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1. Introductory material

1.1. Introduction

The purpose of this paper is to extend the Mœglin–Tadić classification of discrete
series of classical p-adic groups to cover tempered representations of these groups.

Recall that in general, if G is the F-points of a connected reductive group defined
over a p-adic field F , an irreducible tempered representation T of G embeds in a
parabolically induced representation IndG

P (δ), where δ is a discrete series represen-
tation of the Levi factor M of P . Note that δ is unique up to conjugacy. Further,
every component of IndG

P (δ) is tempered. For the classical groups considered in
this paper, IndG

P (δ) decomposes with multiplicity one. The components of IndG
P (δ)

are distinguished by the action of standard intertwining operators via the R-group.
This is convenient for some purposes, but not well-suited for the application of
Jacquet module methods.

For classical groups, an extension of the Mœglin–Tadić classification would
characterize representations in the tempered dual based on parabolically induced
representations into which they embed, a more convenient characterization for
using Jacquet module methods. The Langlands classification for admissible rep-
resentations is also well-suited for applying Jacquet module methods. However,
it requires knowing the tempered duals of the Levi factors of standard parabolic
subgroups—in this case, products of general linear groups and lower rank classical
groups of the same type. By extending the Mœglin–Tadić classification to cover
tempered representations, we may combine these to obtain a framework well-suited
to Jacquet module methods. We note that Jacquet module methods have been quite
effective in analyzing families of induced representations for classical groups in
cases where the classification of tempered representations is not an issue (e.g., see
[3,13,23–25,31], etc.). Thus, it is hoped that an extension of the Mœglin–Tadić
classification will fill a gap and allow a broader application of these methods. How-
ever, our particular motivation for undertaking this project is to study duality for
classical groups [1,26], where we expect Jacquet modules to play a key role (as in
the case of general linear groups, e.g., see [22]).
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Our approach to extending the Mœglin–Tadić classification to tempered rep-
resentations relies heavily on both the Mœglin–Tadić classification for discrete
series and the R-group results of Goldberg. In order to describe our results, we first
briefly review their results. For concreteness, we work with symplectic groups in
the introduction. Recall that for G = Sp(n, F), a parabolic subgroup has the form
P = MU with Levi factor M ∼= GL(n1, F) × · · · × GL(nk, F) × Sp(2n0, F)

with n0 + n1 + · · · + nk = n.
We start by reviewing the Mœglin–Tadić classification for discrete series. We

must first review a bit of notation from [36]. Suppose ρ is an irreducible unitary
supercuspidal representation of GL(r, F). We let ν = |det | and, for a, b with
a − b ∈ Z and a ≤ b, we let δ([νaρ, νbρ]) denote the generalized Steinberg
representation associated to the segment [νaρ, νbρ], i.e., the unique irreducible
subrepresentation of IndG

P (νbρ ⊗ νb−1ρ ⊗ · · · ⊗ νaρ), where G = GL(r(b −
a + 1), F) and P the standard parabolic subgroup having Levi factor GL(r, F) ×
· · · × GL(r, F). In [21], a discrete series representation δ of G = Sp(2n, F) is
embedded in a representation of the form

δ ↪→ IndG
P

(
δ
([

ν
−a1+1

2 ρ1, ν
a2−1

2 ρ1

])
⊗

· · · ⊗ δ

([
ν

−a2k−1+1
2 ρk, ν

a2k−1
2 ρk

])
⊗ δsp

)
,

with δsp a “strongly positive” discrete series and the ρi not necessarily distinct
(see Sect. 1.3 for more; a precise definition of strongly positive discrete series is
not crucial to the general discussion here in the introduction). Mœglin–Tadić then
identify δ with a triple (Jord, σ, ε) as follows: σ is the partial cuspidal support of
δ, i.e., a supercuspidal representation of Sp(2n0, F) (possibly n0 = 0) such that
any term in the supercuspidal support of δ has the form · · · ⊗ σ . Jord consists of
(ρ1, 2a1 + 1), (ρ1, 2a2 + 1), · · · , (ρk, 2a2k−1), (ρk, a2k)—essentially the ends of
the segments appearing in the embedding above—plus additional elements con-
tributed by δsp. The description of ε is more involved; it is a function defined on
a subset of Jord ∪ (Jord × Jord) with image in {±1}. It essentially identifies
representations of the above form into which δ may be embedded. To give a bit of
the flavor, suppose (ρ, a), (ρ, b) ∈ Jord, a < b, and there is no c with a < c < b
and (ρ, c) ∈ Jord. Then ε is defined on the pair ((ρ, a), (ρ, b)) and characterized
by

ε ((ρ, a), (ρ, b)) = 1 ⇔ δ ↪→ IndG
P

(
δ
([

ν
a+1

2 ρ, ν
b−1

2 ρ
])

⊗ θ
)

(1.1)

for some irreducible θ .
We now discuss the results on tempered representations and R-groups which we

need [6–8,11]. If T is an irreducible tempered representation of G = Sp(2n, F),
it follows from the work of Goldberg and Herb that

T ∼= IndG
P

(
δ
([

ν
−b1+1

2 ρ′
1, ν

b1−1
2 ρ′

1

])
⊗ · · · ⊗ δ

([
ν

−b j +1
2 ρ′

j , ν
b j −1

2 ρ′
j

])
⊗ Tell

)

(irreducibly induced), with Tell an elliptic tempered representation. (We retain the
notation and terminology for the analogous representations of the non-connected
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group O(2n, F); see Sects. 2.3, 2.4.) Thus, the key for us is understanding the
elliptic tempered representations. Now,

Tell ↪→ IndG
P

(
δ
([

ν
−c1+1

2 ρ′′
1 , ν

c1−1
2 ρ′′

1

])
⊗ · · · ⊗ δ

([
ν

−c	+1
2 ρ′′

	 , ν
c	−1

2 ρ′′
	

])
⊗ δ
)

,

with δ a discrete series representation and the induced representation having 2	

(inequivalent) components. Note that this requires that IndGi
Pi

(δ([ν −ci +1
2 ρ′′

i , ν
ci −1

2

ρ′′
i ]) ⊗ δ) all be reducible and, for i 
= j , (ρ′′

i , ci ) 
∼= (ρ′′
j , c j ). The reducibility of

IndGi
Pi

(δ([ν −ci +1
2 ρ′′

i , ν
ci −1

2 ρ′′
i ]) ⊗ δ) is equivalent to (ρ′′

i , ci ) 
∈ Jord(δ) and ci of
appropriate parity (ci ≡ 2red(ρ′′

i ; σ) + 1 mod 2—see Sect. 1.3).
To extend the Mœglin–Tadić classification to tempered representations, let us

first focus on the elliptic case. Suppose

Tell ↪→ IndG
P

(
δ
([

ν
−c1+1

2 ρ′′
1 , ν

c1−1
2 ρ′′

1

])
⊗ · · · ⊗ δ

([
ν

−c	+1
2 ρ′′

	 , ν
c	−1

2 ρ′′
	

])
⊗ δ
)

as above. We would like to construct Jord(T) by adding two copies each of

(ρ′′
1 , c1), . . . , (ρ

′′
	 , c	) (one for each end of δ([ν −ci +1

2 ρ′′
i , ν

ci −1
2 ρ′′

i ]), even if ci =
1). Thus we introduce a fourth datum, mT —the multiplicity (which seems
slightly more convenient than working with multisets), so have T associated to
(Jord(T ), σ, εT , mT ). Thus,

Jord(T ) = Jord(δ) ∪ {(ρ′′
1 , c1), . . . , (ρ

′′
	 , c	)}

and

mT (ρ, a) =
{

1 if (ρ, a) ∈ Jord(δ),

2 if (ρ, a) ∼= (ρ′′
i , ci ) for some i.

Again, we have εT : ST −→ {±1}, with the domain ST ⊂ Jord(T ) ∪ (Jord(T )

× Jord(T )). We have ST ⊃ Sδ , and εT |Sδ = εδ . The additional values of εT effec-

tively distinguish the 2	 components of IndG
P

(
δ([ν −c1+1

2 ρ′′
1 , ν

c1−1
2 ρ′′

1 ]) ⊗ · · ·⊗
δ([ν −c	+1

2 ρ′′
	 , ν

c	−1
2 ρ′′

	 ]) ⊗ δ
)

. In particular, we have the following extension of

Eq. (1.1): if (ρ, a), (ρ, b) ∈ Jord(T ) with a < b and no a < c < b with
(ρ, c) ∈ Jord(T ), then

(1) if m(ρ, b) = 1,

ε ((ρ, a), (ρ, b)) = 1 ⇔ δ ↪→ IndG
P

(
δ
([

ν
a+1

2 ρ, ν
b−1

2 ρ
])

⊗ θ
)

for some irreducible θ .
(2) if m(ρ, b) = 2,

ε ((ρ, a), (ρ, b)) = 1 ⇔ δ ↪→ IndG
P

(
δ
([

ν
a+1

2 ρ, ν
b−1

2 ρ
])

⊗δ
([

ν
a+1

2 ρ, ν
b−1

2 ρ
])

⊗ θ
)

for some irreducible θ .
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Other basic properties of the Mœglin–Tadić classification also have counterparts in
the extension to the tempered case. For more general tempered representations—
i.e., no longer assuming elliptic—we construct Jord(T ), mT by similarly adding
to Jord(Tell), mTell ; ST and εT match STell and εTell (noting that the corresponding
induced representation is irreducible so we do not have components to distinguish).

At this point, we make a few remarks on the hypotheses. As we need the results
of [21], we also assume their “Basic Assumption” (see Sect. 1.3). For purposes of the
arguments made in this paper, we can work in the generality of [21]; no additional
restrictions on charF or the bilinear forms defining the groups are needed. While
Goldberg’s work is central to our results and assumes charF = 0 and the groups are
split (or quasisplit in the unitary case), Theorem 13.1 of [21] is a suitable substitute
and requires only the “Basic Assumption” (which we need in any case). Thus we
may work in the same generality as [21].

We also remark that although SO(2n, F) is not directly covered by the results of
this paper, its tempered dual may be obtained from that of O(2n, F)via restriction—
see Lemma 2.3 and Proposition 9.1 of [18]. (We also take this opportunity to note
a correction to [18]. In Definition 2.1, the statement “We remark that if αn−1, αn 
∈
� . . .” is not correct—in this case, one has c◦iG,M (τ1⊗· · ·⊗τk−1⊗τk) ∼= iG,M (τ1⊗
· · ·⊗τk−1⊗τ−1

k ), with τk a character. One should interpret τ1×· · ·×τk �(1⊗c) as
in the beginning of the definition: τ1 ×· · ·×τk �(1⊗c) = c◦ iG,M (τ1 ⊗· · ·⊗τk).)

We now describe the results section by section. Sections 1.2 and 1.3 review
some general background and the Mœglin–Tadić classification, resp. The main
results are summarized in Sect. 1.4. Sections 2.1–2.4 establish the basic classifica-
tion of tempered representations. In Sect. 2.1, we give additional properties of the
Mœglin–Tadić classification which are needed later. Section 2.2 looks at the case of

IndG
P

(
δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) ⊗ δ
)

while Sect. 2.3 uses this to build up to the case of

general elliptic tempered representations. The extension to arbitrary tempered rep-
resentations is given in Sect. 2.4. Sections 3.1–3.4 establish additional properties of
the extension, key among them the following: Suppose (ρ, a), (ρ, b) ∈ Jord(T )

with a < b and no a < c < b with (ρ, c) ∈ Jord(T ), then

εT ((ρ, a), (ρ, b))

= 1 ⇒ T ↪→IndG
P

⎛
⎜⎝δ
([

ν
−a+1

2 ρ, ν
b−1

2 ρ
])

⊗ · · · ⊗ δ
([

ν
−a+1

2 ρ, ν
b−1

2 ρ
])

︸ ︷︷ ︸
m

⊗T ′

⎞
⎟⎠ ,

where m = min (m(ρ, a), m(ρ, b)) and T ′ is an irreducible tempered representa-
tion whose data is obtained by removing m copies each of (ρ, a), (ρ, c); εT ′ is then
obtained by restriction of εT . Sections 3.1 and 3.2 establish some basic terminology
and results on Jacquet modules of discrete series needed in the proofs which fol-

low. Section 3.3 revisits the case of Ind(δ([ν −c+1
2 ρ, ν

c−1
2 ρ])⊗δ); Sect. 3.4 uses this

to prove the above result. The final section—Sect. 3.5—determines the action of
normalized standard intertwining operators on the components of δ1 ×· · ·× δk � δ

in the case where δ is generic. As a corollary, we also characterize the generic
component; as in [10], it turns out to be the component with ε trivial (identically
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1 on its domain). As we use Goldberg’s results in Sect. 3.5, the classical groups
considered there are restricted accordingly.

Before closing, we take a moment to note the recent paper of Tadić [34], which
gives a similar classification of tempered representations of classical groups, but
using somewhat different data. We also take the opportunity to thank the referee for
a number of useful suggestions and corrections, as well as M. Tadić for explaining
aspects of his work with C. Mœglin to us.

1.2. Notation and preliminaries

In what follows, we use S(n, F) to denote one of the groups considered by Mœglin
and Tadić [21]. In the symplectic case, we have Sp(2n, F). In the orthogonal case,
fix an anisotropic orthogonal space Y0. If dim(Y0) is odd and n ≥ dim(Y0), we
take Vn to be the (2n + 1)-dimensional space in the Witt tower over Y0; S(n, F)

is then the special orthogonal group over Vn . If dim(Y0) is even and n ≥ dim(Y0),
we let Vn be the 2n-dimensional space in the Witt tower over Y0 and take S(n, F)

the orthogonal group over Vn . In the unitary case, we start with a fixed separable
quadratic extension F ′ of F and an anisotropic unitary space Y0 over F ′. We take
Vn the 2n-dimensional (resp., (2n + 1)-dimensional) space in the Witt tower over
Y0 and for n ≥ dim(Y0), let S(n, F) be the unitary group over Vn .

We now discuss some structure theory from [2,30,36]. As in [4], for a p-
adic group G with parabolic subgroup P = MU , we let iG,M and rM,G denote
normalized parabolic induction and the normalized Jacquet functor, respectively.
For S(n, F) in one of the families of classical groups under consideration, set

R =
⊕
n≥0

R(GL(n, F)) and R[S] =
⊕
n≥n0

R(S(n, F)),

where R(G) denotes the Grothendieck group of the category of smooth finite-length
representations of G and n0 is 1

2 dim(Y0) or 1
2 (dim(Y0)− 1), whichever is integral.

We define multiplication on R as follows: suppose ρ1, ρ2 are representations of
GL(n1, F), GL(n2, F), resp. We have M = GL(n1, F) × GL(n2, F) is the Levi
factor of a standard parabolic subgroup of G = GL(n, F), where n = n1 + n2,
and set τ1 × τ2 = iG,M (τ1 ⊗ τ2). This extends (after semisimplification) to give the
multiplication × : R × R −→ R. To describe the comultiplication on R, let M(i)

denote the standard Levi factor for G = GL(n, F) having M(i) = GL(i, F) ×
GL(n − i, F). For a representation τ of GL(n, F), we define

m∗(τ ) =
n∑

i=0

rM(i),G(τ ),

the sum of semisimplified Jacquet modules (lying in R ⊗ R). This extends to a map
m∗ : R −→ R ⊗ R. We note that with this multiplication and comultiplication
(and antipode map given by the Zelevinsky involution, a special case of the general
duality operator of [1,26]), R is a Hopf algebra.

Similarly, suppose τ is a representation of GL(n1, F) and θ a representation
of S(n2, F). We have M = GL(n1, F) × S(n2, F) the Levi factor of a standard
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parabolic subgroup of G = S(n, F), with n = n1+n2, and set τ �θ = iG,M (τ⊗θ).
If one extends � to a map � : R ⊗ R[S] −→ R[S], we have R[S] as a module
over R. To describe its comodule structure, let M(i) = GL(i, F) ⊗ S(n − i, F), a
standard Levi factor for G = S(n, F). For a representation π of S(n, F), we define

μ∗(π) =
n′∑

i=0

rM(i),G(π),

where n′ denotes the Witt index (so is n − 1
2 dim(Y0) or n − 1

2 (dim(Y0) − 1)) and
the sum is of (normalized) semisimplified Jacquet modules (lying in R ⊗ R[S]).
This extends to a map μ∗ : R[S] −→ R ⊗ R[S].

For unitary groups, let σ denote the nontrivial element of the Galois group of the
underlying quadratic extension. For a representation π of S(n, F), we then define

π̌ =
{

π̃ ◦ σ for unitary groups,
π̃ otherwise,

where ˜ denotes contragredient. Using this, we may give R[S] the structure of an
M∗-module over R (cf. [2,21,30]):

Theorem 1.2.1. Define M∗ : R −→ R ⊗ R by

M∗ = (m ⊗ 1) ◦ (ˇ ⊗ m∗) ◦ s ◦ m∗,

where m denotes the multiplication × : R ⊗ R −→ R and s : R ⊗ R −→ R ⊗ R
the extension of the map defined on representations by s : τ1 ⊗ τ2 �−→ τ2 ⊗ τ1.
Then

μ∗(τ � π) = M∗(τ ) � μ∗(π),

where � on the right hand side is determined by (τ1 ⊗ τ2) � (τ ⊗ θ) = (τ1 × τ) ⊗
(τ2 � θ).

In what follows, we frequently look at those terms in μ∗, m∗, M∗ having a
given first factor. In particular, if λ is an irreducible representation of a general
linear group, we let μ∗

λ (resp., m∗
λ, M∗

λ ) be the sum of everything in μ∗ (resp.,
m∗, M∗) of the form λ ⊗ θ . More precisely, if μ∗(π) = ∑

i miλi ⊗ θi (mi the
multiplicity of λi ⊗ θi ), we set μ∗

λ(π) =∑i∈Iλ miλi ⊗ θi , where Iλ = {i | λi ∼= λ},
and similarly for m∗

λ and M∗
λ . Similarly, if λ is an irreducible representation of a

standard Levi factor M , we let rλ be the sum of everything in rM,G of the form
λ ⊗ θ . Formally, we let rmin the terms from minimal nonzero Jacquet modules (so
the terms appearing in rmin are all supercuspidal).

We now take a moment to review cuspidal reducibility values. Suppose ρ is
an irreducible unitary supercuspidal representation of a general linear group and
σ an irreducible supercuspidal representation of a classical group. If ρ 
∼= ρ̌, then
νxρ � σ is irreducible for all x ∈ R; if ρ ∼= ρ̌, then there is a unique nonnegative
x ∈ R such that νxρ � σ reduces (cf. [29] and Corollary 4.4 [3]), which we denote
by red(ρ; σ). The values for red(ρ; σ) for Sp(2n, F) and SO(2n + 1, F) have
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been determined (assuming certain conjectures) in [19,37]; in the generic case, it
is known that they must lie in {0, 1

2 , 1} (cf. [27,28]).
We next review the Casselman criterion for S(n, F) (see [5,35], which extend

easily to the non-connected group O(2n, F)). Suppose π is an irreducible rep-
resentation of S(n, F). Suppose νx1ρ1 ⊗ · · · ⊗ νxk ρk ⊗ σ ≤ rM,Gπ has ρi an
irreducible unitary supercuspidal representation of GL(mi , F) for i = 1, . . . , k, σ
an irreducible supercuspidal representation of S(m, F), and x1, . . . , xk ∈ R. The
Casselman criterion tells us that if π is tempered, the following hold:

m1x1 ≥ 0
m1x1 + m2x2 ≥ 0

...

m1x1 + m2x2 + · · · + mk xk ≥ 0.

Conversely, if these inequalities hold for any such νx1ρ1 ⊗ · · ·⊗ ρk ⊗ σ (i.e., ρi an
irreducible unitary supercuspidal representation of GL(mi , F) and σ an irreducible
supercuspidal representation of S(m, F)) appearing in a Jacquet module of π , then
π is tempered. The criterion for square-integrability is the same except that the
inequalities are strict.

The following lemmas are Lemma 3.1 of [21] and Lemma 5.5 of [14], respec-
tively. The extension of Lemma 3.1 of [21] to the nonconnected group O(2n, F)

is not difficult and is included below.

Lemma 1.2.2. Suppose π is an irreducible representation of G and σ a supercus-
pidal (not necessarily unitary) representation which appears as a subquotient of
rM,G(π) for some parabolic subgroup P = M N of G. Then, π ↪→ iG,M (σ ).

Proof. The connected case is covered by Lemma 3.1 of [21]. Suppose G =
O(2n, F). Let σ0 ≤ rM0,M (σ ). Then σ0 ≤ rM0,G0(π0) for some irreducible
π0 ≤ rG0,G(π). Further, π ↪→ iG,G0(π0) (e.g., Lemma 2.13 of [9]). By the con-
nected case, we have π0 ↪→ iG0,M0(σ0). Therefore,

π ↪→ iG,G0(π0) ↪→ iG,G0 ◦ iG0,M0(σ0) ∼= iG,M ◦ iM,M0(σ0).

Either iM,M0(σ0) ∼= σ or σ ⊕ ĉσ , with ĉ the (restriction to M of the) nontriv-
ial character of O(2n, F) which is trivial on SO(2n, F) (e.g., Lemma 2.13 [9]).
Therefore, π ↪→ iG,M (σ ) or iG,M (ĉσ); by partial cuspidal support considerations,
it must be the former. ��

Lemma 1.2.3. Suppose π is an irreducible representation of G, λ an irreducible
representation of M and π ↪→ iG,M (λ). If L > M, then there is an irreducible
representation ρ of L such that

(1) π ↪→ iG,L(ρ)

(2) ρ is a subquotient of iL ,M (λ).
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1.3. The Mœglin–Tadić classification

In this section, we review the construction of [21] of discrete series for classical
groups. (This discussion also borrows freely from the review of the Mœglin–Tadić
construction given in [24].) There is an alternate characterization of part of the
construction, given in [32,33], which we also discuss. We then close with a lemma
which characterizes part of the Mœglin–Tadić construction in terms of Jacquet
modules.

Let π be an irreducible admissible representation of a classical group. If π is
not supercuspidal, we may write

π ↪→ νx1ρ1 × · · · × νx	ρ	 � σ,

with x1, . . . , x	 ∈ R, ρ1, . . . , ρ	 irreducible unitary supercuspidal representations
of general linear groups, and σ an irreducible supercuspidal representation of a
corresponding smaller classical group (possibly σ = 1, the trivial representation of
the trivial group). Recall that in the case of O(2n, F), Mœglin–Tadić do not treat
representations of O(2, F) as supercuspidal, so do not allow a representation of
O(2, F) to be the partial cuspidal support. Since SO(2, F) ∼= F×, an irreducible
representation of O(2, F) can be embedded in a representation of the form Indχ ∼=
χ � 1 with χ a character of F×. Thus we may take σ = 1 as the partial cuspidal
support. The σ which appears is unique, and the partial cuspidal support of π is
defined to be this σ .

Let δ be a discrete series representation for a classical group S(n, F). Jord(δ) is
defined to be the set of pairs (ρ, a), where ρ is an irreducible unitary supercuspidal
representation of a general linear group having ρ ∼= ρ̌ and a ∈ N, which satisfy the
following:

(1) a is even if and only if the L-function L(ρ, Rd , s) has a pole at s = 0. Here,
if ρ is a representation of GL(d, F), we let L(ρ, Rd , s) denote the L-function
defined by Shahidi (cf. [27,28]), with Rd is the representation of GL(d, C) on
∧2

C
d in the symplectic and even-orthogonal cases, and on Sym2(Cd) in the

odd-orthogonal case. (For the unitary case, see appendix 2 of [20].)

(2) δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) � δ is irreducible.

We note that, assuming the Basic Assumption of [21] (discussed later in this sec-
tion), the first condition ensures the parity of a matches the parity of 2red(ρ; σ)+1.
(Notice that the parity does not depend on σ , though the particular reducibility value
does.)

We remark that, for convenience, we use representations in the following
description of admissible triples when we actually want equivalence classes of rep-
resentations; the reader should interpret the discussion below accordingly. (Working
this way saves us from having to make a somewhat awkward but obvious definition
of equivalence of triples.)

Let Trip denote the collection of all triples (Jord, σ, ε) which satisfy the fol-
lowing:

(1) Jord is a finite (possibly empty) set of pairs (ρ, a), where ρ is an irreducible
unitary supercuspidal representation of a general linear group having ρ̌ ∼= ρ,
and a ∈ N with a even if and only if L(s, ρ, Rdρ ) has a pole at s = 0.
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(2) σ is an irreducible supercuspidal representation of a classical group S(n, F).
(3) ε : S −→ {±1} is a function on a subset S ⊂ Jord ∪ (Jord × Jord) which

satisfies certain conditions, which we discuss in more detail momentarily.

Let us start by describing the domain S of ε. S contains all (ρ, a) ∈ Jord except those
having a odd and (ρ, a′) ∈ Jord(σ ) for some a′ ∈ N; S contains

(
(ρ, a), (ρ′, a′)

) ∈
Jord × Jord when ρ ∼= ρ′ and a 
= a′. Several compatibility conditions must also
be satisfied:

(i) if (ρ, a), (ρ, a′) ∈ S, we must have ε
(
(ρ, a), (ρ, a′)

)
= ε(ρ, a)ε(ρ, a′)−1;

(ii) ε
(
(ρ, a), (ρ, a′′)

)

= ε
(
(ρ, a), (ρ, a′)

)
ε
(
(ρ, a′), (ρ, a′′)

)
for all(ρ, a), (ρ, a′), (ρ, a′′)

∈ Jord having a, a′, a′′ distinct;
and (iii) ε

(
(ρ, a), (ρ, a′)

) = ε
(
(ρ, a′), (ρ, a)

)
for all

(
(ρ, a), (ρ, a′)

) ∈ S.

(1.2)

We follow the notation of [21] and, in light of (i) above, write ε(ρ, a)ε(ρ, a′)−1 for
ε
(
(ρ, a), (ρ, a′)

)
even when ε is undefined on (ρ, a) and (ρ, a′) separately (i.e.,

even when (ρ, a) and (ρ, a′) are not in S).
We now discuss triples of alternated type. Suppose (ρ, a) ∈ Jord. We define

(ρ, a−) by taking a− = max{a′ ∈ N | (ρ, a′) ∈ Jord and a′ < a}, noting that
(ρ, a−) may be undefined. Also, let us write Jordρ = {(ρ′, a) ∈ Jord | ρ′ ∼=
ρ} and Jordρ(σ ) = {(ρ′, a) ∈ Jord(σ ) | ρ′ ∼= ρ}. We call (Jord, σ, ε) ∈
T rip a triple of alternated type if the following hold: (1) ε(ρ, a)ε(ρ, a−)−1 = −1
whenever (ρ, a−) is defined, and (2) |Jordρ | = |Jord ′

ρ(σ )|, where

Jord ′
ρ(σ ) =

{
Jordρ(σ ) ∪ {(ρ, 0)} if a is even and ε(ρ, min Jordρ) = 1,

Jordρ(σ ) otherwise.

We write T ripalt for the subset of all alternated triples in T rip.
This brings us to admissible triples. First, suppose (Jord, σ, ε) ∈ T rip has

(ρ, a) ∈ Jord with (ρ, a−) defined and ε(ρ, a)ε(ρ, a−)−1 = 1. Set Jord ′ =
Jord \ {(ρ, a), (ρ, a−)} and let ε′ be the restriction of ε to S ∩ [Jord ′ ∪ (Jord ′ ×
Jord ′)]. One can check that (Jord ′, σ, ε′) ∈ T rip. We say that (Jord ′, σ, ε′) is
subordinated to (Jord, σ, ε). We say the triple (Jord, σ, ε) is admissible if there
is a sequence of triples (Jordi , σ, εi ), 1 ≤ i ≤ k, such that (1) (Jord1, σ, ε1) =
(Jord, σ, ε), (2) (Jordi+1, σ, εi+1) is subordinated to (Jordi , σ, εi ) for all 1 ≤
i ≤ k − 1, and (3) (Jordk, σ, εk) is of alternated type. We write T ripadm for the
set of admissible triples.

Mœglin–Tadić establish a bijection between the set of all equivalence classes of
discrete series for all S(n, F) (not including O(2, F)) and the set of all admissible
triples. We now describe that correspondence. If δ is a discrete series representation
for an orthogonal group, we write (Jord(δ), σδ, εδ) for the associated admissible
triple. Here, Jord(δ) is as above and σδ is the partial cuspidal support of δ. It
remains to describe εδ .
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We first describe εδ on pairs. Suppose (ρ, a) ∈ Jordδ with a− defined. Then,

εδ(ρ, a)ε−1
δ (ρ, a−) = 1
�

there is an irreducible representation θ such that δ ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

� θ.

(1.3)

This property is sufficient to define εδ on that part of S contained in Jord(δ) ×
Jord(δ) (use property (3)(ii) from the definition of triple above). Now, suppose
(ρ, a) ∈ Jord(δ) with a even. If amin denotes the smallest value of a having
(ρ, a) ∈ Jord, we have

εδ(ρ, amin) = 1
�

there is an irreducible representation θ such that δ ↪→ δ
([

ν
1
2 ρ, ν

amin−1
2 ρ

])
� θ.

(1.4)

We can reformulate this by formally setting εδ(ρ, 0) = 1; Eq. (1.3) is then sufficient
to determine εδ(ρ, a) for all such (ρ, a) ∈ Jordρ . If (ρ, a) ∈ S with a odd (in
which case there is no b with (ρ, b) ∈ Jord(σδ)), Mœglin–Tadić use normalized
standard intertwining operators to define εδ(ρ, a) (cf. Proposition 6.1 [20]). In lieu
of this approach, we follow that given in [33], which has a more representation-
theoretic character.

In [33] (which provides proofs of results announced in [32]), Tadić gives another
way of defining εδ(ρ, a) when (ρ, a) ∈ S with a odd. In this case, the choice needed
to fix ε on Jordρ is a choice of components of ρ�σδ . We next review this definition.

To start, we make a choice of components, writing ρ � σ ∼= τ1(ρ; σ) ⊕
τ−1(ρ; σ). Then, for a ∈ N and η ∈ {±1}, let δ([νρ, νaρ]; τη(ρ; σ)) denote the
unique irreducible subrepresentation of δ([νρ, νaρ]) � τη(ρ; σ). If amax is the
largest value of a such that (ρ, a) ∈ Jord, we define εδ(ρ, amax ) as follows:

εδ(ρ, amax ) = η ⇔ there is an irreducible λ such that δ

↪→ λ � δ
(
[νρ, ν

amax −1
2 ρ]; τη(ρ; σ)

)
. (1.5)

Observe that once εδ(ρ, amax ) is known, Eq. (1.3) is enough to determine εδ on S.
Before proceeding further, let us take a moment to recall the Basic Assumption

under which the Mœglin–Tadić construction is done, and which we retain. Let ρ

be an irreducible unitary supercuspidal representation of a general linear group
having ρ ∼= ρ̌ and σ an irreducible supercuspidal representation of some S(n, F).
The Basic Assumption is the following:

red(ρ; σ) =
⎧⎨
⎩

aρ,max+1
2 if Jordρ(σ ) 
= ∅,

1
2 if L(ρ, Rdρ , s) has a pole at s = 0 and Jordρ(σ ) = ∅,

0 otherwise,

where aρ,max is the largest value of a for which (ρ, a) ∈ Jord. The reader is
referred to section 12 of [21] for more on this assumption.
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Note 1.3.1. In the opposite direction, let (Jord, σ, ε) be an admissible triple.
Then the associated discrete series representation δ satisfies the following: if
(ρ, a), (ρ, a−) ∈ Jord with ε(ρ, a)ε(ρ, a−)−1 = 1, then

δ ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δ′,

where δ′ has Mœglin–Tadić data (Jord ′, σ, ε′) with Jord ′ = Jord \ {(ρ, a),

(ρ, a−)} and ε′ is the restriction of ε to S′ (the domain of ε′). Repeated application
of this results in an embedding

δ ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a2
2 ρ2

])
× · · · × δ

([
ν

−a2k−1+1
2 ρ, ν

a2k
2 ρ

])
� δsp,

where δsp has its associated triple alternated (i.e., is a strongly positive discrete
series). For (Jord, σ, ε) alternated, we can construct the associated discrete series
as follows: write Jordρ = {(ρ, aρ

1 ), . . . , (ρ, aρ
kρ

)} with aρ
1 < · · · < aρ

kρ
. Then,

δ ↪→
⎛
⎝∏

ρ

kρ∏
i=1

δ
([

ν(φρ(aρ
i )+1)/2ρ, ν(aρ

i −1)/2ρ
])⎞
⎠� σ,

as unique irreducible subrepresentation, where φρ : Jordρ −→ Jord ′
ρ(σ ) is an

increasing bijection (noting that by the definition of alternated triple, these have
the same cardinality).

Remark 1.3.2. It follows directly from the embeddings in Note 1.3.1 that if
μ∗

ν
a−1

2 ρ
(δ) 
= 0, then (ρ, a) must be in Jord(δ).

Lemma 1.3.3. Let δ = δ(Jord,σ,ε) and (ρ, a) ∈ Jord with (ρ, a−) defined. Then

δ ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

� θ for some irreducible θ

�
μ∗(δ) ≥ δ

([
ν

a−+1
2 ρ, ν

a−1
2 ρ
])

⊗ θ ′ for some irreducible θ ′.

If a− is not defined, we may replace a− in the above statement with 0 or 1, whichever
matches the parity of 2red(ρ; σ) + 1.

Proof. The implication (⇒) is immediate from Frobenius reciprocity (taking

θ ′ = θ ). For (⇐), if a− exists, observe that since μ∗(δ) ≥ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

⊗
θ ′, we have

rmin(δ) ≥ ν
a−1

2 ρ ⊗ ν
a−3

2 ρ ⊗ · · · ⊗ ν
a−+1

2 ρ ⊗ · · ·
⇓ (Lemma 1.2.2)

δ ↪→ ν
a−1

2 ρ × ν
a−3

2 ρ × · · · ⊗ ν
a−+1

2 ρ × · · ·
⇓ (Lemma 1.2.3)

δ ↪→ λ � θ ′′
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for some irreducible λ ≤ ν
a−1

2 ρ × ν
a−3

2 ρ × · · · × ν
a−+1

2 ρ and irreducible θ ′′.
Any λ other than δ([ν a−+1

2 ρ, ν
a−1

2 ρ]) would have rνx ρ(λ) 
= 0 for some x ∈
{ a−+1

2 ,
a−+3

2 , . . . , a−3
2 }, hence rνx ρ(δ) 
= 0. Since rνx ρ(δ) = 0 for all such x

by Remark 1.3.2, this is not the case, so λ = δ([ν a−+1
2 ρ, ν

a−1
2 ρ]), as needed.

If a− does not exist, the same argument still works, replacing a− by 0 or 1, as
appropriate. ��

1.4. Summary

We close the first chapter by summarizing the main results. In particular, there
is a bijection between irreducible admissible quadruples on the one hand, and
irreducible tempered representations of a family of classical groups on the other.
In what follows, we describe this more precisely.

An admissible quadruple is a quadruple of the form (Jord, σ, ε, m) satisfying
the following:

• Jord consists of pairs (ρ, a) having ρ an irreducible unitary supercuspidal
representation of a general linear group and a ∈ N.

• σ is an irreducible supercuspidal representation of a classical group.
• m : Jord −→ N subject to

(1) if ρ 
∼= ρ̌, then m(ρ, a) = m(ρ̌, a), and
(2) if ρ ∼= ρ̌ but a 
≡ 2red(ρ; σ) + 1 mod 2, then m(ρ, a) ∈ 2N.

• For ε, we first define

Jordell = {(ρ, a) ∈ Jord | ρ ∼= ρ̌ and a ≡ 2red(ρ; σ) + 1 mod 2}.
We then define Sell as for discrete series:

Sell = {(ρ, a) ∈ Jordell | red(ρ; σ) = 0 or red(ρ; σ) ≡ 1
2 mod 1}

∪ {((ρ, a), (ρ′, a′)) ∈ Jordell × Jordell | ρ ∼= ρ′ and a 
= a′} .

The domain of ε is S = Sell , and

ε : S −→ {±1}
subject to the following:

(i) if (ρ, a), (ρ, a′) ∈ S, we must have ε
(
(ρ, a), (ρ, a′)

)
= ε(ρ, a)ε(ρ, a′)−1;

(ii) ε
(
(ρ, a), (ρ, a′′)

) = ε
(
(ρ, a), (ρ, a′)

)
ε
(
(ρ, a′), (ρ, a′′)

)
for all

(ρ, a), (ρ, a′), (ρ, a′′) ∈ Jord having a, a′, a′′ distinct;
and (iii) ε

(
(ρ, a), (ρ, a′)

) = ε
(
(ρ, a′), (ρ, a)

)
for all

(
(ρ, a), (ρ, a′)

) ∈ S.

Further, let Jordds = {(ρ, a) ∈ Jordell | m(ρ, a) is odd}. Then, (Jordds, σ,

εds) is an admissible triple in the sense of [21], where εds the restriction of ε

to Sds (defined as in [21]).
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The bijection is implemented in one direction as follows: let δ be the discrete
series associated by Mœglin–Tadić to the triple (Jordds, σ, εds). Define mell on
Jordell by

mell(ρ, a) =
{

1 if m(ρ, a) is odd,

2 if m(ρ, a) is even.

Associated to the quadruple (Jordell , σ, ε, mell) is an elliptic tempered represen-
tation

Tell ↪→
⎛
⎝ ∏

{(ρ,a)∈Jordell | m(ρ,a)=2}
δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])⎞⎠� δ.

It is characterized inductively by the following:

(1) If (ρ, a) ∈ Jordell with mell(ρ, a) = 2, then

Tell ↪→ δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� T ′
ell ,

where the data for T ′
ell is obtained by removing both copies of (ρ, a) and

restricting ε.
(2) If ε(ρ, a)ε(ρ, a−)−1 = 1, let m = min(m(ρ, a), m(ρ, a−)). Then,

Tell ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])m

� T ′′
ell ,

where the data for T ′′
ell is obtained by removing m copies each of (ρ, a), (ρ, a−)

and restricting ε.
(3) If Jordρ(Tell) = {(ρ, a)} with m(ρ, a) = 2, we must have red(ρ; σ) = 0 or

1
2 . If red(ρ; σ) = 1

2 , we have ε(ρ, a) = 1 ⇔ T ↪→ δ([ν 1
2 ρ, ν

a−1
2 ρ])2

� θ

for some irreducible θ . If red(ρ; σ) = 0, we have (for η = ±1) ε(ρ, a) =
η ⇔ T ↪→ λ � T (δ([νρ, ν

a−1
2 ρ])2; τη(ρ; σ)) for some irreducible λ (see

Lemma 2.2.2 for a description of T (δ([νρ, ν
a−1

2 ρ])2; τη(ρ; σ))).

Finally, let Jordnon = Jord \ Jordell . We choose a set X containing exactly one
of (ρ, a), (ρ̌, a) for those (ρ, a), (ρ̌, a) ∈ Jord having ρ̌ 
∼= ρ. Then T is the
irreducible induced representation

T =
∏

(ρ,a)∈X

δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])m(ρ,a)

×
∏

{(ρ,a)∈Jordnon | ρ∼=ρ̌}
δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
]) 1

2 m(ρ,a)

×
∏

(ρ,a)∈Jordell

δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
]) 1

2 [m(ρ,a)−mell (ρ,a)]
� Tell .
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In the other direction, suppose T is an irreducible tempered representation of
a classical group. In the data (Jord, σ, ε, m), we have σ as the partial cuspidal
support. Write

T ∼= δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� Tell

(irreducibly induced) with Tell elliptic tempered. Then Jord = Jordell ∪ Jordnon ,
where

Jordell = {(ρ, a) | a ≡ 2red(ρ; σ)

+1 mod 2 and δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� T irreducible}
and

Jordnon = {(ρ1, a1), (ρ̌1, a1), . . . , (ρk, ak), (ρ̌k, ak)}
(noting that there may be repetition among the elements listed in Jordnon). Let δ

be the unique discrete series representation such that we may write

T ↪→ δ
([

ν
−b1+1

2 ρ′
1, ν

b1−1
2 ρ′

1

])
× · · · × δ

([
ν

−b	+1
2 ρ′

	, ν
b	−1

2 ρ′
	

])
� δ.

Then,

m(ρ, a) =

⎧⎪⎪⎨
⎪⎪⎩

2|{i | (ρ′
i , bi ) = (ρ, a)}| + 1 if (ρ, a) ∈ Jord(δ),

2|{i | (ρ′
i , bi ) = (ρ, a)}| + 2 if (ρ, a) ∈ Jordell \ Jord(δ),

2|{i | (ρ′
i , bi ) = (ρ, a)}| if (ρ, a) ∈ Jordnon and ρ̌ ∼= ρ,

|{i | (ρ′
i , bi ) = (ρ, a) or (ρ̌, a)}| if ρ̌ 
∼= ρ.

Alternatively, both Jord and m may be determined from Lemma 2.4.1. Finally,
ε = εTell is determined by the following:

(1)

ε(ρ, a)ε(ρ, a−)−1 = 1 ⇔ T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])m(ρ,a)

� θ

for some irreducible θ ,
(2) if red(ρ; σ) ≡ 1

2 mod 1,

ε(ρ, amin) = 1 ⇔ T ↪→ δ
([

ν
1
2 ρ, ν

amin−1
2 ρ

])m(ρ,amin)

� θ

for some irreducible θ (where amin is the smallest value of b such that (ρ, b) ∈
Jordell ), and

(3) if red(ρ; σ) = 0,

ε(ρ, amax ) = η

�
T ↪→ λ �

(
δ
([

ν
−amax +1

2 ρ, ν
amax −1

2 ρ
]) 1

2 (m(ρ,amax )−m0)

� T (δ([νρ, ν
amax −1

2 ρ])m0 ; τη(ρ; σ))

)
,

for some irreducible λ, where m0 = 1 or 2, whichever matches the parity of
m(ρ, amax ), and amax is the largest value of b such that (ρ, b) ∈ Jordell (see

Definition 2.3.6 for a description of T (δ
([

νρ, ν
amax −1

2 ρ
])m0 ; τη(ρ; σ))).
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2. Jacquet modules

2.1. Some lemmas on the Mœglin–Tadić classification

In this section, we give several results on the Mœglin–Tadić classification which
are used later in the paper.

Let δ be a discrete series representation and M a standard Levi factor such that
rM,G(δ) 
= 0 but rL ,G(δ) = 0 for any standard Levi factor L < M . For c ≥ 0, we
let n(ρ, c) denote the number of times ν±cρ appears in some χ ≤ rM,G(δ). Note
that this depends only on the supercuspidal support of δ and not on the particular
M or χ used.

The following lemma tells us that Jord(δ) is determined by the supercuspidal
support of δ.

Lemma 2.1.1. Let δ = δ(Jord,σ,ε) be a discrete series representation. Suppose
c > 0 with c ≡ red(ρ; σ) mod 1. Then, we have the following:

(1) If c ≥ red(ρ; σ),

(ρ, 2c + 1) ∈ Jord ⇔ n(ρ, c) − n(ρ, c + 1) = 1.

(If (ρ, 2c + 1) 
∈ Jord, then n(ρ, c) − n(ρ, c + 1) = 0.)
(2) If c < red(ρ; σ),

(ρ, 2c + 1) ∈ Jord ⇔ n(ρ, c) − n(ρ, c + 1) = 0.

(If (ρ, 2c + 1) 
∈ Jord, then n(ρ, c) − n(ρ, c + 1) = −1.)

The case c = 0 is the same except that n(ρ, c) − n(ρ, c + 1) is replaced by
2n(ρ, 0) − n(ρ, 1).

Proof. Let α = red(ρ; σ) and set α0 =
{

1 if α ≡ 0 mod 1
1
2 if α ≡ 1

2 mod 1
. Write Jordρ(δ) =

{(ρ, a1), . . . , (ρ, ak)}. For c ≥ 0, we let n+(ρ, c) (resp., n−(ρ, c)) denote the
number of times c (resp., −c) appears in the set { a1−1

2 , a2−1
2 , . . . ,

ak−1
2 ,−α0,−α0−

1, . . . ,−α}. We remark that since Jord is multiplicity-free, n±(ρ, c) ≤ 1. Now, by
Lemma 3.1 [15],

n+(ρ, c) − n−(ρ, c + 1) =
{

n(ρ, c) − n(ρ, c + 1) if c > 0,

2n(ρ, 0) − n(ρ, 1) if c = 0.

The lemma now follows from the observations that

n+(ρ, c) =
{

1 if (ρ, 2c + 1) ∈ Jord,

0 if not
and n−(ρ, c + 1) =

{
1 if c < α,

0 if not.

��
Proposition 2.1.2. Let δ = δ(Jord,σ.ε) and (ρ, b) ∈ Jord. Suppose (ρ, b−) exists
and b > b− + 2. Then,
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μ∗
ν

b−1
2 ρ

(δ) = ν
b−1

2 ρ ⊗ δ′,

where δ′ is the discrete series representation with Mœglin–Tadić data described
below. Here,

Jord(δ′) = (Jord(δ) \ {(ρ, b)}) ∪ {(ρ, b − 2)}
and εδ′ is defined by εδ′ = ε on Sδ′ ∩ S (Sδ′ the domain of εδ′ ),

εδ′(ρ, a)εδ′(ρ, b − 2)−1 = ε(ρ, a)ε(ρ, b)−1

for (ρ, a) ∈ Jord(δ) \ {(ρ, b)}, and

εδ′(ρ, b − 2) = ε(ρ, b)

if defined. Note that if b− does not exist, we may replace b− + 2 with 1 or 2 in the
inequality b− + 2 < b, whichever matches the parity of 2red(ρ; σ) + 1.

Proof. We start by assuming b− exists. We discuss the (largely similar) case where
b− does not exist at the end.

First we show δ ↪→ ν
b−1

2 ρ�π ′ for some irreducible π ′, then show μ∗
ν

b−1
2 ρ

(δ) =
ν

b−1
2 ρ⊗π ′, and finally, π ′ ∼= δ′. From the results of Mœglin–Tadić (see Note 1.3.1),

we have

δ ↪→ δ
([

ν
−a1+1

2 ρ, ν
a2−1

2 ρ
])

× · · · × δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])
� δ∗,

where Jord(δ∗) = Jord(δ)\{(ρ, a1), . . . , (ρ, a2k)} and the restriction of ε∗ = εδ∗
to Jordρ(δ∗)∪ (Jordρ(δ∗)× Jordρ(δ∗)) is alternated. We have three possibilities
to consider: (i) b ∈ {a2, a4, . . . , a2k}, (ii) b ∈ {a1, a3, . . . , a2k−1}, and (iii) (ρ, b) ∈
Jord(δ∗).

First, suppose b ∈ {a1, a3, . . . , a2k−1}; for concreteness, b = a1 (the hard-

est case). Observe that by irreducibility, ν
−b+1

2 ρ × δ

([
ν

−a2 j−1+1
2 ρ, ν

a2 j −1
2 ρ

])
∼=

δ

([
ν

−a2 j−1+1
2 ρ, ν

a2 j −1
2 ρ

])
×ν

−b+1
2 ρ when j > 1. Thus, “commuting” the ν

−b+1
2 ρ

back,

δ ↪→
(
δ
([

ν
−b+3

2 ρ, ν
a2−1

2 ρ
])

× ν
−b+1

2 ρ
)

× δ
([

ν
−a3+1

2 ρ, ν
a5−1

2 ρ
])

× · · ·

×δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])
� δ∗

∼= δ
([

ν
−b+3

2 ρ, ν
a2−1

2 ρ
])

× δ
([

ν
−a3+1

2 ρ, ν
a5−1

2 ρ
])

× ν
−b+1

2 ρ × · · ·

×δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])
� δ∗
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∼= δ
([

ν
−b+3

2 ρ, ν
a2−1

2 ρ
])

× δ
([

ν
−a3+1

2 ρ, ν
a5−1

2 ρ
])

× · · ·

×δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])
× ν

−b+1
2 ρ � δ∗.

By Proposition 3.1(ii) [23], we have ν
b−1

2 ρ � δ∗ irreducible, hence ν
−b+1

2 ρ � δ∗ ∼=
ν

b−1
2 ρ � δ∗. Now, noting that ν

−b+1
2 ρ × δ([ν

−a2 j−1+1
2 ρ, ν

a2 j −1
2 ρ]) is irreducible for

all j , we continue

δ ↪→ δ
([

ν
−b+3

2 ρ, ν
a2−1

2 ρ
])

× δ
([

ν
−a3+1

2 ρ, ν
a5−1

2 ρ
])

× · · ·

×δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])
× ν

b−1
2 ρ � δ∗

∼= ν
b−1

2 ρ × δ
([

ν
−b+3

2 ρ, ν
a2−1

2 ρ
])

× δ
([

ν
−a3+1

2 ρ, ν
a5−1

2 ρ
])

× · · ·

×δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])
� δ∗

⇓ (Lemma 1.2.3)

δ ↪→ ν
b−1

2 ρ � π ′

for some irreducible π ′ ≤ δ([ν −b+3
2 ρ, ν

a2−1
2 ρ]) × δ([ν −a3+1

2 ρ, ν
a5−1

2 ρ]) × · · · ×
δ([ν −a2k−1+1

2 ρ, ν
a2k−1

2 ρ])� δ∗. The argument if b ∈ {a2, a4, . . . , a2k} is similar but
easier (as no inversion is required). Finally, if (ρ, b) ∈ Jord(δ∗), we have

δ∗ ↪→ δ

([
να0ρ, ν

a2k+1−1
2 ρ

])
× δ

([
να0+1ρ, ν

a2k+2−1
2 ρ

])
× · · ·

×δ

([
ναρ, ν

a2k+α−1
2 ρ

])
� δ∗∗,

with α = red(ρ; σ), α0 =
{

1 if α ≡ 0 mod 1
1
2 if α ≡ 1

2 mod 1
and a2k+1 < a2k+2 <

· · · < a2k+α−1. Again, for concreteness we focus on the hardest case and take
b = a2k+α−1. Now, observe that since b− ≥ a2k+α−2 and a2k+α−2−1

2 ≥ α − 2, we
have

b − 1

2
≥ b− + 3

2
≥ a2k+α−2 + 3

2
≥ α,

so δ([ναρ, ν
b−1

2 ρ]) is nondegenerate. Thus,

δ∗ ↪→ δ

([
να0ρ, ν

a2k+1−1
2 ρ

])
× δ

([
να0+1ρ, ν

a2k+2−1
2 ρ

])
× · · ·

×ν
b−1

2 ρ × δ
([

ναρ, ν
b−3

2 ρ
])

� δ∗∗
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∼= ν
b−1

2 ρ × δ

([
να0ρ, ν

a2k+1−1
2 ρ

])
× δ

([
να0+1ρ, ν

a2k+2−1
2 ρ

])
× · · ·

× × δ
([

ναρ, ν
b−3

2 ρ
])

� δ∗∗,

since δ([να0+ jρ, ν
a2k+1− j −1

2 ρ]) � ν
b−1

2 ρ is irreducible (as a2k+1 < · · · <

a2k+α−2 ≤ b− < b − 2). Combining this with our original embedding for δ,
we may argue as before to get

δ ↪→ δ
([

ν
−a1+1

2 ρ, ν
a2−1

2 ρ
])

× δ
([

ν
−a3+1

2 ρ, ν
a4−1

2 ρ
])

× · · ·

×δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])

×ν
b−1

2 ρ × δ

([
να0ρ, ν

a2k+1−1
2 ρ

])
× δ

([
να0+1ρ, ν

a2k+2−1
2 ρ

])
× · · ·

×δ
([

ναρ, ν
b−3

2 ρ
])

� δ∗∗

∼= ν
b−1

2 ρ × δ
([

ν
−a1+1

2 ρ, ν
a2−1

2 ρ
])

× δ
([

ν
−a3+1

2 ρ, ν
a4−1

2 ρ
])

× · · ·

×δ

([
ν

−a2k−1+1
2 ρ, ν

a2k−1
2 ρ

])

×δ

([
να0ρ, ν

a2k+1−1
2 ρ

])
× δ

([
να0+1ρ, ν

a2k+2−1
2 ρ

])
× · · ·

×δ
([

ναρ, ν
b−3

2 ρ
])

� δ∗∗

⇓ (Lemma 1.2.3)

δ ↪→ ν
b−1

2 ρ � π ′

for some irreducible π ′ ≤ δ([ν −a1+1
2 ρ, ν

a2−1
2 ρ]) × δ([ν −a3+1

2 ρ, ν
a4−1

2 ρ]) × · · · ×
δ([ν −a2k−1+1

2 ρ, ν
a2k−1

2 ρ])×δ([να0ρ, ν
a2k+1−1

2 ρ])×δ([να0+1ρ, ν
a2k+2−1

2 ρ])×· · ·×
δ([ναρ, ν

b−3
2 ρ]) � δ∗∗.

We now turn to the task of showing μ∗
ν

b−1
2 ρ

(δ) = ν
b−1

2 ρ ⊗ π ′ and π ′ ∼= δ′. We

first show π ′ is square-integrable. Now, were π ′ nontempered, we would have

π ′ ↪→ δ
([

ν−rρ′, νsρ′])
� π ′′

with r > s. Then,

δ ↪→ ν
b−1

2 ρ × δ
([

ν−rρ′, νsρ′])
� π ′′.

If ν
b−1

2 ρ × δ([ν−rρ′, νsρ′]) were irreducible, then we would get

δ ↪→ δ
([

ν−rρ′, νsρ′])× ν
b−1

2 ρ � π ′′,
which contradicts the Casselman criterion for the square-integrability of δ. Thus,

ν
b−1

2 ρ × δ([ν−rρ′, νsρ′]) would have to be reducible. This requires ρ′ ∼= ρ and
b−1

2 = s + 1. However, since r < s,
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δ ↪→ νs+1ρ × δ
([

ν−rρ′, νsρ′])
� π ′′

still contradicts the Casselman criterion for the square-integrability of δ. Therefore,
π ′ must be tempered. Further, by Proposition 8.2 [21], since π ′ is tempered and has
the same infinitesimal character as δ′, π ′ must in fact be square-integrable as well.

Now, observe that the partial cuspidal support is σ for both π ′ and δ′. Further,
since π ′ and δ′ have the same infinitesimal character, it follows from Lemma 2.1.1
that Jord(π ′) = Jord(δ′). We first use this fact to show μ∗

ν
b−1

2 ρ
(δ) = ν

b−1
2 ρ⊗π ′.

After that, we finish showing π ′ and δ′ have the same Mœglin–Tadić data (so are
equivalent) by checking επ ′ = εδ′ .

To show μ∗
ν

b−1
2 ρ

(δ) = ν
b−1

2 ρ ⊗ π ′, write μ∗(π ′) = ∑
j λ j ⊗ φ j . Since

M∗(ν b−1
2 ρ) = ν

b−1
2 ρ ⊗ 1 + 1 ⊗ ν

b−1
2 ρ + ν

−b+1
2 ρ ⊗ 1 (noting ρ ∼= ρ̌), we have

μ∗(ν
b−1

2 ρ � π ′) =
∑

j

((
λ j × ν

b−1
2 ρ ⊗ φ j

)
+ (λ j ⊗ ν

b−1
2 ρ � φ j )

+
(
λ j × ν

−b+1
2 ρ ⊗ φ j

))
. (2.1)

Since (ρ, b) 
∈ Jord(π ′), it follows from Remark 1.3.2 that μ∗
ν

b−1
2 ρ

(π ′) = 0.

Therefore, the only way to obtain a term of the form ν
b−1

2 ⊗· · · in μ∗(ν b−1
2 ρ �π ′)

is to have λ j = 1, hence φ j = π ′. It then follows that μ∗
ν

b−1
2 ρ

(δ) = ν
b−1

2 ρ ⊗ π ′,
as claimed.

Let ε′ = επ ′ . Suppose (ρ′, a), (ρ′, a−) ∈ Jord(π ′). We first show

ε′(ρ′, a)ε′(ρ′, a−)−1 = ε(ρ′, a)ε(ρ′, a−)−1

when (ρ′, a), (ρ′, a−) 
= (ρ, b − 2) (so (ρ′, a), (ρ′, a−) are also in Jord(δ)). In
this case, we have

ε′(ρ′, a)ε′(ρ′, a−)−1 = 1
⇓

π ′ ↪→ δ
([

ν
a−+1

2 ρ′, ν a−1
2 ρ′

])
� θ

⇓
δ ↪→ ν

b−1
2 ρ × δ

([
ν

a−+1
2 ρ′, ν a−1

2 ρ′
])

� θ

Now, we claim ν
b−1

2 ρ ×δ([ν a−+1
2 ρ′, ν a−1

2 ρ′]) is irreducible. In fact, the only way it
could be reducible would be if ρ′ ∼= ρ and b = a− (contradicting our assumption) or
b = a +2 (which would imply a− = b, again a contradiction). Then, a commuting
argument implies

δ ↪→ δ
([

ν
a−+1

2 ρ′, ν a−1
2 ρ′

])
× ν

b−1
2 ρ � θ

⇓ (Lemma 1.2.3)

δ ↪→ δ
([

ν
a−+1

2 ρ′, ν a−1
2 ρ′

])
� θ ′

⇓
ε(ρ′, a)ε(ρ′, a−)−1 = 1
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(for some irreducible θ ′ ≤ ν
b−1

2 ρ � θ ), as needed. In the converse direction,

ε(ρ′, a)ε(ρ′, a−)−1 = 1
⇓

δ ↪→ δ
([

ν
a−+1

2 ρ′, ν a−1
2 ρ′

])

�θ

⇓ (noting δ ↪→ ν
b−1

2 ρ � π ′)
μ∗
(
ν

b−1
2 ρ � π ′

)
≥ δ

([
ν

a−+1
2 ρ′, ν a−1

2 ρ′
])

⊗ θ.

Again, μ∗(ν b−1
2 ρ � π ′) is given by Eq. (2.1). Since ν

±(b−1)
2 ρ does not appear in

[ν a−+1
2 ρ′, ν a−1

2 ρ′], the only way to pick up a copy of δ([ν a−+1
2 ρ′, ν a−1

2 ρ′]) ⊗ θ

is if it appears in λ j ⊗ ν
b−1

2 ρ � φ j . In this case, we would have to have

λ j = δ([ν a−+1
2 ρ′, ν a−1

2 ρ′]). That is, μ∗(π ′) ≥ δ([ν a−+1
2 ρ′, ν a−1

2 ρ′]) ⊗ φ j . By
Lemma 1.3.3, this implies ε′(ρ′, a)ε′(ρ′, a−)−1 = 1, as needed.

We now show ε′(ρ, b − 2)ε′(ρ, b−)−1 = ε(ρ, b)ε(ρ, b−)−1. Observe that

ε′(ρ, b − 2)ε′(ρ, b−)−1 = 1
⇓

π ′ ↪→ δ
([

ν
b−+1

2 ρ, ν
b−3

2 ρ
])

� θ

⇓
δ ↪→ ν

b−1
2 ρ × δ

([
ν

b−+1
2 ρ, ν

b−3
2 ρ
])

� θ

⇓ (Lemma 1.2.3)
δ ↪→ λ � θ

for some irreducible λ ≤ ν
b−1

2 ρ × δ([ν b−+1
2 ρ, ν

b−3
2 ρ]). As in the proof of

Lemma 1.3.3, we must have λ = δ([ν b−+1
2 ρ, ν

b−1
2 ρ]) (or else μ∗(δ) ≥ νxρ ⊗ θ ′

for some x ∈ { b−+1
2 , . . . , b−3

2 }). It then follows that ε(ρ, b)ε(ρ, b−)−1 = 1. In the
converse direction,

ε(ρ, b)ε(ρ, b−)−1 = 1
⇓

δ ↪→ δ
([

ν
b−+1

2 ρ, ν
b−1

2 ρ
])

� θ ↪→ ν
b−1

2 ρ × δ
([

ν
b−+1

2 ρ, ν
b−3

2 ρ
])

� θ

⇓
rM,G(δ) ≥ ν

b−1
2 ρ ⊗ δ

([
ν

b−+1
2 ρ, ν

b−3
2 ρ
])

⊗ θ

⇓
rM,G

(
ν

b−1
2 ρ � π ′

)
≥ ν

b−1
2 ρ ⊗ δ

([
ν

b−+1
2 ρ, ν

b−3
2 ρ
])

⊗ θ

for the appropriate standard Levi factor M . Since μ∗
ν

b−1
2 ρ

(δ) = ν
b−1

2 ρ ⊗ π ′, it

follows that μ∗(π ′) ≥ δ([ν b−+1
2 ρ, ν

b−3
2 ρ]) ⊗ θ . It now follows from Lemma 1.3.3

that ε′(ρ, b − 2)ε′(ρ, b−)−1 = 1, as needed.
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We next show ε′(ρ, b+)ε′(ρ, b−2)−1 = ε(ρ, b+)ε(ρ, b)−1 (assuming (ρ, b+)

exists). The argument that ε′(ρ, b+)ε′(ρ, b − 2)−1 = 1 ⇒ ε(ρ, b+)ε(ρ, b)−1 = 1
is like that above for (ρ′, a), (ρ′, a−) 
= (ρ.b − 2), noting that the irreducibility of

ν
b−1

2 ρ × δ([ν b−1
2 ρ, ν

b+−1
2 ρ]) is immediate here. In the converse direction,

ε(ρ, b+)ε(ρ, b)−1 = 1
⇓ (see Note 1.3.1)

δ ↪→ δ

([
ν

−b+1
2 ρ, ν

b+−1
2 ρ

])
� δ1 ↪→ δ

([
ν

b−1
2 ρ, ν

b+−1
2 ρ

])
× δ

([
ν

−b+1
2 ρ, ν

b−3
2 ρ

])
� δ1

⇓ (Lemma 1.2.3)

δ ↪→ δ

([
ν

b−1
2 ρ, ν

b+−1
2 ρ

])
× θ

for some irreducible θ ≤ δ([ν −b+1
2 ρ, ν

b−3
2 ρ]) � δ1. Now, observe that since

μ∗
ν

b−1
2 ρ

(δ) 
= 0 and there are no terms of the form ν
b−1

2 ρ ⊗ · · · in M∗(δ([ν b−1
2 ρ,

ν
b+−1

2 ρ]), we must have μ∗
ν

b−1
2 ρ

(θ) 
= 0. Therefore, by Lemmas 1.2.2 and 1.2.3,

we must have θ ↪→ ν
b−1

2 ρ � θ ′ for some irreducible θ ′. Thus,

δ ↪→ δ
([

ν
b−1

2 ρ, ν
b+−1

2 ρ
])

× ν
b−1

2 ρ � θ ′ ∼= ν
b−1

2 ρ×δ
([

ν
b−1

2 ρ, ν
b+−1

2 ρ
])

� θ ′

⇓ (since μ∗
ν

b−1
2 ρ

(π ′) = ν
b−1

2 ρ ⊗ π ′)

μ∗(π ′) ≥ δ
([

ν
b−1

2 ρ, ν
b+−1

2 ρ
])

⊗ θ ′

⇓ (Lemma 1.3.3)
ε′(ρ, b+)ε′(ρ, b − 2)−1 = 1,

as needed.
The arguments above show ε′ is as claimed on S′ ∩ (Jord ′ × Jord ′). It

remains to show ε′ is as claimed on S′ ∩ Jord ′. Fix ρ′ having Jord ′
ρ′ 
= ∅ and

ε′ defined on Jord ′
ρ′ . From the condition ε′(ρ′, a)ε′(ρ′, a−)−1 = 1 ⇔ π ′ ↪→

δ([ν a−+1
2 ρ′, ν a−1

2 ρ′]) � θ ′ (a consequence of the work above), it suffices to show
that ε′(ρ′, a) is as claimed for a single value of a′. We break this into two cases: (1)
red(ρ′; σ) ≡ 1

2 mod 1, and (2) red(ρ′; σ) = 0 (recalling that if red(ρ′; σ) ∈ N,
ε′ is not defined on Jord ′

ρ′ ).

First, suppose red(ρ′, σ ) ≡ 1
2 mod 1. Let a′

min be the smallest value of a having
(ρ′, a) ∈ Jord ′. The argument that ε′(ρ′, a′

min) = 1 ⇒ ε(ρ′, a′
min) = 1 is like

that for (ρ′, a), (ρ′, a−) 
= (ρ, b − 2) above, replacing (ρ′, a−) with (ρ, 0) in the

argument. In this case, the irreducibility of ν
b−1

2 ρ × δ([ν 1
2 ρ, ν

a′
min−1

2 ρ]) follows
from a′

min ≤ b− < b − 2. In the converse direction,

ε(ρ′, a′
min) = 1
⇓

δ ↪→ δ

([
ν

1
2 ρ′, ν

a′
min−1

2 ρ′
])

� θ.
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Now, μ∗
ν

b−1
2 ρ

(δ([ν 1
2 ρ′, ν

a′
min−1

2 ρ′]) � θ) 
= 0 implies μ∗
ν

b−1
2 ρ

(θ) 
= 0 (noting that

if ρ′ ∼= ρ, b > a′
min). By Lemmas 1.2.2 and 1.2.3, we may then conclude θ ↪→

ν
b−1

2 ρ � θ ′ for some irreducible θ ′. Thus,

δ ↪→δ

([
ν

1
2 ρ′, ν

a′
min−1

2 ρ′
])

× ν
b−1

2 ρ � θ ′ ∼= ν
b−1

2 ρ × δ

([
ν

1
2 ρ′, ν

a′
min−1

2 ρ′
])

� θ ′

⇓
(

since μ∗
ν

b−1
2 ρ

(δ) = ν
b−1

2 ρ ⊗ π ′
)

μ∗(π ′) ≥ δ

([
ν

1
2 ρ, ν

a′
min−1

2 ρ

])
⊗ θ ′

⇓
ε′(ρ′, a′

min) = 1,

as needed.
Now, suppose red(ρ′; σ) = 0. Let a′

max be the largest value of a such that
(ρ′, a) ∈ Jord ′. If (ρ′, a′

max ) 
= (ρ, b − 2), then for η = ±1, we have (see
Sect. 1.3)

ε′(ρ′, a′
max ) = η

⇓
δ′ ↪→ φ � δ

([
νρ′, ν

a′
max −1

2 ρ′
]
; τη(ρ

′; σ)

)

⇓
δ ↪→ ν

b−1
2 ρ × φ � δ

([
νρ′, ν

a′
max −1

2 ρ′
]
; τη(ρ

′; σ)

)

⇓ (Lemma 1.2.3)

δ ↪→ φ′
� δ

([
νρ′, ν

a′
max −1

2 ρ′
]
; τη(ρ

′; σ)

)

⇓
ε(ρ′, a′

max ) = η

(some irreducible φ′ ≤ ν
b−1

2 ρ × φ), as needed. If (ρ′, a′
max ) = (ρ, b − 2), then

ε′(ρ, b − 2) = η

⇓ (as above)

δ ↪→ ν
b−1

2 ρ× φ � δ
([

νρ, ν
b−3

2 ρ
]
; τη(ρ; σ)

) ∼= φ × ν
b−1

2 ρ � δ
([

νρ, ν
b−3

2 ρ
]
; τη(ρ; σ)

)

where the irreducibility of ν
b−1

2 ρ × φ follows from the fact that any νxρ in the
supercuspidal support of φ has x < b−1

2 − 1 (which follows from the assumption

b− < b − 2). By Lemma 1.2.3, δ ↪→ φ � θ for some irreducible θ ≤ ν
b−1

2 ρ �

δ([νρ, ν
b−3

2 ρ]; τη(ρ; σ)). Now, ν
b−1

2 ρ � δ([νρ, ν
b−3

2 ρ]; τη(ρ; σ)) is dual to the
generalized degenerate principal series of Proposition 3.2 [3] (noting b > b−+2 ⇒
b > 3, which translates to 	 > 1 in Proposition 3.2 [3]). In the notation of that paper
(subrepresentation realization of the Langlands classification), one can see fairly
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easily that it has irreducible subquotients L(ν
−b+1

2 ρ; δ([νρ, ν
b−3

2 ρ]; τη(ρ; σ))) and

δ([νρ, ν
b−1

2 ρ]; τη(ρ; σ)). Thus, either

δ ↪→ φ � L
(
ν

−b+1
2 ρ; δ

([
νρ, ν

b−3
2 ρ
]
; τη(ρ; σ)

))

or

δ ↪→ φ � δ
([

νρ, ν
b−1

2 ρ
]
; τη(ρ; σ)

)
.

In the former case, we would have

δ ↪→ φ � ν
−b+1

2 ρ � δ
([

νρ, ν
b−3

2 ρ
]
; τη(ρ; σ)

)

∼= ν
−b+1

2 ρ × φ � δ
([

νρ, ν
b−3

2 ρ
]
; τη(ρ; σ)

)
,

with the irreducibility of φ × ν
b−1

2 ρ as above. However, this contradicts the Cas-
selman criterion for δ. Thus,

δ ↪→ φ � δ
([

νρ, ν
b−1

2 ρ
]
; τη(ρ; σ)

)

⇓
ε(ρ, b) = η,

as needed. This finishes the proof that ε′ is as claimed (i.e., π ′ ∼= δ′), and the case
where b− exists.

If b− does not exist, the proof is largely similar; simplified in some places
as the minimality of b then precludes certain possibilities. The exception is the
argument that ε′(ρ′, a′

min) = ε(ρ′, a′
min) when red(ρ′; σ) ≡ 1

2 mod 1. In this case,
if ρ′ ∼= ρ, a different argument is needed. Here, amin = b, and we must show
ε′(ρ, b − 2) = ε(ρ, b). We have

ε(ρ, b) = 1
⇓

δ ↪→ δ
([

ν
1
2 ρ, ν

b−1
2 ρ
])

� θ

⇓
μ∗

δ

([
ν

1
2 ρ,ν

b−1
2 ρ

])
(
ν

b−1
2 ρ � π ′

)

= 0

⇓ (noting (ρ, b) 
∈ Jord(π ′))
μ∗

δ

([
ν

1
2 ρ,ν

b−3
2 ρ

])(π ′) 
= 0

⇓
ε′(ρ, b − 2) = 1.
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In the converse direction,

ε′(ρ, b − 2) = 1
⇓

π ′ ↪→ δ
([

ν
1
2 ρ, ν

b−3
2 ρ
])

� θ ′ (some irreducible θ ′)
⇓

δ ↪→ ν
b−1

2 ρ × δ
([

ν
1
2 ρ, ν

b−3
2 ρ
])

� θ ′

⇓ (Lemma 1.2.3)

δ ↪→ δ
([

ν
1
2 ρ, ν

b−1
2 ρ
])

� θ ′

or

δ ↪→ L(δ
([

ν
1
2 ρ, ν

b−3
2 ρ
])

, ν
b−1

2 ρ) � θ ′.

We can rule out the latter as it would give μ∗
ν

b−3
2 ρ

(δ) 
= 0, contradicting (ρ, b−2) 
∈
Jord(δ). The former implies ε(ρ, b) = 1, as needed. ��

Repeated application of this proposition gives the following:

Corollary 2.1.3. Let δ = δ(Jord,σ.ε) and (ρ, b) ∈ Jord. Suppose (ρ, b−) exists
and b > b− + 2. If b− + 2 < c < b with c ≡ b mod 2, then

μ∗
δ

([
ν

c+1
2 ρ,ν

b−1
2 ρ

])(δ) = δ
([

ν
c+1

2 ρ, ν
b−1

2 ρ
])

⊗ δ′,

where δ′ is the discrete series representation with Mœglin–Tadić data described
below. Here,

Jord(δ′) = (Jord(δ) \ {(ρ, b)}) ∪ {(ρ, c)}
and εδ′ defined by εδ′ = ε on Sδ′ ∩ S,

εδ′(ρ, a)εδ′(ρ, c)−1 = ε(ρ, a)ε(ρ, b)−1

for (ρ, a) ∈ Jord(δ) \ {(ρ, b)}, and

εδ′(ρ, c) = ε(ρ, b)

if defined. Note that if b− does not exist, we may replace b− + 2 with 1 or 2 in the
inequality b− + 2 < c < b, whichever matches the parity of 2red(ρ; σ) + 1 (and
εδ′ just the restriction of ε).

Note 2.1.4. The same argument as in the proof of Lemma 1.3.3 tells us

δ ↪→ δ
([

ν
c+1

2 ρ, ν
b−1

2 ρ
])

� δ′

in Corollary 2.1.3.
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2.2. The case of δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ

In this section, we extend the Mœglin–Tadić classification to cover the components

of the representation δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ (assumed reducible). This serves as

the basis for extending the classification to elliptic tempered representations in
Sect. 2.3.

Lemma 2.2.1. Suppose δ = δ(Jord,σ,ε) and (ρ, c) 
∈ Jord but with c ≡
2red(ρ; σ) + 1 mod 2.

(1) Suppose there is some (ρ, x) ∈ Jord with x > c. Let a be the minimal such x.

Then, there is exactly one component π ′ of δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ such that

μ∗
δ

([
ν

c+1
2 ρ,ν

a−1
2 ρ

])(π ′) 
= 0.

(2) Suppose there is some (ρ, x) ∈ Jord with x < c. Let b be the maximal such x.

Then, there is exactly one component π ′′ (possibly π ′) of δ([ν −c+1
2 ρ, ν

c−1
2 ρ])�δ

such that

μ∗[
δ

([
ν

b+1
2 ρ,ν

c−1
2 ρ

])2
](π ′′) 
= 0.

Proof. Write μ∗(δ) =∑	 τ	 ⊗ θ	 and observe that (noting ρ̌ ∼= ρ here)

M∗ (δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
]))

=
c+1

2∑

i=−c+1
2

c+1
2∑

j=i

δ
([

ν−i+1ρ, ν
c−1

2 ρ
])

× δ
([

ν jρ, ν
c−1

2 ρ
])

⊗ δ
([

νiρ, ν j−1ρ
])

.

Then, by Theorem 1.2.1,

μ∗ (δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

=
∑

	

c+1
2∑

i=−c+1
2

c+1
2∑

j=i

δ([ν−i+1ρ, ν
c−1

2 ρ])

×δ
([

ν jρ, ν
c−1

2 ρ
])

× τ	 ⊗ δ([νiρ, ν j−1ρ]) � θ	.

For (1), observe that to contribute to μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])
, we must have j =

−i + 1 = c+1
2 and τ	 = δ([ν c+1

2 ρ, ν
a−1

2 ρ]). By Corollary 2.1.3, this gives θ	 = δ′
(δ′ as in the corollary) and

μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])

(
δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ
)

= δ([ν c+1
2 ρ, ν

a−1
2 ρ])

⊗
(
δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ′) .
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Since (ρ, c) ∈ Jord(δ′) (again, see Corollary 2.1.3), we have δ([ν −c+1
2 ρ, ν

c−1
2 ρ])�

δ′ irreducible, from which (1) follows.
For (2), observe that it follows from Remark 1.3.2 that to have a term of the form

ν
x−1

2 ρ ⊗ λ ≤ m∗(τ	), we must have (ρ, x) ∈ Jord. In particular, since there is no
(ρ, x) ∈ Jord with b < x ≤ c, we see that to contribute to μ∗

[δ([ν b+1
2 ρ,ν

c−1
2 ρ])2]

,

we must have τ	 trivial. It then follows that −i + 1 = j = b+1
2 . Thus,

μ∗
[δ([ν b+1

2 ρ,ν
c−1

2 ρ])2]

(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

= δ
([

ν
b+1

2 ρ, ν
c−1

2 ρ
])2

⊗
(
δ
([

ν
−b+1

2 ρ, ν
b−1

2 ρ
])

� δ
)

.

Further, since (ρ, b) ∈ Jord, we have δ([ν −b+1
2 ρ, ν

b−1
2 ρ])�δ irreducible. (2) now

follows immediately. ��
Lemma 2.2.2. Let δ = δ(Jord,σ,ε) with Jordρ(δ) = ∅ (noting that this requires

red(ρ; σ) = 0 or 1
2 ) and suppose δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ is reducible.

(1) If red(ρ; σ) = 1
2 , there is exactly one component π of δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ

such that

μ∗
[δ([ν 1

2 ρ,ν
c−1

2 ρ])2]
(π) 
= 0

(2) If red(ρ; σ) = 0, write

δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� σ =
⊕

η∈{±1}
T (δ([νρ, ν

c−1
2 ρ])2; τη(ρ; σ))

where for η = ±1, T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ)) is characterized by

μ∗ (T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ))
)

≥ δ([νρ, ν
c−1

2 ρ])2 ⊗ τη(ρ; σ)

with τη(ρ; σ) as in Sect. 1.3. Then, for η = ±1, there is exactly one component

π of δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ such that μ∗(π) contains a term of the form

λ ⊗ T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ)).

Proof. For (1), write μ∗(δ) =∑	 τ	 ⊗ θ	. Then, using Theorem 1.2.1,

μ∗ (δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

=
∑

	

c+1
2∑

i=−c+1
2

c+1
2∑

j=i

δ([ν−i+1ρ, ν
c−1

2 ρ])

×δ
([

ν jρ, ν
c−1

2 ρ
])

× τ	 ⊗ δ
([

νiρ, ν j−1ρ
])

� θ	.
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Now, observe that to contribute to μ∗
[δ([ν 1

2 ρ,ν
c−1

2 ρ])2]
, we must have τ	 = 1 (by

supercuspidal support considerations), so θ	 = δ. Therefore, j = −i + 1 = c+1
2

and τ	 = 1, hence

μ∗[
δ

([
ν

1
2 ρ,ν

c−1
2 ρ

])2
]
(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

= δ
([

ν
1
2 ρ, ν

c−1
2 ρ
])2 ⊗ δ,

from which (1) follows.
(2) is an immediate consequence of Corollary 7.5 and Definition 7.6 of [14]

(whose proof uses only the μ∗ structure and results on general linear groups, hence
holds in the generality needed here). ��
Lemma 2.2.3. Let δ = δ(Jord,σ,ε) and suppose (ρ, c) 
∈ Jord. Further, suppose
there are (ρ, a), (ρ, a−) ∈ Jord with a > c > a− and c ≡ a mod 2. Let T ≤
δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ.

(1) If ε(ρ, a)ε(ρ, a−)−1 = 1, then

μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])
(T ) 
= 0 ⇔ μ∗

[δ([ν
a−+1

2 ρ,ν
c−1

2 ρ])2]
(T ) 
= 0.

(2) If ε(ρ, a)ε(ρ, a−)−1 = −1, then

μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])
(T ) 
= 0 ⇔ μ∗

[δ([ν
a−+1

2 ρ,ν
c−1

2 ρ])2]
(T ) = 0.

Proof. Write

I = δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ,

I ′ = δ
([

ν
−c+1

2 ρ, ν
a−1

2 ρ
])

� δ′,

I ′′ = δ
([

ν
−a−+1

2 ρ, ν
c−1

2 ρ
])

� δ′′,

where Jord(δ′) = (Jord \ {(ρ, a)})∪ {(ρ, c)}, Jord(δ′′) = (Jord \ {(ρ, a−)})∪
{(ρ, c)}, and ε′, ε′′ defined by

ε′|S∩S′ = ε|S∩S′ , ε′|S∩S′′ = ε|S∩S′′ ,

and the following (when defined):

ε′(ρ, c) = ε(ρ, a), ε′′(ρ, c) = ε(ρ, a−),

ε′(ρ, c)ε′(ρ, d)−1 = ε(ρ, a)ε(ρ, d)−1,

ε′′(ρ, c)ε′′(ρ, d)−1 = ε(ρ, a−)ε(ρ, d)−1.

We first show that I, I ′ (resp., I, I ′′) have a common irreducible subquotient

characterized by μ∗(T ′) ≥ δ([ν c+1
2 ρ, ν

a−1
2 ρ]) ⊗ δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ′ (resp.,

μ∗(T ′′) ≥ δ([ν a−+1
2 ρ, ν

c−1
2 ρ])2⊗δ([ν −a−+1

2 ρ, ν
a−−1

2 ρ])�δ), noting that the right-
hand factors in the tensor products are irreducible.



346 C. Jantzen

To show I and I ′ have a common irreducible subquotient with the property
claimed, let

I ′ = δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
c+1

2 ρ, ν
a−1

2 ρ
])

� δ′.

By Note 2.1.4, one sees that I, I ′ ≤ I ′. To prove the claim, it suffices to show that

μ∗(I ), μ∗(I ′), and μ∗(I ′) each contain δ([ν c+1
2 ρ, ν

a−1
2 ρ])⊗δ([ν −c+1

2 ρ, ν
c−1

2 ρ])�
δ′ with multiplicity one—a straightforward μ∗ calculation. Similarly, to show I and
I ′′ have a common irreducible subquotient with the property claimed, let

I ′′ = δ([ν a−+1
2 ρ, ν

c−1
2 ρ])2 × δ([ν −a−+1

2 ρ, ν
a−−1

2 ρ]) � δ.

Again, using Note 2.1.4, we see that I ′′ ≤ I ′′; to see that I ≤ I ′′, just observe that

δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) �δ ↪→ δ

([
ν

a−+1
2 ρ, ν

c−1
2 ρ
])

×δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

× δ
([

ν
−c+1

2 ρ, ν
−a−−1

2 ρ
])

� δ

= δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

×δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])

� δ,

or I ′′. To prove the claim, it suffices to show δ([ν a−+1
2 ρ, ν

c−1
2 ρ])2 ⊗ δ([ν −a−+1

2 ρ,

ν
a−−1

2 ρ]) � δ appears with multiplicity one in μ∗(I ), μ∗(I ′′), and μ∗(I ′′). Again,
this is a straightforward μ∗ argument.

For (1), it suffices to show that T ′ ∼= T ′′. To do so, it is enough to show
μ∗

[δ([ν
a−+1

2 ρ,ν
c−1

2 ρ])2]
(T ′) 
= 0. A straightforward μ∗ argument shows

μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])

(
δ
([

ν
−c+1

2 ρ, ν
a−1

2 ρ
])

� δ′) = δ
([

ν
c+1

2 ρ, ν
a−1

2 ρ
])

⊗
(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ′).

As noted above, we have δ([ν −c+1
2 ρ, ν

c−1
2 ρ])� δ′ irreducible. It follows from a μ∗

calculation and Lemma 1.2.2 that

δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ′ ↪→ δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])2

�

(
δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ′) .

Thus,

T ′ ↪→ δ
([

ν
c+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])2

�

(
δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ′) .

Now, observe that by the description of δ′ above—noting that ε′(ρ, c)ε′(ρ, a−)−1 =
1, we have
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δ′ ↪→ δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])

� θ

for some irreducible θ . Since δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ])� δ′ is irreducible, we see that

for the appropriate standard Levi factor M ,

rM,G

(
δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ′
)

≥ ν
c−1

2 ρ ⊗ ν
c−3

2 ρ ⊗ · · · ⊗ ν
a−+1

2 ρ

⊗δ
([

ν
a−+1

2 ρ, ν
a−−1

2 ρ
])

� θ

⇓ (Lemmas 1.2.2 and 1.2.3)

δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ′ ↪→ ν
c−1

2 ρ × ν
c−3

2 ρ × · · · × ν
a−+1

2 ρ � θ ′

for some irreducible θ ′. By Lemma 1.2.3, it follows that

δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ′ ↪→ λ � θ ′

for some irreducible λ ≤ ν
c−1

2 ρ ×ν
c−3

2 ρ ×· · ·×ν
a−+1

2 ρ. Since μ∗
νx ρ(δ([ν −a−+1

2 ρ,

ν
a−−1

2 ρ])�δ′)=0 for all x∈{ c−3
2 , . . . ,

a−+1
2 }, we see that λ = δ([ν a−+1

2 ρ, ν
c−1

2 ρ]),
i.e.,

δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ′ ↪→ δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])

� θ ′.

Therefore,

T ′ ↪→ δ([ν c+1
2 ρ, ν

a−1
2 ρ]) × δ([ν a−+1

2 ρ, ν
c−1

2 ρ])3
� θ ′

⇓ (Lemma 1.2.3)
T ′ ↪→ λ � θ ′

for some irreducible λ ≤ δ([ν c+1
2 ρ, ν

a−1
2 ρ])×δ([ν a−+1

2 ρ, ν
c−1

2 ρ])3. It follows from

Lemma 1.3.1 [17], e.g., that λ = L
(
δ([ν a−+1

2 ρ, ν
c−1

2 ρ])3, δ([ν c+1
2 ρ, ν

a−1
2 ρ])

)
or

δ([ν a−+1
2 ρ, ν

c−1
2 ρ])2 × δ([ν a−+1

2 ρ, ν
a−1

2 ρ]) (irreducible by Zelevinsky [36]). (In
fact, one can show each appears with multiplicity one, but that is not needed in
what follows.) Since m∗

[δ([ν
a−+1

2 ρ,ν
c−1

2 ρ])2]
(λ) 
= 0 in either case, we get

μ∗
[δ([ν

a−+1
2 ρ,ν

c−1
2 ρ])2]

(T ′) 
= 0,

as needed.
For (2), it suffices to show T ′ 
∼= T ′′. To do so, it is enough to show that

μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])
(T ′′) = 0. For this, it is enough to show μ∗

δ([ν c+1
2 ρ,ν

a−1
2 ρ])

(I ′′) =
0. This follows directly if we show μ∗

δ([ν c+1
2 ρ,ν

a−1
2 ρ])

(δ′′) = 0. However, since

ε′′(ρ, a)ε′′(ρ, c)−1 = −1, this holds. ��
We now proceed to parameterize the components of δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ in
a manner which extends the Mœglin–Tadić classification of discrete series. In lieu
of a triple (Jord, σ, ε), we use a quadruple (Jord, σ, ε, m), where m : Jord −→
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N represents the multiplicity (with the obvious interpretation of m = 0 when
appropriate). (This seems to be a bit more convenient than allowing Jord to be a
multiset.) This covers discrete series in the obvious way—one takes m(ρ, a) = 1
for all (ρ, a) ∈ Jord.

Let δ = δ(Jord,σ,ε) and write δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ = T1 ⊕ T−1. If

(Jordi , σi , εi , mi ) is the quadruple attached to Ti , we have

Jordi = Jord ∪ {(ρ, c)}
and

σi = σ.

The multiplicity is given by

mi (ρ
′, x) =

{
1 if (ρ′, x) ∈ Jord(δ)

2 if (ρ′, x) = (ρ, c).

It remains to describe εi for the two components.
The domain Si of εi is like that for S (the domain for ε):

Si = {(ρ′, x) ∈ Jordi | red(ρ′; σ) 
∈ N} ∪ {((ρ′, x), (ρ′′, y)) ∈ Jordi

×Jordi | ρ′ ∼= ρ′′ and x 
= y}.
Note that S ⊂ Si . We then take εi to be the extension of ε defined as follows
(retaining the convention of writing ε((ρ, a), (ρ, b)) as ε(ρ, a)ε(ρ, b)−1):

(1) Jordρ(δ) 
= ∅
Suppose (ρ, a) (resp., (ρ, b)) is the element in Jordρ(δ) with a > c (resp.,
b < c) having a minimal (resp., b maximal), noting that not both need exist.
We define (cf. Lemma 2.2.1)

εi (ρ, c)εi (ρ, a)−1 = 1 ⇔ μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])
(Ti ) 
= 0

and

εi (ρ, c)εi (ρ, b)−1 = 1 ⇔ μ∗
[δ([ν b+1

2 ρ,ν
c−1

2 ρ])2]
(Ti ) 
= 0.

Note that by Lemma 2.2.3, if both (ρ, a) and (ρ, b) exist, this is well-defined.
For d 
= a, b, c, we then set

εi (ρ, c)εi (ρ, d)−1

=
{

εi (ρ, c)εi (ρ, a)−1 · εi (ρ, a)εi (ρ, d)−1 if (ρ, a) defined;
εi (ρ, c)εi (ρ, b)−1 · εi (ρ, b)εi (ρ, d)−1 if (ρ, b) defined,

noting that well-definedness is a straightforward consequence of Lemma 2.2.3.
For any d (i.e., including a and b), we then define

εi (ρ, d)εi (ρ, c)−1 = εi (ρ, c)εi (ρ, d)−1.
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If (ρ, c) ∈ Si , we set

εi (ρ, c) =
{

εi (ρ, c)εi (ρ, a)−1 · εi (ρ, a) if (ρ, a) defined;
εi (ρ, c)εi (ρ, b)−1 · εi (ρ, b) if (ρ, b) defined,

again noting that well-definedness is a straightforward consequence of
Lemma 2.2.3.

(2) Jordρ(δ) = ∅
Note that this can occur only when red(ρ; σ) = 0 or 1

2 . If red(ρ; σ) = 1
2 ,

we define εi (ρ, c) = 1 if μ∗
[δ([ν 1

2 ρ,ν
c−1

2 ρ])2]
(Ti ) 
= 0 (see Lemma 2.2.2). If

red(ρ; σ) = 0, we define εi (ρ, c) = 1 if μ∗(Ti ) contains a term of the form
· · · ⊗ T (δ([νρ, ν

c−1
2 ρ])2; τ+1(ρ; σ)) (cf. Lemma 2.2.2).

Remark 2.2.4. The definition in (2) when red(ρ; σ) = 1
2 is equivalent to taking

ε(ρ, 0) = 1 and using Eq. (1.1) (cf. p728 [21]).

We now observe the following:

Lemma 2.2.5. With the definition above, properties (i)–(iii) of Eq. (1.2) hold.

Proof. That (iii) holds is part of the definition. That (i) and (ii) hold follow from
straightforward arguments using the corresponding properties for discrete series.
E.g., if (ρ, b) exists, one can show (i) holds as follows:

εi (ρ, c)εi (ρ, d)−1 = εi (ρ, c)εi (ρ, b)−1 · εi (ρ, b)εi (ρ, d)−1

= εi (ρ, c)εi (ρ, b)−1 · ε(ρ, b) · ε(ρ, d)−1

= εi (ρ, c) · εi (ρ, d)−1,

as needed. ��
Note 2.2.6. We can characterize Jordi as in [20]: it follows from [6,7] that if (ρ′, x)

has x of correct parity, then (ρ′, x) ∈ Jordi if and only if δ([ν −x+1
2 ρ′, ν x−1

2 ρ′])�Ti

is irreducible.

Corollary 2.2.7. Suppose T is as above and (ρ′, a), (ρ′, a−) ∈ Jord. Then,

μ∗
δ([ν

a−+1
2 ρ′,ν

a−1
2 ρ′])

(T ) 
= 0 ⇔ T ↪→ δ([ν a−+1
2 ρ′, ν

a−1
2 ρ′]) � θ

for some irreducible θ , and

μ∗
[δ([ν

a−+1
2 ρ′,ν

a−1
2 ρ′])2]

(T ) 
= 0 ⇔ T ↪→ δ([ν a−+1
2 ρ′, ν

a−1
2 ρ′])2

� θ ′

for some irreducible θ ′.

Proof. The argument is essentially the as in the proof of Lemma 1.3.3. We omit
the details. ��

We close by recording the following lemma, to be used later in the paper.
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Lemma 2.2.8. Supposered(ρ; σ) = 0 and Jordρ(δ) = ∅. If δ([ν −c+1
2 ρ, ν

c−1
2 ρ])�

δ reduces and T ≤ δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ, then μ∗(T ) contains a term

of the form λ ⊗ T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ)) if and only if T ↪→ λ′
�

T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ)) for some irreducible λ′.

Proof. The implication (⇐) is immediate from Frobenius reciprocity. In the other

direction, suppose μ∗ contains a term of the form λ⊗T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ)).
Then, for the appropriate standard Levi M , we have

rM,G (T ) ≥ νx1 ρ1 ⊗ · · · ⊗ νxm ρm ⊗ (ν
c−1

2 ρ ⊗ ν
c−1

2 ρ) ⊗ (ν
c−3

2 ρ ⊗ ν
c−3

2 ρ) ⊗ · · · ⊗ (νρ ⊗ νρ) ⊗ τη(ρ; σ)

⇓ (Lemmas 1.2.2 and 1.2.3)

T ↪→ νx1 ρ1 × · · · × νxm ρm �

(
ν

c−1
2 ρ × ν

c−1
2 ρ × ν

c−3
2 ρ × ν

c−3
2 ρ × · · · × νρ × νρ � τη′ (ρ; σ)

)
,

with ρi 
∼= ρ for all i . By Lemma 2.2.2, we must have η′ = η. Therefore,

T ↪→ νx1ρ1 × · · · × νxm ρm �

(
ν

c−1
2 ρ × ν

c−1
2 ρ × ν

c−3
2 ρ × ν

c−3
2 ρ × · · · × νρ × νρ � τη(ρ; σ)

)

⇓ (Lemma 1.2.3)
T ↪→ νx1ρ1 × · · · × νxm ρm � θ

for some irreducible θ ≤ ν
c−1

2 ρ×ν
c−1

2 ρ×ν
c−3

2 ρ×ν
c−3

2 ρ×· · ·×νρ⊗νρ�τη(ρ; σ).

If θ 
= T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ)), then rmin(θ) 
≥ ν
c−1

2 ρ ⊗ ν
c−1

2 ρ ⊗ ν
c−3

2 ρ ⊗
ν

c−3
2 ρ ⊗· · ·⊗νρ ⊗νρ ⊗ρ ⊗σ . Since ρi 
∼= ρ for all i , this would imply rmin(T ) 
≥

νx1ρ1⊗· · ·⊗νxm ρm⊗(ν
c−1

2 ρ⊗ν
c−1

2 ρ)⊗(ν
c−3

2 ρ⊗ν
c−3

2 ρ)⊗· · ·⊗(νρ⊗νρ)⊗ρ⊗σ ,
a contradiction. Thus,

T ↪→ νx1ρ1 × · · · × νxm ρm � T (δ([νρ, ν
c−1

2 ρ])2; τη(ρ; σ))

⇓ (Lemma 1.2.3)

T ↪→ λ′
� T (δ([νρ, ν

c−1
2 ρ])2; τη(ρ; σ)),

as needed. ��

2.3. Elliptic tempered representations

In this section, we define the quadruple associated to an irreducible elliptic tem-
pered representation, building up from the results of the previous section. Key
properties—the analogues of Eqs. (1.3), (1.4), and (1.5)—are also given, appear-
ing as Proposition 2.3.2, Lemma 2.3.5, and Lemma 2.3.7, respectively. Once the
Mœglin–Tadić classification has been extended to elliptic tempered representa-
tions, it is then a fairly straightforward matter to extend it to general tempered
representations, which is done in Sect. 2.4.

Recall that if T is an elliptic tempered representation (in the symplectic, odd
special orthogonal, or unitary case), we have

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� δ



Tempered representations for classical p-adic groups 351

where δ([ν −ai +1
2 ρi , ν

ai −1
2 ρi ])�δ is reducible for all i , and δ([ν −ai +1

2 ρi , ν
ai −1

2 ρi ]) 
∼=
δ([ν

−a j +1
2 ρ j , ν

a j −1
2 ρ j ]) for i 
= j . Note that this requires ρ̌i ∼= ρi for all i . For

notational convenience, we also call a component of such an induced representation
of O(2n, F) elliptic.

Suppose (Jord(δ), σ, ε) is the Mœglin–Tadić triple for δ. We now give the data
(Jord(T ), σ, εT , mT ) for T . Here,

Jord(T ) = Jord(δ) ∪ {(ρ1, a1), . . . , (ρk, ak)},
and

mT (ρ, a) =
{

1 if (ρ, a) ∈ Jord(δ),

2 if not, i.e., (ρ, a) = (ρi , ai ) for some i.

We note that Jord(T) could have been defined in terms of irreducibility as with
discrete series—see Remark 2.3.4. It remains to define εT .

Let

ST = {(ρ, a) ∈ Jord(T ) | red(ρ; σ) 
∈ N} ∪ {((ρ, a), (ρ′, a′)) ∈ Jord(T )

×Jord(T ) | ρ ∼= ρ′ and a 
= a′},
the domain for εT . Also, let Si be the domain needed for δ([ν −ai +1

2 ρi , ν
ai −1

2 ρi ])�δ.
Note that Si ⊂ ST for all i . We define εT by first defining εT |Si for all i .

Fix i and write δ([ν −ai +1
2 ρi , ν

ai −1
2 ρi ]) � δ = T+1(ρi , ai ; δ) ⊕ T−1(ρi , ai ; δ).

Since δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1])×· · ·×δ([ν −ak+1

2 ρk, ν
ak−1

2 ρk])�δ decomposes with
multiplicity one, we have

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

)
× · · · × δ

([
ν

−ai−1+1
2 ρi−1, ν

ai−1−1
2 ρi−1

])

×δ

([
ν

−ai+1+1
2 ρi+1, ν

ai+1−1
2 ρi+1

])
× · · ·

×δ
([

ν
−ak+1

2 ρk, ν
ak−1

2 ρk

])
� Tξ (ρi , ai ; δ)

for exactly one ξ ∈ {±1}. We then define

εT |Si = εTξ (ρi ,ai ;δ),

(defined in Sect. 2.2). Since Si ∩ S j = Sδ for i 
= j , we have εT well-defined
on ∪i Si . It remains to define εT on the rest of ST , i.e., define εT (ρ, a)εT (ρ, b)−1

when (ρ, a), (ρ, b) ∈ Jord(T )\Jord(δ) (again retaining the convention of writing
εT (ρ, a)εT (ρ, b)−1 for εT ((ρ, a), (ρ, b))). There are two cases to consider:

(1) Jordρ(δ) 
= ∅.
We choose (ρ, amin) ∈ Jord(δ) having amin minimal and define

εT (ρ, a)εT (ρ, b)−1 = εT (ρ, b)εT (ρ, a)−1

= εT (ρ, a)ε(ρ, amin)−1 · εT (ρ, amin)εT (ρ, b),

noting that both terms on the right-hand side are defined (above).
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(2) Jordρ(δ) = ∅
In this case, red(ρ; σ) = 0 or 1

2 , so εT (ρ, a) and εT (ρ, b) have already been
defined (above). Then, we set

εT (ρ, a)εT (ρ, b)−1 = εT (ρ, a) · εT (ρ, b)−1.

Lemma 2.3.1. Properties (i)–(iii) from Eq. (1.2) hold.

Proof. The proof is a straightforward argument using Lemma 2.2.5 and the defin-
ition above. ��
Proposition 2.3.2. Let T be an elliptic tempered representation with associated
data (Jord, σ, ε, m) as above. Then, if (ρ, a), (ρ, a−) ∈ Jord,

ε(ρ, a)ε(ρ, a−)−1 = 1 ⇔ T ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ])m(ρ,a)

� θ

for some irreducible θ .

Proof. We break the analysis into four cases based on the multiplicities of (ρ, a)

and (ρ, a−).

Case 1: (ρ, a), (ρ, a−) ∈ Jord(δ) (i.e., m(ρ, a) = m(ρ, a−) = 1)
For (⇒), observe that

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ([ν −ak+1

2 ρk, ν
ak−1

2 ρk]) � δ

↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · ·

×δ
([

ν
−ak+1

2 ρk, ν
ak−1

2 ρk

])
× δ

([
ν

a−+1
2 ρ, ν

a−1
2 ρ
])

� δ′

since εδ(ρ, a)εδ(ρ, a−)−1 = ε(ρ, a)ε(ρ, a−)−1 = 1. Observe that δ([ν −ai +1
2 ρi ,

ν
ai −1

2 ρi ])×δ([ν a−+1
2 ρ, ν

a−1
2 ρ]) is irreducible for all i—if ρi 
∼= ρ, this is immediate.

If ρi ∼= ρ, we cannot have a− ≤ ai < a, so also holds. A commuting argument
then gives

T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

� δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · ·

×δ
([

ν
−ak+1

2 ρk, ν
ak−1

2 ρk

])
� δ′,

and the result now follows from Lemma 1.2.3.
For (⇐), observe that

T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

� θ

⇓
μ∗

δ

([
ν

a−+1
2 ρ,ν

a−1
2 ρ

])(T ) 
= 0

⇓
μ∗

δ

([
ν

a−+1
2 ρ1,ν

a−1
2 ρ

])
(
δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · ·

×δ
([

ν
−ak+1

2 ρk, ν
ak−1

2 ρk

])
� δ
)


= 0.
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Write M∗
(
δ([ν −a1+1

2 ρ1, ν
a1−1

2 ρ1]) × · · · × δ([ν −ak+1
2 ρk, ν

ak−1
2 ρk])

)
= ∑

j λ j ⊗
λ′

j and μ∗(δ) = τi ⊗ θi . Then,

μ∗ (δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ([ν −ak+1

2 ρk, ν
ak−1

2 ρk]) � δ
)

=
∑

i

∑
j

λ j × τi ⊗ λ′
j � θi .

Observe that since νxρ′ ⊗ · · · ≤ rmin(λ j ) has νxρ′ ∈ {ν a1−1
2 ρ1, . . . , ν

ak−1
2 ρk}

when λ j 
= 1, and ν
ai −1

2 ρ 
∈ {ν a−+1
2 ρ, . . . , ν

a−1
2 ρ} for any i , we must have λ j = 1.

Thus to have μ∗
δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])


= 0, we must have τi = δ([ν a−+1
2 ρ, ν

a−1
2 ρ]), i.e.,

μ∗
δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])

(δ) 
= 0. By Lemma 1.3.3, this implies εδ(ρ, a)εδ(ρ, a−)−1 =
1, hence ε(ρ, a)ε(ρ, a−)−1 = 1, finishing this case.

Case 2: (ρ, a) ∈ Jord(δ), (ρ, a−) 
∈ Jord(δ) (i.e., m(ρ, a) = 1, m(ρ, a−) = 2)
In this case, (ρ, a−) ∈ {(ρ1, a1), . . . , (ρk, ak)}; without loss of generality, sup-

pose (ρ, a−) = (ρk, ak). Let Tk ≤ δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ]) � δ be irreducible with

T ↪→ δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) × · · · × δ([ν −ak−1+1

2 ρk−1, ν
ak−1−1

2 ρk−1]) � Tk .

Then, by definition and Corollary 2.2.7,

ε(ρ, a)ε(ρ, a−)−1 = 1 ⇔ Tk ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ]) � θ

for some irreducible θ .
For (⇒), we have

T ↪→ δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) × · · · × δ([ν −ak−1+1

2 ρk−1, ν
ak−1−1

2 ρk−1]) � Tk

↪→ δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) × · · · × δ([ν −ak−1+1

2 ρk−1, ν
ak−1−1

2 ρk−1])
×δ([ν a−+1

2 ρ, ν
a−1

2 ρ]) � θ.

Again, δ([ν −ai +1
2 ρi , ν

ai −1
2 ρi ])× δ([ν a−+1

2 ρ, ν
a−1

2 ρ]) is irreducible for i 
= k (since

ν
ai −1

2 ρi 
∈ {ν a−−1
2 ρ, . . . , ν

a−3
2 ρ}). Thus, a commuting argument gives

T ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ]) × δ([ν −a1+1

2 ρ1, ν
a1−1

2 ρ1]) × · · ·
×δ([ν −ak−1+1

2 ρk−1, ν
ak−1−1

2 ρk−1]) � θ;

the result now follows immediately from Lemma 1.2.3.
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For (⇐), we note that the same argument as in Case 1 gives

μ∗
δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])

(
δ([ν −a1+1

2 ρ1, ν
a1−1

2 ρ1]) × · · ·

×δ([ν ak−1+1
2 ρk−1, ν

ak−1−1
2 ρk−1]) � Tk

)

= 0

�
μ∗

δ

([
ν

a−+1
2 ρ,ν

a−1
2 ρ

])(Tk) 
= 0.

It now follows immediately that T ↪→δ([ν a−+1
2 ρ, ν

a−1
2 ρ])�θ ⇒ μ∗

δ([ν
a−+1

2 ρ,ν
a−1

2 ρ])
(Tk) 
= 0, hence ε(ρ, a)ε(ρ, a−)−1 = εk(ρ, a)εk(ρ, a−)−1 = 1, as needed. This
finishes Case 2.

Case 3: (ρ, a−) ∈ Jord(δ), (ρ, a) 
∈ Jord(δ) (i.e., m(ρ, a−) = 1, m(ρ, a) = 2)
In this case, (ρ, a) ∈ {(ρ1, a1), . . . , (ρk, ak)}; without loss of generality, sup-

pose (ρ, a) = (ρk, ak). Let Tk ≤ δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � δ be such that

T ↪→ δ
([

ν
a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ([ν ak−1+1

2 ρk−1, ν
ak−1−1

2 ρk−1]) � Tk .

Then, by definition,

ε(ρ, a)ε(ρ, a−)−1 = 1 ⇔ Tk ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2

� θ.

At this point, the argument is essentially the same as in Case 2, except with

δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2 used in place of δ([ν a−+1

2 ρ, ν
a−1

2 ρ]).

Case 4: (ρ, a), (ρ, a−) 
∈ Jord(δ) (i.e., m(ρ, a) = m(ρ, a−) = 2)
In this case, we have (ρ, a), (ρ, a−) ∈ {(ρ1, a1), . . . , (ρk, ak)}; without

loss of generality, suppose (ρ, a) = (ρk−1, ak−1) and (ρ, a−) = (ρk, ak). By
Lemma 1.2.3, we have

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ

([
ν

−ak−2+1
2 ρk−2, ν

ak−2−1
2 ρk−2

])
� T ′

for some irreducible T ′ ≤ δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) × δ([ν −a−+1

2 ρ, ν
a−−1

2 ρ]) � δ.

First, we claim T ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2

� θ for some irreducible θ if and

only if T ′ ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2

� θ ′ for some irreducible θ ′. For (⇐), observe
that

T ′ ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])2

� θ ′

⇓
T ↪→ δ([ν −a1+1

2 ρ1, ν
a1−1

2 ρ1]) × · · · × δ([ν −ak−2+1
2 ρk−2, ν

ak−2−1
2 ρk−2])

×δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2

� θ ′
∼= δ([ν a−+1

2 ρ, ν
a−1

2 ρ])2 × δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) × · · ·

×δ([ν −ak−2+1
2 ρk−2, ν

ak−2−1
2 ρk−2]) � θ ′,
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with the irreducibility of δ([ν −ai +1
2 ρi , ν

ai −1
2 ρi ]) × δ([ν a−+1

2 ρ, ν
a−1

2 ρ]) as above.
The implication (⇐) now follows from Lemma 1.2.3. For (⇒), observe that

T ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2

� θ

⇓
μ∗

[δ([ν
a−+1

2 ρ,ν
a−1

2 ρ])2]

(
δ([ν −a1+1

2 ρ1, ν
a1−1

2 ρ1]) × · · ·

×δ([ν −ak−2+1
2 ρk−2, ν

ak−2−1
2 ρk−2]) � T ′

)

= 0.

The same considerations as above tell us M∗(δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) × · · · ×

δ([ν −ak−2+1
2 ρk−2, ν

ak−2−1
2 ρk−2])) cannot contribute, soμ∗

[δ([ν
a−+1

2 ρ,ν
a−1

2 ρ])2]
(T ′) 
=

0. That T ′ ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2

� θ for some irreducible θ now follows as in
the proof of Corollary 2.2.7.

Next, we claim εT (ρ, a)εT (ρ, a−)−1 = 1 if and only if εT ′(ρ, a)εT ′(ρ, a−)−1

= 1. To see this, observe that for Ta ≤ δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � δ, we have

T ↪→ δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) × · · ·

×δ([ν −ak−2+1
2 ρk−2, ν

ak−2−1
2 ρk−2]) × δ([ν −a−+1

2 ρ, ν
a−−1

2 ρ]) � Ta

�
T ′ ↪→ δ

([
ν

−a−+1
2 ρ, ν

a−−1
2 ρ

])
� Ta .

If Jordρ(δ) 
= ∅, it now follows from the definition that εT (ρ, a)εT (ρ, b)−1 =
εTa (ρ, a)εTa (ρ, b)−1 and εT ′(ρ, a)εT ′(ρ, b)−1 = εTa (ρ, a)εTa (ρ, b)−1 for any
(ρ, b) ∈ Jord(δ). A similar argument shows εT (ρ, a−)εT (ρ, b)−1 = εT ′(ρ, a−)

εT ′(ρ, b)−1. Coupled with the multiplicative properties of ε (Lemma 2.3.1), we now
see εT (ρ, a)εT (ρ, a−)−1 = εT ′(ρ, a)εT ′(ρ, a−)−1, as claimed. If Jordρ(δ) = ∅,
then εT (ρ, a) and εT (ρ, a−) are defined. Again, one has εT (ρ, a) = εTa (ρ, a) and
εT ′(ρ, a) = εTa (ρ, a) as above (clear from the definition if red(ρ; σ) ≡ 1

2 mod 1
and a short, straightforward argument if red(ρ; σ) = 0). A similar argument applies
to a−, from which the claim follows.

Combining the claims above, it is enough to prove the proposition for T ′, which
is covered by Lemma 2.3.3 below. ��

Lemma 2.3.3. Let T ≤ δ([ν −a+1
2 ρ, ν

a−1
2 ρ])×δ([ν −a−+1

2 ρ, ν
a−−1

2 ρ])�δ be elliptic
tempered as above. Then,

εT (ρ, a)εT (ρ, a−)−1 = 1 ⇔ μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]

(T ) 
= 0.

Proof. As a bookkeeping convenience, write (for c = a or a−)

δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ = T+1(ρ, c; δ) ⊕ T−1(ρ, c; δ),

where Tη(ρ, c; δ) is chosen as follows:
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(1) If there is a (ρ, b) ∈ Jord(δ) with b < a−, choose b maximal (so b = (a−)−
in Jord(T)) and define Tη(ρ, c; δ) by εTη(ρ,c;δ)(ρ, b)εTη(ρ,c;δ)(ρ, c)−1 = η.

(2) If (1) fails but there is a (ρ, b) ∈ Jord(δ) with b > a, choose b minimal (so b =
a+ in Jord(T)) and define Tη(ρ, c; δ) by εTη(ρ,c;δ)(ρ, b)εTη(ρ,c;δ)(ρ, c)−1 = η.

(3) If both (1) and (2) fail, then Jord(δ) = ∅. We then make our choice so that
εTη(ρ,c;δ)(ρ, c) = η (cf. Sect. 2.2).

Observe that

δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ

=
∑

η∈{±1}
δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� Tη(ρ, a−; δ)

=
∑

η∈{±1}
δ([ν −a−+1

2 ρ, ν
a−−1

2 ρ]) � Tη(ρ, a; δ).

Now, observe that

μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]

(
δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� Tη(ρ, a−; δ)
)

= δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2 ⊗ δ

([
ν

−a−+1
2 ρ, ν

a−−1
2 ρ

])
� Tη(ρ, a−; δ)

(noting that there is no (ρ, b) ∈ Jord(δ) such that a− ≤ b ≤ a). Next, observe that

δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ])�Tη(ρ, a−; δ) is irreducible (see Note 2.2.6), so exactly one

component of δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � Tη(ρ, a−; δ) has μ∗

[δ([ν
a−+1

2 ρ,ν
a−1

2 ρ])2]

= 0.

To prove the corresponding statement for δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ])� Tη(ρ, a; δ),

we first claim that

μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]

(Tη(ρ, a; δ)) = δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2 ⊗ Tη(ρ, a−; δ).

It follows directly from

μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]

(
δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� δ
)

= δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])2

⊗
(
δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� δ
)

that

μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]

(Tζ (ρ, a; δ)) = δ([ν a−+1
2 ρ, ν

a−1
2 ρ])2 ⊗ Tη(ρ, a−; δ)

for some η. To show η = ζ , we consider three cases corresponding to (1),(2),(3)
above (noting that (3) gives rise to two subcases: red(ρ; σ) = 1

2 and red(ρ; σ) =
0). These are fairly straightforward; the details are omitted.
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Now, it follows from a straightforward μ∗ argument that

μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]

(
δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� Tη(ρ, a; δ)
)

= δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])2 ⊗ δ

([
ν

−a−+1
2 ρ, ν

a−−1
2 ρ

])
� Tη(ρ, a−; δ).

It then follows that δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ])� Tη(ρ, a; δ) and δ([ν −a+1

2 ρ, ν
a−1

2 ρ])�

Tη(ρ, a−; δ), η = ±1, have a common component πη characterized by having

μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]

(πη)

= δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])2

⊗ δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� Tη(ρ, a−; δ);

in particular, having μ∗
[δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])2]


= 0. The common components of

δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ])� Tη(ρ, a; δ) and δ([ν −a+1

2 ρ, ν
a−1

2 ρ])� T−η(ρ, a−; δ) then
have μ∗

[δ([ν
a−+1

2 ρ,ν
a−1

2 ρ])2]
= 0. ��

Remark 2.3.4. Note that it follows from [6,7] that we may characterize Jord(T) as
in [20]: it consists of all pairs (ρ, a) with ρ̌ ∼= ρ and a ≡ 2red(ρ; σ) + 1 mod 2

such that δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � T is irreducible.

Lemma 2.3.5. Suppose T is elliptic tempered with (ρ, amin) ∈ Jord(T ) and amin

the smallest value of a having (ρ, a) ∈ Jord(T ). Further, suppose red(ρ; σ) ≡
1
2 mod 1 (so that ε(ρ, amin) is defined). Then,

ε(ρ, amin) = 1 ⇔ T ↪→ δ([ν 1
2 ρ, ν

amin−1
2 ρ])m(ρ,amin)

� θ

for some irreducible θ .

Proof. First, suppose m(ρ, amin) = 1. In this case, the proof is like that in Case 1
of the proof of Proposition 2.3.2 (if one takes a− = 0 and ε(ρ, 0) = 1).

Suppose m(ρ, amin) = 2. If Jordρ(δ) = ∅, the claim follows immediately
from the definition of εT (see Sect. 2.3). Thus, we assume Jordρ(δ) 
= ∅. By the
same argument as in Corollary 2.2.7, we have

T ↪→ δ
([

ν
1
2 ρ, ν

amin−1
2 ρ

])2
� θ ⇔ μ∗

[δ([ν 1
2 ρ,ν

amin−1
2 ρ])2]

(T ) 
= 0.

Therefore, it suffices to show

εT (ρ, amin) = 1 ⇔ μ∗
[δ([ν 1

2 ρ,ν
amin−1

2 ρ])2]
(T ) 
= 0.
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Now, write

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ

([
ν

−ak−1+1
2 ρk−1, ν

ak−1−1
2 ρk−1

])

×δ([ν −amin+1
2 ρ, ν

amin−1
2 ρ]) � δ

⇓
T ↪→ δ

([
ν

−a1+1
2 ρ1, ν

a1−1
2 ρ1

])
× · · ·

×δ([ν −ak−1+1
2 ρk−1, ν

ak−1−1
2 ρk−1]) � T ′

for some irreducible T ′ ≤ δ([ν −amin+1
2 ρ, ν

amin−1
2 ρ])�δ. By definition, εT (ρ, amin)

= εT ′(ρ, amin). A straightforward μ∗ analysis and commuting argument tell us

μ∗[
δ([ν 1

2 ρ,ν
amin−1

2 ρ])2

](T ) 
= 0 ⇔ μ∗
[δ([ν 1

2 ρ,ν
amin−1

2 ρ])2]
(T ′) 
= 0.

Thus, we are reduced to showing

εT ′(ρ, amin) = 1 ⇔ μ∗[
δ([ν 1

2 ρ,ν
amin−1

2 ρ])2

](T ′) 
= 0.

Now, since amin is minimal in Jordρ(T ′) and Jordρ(δ) 
= ∅, we have (ρ, a) ∈
Jord(δ) with a minimal (so that in Jordρ(T ′), a− = amin). Since m(ρ, a) = 1, it
follows from Proposition 2.3.2 and Corollary 2.2.7

εT ′(ρ, amin) = εT ′(ρ, a) ⇔ μ∗
δ([ν

amin+1
2 ρ,ν

a−1
2 ρ])

(T ′) 
= 0.

At this point, we claim that if εT ′(ρ, a) = 1,

μ∗[
δ([ν 1

2 ρ,ν
amin−1

2 ρ])2

](T ′) 
= 0 ⇔ μ∗
δ([ν

amin+1
2 ρ,ν

a−1
2 ρ])

(T ′) 
= 0

and if εT ′(ρ, a) = −1,

μ∗[
δ([ν 1

2 ρ,ν
amin−1

2 ρ])2

](T ′) 
= 0 ⇔ μ∗
δ([ν

amin+1
2 ρ,ν

a−1
2 ρ])

(T ′) = 0,

from which the lemma then follows. The proof of this is essentially the same as
that in Lemma 2.2.3—formally take (ρ, 0) for (ρ, a−) there, with ε(ρ, a−) = 1.

The degeneracy of δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ]) simplifies part of the proof; the rest is the

same. ��
Definition 2.3.6. Suppose red(ρ; σ) = 0. For m = 1 or 2, set

T (δ([νρ, ν
b−1

2 ρ])m; τη(ρ; σ)) =
{

δ([νρ, ν
b−1

2 ρ]; τη(ρ; σ)) if m = 1,

T (δ([νρ, ν
b−1

2 ρ])2; τη(ρ; σ)) if m = 2,

with the representations on the right defined in Sect. 1.3 and Lemma 2.2.2, resp.
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Lemma 2.3.7. Suppose red(ρ; σ) = 0. Let T be an elliptic tempered repre-
sentation with Jordρ(T ) 
= 0. Let amax be the largest value of a such that
(ρ, a) ∈ Jord(T ). Then,

εT (ρ, amax ) = η ⇔ T ↪→ λ � T (δ([νρ, ν
amax −1

2 ρ])m(ρ,amax ); τη(ρ; σ))

for some irreducible λ.

Proof. First, suppose m(ρ, amax ) = 2 and Jordρ(δ) 
= ∅. We have

T ↪→ δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) × · · · × δ([ν −ak−1+1

2 ρk−1, ν
ak−1−1

2 ρk−1])︸ ︷︷ ︸
λ

×δ([ν −amax +1
2 ρ, ν

amax −1
2 ρ]) � δ

⇓
T ↪→ λ � T ′

for some component T ′ ≤ δ([ν −amax +1
2 ρ, ν

amax −1
2 ρ])�δ. By definition, εT (ρ, amax )

= εT ′(ρ, amax ). Further, if cmax is the largest value of c such that (ρ, cmax ) ∈
Jord(δ), we also have εT (ρ, cmax ) = εT ′(ρ, cmax ) (both matching εδ(ρ, cmax )).
Now, by Tadić’s characterization, letting η = εδ(ρ, cmax ) = εT (ρ, cmax ),

δ ↪→ λ′
� δ([νρ, ν

cmax −1
2 ρ]); τη(ρ; σ))

⇓
T ′ ↪→ δ([ν −amax +1

2 ρ, ν
amax −1

2 ρ]) × λ′
� δ([νρ, ν

cmax −1
2 ρ]); τη(ρ; σ))

∼= λ′ × δ([ν −amax +1
2 ρ, ν

amax −1
2 ρ]) � δ([νρ, ν

cmax −1
2 ρ]); τη(ρ; σ))

⇓
T ′ ↪→ λ′

� θ and T ↪→ λ × λ′
� θ

for some θ ≤ δ([ν −amax +1
2 ρ, ν

amax −1
2 ρ]) � δ([νρ, ν

cmax −1
2 ρ]); τη(ρ; σ)). Note

that by construction, εθ (ρ, cmax ) = η. Also, as λ′ commutes with δ([ν cmax +1
2 ρ,

ν
amax −1

2 ρ]), we have

μ∗
[δ([ν cmax +1

2 ρ,ν
amax −1

2 ρ])2]
(T ′) 
= 0 ⇔ μ∗

[δ([ν cmax +1
2 ρ,ν

amax −1
2 ρ])2]

(θ) 
= 0

⇓
εT ′(ρ, amax )εT ′(ρ, cmax )

−1 = εθ (ρ, amax )εθ (ρ, cmax )
−1.

It now follows that εθ (ρ, amax ) = εT (ρ, amax ) and εθ (ρ, cmax ) = εT (ρ, cmax ).
In the notation of [3], we have

DG

(
δ([ν −amax +1

2 ρ, ν
amax −1

2 ρ]) � δ([νρ, ν
cmax −1

2 ρ]); τη(ρ; σ)
)

= ζ([ν −amax +1
2 ρ, ν

amax −1
2 ρ]) � ζ−η(ρ, cmax−1

2 − 1; σ),

where DG denotes the duality operator from [1,26] (extended to O(2n, F) in [16]),
noting DG(τη(ρ; σ)) = τ−η(ρ; σ) (for the even-orthogonal groups, we make the
choice of duality so that this holds—see Remark 6.6 [16]). This representation is
analyzed in Theorem 3.4 of [3], the combinatorial arguments of which apply in the
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generality needed here. It then follows from Theorem 3.4 of [3] and duality that for
ζ = εθ (ρ, amax )εθ (ρ, cmax )

−1, we have

r
ν

cmax −1
2 ρ⊗···⊗νρ⊗ρ

(θ) = ν
cmax −1

2 ρ ⊗ · · · ⊗ νρ ⊗ ρ

⊗T (δ(([νρ, ν
amax −1

2 ρ])2; τζη(ρ; σ))

⇓ (Lemmas 1.2.2 and 1.2.3)

θ ↪→ ν
cmax −1

2 ρ × · · · × νρ × ρ � T (δ([νρ, ν
amax −1

2 ρ])2; τζη(ρ; σ))

⇓
T ↪→ λ × λ′ × ν

cmax −1
2 ρ × · · · × νρ × ρ � T (δ([νρ, ν

amax −1
2 ρ])2; τζη(ρ; σ))

⇓ (Lemma 1.2.3)

T ↪→ τ � T (δ([νρ, ν
amax −1

2 ρ])2; τζη(ρ; σ))

∼= τ � T (δ([νρ, ν
amax −1

2 ρ])2; τξ (ρ; σ))

where ξ = ζη = εT (ρ, amax ), as needed.
In the converse direction, it suffices to show that μ∗(T ) contains no terms of

the form λ′ ⊗ T (δ([νρ, ν
amax −1

2 ρ])2; τ−η(ρ; σ)). To this end, observe that

T ↪→ λ � T (δ([νρ, ν
amax −1

2 ρ])2; τη(ρ; σ))

⇓
μ∗(T ) ≤ M∗(λ) � μ∗

(
T (δ([νρ, ν

amax −1
2 ρ])2; τη(ρ; σ)

)
,

so it suffices to show M∗(λ) � μ∗
(

T (δ([νρ, ν
amax −1

2 ρ])2; τη(ρ; σ))
)

contains no

terms of the form λ′ ⊗T (δ([νρ, ν
amax −1

2 ρ])2; τ−η(ρ; σ)). Write M∗(λ) =∑i λ′
i ⊗

λ′′
i and μ∗

(
T (δ([νρ, ν

amax −1
2 ρ])2; τη(ρ; σ))

)
=∑ j λ j ⊗ θ j . Then,

M∗(λ) � μ∗ (T (δ([νρ, ν
amax −1

2 ρ])2; τη(ρ; σ))
)

=
∑

i

∑
j

λ′
i × λ j ⊗ λ′′

i � θ j .

Now, any term of the form νxρ⊗· · · in μ∗
(

T (δ([νρ, ν
amax −1

2 ρ])2; τη(ρ; σ))
)

must

have x = amax−1
2 (just consider μ∗

(
δ([ν −amax +1

2 ρ, ν
amax −1

2 ρ]) � σ
)

). Therefore, if

λ j 
= 1, it must contain a ν
amax −1

2 ρ in its supercuspidal support. Therefore, θ j can

have at most oneν
amax −1

2 ρ in its supercuspidal support, hence the same forλ′′
i �θ j (as

any νxρ appearing in the supercuspidal support of λ′′
i must have |x | < amax−1

2 ). In

particular, λ′′
i �θ j cannot contain T (δ([νρ, ν

amax −1
2 ρ])2; τη(ρ; σ)) as a subquotient.

Thus we must have λ j = 1 ⇒ θ j = T (δ([νρ, ν
amax −1

2 ρ])2; τη(ρ; σ)), as needed.
This finishes the case m(ρ, amax ) = 2 with Jordρ(δ) 
= ∅.

Now, suppose m(ρ, amax ) = 2 with Jordρ(δ) = ∅. We have

T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� δ,

with (ρi , ai ) = (ρ, amax ) for some i ; without loss of generality, suppose i = k.
Then,
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T ↪→ δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ

([
ν

−ak−1+1
2 ρk−1, ν

ak−1−1
2 ρk−1

])

�

(
δ
([

ν
−amax +1

2 ρ, ν
amax −1

2 ρ
])

� δ
)

⇓
T ↪→ δ

([
ν

−a1+1
2 ρ1, ν

a1−1
2 ρ1

])
×

· · · × δ

([
ν

−ak−1+1
2 ρk−1, ν

ak−1−1
2 ρk−1

])
� T0

for exactly one irreducible T0 ≤ δ([ν −amax +1
2 ρ, ν

amax −1
2 ρ]) � δ. By definition,

εT (ρ, amax ) = εT0(ρ, amax ). Thus,

εT (ρ, amax ) = η

⇓
εT0(ρ, amax ) = η

⇓ (definition—see Sect. 2.2)

μ∗(T0) ≥ λ′
0 ⊗ T (δ

([
νρ, ν

amax −1
2 ρ

])2 ; τη(ρ; σ))

⇓ (Lemma 2.2.8)

T0 ↪→ λ0 � T (δ
([

νρ, ν
amax −1

2 ρ
])2 ; τη(ρ; σ))

⇓
T ↪→ δ

([
ν

−a1+1
2 ρ1, ν

a1−1
2 ρ1

])
× · · · × δ

([
ν

−ak−1+1
2 ρk−1, ν

ak−1−1
2 ρk−1

])

×λ0 � T (δ
([

νρ, ν
amax −1

2 ρ
])2 ; τη(ρ; σ))

⇓ (Lemma 1.2.3)

T ↪→ λ � T (δ
([

νρ, ν
amax −1

2 ρ
])2 ; τη(ρ; σ)),

as needed. The converse direction is similar to the preceding case.
Finally, suppose m(ρ, amax ) = 1. Then, by definition, εT (ρ, amax ) =

εδ(ρ, amax ). An argument like that in the beginning of the case m(ρ, amax ) = 2
gives

εδ(ρ, amax ) = η ⇒ T ↪→ λ � δ
([

νρ, ν
amax −1

2 ρ
]
; τη(ρ; σ)

)

for some irreducible λ, as needed. The converse follows as in the case m(ρ, amax ) =
2. ��

2.4. Tempered representations

In this section, we finish the process of extending the Mœglin–Tadić classification to
general tempered representations. This is fairly straightforward given the extension
to the elliptic case done in Sect. 2.3.
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Recall that an arbitrary irreducible tempered representation T may be written

T = δ
([

ν
−a1+1

2 ρ1, ν
a1−1

2 ρ1

])
× · · · × δ

([
ν

−ak+1
2 ρk, ν

ak−1
2 ρk

])
� Tell , (2.2)

with Tell an elliptic tempered representation and δ([ν −a1+1
2 ρ1, ν

a1−1
2 ρ1]) ⊗ · · · ⊗

δ([ν −ak+1
2 ρk, ν

ak−1
2 ρk]) unique up to conjugacy (i.e., permutations and sign

changes). Note that by Goldberg [7], this is consistent with the use of elliptic
in the case of O(2n, F) from Sect. 2.3. Further, for each (ρi , ai ), exactly one of
the following holds: (1) (ρi , ai ) ∈ Jord(Tell), or (2) ai 
≡ 2red(ρi ; σ) + 1 mod 2
(including the possibility red(ρi ; σ) = ∞, i.e., ρ 
∼= ρ̌).

We now define Jord(T ) = Jordell(T ) ∪ Jordnon(T ). Here, Jordell(T ) =
Jord(Tell) and Jordnon(T ) consists of the (ρi , ai ) satisfying (2) above (including
both (ρ, a) and (ρ̌, a) if they are different). We define mT (ρ, a) by

mT (ρ, a) =
⎧
⎨
⎩

mTell (ρ, a) + 2|{i | (ρi , ai ) ∼= (ρ, a)}| if (ρ, a) ∈ Jordell (T )

2|{i | (ρi , ai ) ∼= (ρ, a)}| if a 
≡ 2red(ρ;σ) + 1 mod 2 with red(ρ; σ) < ∞
|{i | (ρi , ai ) ∼= (ρ, a) or (ρ̌, a)}| if ρ 
∼= ρ̌.

Of course, σ is the same as for Tell . To finish the quadruple (Jord, σ, ε, m) for
T , we take ST = STell and εT = εTell . We have thus associated a quadruple
(Jord, σ, ε, m) to T .

We have the following analogue of Lemma 2.1.1. The proof is essentially the
same; we omit the details.

Lemma 2.4.1. Suppose T is tempered. With notation as in Lemma 2.1.1, if c > 0
we have the following:

(1) If c ∼= red(ρ; σ) mod 1, then

m(ρ, 2c + 1) =
{

n(ρ, c) − n(ρ, c + 1) if c ≥ red(ρ; σ)

n(ρ, c) − n(ρ, c + 1) + 1 if c < red(ρ; σ).

(2) If ρ ∼= ρ̌ and c 
≡ red(ρ; σ) mod 1,

m(ρ, 2c + 1) = n(ρ, c) − n(ρ, c + 1).

(3) If ρ 
∼= ρ̌,

m(ρ, 2c + 1) = m(ρ̌, 2c + 1)

= 1

2
[n(ρ, c) − n(ρ, c + 1) + n(ρ̌, c) − n(ρ̌, c + 1)].

If c = 0, we replace n(ρ, c) − n(ρ, c + 1) by 2n(ρ, 0) − n(ρ, 1) in the formulas
above.

Note 2.4.2. We have the following analogue of Lemma 1.3.3, proved using the same
argument.
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Let T = T(Jord,σ,ε,m) be tempered and (ρ, a) ∈ Jord with (ρ, a−) defined.
Then

T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])m(ρ,a)

� θ for some irreducible θ

�
μ∗(T ) ≥ δ

([
ν

a−+1
2 ρ, ν

a−1
2 ρ
])m(ρ,a) ⊗ θ ′ for some irreducible θ ′.

If a− is not defined, we may replace a− in the above statement with 0 or 1, whichever
matches the parity of a.

3. Tempered representations

3.1. The definition of fπ

The following definition and lemma are the analogues for classical groups of Def-
inition 2.1.1 and Lemma 2.1.2 of [17].

Definition 3.1.1. Let π be an irreducible representation and X a set of (equivalence
classes of) irreducible not-necessarily unitary supercuspidal representations of gen-
eral linear groups. We define fπ (X) to be the largest value of f such that rmin(π)

contains a term of the form νx1ρ1⊗· · ·⊗νx f ρ f ⊗· · · with νx1ρ1, . . . , ν
x f ρ f ∈ X . If

X = {νxρ}, we write fπ (νxρ) in lieu of fπ ({νxρ}). We let μ∗
X (π) denote the sum of

everything in μ∗(π) of the form λ⊗θ with λ, θ irreducible and rmin(λ) containing a
term of the form νx1ρ1 ⊗· · ·⊗νx f ρ f with f = fπ (X) and νx1ρ1, . . . , ν

x f ρ f ∈ X .

Remark 3.1.2. Note that μ∗
νx ρ and μ∗{νx ρ} are not in general the same, so the dis-

tinction between νxρ and {νxρ} is otherwise maintained in what follows.

Lemma 3.1.3. Let π be an irreducible representation and X a set of (equivalence
classes of) irreducible not-necessarily unitary supercuspidal representations of
general linear groups. Further, assume that if νxρ ∈ X, then ν−x ρ̌ 
∈ X. Then,
there are unique irreducible representations λ, θ and unique f ∈ N∪{0} such that
the following are all satisfied:

(1) π ↪→ λ � θ .
(2) If νx1ρ1 ⊗ · · · ⊗ νx f ρ f ≤ rmin(λ), then νx1ρ1, . . . , ν

x f ρ f ∈ X.
(3) rνx ρ(θ) = 0 for all νxρ ∈ X.

Furthermore, f = fπ (X) and μ∗
X (π) = λ ⊗ θ . In fact, π ↪→ λ � θ as the unique

irreducible subrepresentation. In particular, if π ′ is an irreducible representation
with μ∗

X (π ′) = μ∗
X (π), then π ′ = π .

Proof. The proof is similar to that of Lemma 2.1.2 of [17]. We omit the details. ��
Remark 3.1.4. In what follows, our concern is with the case |X | = 1. If we have
X = {ρ} (with ρ̌ ∼= ρ), the above still holds except that λ ⊗ θ can appear with
multiplicity greater than one.
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We close this section with the following extension of Remark 1.3.2:

Note 3.1.5. Let T be an irreducible tempered representation with associated data
(Jord, σ, ε, m). It follows from the embedding

T ↪→ δ
([

ν
−a1−1

2 ρ1, ν
a1+1

2 ρ1

])
× · · · × δ

([
ν

−ak−1
2 ρk, ν

ak+1
2 ρk

])
� δ

and Remark 1.3.2 (applied to δ) that fT (ν
a−1

2 ρ) ≤ m(ρ, a)

3.2. Jacquet modules for discrete series

The main result in this section is a characterization of terms of the form νxρ ⊗T (ρ
supercuspidal) which appear in the Jacquet module of a discrete series representa-
tion (Theorem 3.2.2). As a corollary, we may characterize the θ which appears in
Eq. (1.3).

Lemma 3.2.1. Suppose δ = δ(Jord,σ,ε) is a discrete series representation and
(ρ, 2) ∈ Jordρ (which implies red(ρ; σ) ≡ 1

2 mod 1). Then,

fδ(ν
1
2 ρ) =

{
1 if ε(ρ, 2) = 1,

0 if ε(ρ, 2) = −1.

Further, when fδ(ν
1
2 ρ) = 1 we have

μ∗
{ν 1

2 ρ}
(δ) = ν

1
2 ρ ⊗ δ′,

where δ′ = δ(Jord ′,σ,ε′) has Jord(δ′) = Jord(δ) \ {(ρ, 2)} and εδ′ the restriction
of εδ

Proof. First, suppose that ε(ρ, 2) = −1. Then, it follows directly from the char-

acterization εδ(ρ, amin) = 1 if and only if δ ↪→ δ([ν 1
2 ρ, ν

amin−1
2 ρ]) � θ and

Lemma 1.3.3 that fδ(ν
1
2 ρ) = 0.

Now, suppose ε(ρ, 2) = 1. If we show μ∗(δ) ≥ ν
1
2 ρ ⊗ δ′, it follows that

fδ(ν
1
2 ρ) ≥ 1. On the other hand, by Note 3.1.5, we have fδ(ν

1
2 ρ) ≤ 1. Thus, this

would imply μ∗
{ν 1

2 ρ}
(δ) = ν

1
2 ρ ⊗ δ′, as needed.

By [21], one has

δ ↪→ ν
1
2 ρ � π

for some irreducible π . We must show that π = δ′ from the statement of the lemma.
First, we claim that π is square-integrable—the argument is the same as in the proof
of Proposition 2.1.2. That Jord(π) = Jord(δ′) follows from Lemma 2.1.1. As
the partial cuspidal supports match, all that remains to show επ = εδ′ .

If |Jordρ | = 1, that π = δ′ follows immediately from the Mœglin–Tadić
construction. If |Jordρ | > 1, let b be the smallest value greater than 2 having
(ρ, b) ∈ Jord. By Lemma 2.3.1, it suffices to show επ (ρ, b) = ε(ρ, b). This
follows from an argument similar to that used in (the later part of) Proposition 2.1.2.

��
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Theorem 3.2.2. Suppose δ is a discrete series representation with Mœglin–Tadić

data (Jord, σ, ε). We have fδ(ν
a−1

2 ρ) = 0 unless (ρ, a) ∈ Jord and one of the
following holds:

(1) (ρ, a−) exists and either (a) a > a− + 2, or (b) ε(ρ, a)ε(ρ, a−)−1 = 1.
(2) (ρ, a−) does not exist and either (a) a > 2, or (b) a = 2 and ε(ρ, a) = 1.

In either of these cases, fδ(ν
a−1

2 ρ) = 1 and μ∗
ν

a−1
2 ρ

(δ) = ν
a−1

2 ρ ⊗ T , where T is

an elliptic tempered representation (noting that this includes the possibility of T
being discrete series) with data (Jord(T ), σ, εT , mT ) as follows:

Jord(T ) =
{

(Jord \ {(ρ, a)}) ∪ {(ρ, a − 2)} if a > 2,

Jord \ {(ρ, a)} if a = 2

and

mT (ρ′, b) =
⎧⎨
⎩

m(ρ′, b) if (ρ′, b) 
= (ρ, a) or (ρ, a − 2),

0 if (ρ′, b) = (ρ, a),

m(ρ, a − 2) + 1 if (ρ′, b) = (ρ, a − 2) (with a > 2),

and εT defined on its domain ST by

εT (ρ′, b) =
{

ε(ρ′, b) if (ρ′, b) 
= (ρ, a − 2),

ε(ρ, a) if (ρ′, b) = (ρ, a − 2)

in those cases where εT (ρ′, b) is defined, and if (ρ′, b), (ρ′, c) ∈ Jord(T ),

εT (ρ′, b)εT (ρ′, c)−1 =
⎧
⎨
⎩

ε(ρ′, b)ε(ρ′, c)−1 if (ρ′, b), (ρ′, c) 
= (ρ, a − 2),

ε(ρ, a)ε(ρ, c)−1 if (ρ′, b) = (ρ, a − 2),

ε(ρ, b)ε(ρ, a)−1 if (ρ′, c) = (ρ, a − 2).

Proof. It follows from Remark 1.3.2 that fδ(ν
a−1

2 ρ) > 0 requires (ρ, a) ∈ Jord.
Now, Cases 1(a) and 2(a) are covered by Proposition 2.1.2, noting (for 1(a)) that

fδ(ν
a−1

2 ρ) ≤ 1 follows from Note 3.1.5. Case 2(b) follows from Lemma 3.2.1.
Thus, only Case 1(b) needs to be addressed. In particular, we may assume

(ρ, a), (ρ, a − 2) ∈ Jord. It is then immediate from Eq. (1.3) that fδ(ν
a−1

2 ρ) ={
1 if ε(ρ, a)ε(ρ, a − 2)−1 = 1,

0 if ε(ρ, a)ε(ρ, a − 2)−1 = −1
(noting that fδ(ν

a−1
2 ρ) ≤ 1 follows from

Note 3.1.5).
From [21], if (ρ, a), (ρ, a − 2) ∈ Jord with ε(ρ, a)ε(ρ, a − 2)−1 = 1, we

have

δ ↪→ δ
([

ν
−a+3

2 ρ, ν
a−1

2 ρ
])

� δ1 ↪→ ν
a−1

2 ρ �

(
δ
([

ν
−a+3

2 ρ, ν
a−3

2 ρ
])

� δ1

)

for the usual δ1 (see Note 1.3.1). Note that since (ρ, a − 2) 
∈ Jord(δ1), we have
δ([ν −a+3

2 ρ, ν
a−3

2 ρ])�δ1 reducible. Let T be a component of δ([ν −a+3
2 ρ, ν

a−3
2 ρ])�

δ1 such that δ ↪→ ν
a−1

2 ρ � T . It follows from Lemma 3.1.3 and fδ(ν
a−1

2 ρ) = 1
that μ∗

ν
a−1

2 ρ
(δ) = ν

a−1
2 ρ ⊗ T , so that this holds for exactly one component of
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δ([ν −a+3
2 ρ, ν

a−3
2 ρ]) � δ1. To see that this T has the data given in the statement of

the theorem, observe that by the construction in Sect. 2.2, we have

Jord(T ) = Jord(δ1) ∪ {(ρ, a − 2)}
= (Jord(δ) \ {(ρ, a), (ρ, a − 2)}) ∪ {(ρ, a − 2)} = Jord(δ) \ {(ρ, a)}

and

mT (ρ′, b) =
⎧
⎨
⎩

1 if (ρ′, b) ∈ Jord(δ1),

2 if (ρ′, b) = (ρ, a − 2),

0 otherwise,

matching the description of Jord(T) and mT in the statement of the theorem. Clearly,
the partial cuspidal support is still σ . Thus, it remains to address εT .

First, if (ρ′, b), (ρ′, c) ∈ Jord(δ1) = Jord(δ) \ {(ρ, a), (ρ, a − 2)}, then the
construction in Sect. 2.2 implies

εT (ρ′, b)εT (ρ′, c)−1 = εδ1(ρ
′, b)εδ1(ρ

′, c)−1 = εδ(ρ
′, b)εδ(ρ

′, c)−1

and, if defined,

εT (ρ′, b) = εδ1(ρ
′, b) = εδ(ρ

′, b).

Again, this matches that part of the description of εT in the statement of the theorem.
Thus, it remains to show εT (ρ, b)ε(ρ, a − 2)−1 and εT (ρ, a − 2) (when defined)
have the values claimed.

For εT (ρ, b)ε(ρ, a − 2)−1, observe that by Lemma 2.3.1, it is enough to show
this for some b 
= a − 2. It therefore suffices to first address the case b = a+, then
(assuming a+ does not exist) the case b = a−. The arguments here are similar to
those in (the later part of) Proposition 2.1.2. For εT (ρ, a − 2) (when defined), note
that if |Jordρ(δ)| > 2, then we have already argued above that εT (ρ, c) = ε(ρ, c)
for c 
= a, a − 2, so are done by Lemma 2.3.1. Thus we may assume Jordρ(δ) =
{(ρ, a), (ρ, a−2)}; in particular, amin = a−2. There are two cases, corresponding
to red(ρ; σ) ≡ 1

2 mod 1 and red(ρ; σ) = 0. The proof of the former is also similar
to the (later part of) the proof of Proposition 2.1.2; the proof of the latter to the
proof of Lemma 2.3.7. Note that Proposition 2.3.2 and Note 2.4.2 serve the roles
here that Eq. (1.3) and Lemma 1.3.3 play in the proof of Proposition 2.1.2. ��

The following corollary identifies the θ in the characterization

εδ(ρ, a)εδ(ρ, a−)−1 = 1 ⇔ δ ↪→ δ([ν a−−1
2 ρ, ν

a−1
2 ρ]) � θ.

Corollary 3.2.3. Let δ = δ(Jord,σ,ε) be a discrete series representation. If

(ρ, a), (ρ, a−) ∈ Jord with ε(ρ, a)ε(ρ, a−)−1 = 1, then δ ↪→ δ([ν a−+1
2 ρ, ν

a−1
2

ρ]) � T , where T is elliptic tempered with data (Jord(T ), σ, εT , mT ) as fol-
lows: Jord(T ) = Jord \ {(ρ, a)}, εT is the restriction of ε, and mT (ρ′, b) = 1
for all (ρ′, b) ∈ Jord(T ) except for (ρ, a−), which has multiplicity 2. Further,

μ∗
δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])

(δ) = δ([ν a−+1
2 ρ, ν

a−1
2 ρ]) ⊗ T .
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3.3. Jacquet modules for δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ

In this section, we establish the analogue of Note 1.3.1 for components of

δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ (assumed reducible). In Sect. 3.4, we extend this first to

the elliptic case, then to general tempered representations.

Lemma 3.3.1. Let δ be square-integrable and T ≤ δ([ν −c+1
2 ρ, ν

c−1
2 ρ])�δ elliptic

tempered. If (ρ, a), (ρ, a−) ∈ Jord(T ) with εT (ρ, a)εT (ρ, a−)−1 = 1, then T ↪→
δ([ν −a−+1

2 ρ, ν
a−1

2 ρ]) � T ′, where T ′ is an elliptic tempered representation whose
data is obtained as follows: one removes one copy each of (ρ, a) and (ρ, a−) from
Jord(T); εT ′ is then the restriction of εT .

Proof. We consider three cases: (1) c = a, (2) c = a−, and (3) c 
= a, a−.

Case 1: c = a
We have

T ↪→ δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ ↪→ δ
([

ν
−a−+1

2 ρ, ν
c−1

2 ρ
])

×δ
([

ν
−c+1

2 ρ, ν
−a−−1

2 ρ
])

� δ

⇓ (Lemma 1.2.3)

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
c−1

2 ρ
])

� θ

for some irreducible θ ≤ δ([ν −c+1
2 ρ, ν

−a−−1
2 ρ]) � δ. Note that since εT (ρ, c)εT

(ρ, a−)−1 = 1, we have μ∗
[δ([ν

a−+1
2 ρ,ν

c−1
2 ρ])2]

(T ) 
= 0 ⇒ μ∗
δ([ν

a−+1
2 ρ,ν

c−1
2 ρ])

(θ) 
=
0. We claim that θ = T ′, with T ′ as in the statement of the lemma. Observe that
in this case, T ′ is actually square-integrable. By Corollary 2.1.3 and Lemma 1.3.3,

T ′ ↪→ δ([ν a−+1
2 ρ, ν

c−1
2 ρ]) � δ. Further, since

μ∗
δ

([
ν

a−+1
2 ρ,ν

c−1
2 ρ

])
(
δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

= δ
([

ν
a−+1

2 ρ, ν
c−1

2 ρ
])

⊗ δ

(a straightforward μ∗ argument), we see that T ′ is the only irreducible subquotient

of δ([ν a−+1
2 ρ, ν

c−1
2 ρ]) � δ having μ∗

δ([ν
a−+1

2 ρ,ν
c−1

2 ρ])

= 0. Therefore, θ = T ′, as

claimed. This finishes Case 1.

Case 2: c = a−
By Note 2.1.4, δ ↪→ δ([ν c+1

2 ρ, ν
a−1

2 ρ]) � δ′. Note that δ′ from Note 2.1.4
matches T ′ in the statement of the lemma. Thus,

T ↪→ δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
c+1

2 ρ, ν
a−1

2 ρ
])

� T ′

⇓ (Lemma 1.2.3)
T ↪→ λ � T ′
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with λ = δ([ν −c+1
2 ρ, ν

a−1
2 ρ]) or L(δ([ν −c+1

2 ρ, ν
c−1

2 ρ]), δ([ν c+1
2 ρ, ν

a−1
2 ρ])). To

have μ∗
δ([ν c+1

2 ρ,ν
a−1

2 ρ])
(T ) 
= 0, we must have M∗

δ([ν c+1
2 ρ,ν

a−1
2 ρ])

(λ) 
= 0, which

holds only for λ = δ([ν −c+1
2 ρ, ν

a−1
2 ρ]). Thus,

T ↪→ δ
([

ν
−c+1

2 ρ, ν
a−1

2 ρ
])

� T ′,

as needed.

Case 3: c 
= a, a− Since (ρ, a), (ρ, a−) ∈ Jord(δ) and εδ(ρ, a)ε−1
δ (ρ, a−) =

εT (ρ, a)εT (ρ, a−)−1 = 1, we have

δ ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δ′

for δ′ as in [21] (see Note 1.3.1). Therefore, noting c > a or c < a−,

T ↪→ δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δ′

∼= δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ′

⇓
T ↪→ δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ
])

� T ′

for some T ′ ≤ δ([ν −c+1
2 ρ, ν

c−1
2 ρ])�δ′. Clearly, Jord(T ′), mT ′ and the partial cus-

pidal support are as claimed. It remains to show εT ′ is also as claimed. For this, it is
enough to show εT ′ is as claimed on ST ′∩(Jordρ(T ′) ∪ (Jordρ(T ′) × Jordρ(T ′))

)
(as the remaining values match those for εδ′ , hence εδ and so εT ).

First, suppose Jordρ(δ′) 
= ∅. Then it suffices to show εT ′(ρ, c)εT ′(ρ, b)−1 =
εT (ρ, c)εT (ρ, b)−1 for some (ρ, b) ∈ Jord(T ′). First, suppose we have (ρ, b) ∈
Jord(T ′) with b minimal such that b > c. There are three possibilities to consider:
(1) a > a− > b > c, (2) b > c > a > a−, and (3) b > a > a− > c. If
either a > a− > b > c or b > c > a > a−, a straightforward argument using
Corollary 2.2.7 and the definition in Sect. 2.2 shows that εT ′(ρ, c)εT ′(ρ, b)−1 =
1 ⇔ εT (ρ, c)εT (ρ, b)−1 = 1.

Now, suppose b > a > a− > c. Suppose δ′ is the discrete series representation
having Jord(δ′) = Jord(δ)\{(ρ, a), (ρ, a−)}, the same partial cuspidal support as

δ, and εδ′ given by restriction of εδ . By [21], we have δ ↪→ δ([ν −a−+1
2 ρ, ν

a−1
2 ρ])�δ′.

Now, set

I1 = δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ

and

I ξ
2 = δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ
])

� T ′
ξ ,

for ξ = ±1, where T ′
ξ is the component of δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ′ characterized

by εT ′
ξ
(ρ, b)εT ′

ξ
(ρ, c)−1 = ξ ,
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First, we claim I1 and I ξ
2 , ξ = ±1, have exactly one irreducible subquotient in

common. To see this, let

I = δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δ′.

Observe that I1, I+1
2 , I−1

2 ≤ I. It is not difficult to show that δ([ν −c+1
2 ρ, ν

c−1
2 ρ])×

δ([ν −a−+1
2 ρ, ν

a−1
2 ρ])⊗ δ′ appears with multiplicity four in μ∗(I), multiplicity two

in each μ∗(I ξ
2 ), and multiplicity two in μ∗(I1)—once in each component. Since

I1 
≤ I ξ
2 for either value of ξ (e.g., consider μ∗

δ([ν −c+1
2 ρ,ν

c−1
2 ρ])

(I ξ
2 )), the claim

follows. Now, let ζ = εδ(ρ, b)εδ(ρ, a)−1.

It is now a straightforward matter to show that δ([ν c+1
2 ρ, ν

a−−1
2 ρ]) ×

δ([ν c+1
2 ρ, ν

a−1
2 ρ]) ⊗

(
δ([ν c+1

2 ρ, ν
c−1

2 ρ]) � T ′
ζ

)
(irreducible) appears with mul-

tiplicity one in each of μ∗(I1), μ∗(I ζ
2 ), and μ∗(I), but not in μ∗(I−ζ

2 ).
We now finish the case b > a > a− > c. We first note that since

μ∗
δ([ν c+1

2 ρ,ν
a−−1

2 ρ])
is nonzero for exactly one component of I1, we have

μ∗
δ([ν c+1

2 ρ,ν
a−−1

2 ρ])
(T ) 
= 0 ⇔ μ∗

δ([ν c+1
2 ρ,ν

a−−1
2 ρ])×δ([ν c+1

2 ρ,ν
a−1

2 ρ])
(T ) 
= 0.

Therefore,

εT (ρ, b)εT (ρ, c)−1 = ζ ⇒ εT (ρ, a−)εT (ρ, c)−1 = 1
⇒ μ∗

δ

([
ν

c+1
2 ρ,ν

a−−1
2 ρ

])(T ) 
= 0 (definition)

⇒ μ∗
δ

([
ν

c+1
2 ρ,ν

a−−1
2 ρ

])
×δ([ν c+1

2 ρ,ν
a−1

2 ρ])
(T ) 
= 0

⇒ T ≤ I1, I ζ
2⇒ εT ′(ρ, b)εT ′(ρ, c)−1 = ζ.

Conversely,

εT (ρ, c)εT (ρ, c)−1 = −ζ ⇒ εT (ρ, a−)εT (ρ, c)−1 = −1
⇒ μ∗

δ

([
ν

c+1
2 ρ,ν

a−−1
2 ρ

])(T ) = 0

⇒ T 
≤ I ζ
2

⇒ T ≤ I1, I−ζ
2⇒ εT ′(ρ, b)εT ′(ρ, c)−1 = −ζ,

as needed.
Now, consider the case where one has (ρ, b) ∈ Jord(T ′) with b maximal

having b < c. When c > b > a > a− or a > a− > c > b, it is the same
basic argument as for b > c > a > a− or a > a− > b > c above except

δ([ν c+1
2 ρ, ν

b−1
2 ρ]) is replaced by δ([ν b+1

2 ρ, ν
c−1

2 ρ])2. When c > a > a− >

b, the argument is also similar, with the key difference being that one shows
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μ∗
[δ([ν a+1

2 ρ,ν
c−1

2 ρ])2]
(I1) = δ([ν a+1

2 ρ, ν
c−1

2 ρ])2 ⊗
(
δ([ν −a+1

2 ρ, ν
a−1

2 ρ]) � δ
)

(irre-

ducible), and δ([ν a+1
2 ρ, ν

c−1
2 ρ])2 ⊗

(
δ([ν −a+1

2 ρ, ν
a−1

2 ρ]) � δ
)

appears with mul-

tiplicity one in both μ∗(I ζ
2 ), ζ = εδ(ρ, a−)εδ(ρ, b)−1, and μ∗(I) (hence does not

appear in μ∗(I−ζ
2 )).

This finishes the case Jord(δ′) 
= ∅.
Finally, suppose Jordρ(δ′) = ∅. Then, there are two possibilities: red(ρ; σ) =

0 or 1
2 . If red(ρ; σ) = 1

2 , the argument is like that for Jordρ(δ′) 
= ∅ taking b = 0.
If red(ρ; σ) = 0, the result follows from Lemma 3.3.2 below. This finishes the
proof of the lemma. ��
Lemma 3.3.2. Suppose red(ρ; σ) = 0. Let δ be a discrete series with Jordρ(δ) =
{(ρ, a), (ρ, a−)} and εδ(ρ, a) = εδ(ρ, a−) = ζ . By [21], write δ ↪→
δ([ν −a−+1

2 ρ, ν
a−1

2 ρ]) � δ′. Suppose c ≡ a mod 2 with either c > a or 0 < c < a−.
Write

δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ′ =
⊕

η∈{±1}
Tη(δ

([
ν

−c+1
2 ρ, ν

c−1
2 ρ
])

; δ′),

where Tη(δ([ν −c+1
2 ρ, ν

c−1
2 ρ]); δ′) is the component satisfying

ε
Tη(δ([ν −c+1

2 ρ,ν
c−1

2 ρ]);δ′)
(ρ, c) = η. Set

I = δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ

and

I ′
η = δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ
])

� Tη(δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

; δ′).

Then I and I ′
η have a (unique) common irreducible subrepresentation Tη, with

εTη (ρ, a) = εTη (ρ, a−) = ζ and εTη (ρ, c) = η.

Proof. Let

I ′ = δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δ′.

Note that I, I ′
η ↪→ I ′ (for η = ±1). Further,

μ∗
δ

([
νρ,ν

c−1
2 ρ

])2

×δ

([
νρ,ν

a−−1
2 ρ

])
×δ

([
νρ,ν

a−1
2 ρ

])(I ′) = δ
([

νρ, ν
c−1

2 ρ
])2

×δ
([

νρ, ν
a−−1

2 ρ
])

× δ
([

νρ, ν
a−1

2 ρ
])

⊗ ρ × ρ � δ′;

in particular, contains δ([νρ, ν
c−1

2 ρ])2 × δ([νρ, ν
a−−1

2 ρ]) × δ([νρ, ν
a−1

2 ρ]) ⊗
(ρ � Tξ (ρ; δ′)) with multiplicity one (for ξ = ±1). One can show that μ∗(I )

and μ∗(I ′
ζ ) both contain δ([νρ, ν

c−1
2 ρ])2 × δ([νρ, ν

a−−1
2 ρ]) × δ([νρ, ν

a−1
2 ρ]) ⊗
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(ρ � τζ (ρ; σ)). Therefore, they have a common component Tζ characterized by

μ∗(Tζ ) ≥ δ([νρ, ν
c−1

2 ρ])2 × δ([νρ, ν
a−−1

2 ρ])× δ([νρ, ν
a−1

2 ρ])⊗ (ρ � Tζ (ρ; δ′)).
Since Tζ ↪→ δ([ν −c+1

2 ρ, ν
c−1

2 ρ]) � δ, by definition, εTζ (ρ, a) = εδ(ρ, a) = ζ

and εTζ (ρ, a−) = εδ(ρ, a−) = ζ . Further, it follows directly from μ∗(Tζ ) ≥
δ([νρ, ν

c−1
2 ρ])2×δ([νρ, ν

a−−1
2 ρ])×δ([νρ, ν

a−1
2 ρ])⊗(ρ�Tζ (ρ; δ′)) that if c > a,

we have μ∗
[δ([ν a+1

2 ρ,ν
c−1

2 ρ])2]
(Tζ ) 
= 0; if c < a−, μ∗

δ([ν c+1
2 ρ,ν

a−−1
2 ρ])

(Tζ ) 
= 0. In

either case, it follows that εTζ (ρ, c) = εTζ (ρ, a) = εTζ (ρ, a−) = ζ .
Let T ′

ζ be the other component of I , so that εT ′
ζ
(ρ, a) = εT ′

ζ
(ρ, a−) = ζ and

εT ′
ζ
(ρ, c) = −ζ . Then,

T ′
ζ ↪→ δ

([
ν

−c+1
2 ρ, ν

c−1
2 ρ
])

× δ([ν −a−+1
2 ρ, ν

a−1
2 ρ]) � δ′

∼= δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

�

(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ′
)

⇓
T ↪→ I ′

ξ

for some ξ ∈ {±1}. Now, a straightforward μ∗ argument shows that μ∗(I ′
ξ ) contains

δ([ν −c+1
2 ρ, ν

c−1
2 ρ])⊗δ with multiplicity one. In particular, since Tζ ≤ I ′

ζ accounts
for the only copy, we must have T ′

ζ 
≤ I ′
ζ ⇒ T ′

ζ ≤ I ′−ζ . The lemma follows. ��

Lemma 3.3.3. Suppose T ↪→ δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � δ is elliptic tempered. If

(ρ′, a), (ρ′, a−) ∈ Jord(T )and either (1) a− < a−2 ,or (2) εT (ρ′, a)εT (ρ′, a−)−1

= 1, then fT (ν
a−1

2 ρ′) = mT (ρ′, a) and

T ↪→
(
ν

a−1
2 ρ′)mT (ρ′,a)

� T ′,

where T ′ is tempered with

Jord(T ′) = (Jord(T ) \ {(ρ′, a)}) ∪ {(ρ′, a − 2)},

σT ′ = σT , and

mT ′(ρ′′, d) =
⎧⎨
⎩

mT (ρ′′, d) if (ρ′′, d) 
= (ρ′, a), (ρ′, a − 2);
mT (ρ′, a − 2) + mT (ρ′, a) if (ρ′′, d) = (ρ′, a − 2);
0 if (ρ′′, d) = (ρ′, a).

Further, εT ′ is determined by εT ′ |ST ∩ST ′ = εT |ST ∩ST ′ ,

εT ′(ρ′, a − 2)εT ′(ρ′, b)−1 = εT (ρ′, a)εT (ρ′, b)−1

and if applicable,

εT ′(ρ′, a − 2) = εT (ρ′, a).
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Proof. First, we note that fδ(ν
a−1

2 ρ′) ≤ mδ(ρ
′, a), e.g., by Theorem 3.2.2. Then,

fT (ν
a−1

2 ρ′) ≤ mT (ρ′, a) follows directly from the embedding

T ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck+1
2 ρk, ν

ck−1
2 ρk

])
� δ

and a μ∗ argument. That fT (ν
a−1

2 ρ′) = mT (ρ′, a) then follows from Frobenius
reciprocity once we show the embedding claimed. We break this into two cases
based on m(ρ′, a).

Case 1: m(ρ′, a) = 2
In this case, we have (ρ′, a) = (ρ, c). If a− = c− = c − 2 (so that

εT (ρ, c)εT (ρ, c − 2)−1 = 1), it follows from Proposition 2.3.2 that

T ↪→ ν
c−1

2 ρ × ν
c−1

2 ρ �

(
δ
([

ν
−c+3

2 ρ, ν
c−3

2 ρ
])

� δ
)

(noting that one hasμ∗
ν

c−1
2 ρ×ν

c−1
2 ρ

(T )=ν
c−1

2 ρ×ν
c−1

2 ρ⊗
(
δ([ν −c+3

2 ρ, ν
c−3

2 ρ])�δ
)

,

which is irreducible). Then, T ′ ∼= δ([ν −c+3
2 ρ, ν

c−3
2 ρ]) � δ, which is irreducible

and matches the description in the statement. Thus, all that remains for Case 1 is
c− < c − 2. For this, the proof is similar to the first part of the proof of Proposi-
tion 2.1.2.

Case 2: mT (ρ′, a) = 1
In this case, (ρ′, a) ∈ Jord(δ).
First, suppose (ρ′, a) = (ρ, c + 2). Then, by Theorem 3.2.2, μ∗

ν
a−1

2 ρ
(δ) =

ν
a−1

2 ρ ⊗ δ′. Therefore,

μ∗
ν

a−1
2 ρ

(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

= ν
a−1

2 ρ ⊗
(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ′) .

Note that the right-hand side is irreducible as (ρ, c) = (ρ, a − 2) ∈ Jord(δ′).
Since εT (ρ, a)εT (ρ, a − 2)−1 = 1, we have μ∗

ν
a−1

2 ρ
(T ) 
= 0, so

T ↪→ ν
a−1

2 ρ �

(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ′) ,

and T ′ ≤ δ([ν −c+1
2 ρ, ν

c−1
2 ρ])� δ′. Noting that (ρ, c) ∈ Jord(δ′), this matches the

description of T ′ given.
We may now assume (ρ′, a) 
= (ρ, c + 2). By Theorem 3.2.2,

δ ↪→ ν
a−1

2 ρ′
� T ′.

Since δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) × ν

a−1
2 ρ′ irreducible,

T ↪→ δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

×ν
a−1

2 ρ′
� T ′ ∼= ν

a−1
2 ρ′ × δ

([
ν

−c+1
2 ρ, ν

c−1
2 ρ
])

� T ′

⇓
T ↪→ ν

a−1
2 ρ′

� T ′



Tempered representations for classical p-adic groups 373

for some irreducible T ′ ≤ δ([ν −c+1
2 ρ, ν

c−1
2 ρ]) � T ′. Clearly, Jord(T ′), σT ′ , and

mT ′ are as claimed. Further, εT ′ |ST ′ = εT ′ , so only εT ′(ρ, c)εT ′(ρ, b)−1 and (if
defined) εT ′(ρ, c) are in question.

We first consider the possibility that (ρ, c−) exists in Jord(T ′). In this event, it
again follows from Lemma 2.3.1 that it is enough to show εT ′(ρ, c)εT ′(ρ, c−)−1 is

as claimed. Observe that if (ρ′, a) 
= (ρ, c−), we have δ([ν c−+1
2 ρ, ν

c−1
2 ρ])×ν

a−1
2 ρ′

irreducible (since (ρ′, a) 
= (ρ, c + 2)). Then, a straightforward argument like that
in (the later part of) the proof of Proposition 2.1.2 tells us εT ′(ρ, c)εT ′(ρ, c−)−1 =
1 ⇔ εT (ρ, c)εT (ρ, c−)−1 = 1.

If (ρ, c−) = (ρ′, a), then (noting that in Jord(T ′), we have c− = a − 2) we
must show εT ′(ρ, c)εT ′(ρ, a − 2)−1 = 1 if and only if εT (ρ, c)εT (ρ, a)−1 = 1.
The implication (⇒) is essentially the same as for (ρ′, a) 
= (ρ, c−). In the converse
direction, a straightforward μ∗ calculation gives

εT (ρ, c)εT (ρ, a)−1 = 1
⇓

0 
= μ∗
[δ
([

ν
a+1

2 ρ,ν
c−1

2 ρ

])2

]
(T )

≤ μ∗
[δ
([

ν
a+1

2 ρ,ν
c−1

2 ρ

])2

]

(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

= δ
([

ν
a+1

2 ρ, ν
c−1

2 ρ
])2 ⊗

(
δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� δ
)

.

Now, since (ρ, a) ∈ Jord(δ), we have δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � δ irreducible. In

particular,

μ∗
[δ
([

ν
a+1

2 ρ,ν
c−1

2 ρ

])2

]
(T ) = δ

([
ν

a+1
2 ρ, ν

c−1
2 ρ
])2 ⊗

(
δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

�δ
)

.

As (ρ, a), (ρ, a−) ∈ Jord(δ) and ε(ρ, a)ε(ρ, a−)−1 = 1, we have μ∗
ν

a−1
2 ρ

(δ) 
=

0. The irreducibility of δ([ν −a+1
2 ρ, ν

a−1
2 ρ])�δ then tells usμ∗

(
δ([ν −a+1

2 ρ, ν
a−1

2 ρ])

� δ

)
≥ (ν

a−1
2 ρ)3 ⊗ θ ′′ for some θ ′′. In particular, for the appropriate standard

parabolic subgroup, we have

rM,G(ν
a−1

2 ρ � T ′) ≥ δ
([

ν
a+1

2 ρ, ν
c−1

2 ρ
])2 ⊗ (ν

a−1
2 ρ)3 ⊗ θ ′′

⇓
μ∗

[δ
([

ν
a−1

2 ρ,ν
c−1

2 ρ

])2

]
(T ′) 
= 0

since δ([ν a−1
2 ρ, ν

c−1
2 ρ])2 × ν

a−1
2 ρ is the only irreducible representation having

m∗ ≥ δ([ν a+1
2 ρ, ν

c−1
2 ρ])2 ⊗ (ν

a−1
2 ρ)3. Thus, εT ′(ρ, c)εT ′(ρ, a − 2)−1 = 1, as

needed. This finishes the case where (ρ, c−) exists.
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When (ρ, c+) exists but (ρ, c−) does not, there are three cases to consider: (1)
(ρ′, a) 
= (ρ, c+) or (ρ, c+ + 2), (2) (ρ′, a) = (ρ, c+) (with c+ > c + 2), and
(3) (ρ′, a) = (ρ, c+ + 2). The arguments for all three cases are similar to those
above, with the obvious change that one must use μ∗

δ([ν c+1
2 ρ,ν

c+−1
2 ρ])

(T ) in place

of μ∗
[δ([ν

c−+1
2 ρ,ν

c+1
2 ρ])2]

(T ), etc. Also note the following: for (2), one shows

εT (ρ, c+)εT (ρ, c)−1 = 1 ⇔ εT ′(ρ, c+ − 2)εT ′(ρ, c)−1 = 1

and for (3), one has mT ′(ρ, c+) = 2.
It remains to deal with the possibility Jordρ(T ′) = {(ρ, c)}, which implies

Jordρ(T ) = {(ρ, c)}. Note that this requires Jordρ(δ) = ∅, hence red(ρ; σ) = 0
or 1

2 . For red(ρ; σ) = 1
2 , we can essentially think of (ρ, c−) = (ρ, 0) and use the

same argument as for (ρ, c−) 
= (ρ′, a) above to show εT ′(ρ, c) = 1 if and only if
εT (ρ, c) = 1. If red(ρ; σ) = 0, it suffices to show εT ′(ρ, c) = η ⇒ εT (ρ, c) = η

for η = ±1, which may be done using an argument similar to those in the proof of
Lemma 2.2.8. ��

3.4. Tempered representations II

This section builds on the results of Sect. 3.3 to prove the tempered analogue of
Note 1.3.1, first for elliptic tempered representations then, building on that, for
general tempered representations.

Lemma 3.4.1. Suppose T is elliptic tempered with

T ≤ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck+1
2 ρk, ν

ck−1
2 ρk

])
� δ.

Let Tk ≤ δ([ν −ck+1
2 ρk, ν

ck−1
2 ρk]) � δ be such that

T ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])
� Tk .

Suppose (ρ, a), (ρ, a−) ∈ Jord(T ) with m(ρ, a) = m(ρ, a−) = 1 (so both are in

Jord(δ)) and εT (ρ, a)εT (ρ, a−)−1 = 1. Write δ ↪→ δ([ν −a−+1
2 ρ, ν

a−1
2 ρ]) � δ′ as

in [21]. Then,

μ∗
δ

([
ν

−c1+1
2 ρ1,ν

c1−1
2 ρ1

])
×···×δ

([
ν

−ck−1+1
2 ρk−1,ν

ck−1−1
2 ρk−1

])
×δ

([
ν

−a−+1
2 ρ,ν

a−1
2 ρ

])(T)

= δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])

×δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

⊗ T ′
k ,

where T ′
k ≤ δ([ν −ck+1

2 ρk, ν
ck−1

2 ρk]) � δ′ has Jord(T ′
k) = Jord(Tk) \ {(ρ, a), (ρ,

a−)} and εT ′
k

given by restriction of εTk .



Tempered representations for classical p-adic groups 375

Proof. For any of the 2k−1 components T # of δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · ×

δ([ν −ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1]) � Tk , we have (Lemma 3.3.1)

μ∗
δ

([
ν

−a−+1
2 ρ,ν

a−1
2 ρ

])(Tk) 
= 0

⇓
μ∗

δ

([
ν

−c1+1
2 ρ1,ν

c1−1
2 ρ1

])
×···×δ

([
ν

−ck−1+1
2 ρk−1,ν

ck−1−1
2 ρk−1

])
×δ

([
ν

−a−+1
2 ρ,ν

a−1
2 ρ

])(T #) 
= 0.

Therefore, it suffices to show for I = δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · × δ([ν −ck−1+1

2

ρk−1, ν
ck−1−1

2 ρk−1]) � Tk that

μ∗
δ

([
ν

−c1+1
2 ρ1,ν

c1−1
2 ρ1

])
×···×δ

([
ν

−ck−1+1
2 ρk−1,ν

ck−1−1
2 ρk−1

])
×δ

([
ν

−a−+1
2 ρ,ν

a−1
2 ρ

])(I)

= 2k−1δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])

×δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

⊗ T ′
k .

Now,

μ∗(I) = M∗ (δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

]))
× · · ·

×M∗
(

δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

]))
� μ∗(Tk).

Further,

M∗ (δ
([

ν
−c	+1

2 ρ	, ν
c	−1

2 ρ	

]))
=

c	−1
2∑

i	=−c	+1
2

c	+1
2∑

j	=i	

δ
([

ν−i	+1ρ	, ν
c	−1

2 ρ	

])

×δ
([

ν j	ρ	, ν
c	−1

2 ρ	

])
⊗ δ

([
ν j	−1ρ	, ν

i	ρ	

])
.

Focusing on the copy of δ([ν −c	+1
2 ρ	, ν

c	−1
2 ρ	]) in δ([ν −c1+1

2 ρ1, ν
c1−1

2 ρ1]) × · · · ×
δ([ν −ck−1+1

2 ρk−1, ν
ck−1−1

2 ρk−1])×δ([ν −a−+1
2 ρ, ν

a−1
2 ρ]), we claim either j	 = i	 =

−c	+1
2 or j	 = i	 = c	+1

2 . If not—and noting that M∗
ν

c	−1
2 ρ	

(
δ([ν −cm+1

2 ρm, ν
cm−1

2

ρm])
)

= 0 if m 
= 	—we must have a nontrivial contribution of either

δ([ν −c	+1
2 ρ	, ν

−i	ρ	]) or δ([ν −c	+1
2 ρ	, ν

− j	−1ρ	]) from
⎛
⎝∏

j 
=	

M∗
(

δ

([
ν

−c j +1
2 ρ j , ν

c j −1
2 ρ j

]))⎞
⎠� μ∗(Tk)

= μ∗
⎛
⎝
⎛
⎝∏

j 
=	

δ

([
ν

−c j +1
2 ρ j , ν

c j −1
2 ρ j

])⎞
⎠� Tk

⎞
⎠
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to δ. However, either of these possibilities have negative central exponent, so would
contradict the Casselman criterion. Noting that j	 = i	 = −c	+1

2 or j	 = i	 + c	−1
2

both contribute δ
([

ν
−c	+1

2 ρ	, ν
c	−1

2 ρ	

])
to the product, it now follows that

μ∗
δ

([
ν

−c1+1
2 ρ1,ν

c1−1
2 ρ1

])
×···×δ

([
ν

−ck−1+1
2 ρk−1,ν

ck−1−1
2 ρk−1

])
×δ

([
ν

−a−+1
2 ρ,ν

a−1
2 ρ

])(I)

= 2k−1
(

δ

([
ν

−c1+1
2 ρ1, ν

c1−1
2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])
⊗ 1

)

�μ∗
δ

([
ν

−a−+1
2 ρ,ν

a−1
2 ρ

])(Tk ).

Thus, the lemma follows if we show μ∗
δ([ν

−a−+1
2 ρ,ν

a−1
2 ρ])

(Tk) = δ([ν −a−+1
2 ρ, ν

a−1
2

ρ]) ⊗ T ′
k . Since εTk (ρ, a)εTk (ρ, a−)−1 = εδ(ρ, a)εδ(ρ, a−)−1 = 1, this follows

from Lemma 3.3.1 and a μ∗ argument like that above. ��
Lemma 3.4.2. Let T ≤ δ([ν −c+1

2 ρ′, ν c−1
2 ρ′]) � δ be elliptic tempered and

(ρ, a), (ρ, a−) ∈ Jord(T ) with mT (ρ, a) = 1 (so (ρ, a) ∈ Jord(δ)). Suppose b
satisfies a− < b < a and b ≡ a mod 2. Then,

T ↪→ δ
([

ν
b+1

2 ρ, ν
a−1

2 ρ
])

� T ′,

where T ′ is elliptic tempered with the following data: Jord(T ′) = (Jord(T )\{(ρ,

a)}) ∪ {(ρ, b)}, σT ′ = σT ,

mT ′(ρ′′, x) =
⎧⎨
⎩

mT (ρ′′, x) if (ρ′′, x) 
= (ρ, a), (ρ, b),

0 if (ρ′′, x) = (ρ, a),

1 if (ρ′′, x) = (ρ, b),

and εT ′ determined by εT ′ |ST ∩ST ′ = εT |ST ∩ST ′ , εT ′(ρ, b)εT ′(ρ, x)−1 = εT (ρ, a)εT

(ρ, x)−1, and if defined, εT ′(ρ, b) = εT (ρ, a). Note that if a− does not exist, we
may replace a− with 1 or 2 in the inequality a− < b < a, whichever matches the
parity of 2red(ρ; σ) + 1.

Proof. By Corollary 2.1.3, noting that ρ′ ∼= ρ has either c < b or c > a,

T ↪→ δ

([
ν

−c+1
2 ρ′, ν

c−1
2 ρ′

])
× δ

([
ν

b+1
2 ρ, ν

a−1
2 ρ

])
� δ′ ∼= δ

([
ν

b+1
2 ρ, ν

a−1
2 ρ

])

×δ

([
ν

−c+1
2 ρ′, ν

c−1
2 ρ′

])
� δ′ ⇓ (Lemma 1.2.3)T ↪→ δ

([
ν

b+1
2 ρ, ν

a−1
2 ρ

])
� T ′

for some irreducible T ′ ≤ δ([ν −c+1
2 ρ′, ν c−1

2 ρ′]) � δ′ (δ′ as in Corollary 2.1.3).
It follows from Lemma 2.4.1 and partial cuspidal support considerations that the
data Jord(T ′), σT ′ , and mT ′ are as claimed. It remains to show εT ′ is as claimed.
The values of εT ′ match those of εδ′ on Sδ′ ⊂ ST ′ . Thus, to finish, it is enough to
show εT ′ is as claimed when evaluated at elements of ST ′ which involve (ρ′, c).
By Lemma 2.3.1, it is enough to do show this for one such element of ST ′ . We do
this in three cases. Note that we assume a− exists in the arguments below, but the
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arguments work if a− does not exist and is replaced with 1 or 2 as in the statement
of the lemma.

Case 1: (ρ′, c−) ∈ Jord(T ) exists
First, suppose either (1) ρ′ 
∼= ρ, or (2) ρ′ ∼= ρ but a 
= c−, in which case either

c− > a or c < a (which implies c < b). Then, a straightforward μ∗ argument tells
us

μ∗
δ

([
ν

c−+1
2 ρ′,ν

c−1
2 ρ′

])(T ) 
= 0 ⇔ μ∗
δ

([
ν

c−+1
2 ρ′,ν

c−1
2 ρ′

])(T ′) 
= 0.

As (ρ′, c−) 
= (ρ, a), (ρ, b), it follows immediately that

εT ′(ρ′, c)εT ′(ρ′, c−)−1 = 1 ⇔ εT (ρ′, c)εT (ρ′, c−)−1 = 1,

which suffices.
Now, suppose ρ′ ∼= ρ and c− = a. It then follows (using Corollary 2.1.3 applied

to δ) that

μ∗
δ

([
ν

b+1
2 ρ,ν

a−1
2 ρ

])
×[δ

([
ν

b+1
2 ρ,ν

c−1
2 ρ

])2

]

(
δ
([

ν
−c+1

2 ρ, ν
c−1

2 ρ
])

� δ
)

= δ
([

ν
b+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
b+1

2 ρ, ν
c−1

2 ρ
])2 ⊗

(
δ
([

ν
−b+1

2 ρ, ν
b−1

2 ρ
])

� δ′
)

,

noting that δ([ν −b+1
2 ρ, ν

b−1
2 ρ]) � δ′ is irreducible. In particular,

μ∗
[δ
([

ν
a+1

2 ρ,ν
c−1

2 ρ

])2

]
(T ) 
= 0 ⇔ μ∗

δ

([
ν

b+1
2 ρ,ν

a−1
2 ρ

])
×[δ

([
ν

b+1
2 ρ,ν

c−1
2 ρ

])2

]
(T ) 
= 0

(as (⇐) is clear and both hold for exactly one component of δ([ν −c+1
2 ρ, ν

c−1
2 ρ])�δ).

Using this observation, one can now argue as in (the later part of) the proof of Propo-
sition 2.1.2 to show that εT (ρ, c)εT (ρ, a)−1 = 1 ⇔ εT ′(ρ, c)εT ′(ρ, b)−1 = 1, as
needed.

Case 2: (ρ′, c+) ∈ Jord(T ) exists
If ρ′ 
∼= ρ or either c+ < a or c > a, the argument is similar to that given in the

beginning of Case 1.
Suppose ρ′ ∼= ρ and c+ = a (so c = a−). In this case, we claim

μ∗
δ

([
ν

c+1
2 ρ,ν

a−1
2 ρ

])(T ) 
= 0 ⇔ μ∗
δ

([
ν

c+1
2 ρ,ν

b−1
2 ρ

])(T ′) 
= 0.

The implication (⇒) is a standard μ∗ argument on μ∗(δ([ν b+1
2 ρ, ν

a−1
2 ρ]) � T ′).

The implication (⇐) follows directly from μ∗
δ([ν c+1

2 ρ,ν
b−1

2 ρ])
(T ′) 
= 0 and μ∗(T ) ≥

δ([ν b+1
2 ρ, ν

a−1
2 ρ]) ⊗ T ′. It is then immediate that

εT ′(ρ, c)εT ′(ρ, b)−1 = 1 ⇔ εT (ρ, c)εT (ρ, a)−1 = 1,
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as needed.

Case 3: Jordρ′(T ) = {(ρ′, c)} (so Jordρ′(δ) = ∅)
Of course, ρ′ 
∼= ρ in this case. Further, since Jordρ′(δ) = ∅, we must have

red(ρ′; σ) = 0 or 1
2 .

If red(ρ′; σ) = 0 it follows from Corollary 7.5 and Definition 7.6 of [14]
(whose proof uses only the μ∗ structure and results on general linear groups, hence
holds in the generality needed here) that

T ↪→ � � T (δ
([

νρ′, ν c−1
2 ρ′

])2 ; τη(ρ; σ)) for some irreducible �

�
T ′ ↪→ �′

� T (δ
([

νρ′, ν c−1
2 ρ′

])2 ; τη(ρ; σ)) for some irreducible �′.

It then follows immediately from the definition in Sect. 2.2 that εT ′(ρ′, c) =
εT (ρ′, c), as needed.

If red(ρ′; σ) = 1
2 , an argument like that in (the later part of) the proof of

Proposition 2.1.2 tells us εT ′(ρ′, c) = 1 ⇔ εT (ρ′, c) = 1, finishing the proof. ��
Proposition 3.4.3. Suppose T is elliptic tempered with (ρ, a), (ρ, a−) ∈ Jord(T ).
Let m = min(m(ρ, a), m(ρ, a−)). If ε(ρ, a)ε(ρ, a−)−1 = 1, then T ↪→
δ([ν −a−+1

2 ρ, ν
a−1

2 ρ])m
� T ′, where T ′ is an elliptic tempered representation whose

data is obtained as follows: one removes m copies each of (ρ, a) and (ρ, a−) from
Jord(T); εT ′ is then the restriction of εT .

Proof. We have four cases.

Case 1: m(ρ, a) = m(ρ, a−) = 1
Since εT (ρ, a)εT (ρ, a−)−1 = εδ(ρ, a)εδ(ρ, a−)−1 = 1, we have

T ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck+1
2 ρk, ν

ck−1
2 ρk

])
� δ

↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck+1
2 ρk, ν

ck−1
2 ρk

])

×δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δ′

∼= δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · ·

×δ
([

ν
−ck+1

2 ρk, ν
ck−1

2 ρk

])
� δ′

⇓
T ↪→ δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ
])

� T ∗

for some T ∗ ≤ δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · × δ([ν −ck+1

2 ρk, ν
ck−1

2 ρk]) � δ′. We
must show T ∗ ∼= T ′. In particular, since Jord(T ∗) = Jord(T ′), mT ∗ = mT ′ , and
the partial cuspidal supports match, we must show εT ∗ = εT ′ . For this, it suffices
(from the definition) to show εT ∗ |S′

	
= εT ′ |S′

	
for 	 = 1, . . . , k, where S′

	 is the

domain associated to δ([ν −c	+1
2 ρ	, ν

c	−1
2 ρ	]) � δ′. Without loss of generality, we

take 	 = k.
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Write

T ∗ ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])
� T ∗

k

for some T ∗
k ≤ δ([ν −ck+1

2 ρk, ν
ck−1

2 ρk]) � δ′. By definition, εT ∗ |S′
k

= εT ∗
k

. By
Frobenius reciprocity,

T ↪→ δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ

])
× δ

([
ν

−c1+1
2 ρ1, ν

c1−1
2 ρ1

])

× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])
� T ∗

k

⇓
μ∗(T ) ≥

(
δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ

])

×δ

([
ν

−c1+1
2 ρ1, ν

c1−1
2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

]))
⊗ T ∗

k .

In Lemma 3.4.1, we have T ′
k = T ∗

k ⇒ εT ∗
k

= εT ′
k
. From their descriptions, we have

εT ′ |S′
k

= εT ′
k
. Combining the equalities, we get εT ∗ |S′

k
= εT ∗

k
= εT ′

k
= εT ′ |S′

k
, as

needed.

Case 2: m(ρ, a) = 1, m(ρ, a−) = 2
Without loss of generality, let (ρk, ck) = (ρ, a−) and write

T ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])
× δ

([
ν

−a−+1
2 ρ, ν

a−−1
2 ρ

])
� δ

⇓
T ↪→ �i × δ

([
ν

−a−+1
2 ρ, ν

a−−1
2 ρ

])
� Ti ,

where �i = δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · × δ([ν −ci−1+1

2 ρi−1, ν
ci−1−1

2 ρi−1]) ×
δ([ν −ci+1+1

2 ρi+1, ν
ci+1−1

2 ρi+1]) × · · · × δ([ν −ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1]) and Ti ≤

δ([ν −ci +1
2 ρi , ν

ci −1
2 ρi ]) � δ. By definition, εT |STi

= εTi . By Lemma 3.4.2, we have

Ti ↪→ δ([ν a−+1
2 ρ, ν

a−1
2 ρ]) � T ′

i with T ′
i as in Lemma 3.4.2. Then,

T ↪→ �i × δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

× δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

� T ′
i

∼= δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

× δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

× �i � T ′
i

⇓ (Lemma 1.2.3)

T ↪→ L
(
δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

, δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
]))

× �i � T ′
i

or

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

× �i � T ′
i .

As μ∗
δ([ν

a−+1
2 ρ,ν

a−1
2 ρ])

(
L
(
δ([ν −a−+1

2 ρ, ν
a−−1

2 ρ]), δ([ν a−+1
2 ρ, ν

a−1
2 ρ])

)
× �i �

T ′
i

)
= 0, we must have the latter. It follows directly that T ↪→ δ([ν −a−+1

2 ρ, ν
a−1

2
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ρ]) � T ′ for some T ′ having Jord(T ′), mT ′ and partial cuspidal support as
in the statement of the proposition. It remains to show εT ′ is as in the state-
ment of the proposition. To this end, a straightforward μ∗ argument gives

μ∗
δ([ν

−a−+1
2 ρ,ν

a−1
2 ρ])

(
δ([ν −a−+1

2 ρ, ν
a−1

2 ρ]) � T ′
)

= 2δ([ν −a−+1
2 ρ, ν

a−1
2 ρ]) ⊗ T ′.

It then follows that T ′ ≤ �i � T ′
i for all i . Thus, by definition, εT ′ |ST ′

i
= εT ′

i
. From

above, since εTi |ST ′
i

= εT ′
i
, we get εT ′ |ST ′

i
= εT |ST ′

i
for all i . As ∪i Jord(Ti ) =

Jord(T ′), this tells us εT ′ = εT |ST ′ , as needed.

Case 3: m(ρ, a) = 2, m(ρ, a−) = 1
Without loss of generality, let (ρk, ck) = (ρ, a) and write

T ↪→ δ
([

ν
−c1+1

2 ρ1, ν
c1−1

2 ρ1

])
× · · · × δ

([
ν

−ck−1+1
2 ρk−1, ν

ck−1−1
2 ρk−1

])

×δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� δ

⇓
T ↪→ � � Ta,

with � = δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · × δ([ν −ck−1+1

2 ρk−1, ν
ck−1−1

2 ρk−1]) and

Ta ≤ δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � δ. By definition, εT |STa

= εTa . In particular,
εTa (ρ, a)εTa (ρ, a−)−1 = 1. Therefore, by Lemma 3.3.1,

Ta ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δa,

with δa as in Lemma 3.3.1. Thus,

T ↪→ � × δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δa

∼= δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

× � � δa

⇓
T ↪→ δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ
])

� T ∗

for some T ∗ ≤ � � δa . We must show T ∗ ∼= T ′, T ′ as in the statement of the
proposition.

As in the previous case, let �i = δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · × δ([ν −ci−1+1

2

ρi−1, ν
ci−1−1

2 ρi−1]) × δ([ν −ci+1+1
2 ρi+1, ν

ci+1−1
2 ρi+1]) × · · · × δ([ν −ck−1+1

2 ρk−1,

ν
ck−1−1

2 ρk−1]). Then,

T ↪→ δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

× �i × δ
([

ν
−ci +1

2 ρi , ν
ci −1

2 ρi

])
� δ

⇓
T ↪→ δ

([
ν

−a+1
2 ρ, ν

a−1
2 ρ
])

× �i � Ti
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for some irreducible Ti ≤ δ([ν −ci +1
2 ρi , ν

ci −1
2 ρi ]) � δ. By definition, εT |STi

= εTi .
On the other hand,

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

× �i × δ
([

ν
−ci +1

2 ρi , ν
ci −1

2 ρi

])
� δa

⇓
T ↪→ δ

([
ν

−a−+1
2 ρ, ν

a−1
2 ρ
])

× �i � T ∗
i

for some T ∗
i ≤ δ([ν −ci +1

2 ρi , ν
ci −1

2 ρi ]) � δa . One can show that T ∗ is the unique

component of � � δa such that T ↪→ δ([ν −a−+1
2 ρ, ν

a−1
2 ρ]) � T ∗. Then, we have

T ∗ ≤ �i � T ∗
i ⇒ εT ∗ |S∗

i
= εT ∗

i
. Further, by Lemma 3.4.2, we know Jord(T ∗

i ) =
(Jord(Ti ) \ {(ρ, a−)})∪{(ρ, a)} and εT ∗

i
matches εTi if a− is replaced by a. Since

we have

εT |STi
= εTi and εT ∗ |ST∗

i
= εT ∗

i
,

for any i , we see that εT ∗ and εT match if a− is replaced by a. That is, T ∗ = T ′,
as needed.

Case 4: m(ρ, a) = m(ρ, a−) = 2
We have

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

× δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

� T ′

for a unique irreducible T ′ ≤ δ([ν −c1+1
2 ρ1, ν

c1−1
2 ρ1]) × · · · × δ([ν −ck−2+1

2 ρk−2,

ν
ck−2−1

2 ρk−2])�δ; it follows easily from the definition that εT |ST ′ = εT ′ , so matches
T ′ from the statement of the proposition. Now, from Case 4 in the proof of Propo-
sition 2.3.2 and the proof of Lemma 2.3.3, we have

T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])2

�

(
δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

� T ′′)

for some T ′′ ≤ δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ]) � T ′. Since either possible T ′′ has

δ([ν −a−+1
2 ρ, ν

a−−1
2 ρ]) � T ′′ irreducible, we see that

T ↪→ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])2 × δ

([
ν

−a−+1
2 ρ, ν

a−−1
2 ρ

])2
� T ′

⇓ (Lemma 1.2.3)
T ↪→ λ � T ′

for some irreducible

λ ≤ δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])2 × δ

([
ν

−a−+1
2 ρ, ν

a−−1
2 ρ

])2

=
(
δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

+ L(δ
([

ν
−a−+1

2 ρ, ν
a−−1

2 ρ
])

,

× δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

)
)2

.
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Of the four products, only δ([ν −a−+1
2 ρ, ν

a−1
2 ρ])2 allows μ∗

[δ([ν
a−+1

2 ρ,ν
a−1

2 ρ])2]

= 0.

Thus,

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])2

� T ′,

as needed. This finishes Case 4 and the proposition. ��
Corollary 3.4.4. Let T be an irreducible tempered representation with data
(Jord, σ, ε, m). For (ρ, a) ∈ Jordell , we define a− as the largest value
of b < a such that (ρ, b) ∈ Jordell (so ε(ρ, a)ε(ρ, a−)−1 is defined). If
ε(ρ, a)ε(ρ, a−)−1 = 1, we have

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])m

� T ′

where m = min(m(ρ, a), m(ρ, a−)) and T ′ is the irreducible tempered represen-
tation whose data is obtained as follows: one removes m copies each of (ρ, a) and
(ρ, a−) from Jord(T); εT ′ is then the restriction of εT .

Proof. This follows from Proposition 3.4.3 and Eq. (2.2). ��
Note 3.4.5. From Lemmas 2.3.5 and 2.3.7 and Eq. 2.2, we have the following:

(1) If red(ρ; σ) ≡ 1
2 mod 1,

ε(ρ, amin) = 1 ⇔ T ↪→ δ([ν 1
2 ρ, ν

amin−1
2 ρ])m(ρ,amin)

� θ

for some irreducible θ (where amin is the smallest value of b such that (ρ, b) ∈
Jordell ).

(2) If red(ρ; σ) = 0,

ε(ρ, amax ) = η

�
T ↪→ λ �

(
δ
([

ν
−amax +1

2 ρ, ν
amax −1

2 ρ
]) 1

2 (m(ρ,amax )−m0)

� T (δ
([

νρ, ν
amax −1

2 ρ
])m0 ; τη(ρ; σ))

)
,

for some irreducible λ, where m0 = 1 or 2, whichever matches the parity of
m(ρ, amax ) (and amax is the largest value of b such that (ρ, b) ∈ Jordell ).

3.5. Intertwining operators and generic representations

In this section, we consider the action of normalized standard intertwining operators
on the components of δ1 ×· · ·×δk �δ in the case where δ is generic (i.e., admitting
a Whittaker model with respect to some fixed character) and the components are
elliptic tempered. As we use the results of Goldberg [6–8] here, we assume charF =
0 and restrict our discussion to the split orthogonal and symplectic groups and
quasisplit unitary groups. In particular, Goldberg has determined the R-groups in
this case, and we have

C[R] ∼= HomG(δ1 × · · · × δk � δ, δ1 × · · · × δk � δ),
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with the isomorphism implemented by r �−→ Ar , Ar the corresponding normalized
standard intertwining operator. As the induced representation has R ∼= (Z/2Z)k ,
the normalized standard intertwining operator acts on the isotypic subspaces as ±1.
For a given component T , we show that this is essentially given by εT .

Recall that discrete series of general linear groups are generic [12]. For δ to be
generic, we must have the partial cuspidal support σ generic. It then follows from the
results of Shahidi [27,28] that red(ρ; σ) ∈ {0, 1

2 , 1}. In the case where red(ρ; σ) =
0, the parameterization of discrete series requires a choice of components of ρ �σ .
As is done in [32], we make the choice so that τ+1(ρ; σ) is the generic component
(also the choice needed in [10]—see Note 3.5.1 below).

Note 3.5.1. Suppose δ is a discrete series representation with generic partial cus-
pidal support. Then, it follows from section 3 of [10] that δ is generic if and only if
εδ is trivial (i.e., identically 1 on Sδ).

Lemma 3.5.2. Suppose δ is a generic discrete series, ρ ∼= ρ̃ with δ([ν −a+1
2 ρ, ν

a−1
2

ρ])� δ reducible. A component T ≤ δ([ν −a+1
2 ρ, ν

a−1
2 ρ])� δ is generic if and only

if εT is trivial.

Proof. The proof may be done in four cases: (ρ, a−) exists (necessarily in Jord(δ)),
(ρ, a+) exists (also necessarily in Jord(δ)), Jord(δ) = ∅ with red(ρ; σ) = 1

2 ,
and Jord(δ) = ∅ with red(ρ; σ) = 0.

We start with the case (ρ, a−) ∈ Jord(δ) exists. By Note 3.5.1, it suffices to
show that T is generic if and only if εT (ρ, a)εT (ρ, a−) = 1. We have

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
−a+1

2 ρ, ν
−a−−1

2 ρ
])

� δ

⇓ (Lemma 5.5 [14])

T ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� θ

for some irreducible θ ≤ δ([ν −a+1
2 ρ, ν

−a−−1
2 ρ]) � δ = δ([ν a−+1

2 ρ, ν
a−1

2 ρ]) � δ.
Let δ∗ be the discrete series with the same partial cuspidal support as δ,

Jord(δ∗) = (Jord(δ) \ {(ρ, a−)}) ∪ {(ρ, a)},
and εδ∗ trivial, noting that the admissibility of the data for δ∗ is immediate from that
for δ. By Note 3.5.1 and Corollary 2.1.3, δ∗ is the generic irreducible subquotient

of δ([ν a−+1
2 ρ, ν

a−1
2 ρ]) � δ; by Note 2.1.4, δ∗ ↪→ δ([ν a−+1

2 ρ, ν
a−1

2 ρ]) � δ.

Now, suppose T− is the component of δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � δ having

εT−(ρ, a)εT−(ρ, a−)−1 = −1. In this case, we claim that θ 
= δ∗. Were that the
case, we would have

T− ↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

� δ∗

↪→ δ
([

ν
−a−+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
a−+1

2 ρ, ν
a−1

2 ρ
])

� δ

⇓
μ∗

[δ
([

ν
a−+1

2 ρ,ν
a−1

2 ρ

])2

]
(T−) 
= 0

⇓
εT−(ρ, a)εT−(ρ, a−)−1 = −1,
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a contradiction. Thus θ 
= δ∗, from which it follows that T− is not generic. The
generic component must then be the component satisfying εT (ρ, a)εT (ρ, a−) = 1,
as needed.

The case Jord(δ) = ∅ with red(ρ; σ) = 1
2 is similar (replacing a− by 0).

The case (ρ, a+) ∈ Jord(δ) follows the same basic lines, but is a little easier.
Here, we have

T ↪→ δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

�δ ↪→ δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

× δ
([

ν
a+1

2 ρ, ν
a+−1

2 ρ
])

� δ′

⇓ (Lemma 5.5 [14])
T ↪→ λ � δ′

for some irreducible λ ≤ δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) × δ([ν a+1

2 ρ, ν
a+−1

2 ρ]). As above,

we can show that for T−, we must have λ 
= δ([ν −a+1
2 ρ, ν

a+−1
2 ρ]) (the nongeneric

subquotient), from which the result follows.
The last case—when Jord(δ) = ∅ and red(ρ; σ) = 0—is a straightfor-

ward consequence of the definition in Sect. 2.2 once one notes that choosing

τ+1(ρ; σ) generic makes T (δ([νρ, ν
a−1

2 ρ])2; τ+1(ρ; σ)) the generic component

of δ([ν −a+1
2 ρ, ν

a−1
2 ρ]) � δ. ��

We now take up the action of normalized standard intertwining operators. We
start with the elliptic case, where the reducibility actually occurs. We continue to
assume δ generic.

Write δi = δ([ν −ai +1
2 ρi , ν

ai −1
2 ρi ]) (generic by Jacquet [12]) and assume δ1 ×

· · · × δk � δ is elliptic. we let ri ∈ W denote the i th block sign change—the
element which inverts δi and leaves the rest of δ1 ⊗ · · · ⊗ δk ⊗ δ unchanged.
By Goldberg’s work [6–8], we know that the R-group for δ1 × · · · × δk � δ has
R = 〈r1, . . . , rk〉. Thus, to determine the action of normalized standard intertwining
operators associated to R, it is enough to do so for r1, . . . , rk . We let Ari denote
the normalized standard intertwining operator associated to ri .

Recall that the normalization of intertwining operators is such that the action
on generic components is trivial.

Proposition 3.5.3. With notation as above, suppose δ is generic and δ1×· · ·×δk �δ

with δ has elliptic tempered components. If T is a component of δ1×· · ·×δk �δ, then
the normalized standard intertwining operator Ari acts on the T -isotypic subspace
as

(1) εT (ρi , ai ) if red(ρ; σ) = 0 or 1
2 ,

(2) εT (ρi , ai )εT (ρi , b)−1 if red(ρ; σ) = 1, where (ρ, b) ∈ Jord(δ) (noting that
εδ trivial ensures this does not depend on the choice of (ρ, b)).

Proof. We focus on the first case; the second is similar.
First, observe that if i = k, we have

T ↪→ δ1 × · · · × δk−1 � Tk
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for some Tk ≤ δk �δ. By definition, εT (ρk, ak) = 1 ⇔ εTk (ρk, ak) = 1. The result
now follows from Lemma 3.5.2 and induction in stages.

If i < k, it follows from Schur’s lemma that there is a unique up to scalar
intertwining map

E : δ1 × · · · × δi−1 × δi × δi+1 × · · · × δk −→ δ1 × · · · × δi−1 × δi+1

× · · · × δk × δi ,

which induces to give

E : δ1 × · · · × δi−1 × δi × δi+1 × · · · × δk � δ −→ δ1

× · · · × δi−1 × δi+1 × · · · × δk × δi � δ.

If ci ∈ W is the element which inverts the δi in δ1⊗· · ·⊗δi−1⊗δi+1⊗· · ·⊗δk⊗δi , we
have Ari = E−1 Aci E up to a scalar which may easily be seen to be 1 (e.g., consider
the action on a vector in the generic subspace). The result may then be deduced
from the case i = k just considered. ��

We close by identifying the generic tempered representations in a manner anal-
ogous to that in [10].

Corollary 3.5.4. Suppose T is an irreducible tempered (not necessarily elliptic)
representation with T ≤ δ1 × · · · × δk � δ, where δ is generic. Then, T is generic
if and only if εT is trivial (i.e., identically 1 on ST ).

Proof. In the elliptic tempered case, this follows directly from Proposition 3.5.3.
For the nonelliptic case, we have

T ∼= δ′
1 × · · · × δ′

	 � Tell ,

which is generic if and only if Tell is. As εT = εTell , the corollary follows. ��
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