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1. Introduction

In recent years, Jacquet module methods have taken on an increasingly important role in
the analysis of parabolically induced representations (or subquotients thereof), especially
for the classical p-adic groups Sp(2n,F ), SO(2n + 1,F ), and O(2n,F ) (cf. [T2,J2,M-T,
B-J,M1,M2], etc.). Central to this is the ability to efficiently calculate Jacquet modules of
induced representations. In the case of Sp(2n,F ) and SO(2n + 1,F ), this is provided by
the results of [T1]; these were extended in [B] to cover O(2n,F ) (also, cf. [M-T] for the
extension to the odd-unitary groups and non-split odd-orthogonal groups). We remark that
such results were previously given for GL(n,F ) in [Z], though did not play a central role in
the analysis of induced representations for general linear groups owing to the availability of
other techniques for those groups. The purpose of this paper is to provide an analogous re-
sult for SO(2n,F ). While one can study representations for SO(2n,F ) by using O(2n,F )

and restricting (cf. [B-J]), having such a result for SO(2n,F ) would simplify matters and
make it possible to work with SO(2n,F ) directly.

The results in [T1] for Sp(2n,F ) and SO(2n + 1,F ) are based on the geometric lemma
of [B-Z] (also, cf. [C, Section 6]); these are recalled as Theorem 2.1 of this paper. For the
(non-connected) groups O(2n,F ), the more general formulation in [B-Z, Section 5] is used
(cf. [B]). The results for Sp(2n,F ), SO(2n+1,F ), and O(2n,F ) are essentially the same.
This is not too surprising as all three have the same Weyl group and further, the double-
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coset representatives required in [B-Z,C] for all three families are essentially the same (cf.
[J3, Lemma 3.6]). In fact, one typically addresses all three families simultaneously as the
resulting combinatorics do not depend on the particular type of group. However, SO(2n,F )

is of a different nature, so there are certain issues involved with producing an analogous
result.

The technical issues may be seen at the Weyl group level. Sp(2n,F ), SO(2n + 1,F ),
and O(2n,F ) all have the same Weyl group—consisting of permutations and sign changes
on n letters. However, SO(2n,F ) allows only permutations and even sign changes on n

letters. Further, the maximal parabolic subgroups of SO(2n,F ) are not quite as convenient
as those of the other groups, e.g., there are two non-conjugate parabolic subgroups which
one might reasonably call Siegel. Thus there are two technical issues in shifting to special
even orthogonal groups: (1) keeping track of the number of sign changes (at least mod 2),
and (2) choosing the correct parabolic subgroups to use. In terms of the results of [T1,B],
the former amounts to adapting M∗ to keep track of sign changes; the latter amounts to
choosing a suitable definition of μ∗. These are addressed in Definitions 3.1 and 3.3, re-
spectively.

With suitable definitions in place, the analogue to the results of [T1,B] is Theorem 3.4,
the main result of this paper. This allows one to calculate Jacquet modules of induced
representations for SO(2n,F ) in much the same way that [T1] allows for Sp(2n,F ) and
SO(2n+ 1,F ) (and by [B,Z] for O(2n,F ), GL(n,F ), respectively). As with these results,
the proof is essentially a calculation using the results of [B-Z,C]. However, things are a bit
easier for us—the necessary double-coset representatives have already been worked out in
[B], so we are saved that step. We remark that these results do give an M∗

D-Hopf module
structure similar to that in [T1], though a bit more involved to set up.

We now discuss the results section by section. The next section introduces notation and
reviews background material. In the third section, we give the main result (cf. Theorem 3.4)
and a short example of its application to the calculation of Jacquet modules. The proof of
Theorem 3.4 is a straightforward calculation; as it is not particularly short or enlightening,
its proof is deferred until Section 4.

Let me close the introduction by thanking the referee, whose comments helped signifi-
cantly improve the exposition of this paper.

2. Notation and preliminaries

In this section, we review some background material and notation which is needed in
the rest of the paper.

Let F be a p-adic field with charF �= 2.
First, in general, suppose G is the F -points of a split connected reductive group de-

fined over F . Let WG denote the Weyl group for G. We fix a Borel subgroup of G.
Suppose P = MU is the Levi factorization of a standard parabolic subgroup of G.
If Alg0(G) denotes the category of smooth finite-length representations of G, we let
iG,M : Alg0(M) → Alg0(G) and rM,G : Alg0(G) → Alg0(M) denote the (normalized) in-
duction and Jacquet functors, respectively. Let R(G) denote the Grothendieck group for
Alg0(G). We also use iG,M :R(M) → R(G) and rM,G :R(G) → R(M) for the semisim-
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plified maps. Note that in what follows, we use = when working in the Grothendieck group
setting; actual equivalences of representations are denoted by ∼=.

We begin by recalling a few things about general linear groups (cf. [B-Z,Z]). Let B

denote the Borel subgroup of GL(n,F ) consisting of the upper triangular matrices in
GL(n,F ). This has maximal split torus consisting of the diagonal matrices in GL(n,F ).
We have WGL(n,F )

∼= {permutations on n letters}, which acts on the maximal split torus by
permuting the entries. If m1, . . . ,mk are positive integers satisfying m1 + · · · + mk = n,
we let P(m1,...,mk) denote the standard parabolic subgroup having Levi factor M(m1,...,mk) =
GL(m1,F ) × · · · × GL(mk,F ). Now, let R = ⊕

n�0 R(GL(n,F )). This is a Z+-graded
Hopf algebra over Z (cf. [Sw] for the definition of Hopf algebra); with multiplication de-
fined for representations by

m :R ⊗ R → R,

m : τ1 ⊗ τ2 �→ iG,M(τ1 ⊗ τ2),

where G = GL(n1 + n2,F ) and M = M(n1,n2) (τi a representation of GL(ni,F )); comul-
tiplication is defined for representations by

m∗ :R → R ⊗ R,

m∗ : τ �→
n∑

k=0

rM(k,n−k),Gτ,

where τ is a representation of GL(n,F ). These are then extended Z-bilinearly and Z-li-
nearly to obtain the bialgebra structure. Note that we will often use × to denote multipli-
cation: τ1 × τ2 = m(τ1 ⊗ τ2). For completeness, we remark that the antipode map is given
by the Zelevinsky involution (which is a special case of the duality of [Au,S-S]), though
this will not play a significant role in what follows.

We now discuss orthogonal groups (cf. [B]). The special orthogonal group SO(2n,F ),
n � 1, is the group

SO(2n,F ) = {
X ∈ SL(2n,F ) | τXX = I2n

}
,

where τX denotes the matrix of X transposed with respect to the second diagonal. For
n = 1, we get

SO(2,F ) =
{[

λ 0
0 λ−1

] ∣∣∣∣ λ ∈ F×
}

∼= F×.

SO(0,F ) is defined to be the trivial group. We let

c =
⎡
⎢⎣

I

0 1
1 0

⎤
⎥⎦ .
I
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This is a representative for the non-trivial element of C = O(2n,F )/SO(2n,F ) and acts
on SO(2n,F ) by conjugation. We denote the trivial element of C by e (and use 1 as its
representative).

We fix the Borel subgroup for SO(2n,F ) consisting of the upper triangular matri-
ces in SO(2n,F ). This has maximal split torus consisting of the diagonal matrices in
SO(2n,F ), which have the form diag(a1, . . . , an, a

−1
n , . . . , a1) with a1, . . . , an ∈ F×. We

have WSO(2n,F )
∼= {permutations and even sign changes}, which acts on the maximal split

torus by permuting and inverting the entries. The simple roots for SO(2n,F ), n � 2, are
Π = {α1, . . . , αn} with

αi =
{

ei − ei+1 for i < n,

en−1 + en for i = n.

Note that

c · αi =
{

αi for i < n − 1,

α2n−1−i for i = n − 1, n.

The standard parabolic subgroups P = MU have M = M(n1,...,nk;n0) of the form
M(n1,...,nk;n0) = GL(n1,F )×· · ·×GL(nk,F )×SO(2n0,F ), where n1 +· · ·+nk +n0 = n.
We note that in the case n0 = 0, nk > 1 (i.e., the corresponding subset of simple roots con-
tains exactly one of αn−1, αn), there are two non-conjugate standard parabolic subgroups of
this form. We use M(n1,...,nk;0) to denote the Levi factor for the standard parabolic subgroup
having αn−1 in the corresponding subset of simple roots; the other is then c(M(n1,...,nk;0)),
and so denoted. If τ1 ⊗ · · · ⊗ τk ⊗ σ is a representation of M = M(n1,...,nk;n0), we write
τ1 × · · · × τk � σ for the induced representation iG,M(τ1 ⊗ · · · ⊗ τk ⊗ σ) (or its im-
age in the Grothendieck group). If M = c(M(n1,...,nk;0)), then iG,M(τ1 ⊗ · · · ⊗ τk ⊗ 1) ∼=
c(τ1 ×· · ·×τk �1) (cf. Lemma 3.2) and we write the representation as c(τ1 ×· · ·×τk �1).

We close by recalling the following result of [B-Z,C]:

Theorem 2.1. Let G be the F -points of a connected reductive p-adic group defined over F ,
MU and NV the Levi factorizations standard parabolic subgroups. Let π be a smooth
representation of M . Then, rN,G ◦ iG,Mπ has a composition series with factors

iN,N ′ ◦ w ◦ rM ′,Mπ, w ∈ [WN\W/WM ],

where M ′ = M ∩ w−1(N), N ′ = w(M) ∩ N , and [WN\W/WM ] consists of the double-
coset representatives of WN\WG/WM of minimal length.

3. Calculation of Jacquet modules

In this section, we give the main result of this paper (cf. Theorem 3.4) and a short
example of its application to the calculation of Jacquet modules. Note that the proof of
Theorem 3.4 is deferred to the next section.
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We first define an analogue to the M∗ of [T1], modifying M∗ to keep track of the number
of sign changes. As in [T1], we let s :R ⊗ R → R ⊗ R be defined by s(τ1 ⊗ τ2) = τ2 ⊗ τ1
(which defines s on a basis).

Definition 3.1. Let M∗
D :R → R ⊗ R ⊗ Z[C] be defined by

M∗
D = (m ⊗ 1)D ◦ (˜⊗ m∗)D ◦ s ◦ m∗,

where (˜⊗ m∗)D :R ⊗ R → R ⊗ R ⊗ R ⊗ Z[C] is given by

(˜⊗ m∗)D(τ1 ⊗ τ2) =

⎧⎪⎪⎨
⎪⎪⎩

τ̃1 ⊗ m∗(τ2) ⊗ e

if τ1 is a representation of GL(n1,F ) with n1 even,

τ̃1 ⊗ m∗(τ2) ⊗ c

if τ1 is a representation of GL(n1,F ) with n1 odd,

and (m ⊗ 1)D :R ⊗ R ⊗ R ⊗ Z[C] → R ⊗ R ⊗ Z[C] is given by

(m ⊗ 1)D(τ1 ⊗ τ2 ⊗ τ3 ⊗ c′) = (τ1 × τ2) ⊗ τ3 ⊗ c′.

Recall that in [T1], Tadić observes that R[S] = ⊕
n�0 R(SO(2n + 1,F )) is a module

over R (and similarly for symplectic groups). It is not a Hopf module, but rather what
Tadić refers to as an M∗-Hopf module over R. We give a corresponding interpretation
here, though it requires a bit more to set up.

First, let R[D] = ⊕
n�0 R(SO(2n,F )). We consider R[D] ⊗ Z[C]. Let

K = spanZ{θ ⊗ c − cθ ⊗ e},

where θ runs over irreducible representations of SO(2n,F ) for all n > 0. We then set

RD = (
R[D] ⊗ Z[C])/K.

It is RD which will carry the structure analogous to that given in [T1]—that of an M∗
D-Hopf

module.
We now define the R-module structure on RD . First, let

μ :R ⊗ R[D] ⊗ Z[C] → R[D] ⊗ Z[C]

be defined by

μ : τ ⊗ θ ⊗ c′ �→ (τ � θ) ⊗ c′,

noting that it is enough to define μ for τ ⊗θ ⊗c′ with τ ⊗θ irreducible. An easy calculation
shows that μ :R ⊗K → K. Therefore, μ descends to a well-defined map

μD :R ⊗ RD → RD.
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This gives RD the structure of a module over R. As in [T1], it is a Z+-graded module. We
also use � to denote μD .

Lemma 3.2. Let M be a standard Levi subgroup for SO(2n,F ). Then

c ◦ rM,G
∼= rc(M),G ◦ c,

c ◦ iG,M
∼= iG,c(M) ◦ c.

Proof. Straightforward. �
We now define the comodule structure. As in [B], we let

Ωk =
⎧⎨
⎩

Π \ {αk} if k � n − 2,

Π \ {αn−1, αn} if k = n − 1,

Π \ {αn} if k = n;
letting Ω̄n = Π \ {αn−1} = c(Ωn). We let Ω0 = Π , so MΩ0 = G.

We first define

μ∗ :R[D] ⊗ Z[C] → R ⊗ R[D] ⊗ Z[C]
as follows: For π an irreducible representation of SO(2n,F ), with n � 2, and 0 � k � n,
write rMΩk

,G(π) = ∑
i∈Ik

τi(k) ⊗ θi(k) and rMΩ̄n
,G(θ) = ∑

j∈J c(τj ⊗ 1). We set

μ∗(π ⊗ c′) =
n∑

k=0

( ∑
i∈Ik

τi(k) ⊗ θi(k) ⊗ c′
)

+
∑
j∈J

(τj ⊗ 1 ⊗ cc′).

For n = 0, the only irreducible representation of SO(0,F ) (trivial group) is 1, and we set

μ∗(1 ⊗ c′) = 1 ⊗ 1 ⊗ c′.

For n = 1, an irreducible representation of SO(2,F ) has the form χ � 1 for χ a
(quasi)character of F× (noting that under SO(2,F ) ∼= F×, this corresponds to the char-
acter χ ), and we set

μ∗(χ � 1 ⊗ c′) = 1 ⊗ (χ � 1) ⊗ c′ + χ ⊗ 1 ⊗ c′ + χ−1 ⊗ 1 ⊗ cc′.

We then extend μ∗ to R[D] ⊗ Z[C] Z-bilinearly.

Definition 3.3. A straightforward calculation (using Lemma 3.2) shows μ∗ :K → R ⊗K.
Therefore, μ∗ descends to a well-defined map

μ∗
D :RD → (

R ⊗ R[D] ⊗ Z[C])/(R ⊗K) ∼= R ⊗ RD

under the obvious isomorphism (i.e., τ ⊗ θ ⊗ c′ + R ⊗K ↔ τ ⊗ (θ ⊗ c′ +K)).
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Theorem 3.4. RD is an M∗
D-Hopf module over R. In particular, for τ, θ representations of

GL(n1,F ),SO(2n,F ), respectively, and c′ ∈ C, we have

μ∗
D

(
τ � (θ ⊗ c′ +K)

) = M∗
D(τ) � μ∗

D(θ ⊗ c′ +K).

Note that on the right-hand side, � is defined as follows: let

� :
(
R ⊗ R ⊗ Z[C]) ⊗ (

R ⊗ R[D] ⊗ Z[C]) → R ⊗ R[D] ⊗ Z[C]

be defined on representations by

(τ1 ⊗ τ2 ⊗ c1) � (τ ⊗ θ ⊗ c2 +K) �→ (τ1 × τ) ⊗ (τ2 � θ) ⊗ c1c2 +K.

This then descends to a well-defined map � : (R ⊗R ⊗Z[C])⊗ (R ⊗RD) → R ⊗RD used
on the right-hand side.

Proof. See Section 4. �
As in [T1], this is a Z+-graded comodule.
We give an example to show how this may be used to calculate Jacquet modules of

induced representations:

Example 3.5. Let χ be a (quasi)character of F×. Then χ ◦ detGL(2,F ) �1 is a represen-
tation of SO(4,F ) whose Jacquet modules are calculated below using Theorem 3.4. Note
that 1 is used below for both the trivial representation of GL(0,F ) and SO(0,F ) (both
trivial groups); the particular interpretations being clear from context. Note that 1 � 1 also
appears; this is also the trivial representation of SO(0,F ).

First, we have

M∗
D(χ ◦ detGL(2,F ))

= χ ◦ detGL(2,F ) ⊗1 ⊗ e + | · |− 1
2 χ ⊗ | · | 1

2 χ ⊗ e + 1 ⊗ χ ◦ detGL(2,F ) ⊗ e

+ | · |− 1
2 χ−1 × | · |− 1

2 χ ⊗ 1 ⊗ c + | · |− 1
2 χ−1 ⊗ | · |− 1

2 χ ⊗ c

+ χ−1 ◦ detGL(2,F ) ⊗1 ⊗ e

and

μ∗
D(1 ⊗ e +K) = 1 ⊗ 1 ⊗ e +K.

Therefore, by Theorem 3.4,

μ∗
D

(
χ ◦ detGL(2,F ) � (1 ⊗ e +K)

)
= χ ◦ detGL(2,F ) ⊗1 � 1 ⊗ e + | · |− 1

2 χ ⊗ | · | 1
2 χ � 1 ⊗ e
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+ 1 ⊗ χ ◦ detGL(2,F ) � 1 ⊗ e + | · |− 1
2 χ−1 × | · |− 1

2 χ ⊗ 1 � 1 ⊗ c

+ | · |− 1
2 χ−1 ⊗ | · |− 1

2 χ � 1 ⊗ c + χ−1 ◦ detGL(2,F ) ⊗1 � 1 ⊗ e +K.

Thus,

rMΩ1 ,G(χ ◦ detGL(2,F ) � 1) = | · |− 1
2 χ ⊗ | · | 1

2 χ + | · |− 1
2 χ−1 ⊗ | · | 1

2 χ−1,

rMΩ2 ,G(χ ◦ detGL(2,F ) � 1) = χ ◦ detGL(2,F ) +χ−1 ◦ detGL(2,F ),

rMΩ̄2
,G(χ ◦ detGL(2,F ) � 1) = c

(| · |− 1
2 χ−1 × | · |− 1

2 χ
)
.

Note that this matches the results calculated in [J1, Section 4.2], done using the results
of [B-Z,C].

4. Proof of main theorem

In this section, we give the proof of Theorem 3.4. The proof is essentially a long
but straightforward calculation. In particular, we show that M∗

D(τ) � μ∗
D(θ ⊗ e + K) =

μ∗
D(τ � (θ ⊗ e + K)) for τ and θ representations, which suffices. For convenience, we

suppress the K in what follows. The calculation of M∗
D(τ) � μ∗

D(θ ⊗ e) is done from
the definition in Section 3. We calculate μ∗

D(τ � θ ⊗ e) using the results of Bernstein–
Zelevinsky and Casselman (cf. Theorem 2.1), along with the double-coset representatives
given by Ban in [B, Section 5].

Suppose τ � θ is a representation of SO(2n,F ). The cases n = 0 and n = 1 are covered
by the definition of μ∗

D , so we assume n � 2 below. Also, if τ ⊗ θ is a representation of
GL(i2,F ) × SO(2(n − i2),F ), we treat n − i2 = 0 and n − i2 = 1 as special cases, dealing
with them at the end. Thus, we assume i2 < n − 1 for now.

We start by calculating M∗
D(τ) � μ∗

D(θ). To this end, write rMΩ�
,G(θ) = ∑

t∈T�
λt (�)⊗

θt (n− i2 −�) and rMΩ̄n
,G(θ) = ∑

u∈U c(λu(n− i2)⊗1), where T� and U are the appropri-
ate indexing sets. To add clarity, we have, e.g., written λt (�) rather than just λt , indicating
the rank of the underlying group as an argument. Then,

μ∗
D(θ ⊗ e)

n−i2∑
�=0

∑
t∈T�

λt (�) ⊗ θt (n − i2 − �) ⊗ e +
∑
u∈U

λu(n − i2) ⊗ 1 ⊗ c.

Also,

M∗
D(τ) = (m ⊗ 1)D ◦ (˜⊗ m∗)D ◦ s ◦ m∗(τ )

= (m ⊗ 1)D ◦ (˜⊗ m∗)D ◦ s

(
i2∑

j=0

∑
r∈Rj

ρr(j) ⊗ σr(i2 − j)

)

= (m ⊗ 1)D ◦ (˜⊗ m∗)D

(
i2∑

j=0

∑
r∈R

σr(i2 − j) ⊗ ρr(j)

)
,

j
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where Rj is the appropriate indexing set. Continuing,

M∗
D(τ) = (m ⊗ 1)D

(
i2∑

j=0

∑
r∈Rj

σ̃r (i2 − j)

⊗
(

j∑
k=0

∑
s∈S(r,j,k)

ρ(1)
r,s (k) ⊗ ρ(2)

r,s (j − k)

)
⊗ ci2−j

)

=
i2∑

j=0

j∑
k=0

∑
r∈Rj

∑
s∈S(r,j,k)

(
σ̃r (i2 − j) × ρ(1)

r,s (k)
) ⊗ ρ(2)

r,s (j − k) ⊗ ci2−j , (1)

where S(r, j, k) is the appropriate indexing set. It now follows that

M∗
D(τ) � μ∗

D(θ ⊗ e) =
i2∑

j=0

j∑
k=0

∑
r∈Rj

n−i2∑
�=0

∑
s∈S(r,j,k)

∑
t∈T�

σ̃r (i2 − j) × ρ(1)
r,s (k) × λt (�)

⊗ ρ(2)
r,s (j − k) � θt (n − i2 − �) ⊗ ci2−j

+
i2∑

j=0

j∑
k=0

∑
r∈Rj

∑
s∈S(r,j,k)

∑
u∈U

σ̃r (i2 − j) × ρ(1)
r,s (k) × λu(n − i2)

⊗ ρ(2)
r,s (j − k) � 1 ⊗ ci2−j+1.

Now, to match this result with what we get for μ∗
D(τ � (θ ⊗ e)) below, let j = i2 − d and

� = i1 − d − k (which defines d and i1). We then have

M∗
D(τ) � μ∗

D(θ ⊗ e)

=
i2∑

d=0

i2−d∑
k=0

n−i2+d+k∑
i1=d+k

∑
r∈Ri2−d

∑
s∈S(r,i2−d,k)

∑
t∈Ti1−d−k

σ̃r (d) × ρ(1)
r,s (k) × λt (i1 − d − k)

⊗ ρ(2)
r,s (i2 − d − k) � θt (n + d + k − i1 − i2) ⊗ cd

+
i2∑

d=0

i2−d∑
k=0

∑
r∈Ri2−d

∑
s∈S(r,i2−d,k)

∑
u∈U

σ̃r (d) × ρ(1)
r,s (k) × λu(n − i2)

⊗ ρ(2)
r,s (i2 − d − k) � 1 ⊗ cd+1.

Using n − i2 = i1 − d − k, so k = i1 + i2 − n − d , we may rewrite the second sum as

i2∑
d=0

n∑
i1=n+d−i2

∑
r∈Ri2−d

∑
s∈S(r,i2−d,i1+i2−n−d)

∑
u∈U

σ̃r (d) × ρ(1)
r,s (i1 + i2 − n − d)

× λu(n − i2) ⊗ ρ(2)
r,s (n − i1) � 1 ⊗ cd+1.
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Interchanging the order of the d , i1, and (in the first sum) k summations, we get

M∗
D(τ) � μ∗

D(θ ⊗ e)

=
n∑

i1=0

min{i1,i2}∑
d=0

min{i1,i2}−d∑
k=max{0,i1+i2−n−d}

∑
r∈Ri2−d

∑
s∈S(r,i2−d,k)

∑
t∈Ti1−d−k

σ̃r (d)

× ρ(1)
r,s (k) × λt (i1 − d − k) ⊗ ρ(2)

r,s (i2 − d − k) � θt (n + d + k − i1 − i2) ⊗ cd

+
n∑

i1=n−i2

i1+i2−n∑
d=0

∑
r∈Ri2−d

∑
s∈S(r,i2−di1+i2−n−d)

∑
u∈U

σ̃r (d)

× ρ(1)
r,s (i1 + i2 − n − d) × λu(n − i2) ⊗ ρ(2)

r,s (n − i1) � 1 ⊗ cd+1. (2)

We now turn to the calculation of μ∗
D(τ � (θ ⊗ e)). As in [B], let [WΩi1

\W/WΩi2
]

(respectively [WΩ̄n
\W/WΩi2

]) denote the double-coset representatives of shortest length,
where W = WSO(2n,F ) and WΩi

= WMΩi
. By the results of Bernstein–Zelevinsky and Cas-

selman (cf. Theorem 2.1), we have

μ∗
D

(
τ � (θ ⊗ e)

) =
n∑

i1=0

∑
w∈[WΩi1

\W/WΩi2
]
Fi1,i2(w)(τ ⊗ θ) ⊗ e

+
∑

w∈[WΩ̄n
\W/WΩi2

]
F̄n,i2(w)(τ ⊗ θ) ⊗ c,

where

Fi1,i2(w) : τ ⊗ θ �→ iN,N ′ ◦ w ◦ rM ′,M(τ ⊗ θ),

with M = MΩi2
, N = NΩi1

, N ′ = N ∩ w(M), and M ′ = M ∩ w−1(N); F̄ (n, i2)(w) is de-
fined the same way except using N = NΩ̄n

. Using the double-coset representatives worked
out in [B, Section 5] (and retaining the notation in [B]), we may write the sum more ex-
plicitly as

μ∗
D

(
τ � (θ ⊗ e)

) =
n∑

i1=0

min{i1,i2}∑
d=0

d even

min{i1,i2}−d∑
k=max{0,i1+i2−n−d}

Fi1,i2

(
qn(d, k)

(0,0)
i1,i2

)
(τ ⊗ θ) ⊗ e

+
n−1∑
i1=0

min{i1,i2}∑
d=0

d even

Fi1,i2

(
qn(d, i1 + i2 − n − d)

(1,1)
i1,i2

)
(τ ⊗ θ) ⊗ e
i1+i2−n−d�0
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+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

min{i1,i2}−d∑
k=max{0,i1+i2−n−d+1}

Fi1,i2

(
qn(d, k)

(0,0)
i1,i2

)
(τ ⊗ θ) ⊗ e

+
n∑

i1=0

min{i1,i2}∑
d=0
d odd

i1+i2−n−d�0

Fi1,i2

(
qn(d, i1 + i2 − n − d)

(1,0)
i1,i2

)
(τ ⊗ θ) ⊗ e

+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

i1+i2−n−d�0

Fi1,i2

(
qn(d, i1 + i2 − n − d)

(0,1)
i1,i2

)
(τ ⊗ θ) ⊗ e

+
i2∑

d=0
d odd

F̄n,i2

(
qn(d, i2 − d)

(−1,−1)
n,i2

)
(τ ⊗ θ) ⊗ c

+
i2∑

d=0
d even

F̄n,i2

(
qn(d, i2 − d)

(±1,−1)
n,i2

)
(τ ⊗ θ) ⊗ c, (3)

noting that the upper bounds of n − 1 (instead of n) in the second, third, and fifth sums
arise from the conditions in the definition of qn(d, k)

(0,0)
i1,i2

, etc., on [B, pp. 160–161]. Now,
let us write

rMΩ,M(τ ⊗ θ) =
∑

s∈S(d,k)i1,i2

τ (1)
s (k) ⊗ τ (2)

s (i2 − d − k) ⊗ τ (3)
s (d)

⊗ λs(i1 − d − k) ⊗ θs(n + d + k − i1 − i2)

for Ω = Ωk ∩ Ωi2−d ∩ Ωi2 ∩ Ωi1+i2−d−k (defining the indexing set S(d, k)i1,i2 ); we write

rMΩ ′ ,M(τ ⊗ θ) =
∑

s∈S̄(d,k)i1,i2

c
(
τ (1)
s (k) ⊗ τ (2)

s (i2 − d − k) ⊗ τ (3)
s (d) ⊗ λs(n − i2) ⊗ 1

)

for Ω ′ = Ωk ∩ Ωi2−d ∩ Ωi2 ∩ Ω̄n with i1 + i2 − d − k = n (defining the indexing set
S̄(d, k)i1,i2 ). Therefore (noting that conjugations by qn’s produce the contragredient of

τ
(3)
s (d) as in [T1]; cf. [G-K]) we have

μ∗
D

(
τ � (θ ⊗ e)

)
=

n∑
i1=0

min{i1,i2}∑
d=0

d even

min{i1,i2}−d∑
k=max{0,i1+i2−n−d}

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ e
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+
n−1∑
i1=0

min{i1,i2}∑
d=0

d even
i1+i2−n−d�0

∑
s∈S̄(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ c

+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

min{i1,i2}−d∑
k=max{0,i1+i2−n−d+1}

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ c

+
n∑

i1=0

min{i1,i2}∑
d=0
d odd

i1+i2−n−d�0

∑
s∈S̄(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ e

+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

i1+i2−n−d�0

∑
s∈S(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ c

+
i2∑

d=0
d odd

∑
s∈S(d,i2−d)n,i2

τ (1)
s (i2 − d) × λs(n − i2) × τ̃ (3)

s (d) ⊗ 1 ⊗ c

+
i2∑

d=0
d even

∑
s∈S̄(d,i2−d)n,i2

τ (1)
s (i2 − d) × λs(n − i2) × τ̃ (3)

s (d) ⊗ 1 ⊗ c, (4)

noting that qn(d, i2 − d)(±1,−1) are defined differently for d = 0 but can be combined into
one sum. We also note that the inducing subgroups in the sums above match what is given
in [B, Lemmas 5.11 and 5.12]. We now combine the i1 = n terms from the first and fourth
sums with the sixth and seventh sums, respectively, to get

μ∗
D

(
τ � (θ ⊗ e)

)

=
n−1∑
i1=0

min{i1,i2}∑
d=0

d even

min{i1,i2}−d∑
k=max{0,i1+i2−n−d}

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ e
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+
n−1∑
i1=0

min{i1,i2}∑
d=0

d even
i1+i2−n−d�0

∑
s∈S̄(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ c

+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

min{i1,i2}−d∑
k=max{0,i1+i2−n−d+1}

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ c

+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

i1+i2−n−d�0

∑
s∈S̄(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ e

+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

i1+i2−n−d�0

∑
s∈S(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ c

+
i2∑

d=0

∑
s∈S(d,i2−d)n,i2

τ (1)
s (i2 − d) × λs(n − i2) × τ̃ (3)

s (d) ⊗ 1 ⊗ cd

+
i2∑

d=0

∑
s∈S̄(d,i2−d)n,i2

τ (1)
s (i2 − d) × λs(n − i2) × τ̃ (3)

s (d) ⊗ 1 ⊗ cd+1.

We now combine the fourth sum with the second and the fifth sum with the third (noting
that the fifth sum corresponds to k = i1 + i2 − n − d when combined with the third) to get

μ∗
D

(
τ � (θ ⊗ e)

)
=

n−1∑
i1=0

min{i1,i2}∑
d=0

d even

min{i1,i2}−d∑
k=max{0,i1+i2−n−d}

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ e

+
n−1∑
i1=0

min{i1,i2}∑
d=0

i1+i2−n−d�0

∑
s∈S̄(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ cd+1



C. Jantzen / Journal of Algebra 305 (2006) 802–819 815
+
n−1∑
i1=0

min{i1,i2}∑
d=0
d odd

min{i1,i2}−d∑
k=max{0,i1+i2−n−d}

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ c

+
i2∑

d=0

∑
s∈S(d,i2−d)n,i2

τ (1)
s (i2 − d) × λs(n − i2) × τ̃ (3)

s (d) ⊗ 1 ⊗ cd

+
i2∑

d=0

∑
s∈S̄(d,i2−d)n,i2

τ (1)
s (i2 − d) × λs(n − i2) × τ̃ (3)

s (d) ⊗ 1 ⊗ cd+1.

Finally, combining the fifth sum above with the second, and the third and fourth and sums
with the first (noting that the fourth and fifth sums correspond to i1 = n), we get

μ∗
D

(
τ � (θ ⊗ e)

)

=
n∑

i1=0

min{i1,i2}∑
d=0

min{i1,i2}−d∑
k=max{0,i1+i2−n−d}

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ cd

+
n∑

i1=0

min{i1,i2}∑
d=0

i1+i2−n−d�0

∑
s∈S̄(d,i1+i2−n−d)i1,i2

τ (1)
s (i1 + i2 − n − d) × λs(n − i2) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ cd+1. (5)

To finish the case i2 < n − 1, it remains to show Eqs. (2) and (5) are the same. In
particular, we show that the first sum in (2) matches the first sum in (5) and the second sum
in (2) matches the second sum in (2). For the first sum, the i1, d, k domains of summation
are the same, so it suffices to show that for fixed i1, d, k we have

∑
s∈S(d,k)i1,i2

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (i2 − d − k) � θs(n + d + k − i1 − i2) ⊗ cd

=
∑

r∈Ri2−d

∑
s∈S(r,i2−d,k)

∑
t∈Ti1−d−k

σ̃r (d) × ρ(1)
r,s (k) × λt (i1 − d − k)

⊗ ρ(2)
r,s (i2 − d − k) � θt (n + d + k − i1 − i2) ⊗ cd .

For this, it is sufficient to check that
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∑
s∈S(d,k)i1,i2

τ (1)
s (k) ⊗ τ (2)

s (i2 − d − k) ⊗ τ (3)
s (d) ⊗ λs(i1 − d − k)

⊗ θs(n + d + k − i1 − i2)

=
∑

r∈Ri2−d

∑
s∈S(r,i2−d,k)

∑
t∈Ti1−d−k

ρ(1)
r,s (k) ⊗ ρ(2)

r,s (i2 − d − k) ⊗ σr(d) ⊗ λt (i1 − d − k)

⊗ θt (n + d + k − i1 − i2). (6)

However, both sides of (6) easily reduce to rMΩ,G(τ ⊗ θ), where Ω = Ωk ∩Ωi2−d ∩Ωi2 ∩
Ωi1+i2−d−k . We now show the second sums match up. We claim the i1, d domains of
summation are the same in (2) and (5). In particular, consider the second sum for μ∗

D(τ �

(θ ⊗ e)) in (5). Since i1, i2 � i1 + i2 − n, we have min{i1, i2} � i1 + i2 − n. The condition
i1 + i2 −n−d � 0 implies d � i1 + i2 −n; as this is lower than min{i1, i2}, it is effectively
the upper limit of summation. Further, this means that if i1 < n − i2, the sum degenerates.
Thus the i1 summation effectively has lower limit i1 = n − i2. Therefore the domains of
summation match. The rest of the argument is essentially the same as for the first sums.
This finishes the case i2 < n − 1.

The cases i2 = n− 1, n remain. We first look at the case i2 = n. In (3), the 2nd, 3rd, 4th,
and 7th sums do not occur if i2 = n (from the conditions in the definition of qn(d, k)

(0,0)
i1,i2

,
etc., [B, pp. 160–161 and 164]). Therefore, the 2nd, 3rd, 4th, and 7th sums in (4) do not
occur if i2 = n. If we delete these sums and set i2 = n in the rest, we get

μ∗
D

(
τ � (θ ⊗ e)

)

=
n∑

i1=0

i1∑
d=0

d even

∑
s∈S(d,i1−d)i1,n

τ (1)
s (i1 − d) × τ̃ (3)

s (d) ⊗ τ (2)
s (n − i1) � 1 ⊗ e

+
n−1∑
i1=0

i1∑
d=0
d odd

∑
s∈S(d,i1−d)i1,n

τ (1)
s (i1 − d) × τ̃ (3)

s (d) ⊗ τ (2)
s (n − i1) � 1 ⊗ c

+
n∑

d=0
d odd

∑
s∈S(d,n−d)n,n

τ (1)
s (n − d) × τ̃ (3)

s (d) ⊗ 1 ⊗ c.

Now, combining these, we get

μ∗
D

(
τ � (θ ⊗ e)

) =
n∑

i1=0

i1∑
d=0

∑
s∈S(d,i1−d)i1,n

τ (1)
s (i1 − d) × τ̃ (3)

s (d) ⊗ τ (2)
s (n − i1) � 1 ⊗ cd .

On the other hand, we note that the second sum in (2) is absent if i2 = n (as μ∗
D(1 ⊗ e) is

just 1 ⊗ 1 ⊗ e). Therefore, we get
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M∗
D(τ) � μ∗

D(θ ⊗ e) =
n∑

i1=0

i1∑
d=0

∑
r∈Rn−d

∑
s∈S(r,i2−d)

σ̃r (d) × ρ(1)
r,s (i1 − d)

⊗ ρ(2)
r,s (n − i1) � 1 ⊗ cd,

which match up as in the case i2 < n − 1 (showing (6) holds).
We now turn to the case i2 = n− 1. We begin by looking at M∗

D(τ)�μ∗
D(θ ⊗ e), which

is where most of the work is for this case. Here, M∗
D(τ) is as in (1) and

μ∗
D(θ ⊗ e) = 1 ⊗ θ ⊗ e + χ ⊗ 1 ⊗ e + χ−1 ⊗ 1 ⊗ c,

where θ = χ � 1. Therefore (using i2 = n − 1)

M∗
D(τ) � μ∗

D(θ ⊗ e)

=
n−1∑
j=0

j∑
k=0

∑
r∈Rj

∑
s∈S(r,j,k)

[
σ̃r (n − 1 − j) × ρ(1)

r,s (k) ⊗ ρ(2)
r,s (j − k) � θ ⊗ cn−1−j

+ σ̃r (n − 1 − j) × ρ(1)
r,s (k) × χ ⊗ ρ(2)

r,s (j − k) � 1 ⊗ cn−1−j

+ σ̃r (n − 1 − j) × ρ(1)
r,s (k) × χ−1 ⊗ ρ(2)

r,s (j − k) � 1 ⊗ cn−1−j+1].
As earlier when we used j = i2 − d , � = i1 − d − k, we now let d = n − 1 − j and
� = i1 − d − k (so � = 0 for the first term and � = 1 for the second and third terms). We
have

M∗
D(τ) � μ∗

D(θ ⊗ e)

=
n−1∑
d=0

n−1∑
i1=d

∑
r∈Rn−1−d

∑
s∈S(r,n−1−d,i1−d)

σ̃r (d) × ρ(1)
r,s (i1 − d) ⊗ ρ(2)

r,s (n − 1 − i1) � θ ⊗ cd

+
n−1∑
d=0

n∑
i1=d+1

∑
r∈Rn−1−d

∑
s∈S(r,n−1−d,i1−d)

[
σ̃r (d) × ρ(1)

r,s (i1 − d − 1) × χ

⊗ ρ(2)
r,s (n − i1) � 1 ⊗ cd

+ σ̃r (d) × ρ(1)
r,s (i1 − d − 1) × χ−1 ⊗ ρ(2)

r,s (n − i1) � 1 ⊗ cd+1].
Now, reversing the d and i1 summations gives

M∗
D(τ) � μ∗

D(θ ⊗ e)

=
n−1∑
i1=0

i1∑
d=0

∑
r∈Rn−1−d

∑
s∈S(r,n−1−d,i1−d)

σ̃r (d) × ρ(1)
r,s (i1 − d)

⊗ ρ(2)
r,s (n − 1 − i1) � θ ⊗ cd
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+
n∑

i1=1

i1−1∑
d=0

∑
r∈Rn−1−d

∑
s∈S(r,n−1−d,i1−d)

σ̃r (d) × ρ(1)
r,s (i1 − d − 1) × χ

⊗ ρ(2)
r,s (n − i1) � 1 ⊗ cd

+
n∑

i1=1

i1−1∑
d=0

∑
r∈Rn−1−d

∑
s∈S(r,n−1−d,i1−d)

σ̃r (d) × ρ(1)
r,s (i1 − d − 1) × χ−1

⊗ ρ(2)
r,s (n − i1) � 1 ⊗ cd+1. (7)

On the other hand, from (5) (which is valid for i2 = n − 1), we have

μ∗
D

(
τ � (θ ⊗ e)

)
=

n∑
i1=0

min{i1,n−1}∑
d=0

min{i1,n−1}−d∑
k=max{0,i1−d−1}

∑
s∈S(d,k)i1,n−1

τ (1)
s (k) × λs(i1 − d − k) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − 1 − d − k) � θs(d + k + 1 − i1) ⊗ cd+1

+
n∑

i1=0

min{i1,n−1}∑
d=0

i1−d−1�0

∑
s∈S̄(d,i1−d−1)i1,n−1

τ (1)
s (i1 − d − 1) × λs(1) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ cd+1.

Notice that in the first sum, we must have k = i1 −d − 1 or i1 −d , and we break it into two
sums accordingly. Note that to ensure k, d � 0, the case k = i1 − d − 1 requires 1 � i1 and
d � i1 − 1 � min{i1, n − 1} (so we change the bounds of summation). The case k = i1 − d

requires i1 � n − 1 (to ensure τ
(2)
s is associated to a group of non-negative rank), giving

min{i1, n − 1} = i1 (so we change the bounds accordingly). We get

μ∗
D

(
τ � (θ ⊗ e)

)
=

n∑
i1=1

i1−1∑
d=0

∑
s∈S(d,i1−d−1)i1,n−1

τ (1)
s (i1 − d − 1) × λs(1) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ cd

+
n−1∑
i1=0

i1∑
d=0

∑
s∈S(d,i1−d)i1,n−1

τ (1)
s (i1 − d) × τ̃ (3)

s (d) ⊗ τ (2)
s (n − i1 − 1) � θs(1) ⊗ cd

+
n∑

i1=1

i1−1∑
d=0

∑
s∈S̄(d,i1−d−1)i1,n−1

τ (1)
s (i1 − d − 1) × λs(1) × τ̃ (3)

s (d)

⊗ τ (2)
s (n − i1) � 1 ⊗ cd+1. (8)



C. Jantzen / Journal of Algebra 305 (2006) 802–819 819
We now claim the first (respectively second, third) sum in (7) is equal to the second
(respectively first, third) sum in (8). This follows from the same considerations used at the
end of the case i2 < n − 1 (showing (6) holds). This finishes the case i2 = n − 1 and the
proof.
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