3

2 ρ, ν
a−1
2 ρ

])
� T ′′

∼= ν
−a+1

2 ρ ×
(
ν

a−1
2 ρ

)m−1 × δ
([

ν
−a+3

2 ρ, ν
a−1
2 ρ

])
� T ′′

↪→ ν
−a+1

2 ρ ×
(
ν

a−1
2 ρ

)m × δ
([

ν
−a+3

2 ρ, ν
a−3
2 ρ

])
� T ′′.

As μ∗
{ν −a+1

2 ρ}
(π) = ν

−a+1
2 ρ ⊗ T , this would imply rM,G(T ) ≥

(
ν

a−1
2 ρ

)m ⊗
δ([ν −a+3

2 ρ, ν
a−3
2 ρ])⊗T ′′, contradicting fT (ν

a−1
2 ) = m−1. Thus, the former holds.

However, as (ρ, a) /∈ Jord(T ′′) andM∗
(
L

(
ν

−a+1
2 ρ, δ([ν −a+3

2 ρ, ν
a−3
2 ρ]), ν a−1

2 ρ
))

contains no terms of the form ν
a−1
2 ρ ⊗· · · , the former tells us fπ (ν

a−1
2 ρ) = m−1,

i.e., fπ (ν
a−1
2 ρ) = fT (ν

a−1
2 ρ), as needed. 
�

Lemma 4.6. SupposemT (ρ, a−2) = 1and (ρ, a) ∈ Jord with εT (ρ, a)εT (ρ, a−
2)−1 = −1. Then, ν

a−1
2 ρ � T is irreducible.

Proof. From Proposition 4.1, there are three possible forms for an irreducible sub-

quotient of ν
a−1
2 ρ � T : L(ν

−a+1
2 ρ; T ), L(δ([ν −a+1

2 ρ, ν
a−3
2 ρ]); T ′), and T ′′. The

first appears with multiplicity one by the Langlands classification. Thus if we show
the second and third do not appear, irreducibility follows.

First, consider T ′′. On one hand,

T ′′ ≤ ν
a−1
2 ρ � T

⇓
fT ′′

(
ν

a−1
2 ρ

)
≤ 1 + fT (ν

a−1
2 ρ) = mT (ρ, a).

On the other hand, it follows from Lemma 2.4.1 [12] thatmT ′′(ρ, a) = mT (ρ, a)+
1 and mT ′′(ρ, a − 2) = mT (ρ, a − 2) − 1 = 0. This implies fT ′′(ν

a−1
2 ρ) =

mT ′′(ρ, a) = mT (ρ, a) + 1, a contradiction. Thus, we cannot have T ′′.
We now consider L(δ([ν −a+1

2 ρ, ν
a−3
2 ρ]); T ′). Were this to occur, we would

have

δ
([

ν
−a+1

2 ρ, ν
a−3
2 ρ

])
⊗ T ′ ≤ M∗ (

ν
a−1
2 ρ

)
� μ∗(T ).

If μ∗(T ) = ∑
i λi ⊗ ξi , we have (Theorem 2.1)

M∗ (
ν

a−1
2 ρ

)
� μ∗(T )

=
∑

i

(
ν

−a+1
2 ρ × λi ⊗ ξi + ν

a−1
2 ρ × λi ⊗ ξi + λi ⊗ ν

a−1
2 ρ � ξi

)
.
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As the Casselman criterion tells us λi has nonnegative central exponent, the only
possibility is

δ
([

ν
−a+1

2 ρ, ν
a−3
2 ρ

])
⊗ T ′ ≤ ν

−a+1
2 ρ × λi ⊗ ξi .

For λi irreducible and δ([ν −a+1
2 ρ, ν

a−3
2 ρ]) ≤ ν

−a+1
2 ρ × λi , we must have

λi = δ([ν −a+3
2 ρ, ν

a−3
2 ρ]). Then ξi must be tempered (as any violation of the

Casselman criterion for ξi immediately produces a violation for λi ⊗ ξi =
δ([ν −a+3

2 ρ, ν
a−3
2 ρ]) ⊗ ξi , contradicting the temperedness of T ). It then follows

from Lemma 2.4.1 [12] that mT (ρ, a − 2) = 2+mξi (ρ, a − 2) ≥ 2, contradicting

mT (ρ, a−2) = 1. Thus, L(δ([ν −a+1
2 ρ, ν

a−1
2 ρ]); T ′) does not occur either, and we

have the needed irreducibility. 
�
Theorem 4.7. Consider ν

a−1
2 ρ � T , where a ≡ 2red(ρ; σ) + 1mod 2 and a > 2.

(1) If mT (ρ, a − 2) = 0, we have ν
a−1
2 ρ � T irreducible.

(2) If mT (ρ, a − 2) = 1, we have
(a) ν

a−1
2 ρ � T reducible if m(ρ, a) = 0 or ε(ρ, a)ε(ρ, a − 2)−1 = 1,

(b) ν
a−1
2 ρ � T irreducible if ε(ρ, a)ε(ρ, a − 2) = −1.

(3) If mT (ρ, a − 2) ≥ 2, we have ν
a−1
2 ρ � T reducible.

In the case a = 2, we have ν
1
2 ρ � T reducible if and only if mT (ρ, 2) = 0

or εT (ρ, 2) = 1. (Recall that for a = 1, we have ρ � T irreducible if and only if
(ρ, 1) ∈ Jord(T ).)

Proof. The case a > 2 is covered by the preceding lemmas.

Fora = 2, one irreducible subquotient of ν
1
2 ρ�T is L(ν− 1

2 ρ; T ), and it appears
with multiplicity one. The issue is therefore to determine whether or not there is
another irreducible subquotient. Note that by Proposition 4.1, such an irreducible
subquotient would have to be tempered.

IfmT (ρ, 2) = 0, we construct T ′ by adding a single copy of (ρ, 2) to Jord(T )

and taking εT ′(ρ, 2) = 1, with all other data matching that for T . That the data is
admissible may be seen from the appendix (noting α0 = 1

2 ); from Theorem 3.1 we

have μ∗
{ν 1

2 ρ}
(T ′) = ν

1
2 ρ ⊗ T . Then T ′ ↪→ ν

1
2 ρ � T , implying reducibility.

If εT (ρ, 2) = 1, a similar argument works. In this case, we obtain T ′ by adding
a single copy of (ρ, 2), i.e., taking mT ′(ρ, 2) = mT (ρ, 2) + 1, and letting all
remaining data remain the same. Again, that the data so obtained is admissible
follows from the appendix. One can also see from the data that if μ∗

{ν 1
2 ρ}

(T ) =
(ν

1
2 ρ) f ⊗ θ , then μ∗

{ν 1
2 ρ}

(T ′) = (ν
1
2 ρ) f+1 ⊗ θ . From Lemma 2.2, we then have

T ′ ↪→ ν
1
2 ρ � λ for some irreducible λ ≤ (ν

1
2 ρ) f � θ . Further, it follows from

this embedding that in order to have μ∗
{ν 1

2 ρ}
(T ′) = (ν

1
2 ρ) f +1 ⊗ θ , we must have

μ∗
{ν 1

2 ρ}
(λ) = (ν

1
2 ρ) f ⊗ θ , implying λ = T . Thus T ′ ↪→ ν

1
2 ρ � T , again giving

reducibility.
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Now, consider the case εT (ρ, 2) = −1. Supposewedid have ν
1
2 ρ�T reducible.

As L(ν− 1
2 ρ; T ) is the Langlands quotient in ν

1
2 ρ � T , it cannot also appear as a

subrepresentation by multiplicity one. So, let T ′ ↪→ ν
1
2 ρ � T be a subrepresenta-

tion (necessarily tempered as above). Note that from this embedding, we see that

if μ∗
{ν 1

2 ρ}
(T ) = (ν

1
2 ρ) f ⊗ θ , then μ∗

{ν 1
2 ρ}

(T ′) = (ν
1
2 ρ) f+1 ⊗ θ . On the other

hand, by supercuspidal support considerations (Lemma 2.4.1 [12]), we see that
Jord(T ′) = Jord(T ), mT ′(ρ, 2) = mT (ρ, 2) + 1, and remaining multiplicities
the same. Further, it follows from Lemma 3.3 that sincemT ′(ρ, 2) = mT (ρ, 2)+1
and fT ′(ν

1
2 ρ) = fT (ν

1
2 ρ)+1, wemust have εT ′(ρ, 2) = εT (ρ, 2). However, since

mT ′(ρ, 2) andmT (ρ, 2) have different parities, Theorem 3.1(8) tells us one of them
would require θ tempered and one would require θ nontempered, a contradiction.
Thus we have irreducibility in this case. 
�
Note 4.8. In the case where a �≡ 2red(ρ; σ) + 1mod 2, we have the following:

ν
a−1
2 ρ � T is reducible if and only if (ρ, a − 2) ∈ Jord(T ). In particular, in the

context of (2.1) and (2.3), we have ν
a−1
2 ρ � δ irreducible, with any reducibility

which arises then coming from the reducibility of ν
a−1
2 ρ × δ([ν −ci+1

2 ρi , ν
ci−1
2 ρi ])

or ν
a−1
2 ρ × δ([ν −di+1

2 ρ′
i , ν

di−1
2 ρ′

i ]) (or with ν
−a+1

2 ρ̌ in place of ν
a−1
2 ρ).

Appendix A. Characterization of admissible triples

There are a number of places in this paper where it is claimed that a particular
tempered representation exists, i.e., that the data given is indeed admissible. At
the core, this corresponds to the claim that the underlying discrete series data
corresponds to an admissible triple. The purpose of this appendix is to give a
characterization of admissibility in the discrete series case which simplifies the
task of determining whether a particular ε does indeed correspond to an admissible
triple, thereby making the admissibility claims in this paper essentially obvious.

Inwhat follows,we use a variation of theMœglin–Tadić classification as in [16].
In particular, rather than taking the domain of ε to be in Jord∪(Jord× Jord), we
simply take the domain to be Jord. For the case of (ρ; σ) having half-integrable
reducibility, this makes no difference as the values of ε on Jordρ determine those
on Jordρ × Jordρ . The same holds when red(ρ; σ) = 0.

When red(ρ; σ) ∈ N, write Jordρ = {a1, . . . , ak} with a1 < · · · < ak . If ε0
denotes the Mœglin–Tadić datum, we define ε by arbitrarily choosing ε(ρ, a1) ∈
{±1}. We then take

ε(ρ, a2) = ε(ρ, a1)[ε0(ρ, a2)ε0(ρ, a1)−1]
ε(ρ, a3) = ε(ρ, a2)[ε0(ρ, a3)ε0(ρ, a2)−1]

...

(noting the compatibility conditions on p.729 [20]). Now, we may identify
ε0|Jordρ∪(Jordρ×Jordρ) with both ε|Jordρ and−ε|Jordρ , soweno longer have a bijec-
tion between admissible triples and equivalence classes of discrete series. We must
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therefore introduce an equivalence relation ∼ on triples, where (Jord1, σ1, ε1) ∼
(Jord2, σ2, ε2) if Jord1 = Jord2, σ1 = σ2 = σ , and for each ρ having
red(ρ; σ) ∈ N,

ε1|Jord1,ρ = ±ε2|Jord2,ρ .
Now, fix a ρ and consider Jordρ . Again, write Jordρ = {a1, . . . , ak} with

a1 < · · · < ak . We may then identify ε|Jordρ with the k-tuple

ερ = (ε(ρ, a1), ε(ρ, a2), . . . , ε(ρ, ak)).

Also, we set εalt = (1,−1, 1,−1, . . . , (−1)k) (with k implicit from context) and

α0 = α0(ρ; σ) =
{
0 if α = red(ρ; σ) ∈ Z,
1
2 if α = red(ρ; σ) ∈ 1

2 + Z.

Proposition A.1. ε is admissible if and only if for each ρ we have

〈ερ, εalt 〉 ∈ {α0 ± α},
where 〈 , 〉 denotes the usual inner product.
Proof. (⇒) Fix ρ and consider ερ . Recall that if ερ is not alternated, there exist
ai , ai+1 with ε(ρ, ai ) = ε(ρ, ai+1). Removing (ρ, ai ), (ρ, ai+1) from Jord and
restricting ε produces the subordinated triple (Jord ′, σ, ε′). To be admissiblemeans
this process may be repeated until one arrives at an alternated triple. One clearly
has 〈ερ, εalt 〉 = 〈ε′

ρ, εalt 〉, so it suffices to address the alternated case.
In the case α = red(ρ; σ) ∈ N ∪ {0}, a strongly positive discrete series repre-

sentation has |Jordρ | = |Jordρ(σ )| = |{1, 3, 5, . . . , 2α − 1}| = α (e.g., see 14.2
[20]). Thus ε = ±(1,−1, 1,−1, . . . , (−1)α) and 〈ερ, εalt 〉 = ±α. As α0 = 0, this
matches the description in the proposition. (Note that while α = 0 is vacuous, the
proposition has already been done in this case in Lemma 6.1 [11].)

In the case α = red(ρ; σ) ∈ − 1
2 + N, there are two possibilities for a strongly

positive discrete series:

|Jordρ | =
{ |Jordρ(σ )| if ε(ρ, amin) = −1,

|Jordρ(σ )| + 1 if ε(ρ, amin) = 1.

As |Jordρ(σ )| = |{2, 4, 6, . . . , 2α − 1}| = α − 1
2 , the possible alternating ερ are

ε1 =
(
−1, 1,−1, 1, . . . , (−1)α− 1

2

)

and

ε2 =
(
1,−1, 1,−1, . . . , (−1)α+ 1

2

)
.

We then observe that

〈ε1, εalt 〉 = −α + 1

2
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and

〈ε2, εalt 〉 = α + 1

2
,

matching the claim in the proposition. Note that in the case α = 1
2 , we have ε1 = ∅

corresponding to |Jordρ | = 0 and σ as the strongly positive discrete series. In lieu
of building from the vacuous case, we may simply note that when |Jordρ | = 2, we
have ερ = (1, 1) or (−1,−1) (Example 14.1.2 [20]), which satisfies 〈ερ, εalt 〉 = 0.
(⇐): Fix ρ and consider ερ = ε|Jordρ . It suffices to show that each such ερ satisfies
the conditions for admissibility.

First, supposeα = red(ρ; σ) ∈ N∪{0}.As the caseα = 0 is covered byLemma
6.1 [11], we may assume α ∈ N. Observe that in order to have |〈ερ, εalt 〉| = α, we
must have the number of entries in ερ—call it n–satisfying n ≡ αmod 2. Further,
note that |〈ερ, εalt 〉| ≤ n, implying n ≥ α. If n = α, we have |〈ερ, εalt 〉| = α

implying ερ = ±εalt , and±εalt is known to be admissible in this case (alternating,
of course). Thus, we suppose n > α.

Now, as |〈ερ, εalt 〉| = α < n, there must be a pair of consecutive entries
satisfying ε(ρ, ai ) = ε(ρ, ai+1) (or else ερ is alternating and |〈ερ, εalt 〉| = n >

α). Let Jord(1), ε(1) be obtained by removing (ρ, ai ), (ρ, ai+1) from Jord and
restricting ε. Note that (Jord, σ, ε) is admissible if and only if (Jord(1), σ, ε(1)) is
admissible.Wehave |〈ε(1)

ρ , εalt 〉| = α butn(1) = n−2. Ifn−2 = αweare done: ε(1)

is alternating andknown tobe admissible in this case as above.Otherwise,n−2 > α.

We iterate this argument and eventually obtain ε
( n−α

2 )
ρ = ±εalt (alternating and

known to be admissible), finishing this case.
The argument in the half-integral case is similar. The difference comes from

the fact that in this case, the known alternating ε’s have 〈ερ, εalt 〉 = 1
2 ± α (noting

that the case 〈ερ, εalt 〉 = 1
2 − 1

2 = 0 corresponds to Jordρ = ∅).
As before, we have |〈ερ, εalt 〉| ≤ n. Therefore, to have |〈ερ, εalt 〉| = α ± 1

2 ,
we must have n ≥ α − 1

2 . If n = α ± 1
2 , then 〈ερ, εalt 〉 = 1

2 ± α implies ερ ={
εalt if n = α + 1

2 ,−εalt if n = α − 1
2 ,

corresponding to known admissible (alternating) cases. As

before, if n > α + 1
2 , we must have ε(ρ, ai ) = ε(ρ, ai+1) for some i (or else

ερ = ±εalt and |〈ερ, εalt 〉| = n > α + 1
2 ). Let (Jord(1), σ, ε(1)) be obtained by

removing (ρ, ai ), (ρ, ai+1) and restricting ε. We have (Jord, σ, ε) admissible if
andonly if (Jord(1), σ, ε(1)) admissible.Now, ε(1)

ρ hasn(1) = n−2: ifn−2 = α± 1
2 ,

we have ε(1) admissible (alternating). If not, we iterate the argument, eventually
reaching the alternating case 
�
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