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Degenerate principal series for orthogonal groups

By Chris Jantzen at Toronto

Introduction

We begin with a short description of the problem. Let F be a p-adic field with
char F= 0 and odd residual characteristic. Set G = SO,,(F). Let P = MU be a maximal
parabolic subgroup of G. If m = 2n + 1is odd, then M = GL(F) X SO, ,_;,+, (F), for some
k, 1sk=n. If m=2nis even, then M = GL,(F)x SO, (F), with k<n—1, or
M =~ GL,(F) (n.b. there are two nonconjugate parabolic subgroups with M =~ GL,(F)). A
character on M is of the form y o det, with y a (quasi)character of F* — not necessarily unit-
ary — and may be extended trivially to P. We also denote the resulting characters as y. The
question we investigate is whether © = Ind§y is irreducible or not (where induction is
normalized so that unitary representations induce to unitary representations). If it is
reducible, we determine the components and give their Langlands data and Jacquet
modules. :

We now briefly outline the contents of this paper. The first chapter consists of notation
and preliminaries.

In the second chapter, we give certain results that are needed later, which we summarize
in Proposition 2.10. These results cannot be obtained using the Jacquet module techniques of
the later chapters, but are needed to finish the analysis for the nonregular cases for SO, (F)
and SO, (F). These results are obtained using Hecke algebra arguments, similar to those in
[Gus] or chapter 2 of [Jan].

Chapter 3 contains the results for the “regular” case, i.e., when the Jacquet module of
the inducing representation is not fixed by anything in the Weyl group. The results here are
based on the Jacquet module techniques of Tadi¢ [Tad3], principally in the guise of Theorem
3.1 (Theorem 3.1.2 from [Jan]). The results for the odd orthogonal groups are summarized
in Theorem 3.7; for the even ones, in Theorem 3.10.

In chapter 4, we finish the analysis for the low-rank orthogonal groups, that is, we do
the nonregular cases. The arguments are of the same general flavor as those above, but more
involved because of the nonregularity. Essentially, a case-by-case analysis is used to finish
the nonregular cases for SO,(F),n=4,5,6,7.

5 Journal fir Mathematik. Band 441




62 Jantzen, Degenerate principal series
1. Notation and preliminaries

1.1. SO, (F). The purpose of this chapter is to introduce notation and review some
standard facts that will be of use in the rest of this paper.

Let F be a nonarchimedean local field of characteristic zero and odd residual
characteristic. Let O denote the ring of integers, £ the prime ideal in ¢, and w a uniformizer.
Then, O/2 is a finite field. Let ¢ denote the number of elements in the residual field,
F, = 0/2. We normalize the Haar measure on F'so that vol(0) = 1 and the absolute value so
that |w| = ¢~ 1.

Suppose that y is a (quasi)character of F* (i.e., a multiplicative homomorphism from
F* to C* - not necessarily unitary). If xe F*, x may be decomposed as x = w*x,, with
Xy € O*. We can then decompose x as x = |- [|*x, by x(x) = |o*|°x,(x,), where x, is a

2n - . .
characterof O and 0 £ Ims < o It may be convenient, at times, to view y, as a character
q

on F* by y,(w*xy) = x,(x,). We shall use 1 for the trivial character and sgn to denote a
nontrivial character satisfying sgn? = 1. In addition, we use v =| - |.

As most of this paper concerns induced representations for SO,,(F), we next discuss
SO,,(F) and induced representations. In this section, we review some of the structure theory
for SO,,(F).

Recall that we may take

SO, (F) = {xe SL,(F)|"XJX = J},

where

(entries left vacant are zeros). Let K= SO, (0). This is a maximal compact subgroup of
SO, (F). It has a filtration of open compact normal subgroups

< K,<K <Kk,
where

K;={XeK|X = Imod #}.
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be maximal split tori in SO,,(F) for m even and m odd, respectively.
The Weyl group of SO,,(F) is
W= Ns(4)/4,

where N (4) denotes the normalizer of 4 in G. The Weyl group of SO, ,, ., (F) may be viewed
as W = {permutations and sign changes of {e,, ..., e,}}, where one can view ¢, as the linear
functional on the Lie algebra of 4 which associates to an element of the Lie algebra of 4 the
value of its ith (diagonal) entry. W is generated by the simple root reflections {s,, ..., s,},
where s,,...,s5,_,,5, denote the reflections corresponding to the simple roots
e; —e,y,...,e,_; —e,,e,, respectively. We also use s,, ..., s, to denote representatives for
these elements.

Similarly, the Weyl group for SO,,(F) may be viewed as W = {permutations and
even sign changes of {e,, ..., e,}}. Wis generated by the simple root reflections {s,, ..., s,},
where s,,...,5,.,,5, denote the reflections corresponding to the simple roots
e, —ey,...,e,_y —e, e,_,+e,, respectively. Again, we also use s,,...,5, to denote
representatives for these.

We now review the parabolic and parahoric subgroups for SO, (F). A standard
minimal parabolic subgroup for SO,,(F), Py, = AUgy;,, consists of the upper triangular
elements in SO, (F) (A4 asabove). Let &  {s,, ..., s,}. The standard parabolic subgroups of
SO,,(F) are parameterized by such subsets of the simple reflections. Associated to @ is the
parabolic subgroup B, = (P, D).

In SO,,,,(F), if P= MN is the Levi factorization of P then M takes one of the
following two forms:
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1.if s, e ®, M = GL, (F) X GL,,(F) % ... X GL,,_ (F) X 8§03, (F),

2. if 5,¢®, M = GL,,(F) X GL,,(F) X ... x GL, _(F) X GL, (F), with k, >0 and
k1+k2+...+kl=n.

In SO,,(F),if P = MNis the Levi factorization of P then M takes one of the following
forms:

1.ifs,_y,5,€ P, M = GL, (F)xGL,,(F) x ... X GL,,_,(F)*x SOy, (F),
2. if exactly one of s,_,, s, is in @,
M= GL, (F)xGL,,(F)x ... X Gl\,k,_l(F) X GL, (F), with k> 1,

3. if 5,_4,5,¢ P, M= GL, (F) X GL,,(F) X ... X GL,,_,(F)x F*, with k,;>0 and
k,+k,+...+k =n,or in the third case, k, +k, +... + k,_, +1=n.

The parahoric subgroups may be constructed in a similar fashion. A standard Iwahori
subgroup for SO,,(F) may be constructed as follows: let ¥ : K — SO,,(F,) be the reduction
mod # homomorphism. Then, take I = ¥ ~'(P,;,(F,)) as the standard Iwahori subgroup.
If we let {s,, 5y, ..., 5,} denote the generators of the affine Weyl group (where s; for i > 1 are
as above), then the standard parahoric subgroups are in bijective correspondence with the
subsets @ of {sq, 54, ..., 5,}, the correspondence being given by

By, =<1, ®).
Note that if & < {s,, ..., s,}, then
By = P (Po(ﬁ)) .
These are the parahoric subgroups we are most interested in.

1.2. Induced representations and Jacquet modules. We now review the construction
of induced representations and Jacquet modules.

We start by reviewing the construction of induced representations. Let G be a reductive
p-adic group and P = MU a parabolic subgroup of G. Let (¢, X) be an admissible
representation of M. Then ¢ may be extended trivially to U to get a representation of P,
¢ ® 1. The induced representation Ind$g¢ ® 1 acts by right translations on the space

f smooth, }

V= {f:G X fmug) = 3 (myo(m)f(g) Vme M, ueU, geG

where & denotes the modular function for P. We give more convenient notation for induced
representations after we discuss Jacquet modules.

We now describe the construction of Jacquet modules. Again, suppose G is a reductive

p-adic group and P = MU a parabolic subgroup of G. Let (%, V) be a representation of G.
The Jacquet module of 7 with respect to P, denoted n, is a representation of M on the space

Ww=V/V(),
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where ¥V (U) = span{n(u)v —v|ve V, ue U}. The action of M is given by

ny(m) (v + V(U)) = 6~ (m) n(m)v + V(U).
One checks that this defines a representation.

We shall frequently use the notation of Bernstein-Zelevinsky [B-Z] for induced
representations and Jacquet modules. If P = M U is a parabolic subgroup of G (containing
a fixed minimal parabolic subgroup), (¢, X) an admissible representation of M, (%, V) an
admissible representation of G, then set

igye=Indfo® 1
and

Generally speaking, we are more interested in the components (irreducible composi-
tion factors) of a representation than in the actual structure of composition series. Therefore,
ifthas =, ..., n, as components, we write * = m, + ... + m,,. In the same spirit, let us write
1y, < m if the multiplicity of any irreducible admissible representation in 7 is less than or
equal to its multiplicity in 7.

The following notation for induced representations in SO,, (F) will also be convenient.
It is just an extension (cf. [Tad1]) of the shorthand notation of Bernstein-Zelevinsky for

induced representations in GL,(F). First, suppose P = MU is a standard parabolic sub-
group of SO,, ., (F), with

M = GL, (F)% ... X GL,,_ (F) x §Oy ., (F).

Let g,,...,0,-, be admissible representations of GL, (F),...,GL, _ (F), and 7 an
admissible representation of SO,, ., (F). Then, let

Q1% Xy XT=Igy0; ®...0 0 Q1.

The sign oc is used only to indicate that the last factor comes from an orthogonal group.
If k, = 0, the representation will be denoted

Q1% ... xgyocl.

The trivial representation of SO,,,,(F), k>0, will be denoted tr,, so there will be no
confusion. Also, we let [x], denote the character x o det on GL,(F).

We use a similar notation for SO, (F). There is one additional complication, however.
There are two different ways that the group

M = GL, (F) % ... X GL,(F)
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with &, > 1 can occur as the Levi factor of a parabolic subgroup. Essentially, such an M
occurs if @ contains one of s,_, or s,, but not both. (If both are present, the last factor is
orthogonal.) We let

@ X Xe=lne:® .-G
if 5,_, is in @, and

er* .. x{a}=igne; ®...Q ¢
if s, is in @ instead.

We next give four theorems on induced representations and Jacquet modules.
Theorem 1.1 (Frobenius Reciprocity). Let G be a connected reductive p-adic group,

P = MU a parabolic subgroup, ¢ an admissible representation of M, n an admissible
representation of G. Then,

Hom,, (16 (1), 0) = Homg (m, igy 0) -
Proof. cf. [B-Z].

Theorem 1.2. Let (t, G, L) be an irreducible subquotient of Ind§_ v (y a character,
not necessarily unitary). Then, there is a w € W so that © embeds in Indp_,_ wy. Moreover,
all Ind§__ wy for we W have the same components.

Proof. See [Cas2] for the first part and [B-Z] for the second.

We next recall the following theorem, which says the constructions of induced
representations and Jacquet modules may be done in stages.

Theorem 1.3. Let L< M be standard Levis for G. Then
L gL = igy ° iy
2. 16 ="M O° MG+
Proof. cf. [B-Z].

Finally, we give a theorem of Bernstein-Zelevinsky, Casselman. Let M, N be standard
" Levis for a connected reductive p-adic group G. Set ‘

WMN = {WG Wlw(PminnM) < Pmin’ w—l(PminnN) < Pmin}'

We remark that these correspond to the elements of shortest length in the double-cosets
Wy \W | Wy (W), = Weyl group of M, etc.).

Theorem 1.4 (Bernstein-Zelevinsky, Casselman). Let ¢ be an admissible representa-
tion of M. Then, ry; o igy 0 has a composition series with factors

iNNnOWOerMQ, weE WMN,

where M' = Mnw™'(N),N'=w(M)NN.
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Proof. See [Cas2], chapter 6 or [B-Z] “‘geometrical lemma” (Lemma 2.12), proved
in chapter 6.

The composition factors from the preceding theorem play an important role later in
this paper. For convenience, we refer to them as B-Z composition factors.

It is worth pointing out that by the theorems above, if n is a reducible degenerate
principal series representation, say m = n, + ... + m, then

1L rgn=rigni+...+rgm,
2.r6m F+ 0.

1.3. Langlands classification. We now turn to the Langlands classification. Before
going any further, it is worth making the following remark: we set things up so that inducing
a set of Langlands data gives rise to a unique (Langlands) subrepresentation, rather than a
quotient. The reason is that by setting it up this way, it forces the Langlands data to lie in the
Jacquet module with respect to the corresponding parabolic subgroup. This makes things a
bit easier. We do not give the general statement of Langlands classification here; instead
giving more explicit descriptions for GL, and SO, below. The reader is referred to [B-W] for
the general result.

We start with GL,. If ¢ is a representation of GL,,, we call g essentially tempered if there
is a real number &(g) such that |det| *@g is tempered. Suppose that ¢, ® ... ® g; is a
representation of the standard Levi GL,, ® ... ® GL,, with all of the ¢’s essentially
tempered. If e(g,) <...<e(g;), this gives us a set of Langlands data. In particular,
@4 X ... X g; has a unique irreducible subrepresentation which we denote £ (¢, ® :.. ® ¢)).
The use of £ distinguishes this from the case of orthogonal groups, where L is used.

We now look at odd orthogonal groups. Suppose that ¢, ®...®¢;® 1t is a
representation of the standard Levi GL,, ® ... ® GL,, ® SOy, . with all of the ¢’s
essentially tempered and 7 tempered. If (o) <...<e(g;) <0, this gives us a set of
Langlands data. In particular, g, X ... X g; oc T has a unique irreducible subrepresentation
which we denote L(g, ® ... ® ¢; ® 7).

We finally consider even orthogonal groups. Things are slightly messier here. Suppose
thatg,, ..., g;are essentially tempered representations of GL,, ..., GL, , respectively, and ©
is a tempered representation of SO, , . Letn =k +...+k;+k;,,.

1.Ife,_, —e,e,_,+e,¢P(sothat =1 and k; = 1) has

e(@)<...<e(@j-)<- ‘S(Qj)l,
then ¢; ® ... ® ¢;—; ® @; gives us a set of Langlands data.

2.Ife,_,—e,ePande,_ +e,¢ P (sothatt=1andk;>1)hase(g,) <...<e(g;) <0,
then ¢, ® ... ® ¢;_, ® g, gives us a set of Langlands data.

3.1fe,_;—e,¢ Pande, ,+e,e P(sothatt=1andk;>1)hase(g,)<...<e(g;) <0,
then ¢; ® ... ® ¢;-; ® {e;} gives us a set of Langlands data.
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4. If e, —e,, e, +e,€ P (so that there is a 1) has &(g,) <...<é&(g;) <0, then
2; ®...® ¢; ® t gives us a set of Langlands data.

In any case, g, X ... X g;c T (or g, X... %X g;_; X {g;} oc1 in the third case) has
a unique irreducible subrepresentation which we denote L(¢; ®...® ¢;® 1) or
L(g; ® ... ®g;) if T =1 (in the third case, L(g; ® ... ® ¢;-; ® {¢;})). Note that there is
no confusion in using the same notation for both the odd and even orthogonal groups —
the two cases are not discussed together in the remainder of this paper.

We close with the following remark, an easy consequence of Lemma 5.4 of [BDK]
and the fact that [y '], ® tr,_; is wq o ([x]x ® tr,_,) for wy € WM4 of maximal length, M
the corresponding standard Levi. It holds for both the even and odd orthogonal groups.

Remark 1.5. The representations [x], oc tr,_, and [x '], oc tr,_, have the same
components (also true for {[x]1,} oc 1 and {[x*]1,}  1).

2. Some Hecke algebra results

2.1. General theorems. The principal goal of this chapter is to provide certain facts
which will be needed later. In particular, most of the results in this paper will be based on the
Jacquet module techniques of Tadic. However, in order to get a thorough picture, some
additional information will be required for the odd orthogonal groups. For example, the
Jacquet module techniques do not answer the question of whether the representation
[x], oc 1 of SO5(F)is reducible when y = v 3. In this chapter, we give the results that will be
needed. They are summarized in Proposition 2.10. Throughout this chapter, we are really
only interested in the representation n = [x], oc 1 of G = SO, (F).

The extra information is obtained by Hecke algebra methods (cf. [Gus] or [Jan],
chapter 2). We start by briefly reviewing how these Hecke algebra methods may be used in the
study of degenerate principal series, then summarize the necessary theorems and definitions.
First, for our degenerate principal series representation 7, we construct an open compact
subgroup B, (which depends only on x,). To the representation (n, G, V), we can associate a
representatxon of the algebra H(G//B,) of compactly supported B,-biinvariant functions on
the finite-dimensional space V2% T his representation, denoted (n, H(G//B,), V3x), has the
property that the subquotients of (n, G, V) and those of (r, H(G//B. ») V"xs are in bijective
correspondence, the bijection being implemented by X = V' G-mvanant goes to XBx < VB«
H(G//B,)-invariant. Once this correspondence is established, we can do our analysis on the
Hecke algebra side, where the finite-dimensionality of the representation facilitates
computations. Here, we just summarize the pertinent definitions, theorems, etc. — they are
given in detail in [Jan], e.g.

Let P = G be a parabolic subgroup, with P = MU its Levi decomposition. Let y be a
character of M and set @ = ig,, x. The subgroup B, which we use may be described by its
Iwahori factorization with respect to P. In particular,

B, = Uy M, U,
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where Uy, = Un K, Uy = U™ n K,,, with h the smallest positive integer for which x|,,, is
trivial (with M, = M n K,) and M, = M, nkery. We normalize our measures so that
|B,| = Uy | =|M,| =|Uy| =1. It is a group.

We now describe the representation (x, H(G//B,), V?*). By definition, H(G//B,)
is the (convolution) algebra of compactly supported B,-biinvariant functions. V'® is the
space of B,-invariant elements of V; finite-dimensional since B, is open compact. The action
is given by

n(h)v = | h(g)n(g)vdg
28
for

he H(G//|B,), ve VP,

The following theorems, etc., are stated without proof. Proofs and references may be found
in section 2.1 of [Jan].

Proposition 2.1.  Any subquotient of (n, G, V') has a (nonzero) B,-fixed vector.

Lemma 2.2. Let V be a smooth finite length representation of G, B an open compact
subgroup of G. Suppose that every subquotient of V has a nonzero B-fixed vector. Then, every
subquotient of V is generated by its B-fixed vectors.

Theorem 2.3. The map W — W~ gives a bijective correspondence between subquo-
tients of (n, G, V) and subquotients of (n, H(G//B,), V®*).

2.2. Selected computations. The purpose of this section is to explicitly compute how
certain elements of the Hecke algebra act (on V2x). When coupled with the theorems from
the preceding section, we will be able tlo draw certain conclusions about 7 — such as the fact
that [x], oc 1 is irreducible for y = v2. We summarize these results in Proposition 2.10.

The operators we compute in this section are =n(s/) and n(sf,), where
oA, s, € H(G/|B,) are described below. We do these computations for both the unramified
case (y, = 1) and the case y, order 2. As the computations here parallel those given in the
second chapter of [Jan] for Sp, (F), we are content to outline the results.

The first step in this process is to determine a basis for ¥8x, The process of determining
a basis for VB« goes roughly as follows. First, using the Bruhat decomposition as a starting
point, we obtain a decomposition K = | J P,aB,, so that G= PK= | ) PaB, (S finite).

a€eS aeS
Thus, f € V8« is determined by its values on « € S. The natural first attempt at a basis would
then be {f,},.s, Where

o1/2 if g = pabe PaB,,
f;(g) —_ X(p) . X
0 if g¢ PaB,.
Although these need not always be well-defined (cf. chapter 2 of [Jan]), for the cases we do

here, that is not a problem — they turn out to be well-defined. We now determine such a
decomposition.
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First, let B denote the parahoric ¥~ (P(F,)) (cf. section 1.1). We start by giving the
following Bruhat decomposition:

2
K= ) Bw;B
i=0
where wy = I, w, = s5,, and w, = s, 5, 5,. Since G = PK, from this we can easily obtain

G= Pw;B.

al

1

In the unramified case, it is this decomposition which we use. In the ramified case, we modify
it slightly. In either case, one can show that the prospective basis of ¥2x described above is
actually a basis.

In the case where y is unramified, we have B, = B. The decomposition above gives rise
to the following basis for V5.

Lemma 2.4. A basis for V® consists of

6'2x(p) if g=pwbe Pw,B,

fi(g)={0 if g¢ Pw;B

fori=0,1,2.

For the next step, we compute «/,, where </, = ([B,())Bxl)‘1 chary ,p with

Also, let o,, = (|B,s, B,|)™* charg .5 (We write B, instead of B so that both of these
definitions may be applied to the case x, of order two as well). The sort of computations used
in [Gus] or chapter 2 of [Jan] give us the following, which we shall use in Proposition 2.10:

Lemma 2.5. With respect to the basis {f,, 1, f5},

q—s—l 0 0
1 _ L qq"'s—l + q"l qs+l
n(o,)) = mﬂ—ql)qsl 7+1 0

q"l(l — q—l)q—s—l (1 — q—l)q—s—l q—21q3+1
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Lemma 2.6. With respect to the basis {f,, f1, f,},

0 1 0
1 1 q
o) = 1 1—¢qy 4
n(,,) q+1q q+1( q7) e
0 q (1—g™

We now turn to the case where x, has order two. In this case, one can show

B=B ueB,
where ¢ € 4 and y(¢) = — 1. Then, it is easy to see that
2
G=J PwB,.
i=0

From this decomposition, we can obtain a basis for V3=,
Lemma 2.7. A basis for V5 consists of

82 x(p) ifg=l’wibEPWin

1o = {0 if 8¢ Pw,5B,

fori=0,1,2.

The following pair of operators serve the same role for the case 2 = 1 in Proposition
2.10 as their counterparts from the unramified case do.

Lemma 2.8. With respect to the basis { fy, f1, [}

qg ! 0 0
1 . ey qq“s—l + q—lqs+l
= — (1 - s — 0
n(st,) 7+1 1-97"4q x(—2) J+1
g (1—q g™t A—g™Mg 1 x(=2) ¢ ¢

Lemma 2.9. With respect to the basis {fy, f1, 2}

0 1

0
1 _ q

1—g YHYy(=2 =
qu thl( g ) x(=2) g

0 q! 1—g™MHx(-2)

() =

Proposition 2.10. Ify = vyl yth sgn, then m is irreducible. Also, if y =1, sgn, then n
can have at most two components.




72 Jantzen, Degenerate principal series

Proof. First, in the case where y = v*%, ytd sgn, we can check that n(/) and n(</,,)
have no common invariant subspace. This gives us the irreducibility of (n, H (G// B), V"xs,
hence the result we were after (by Theorem 2.3). Note that we could also obtain irreducibility
for other x’s, but we do not need them — they are covered by the results in chapter 4.

Similarly, when y =1, sgn, it is easy to check that the operators admit exactly two
proper invariant subspaces, one one-dimensional and the other two-dimensional, comple-
mentary to the first. Therefore, = can have at most two components at the Hecke algebra
level, hence at the group level, as needed.

3. The regular case

3.1. A general theorem on reducibility/irreducibility. In the first section of this
chapter, we recall some necessary and sufficient conditions for irreducibility of an induced
representation. In the second and third sections, we apply this to degenerate principal series
for orthogonal groups. Much of this section follows chapter 3 of [Jan], which is based on the
Jacquet module techniques of Tadi¢ [Tad3].

The general result we use in the second and third section is Theorem 3.1. To set this up,
let G denote a split connected reductive p-adic group, P = MU a parabolic subgroup of G,
and g an irreducible admissible representation of M. Set n = ig,,0. Next, let s, ..., s, be
the simple reflections in W. Let PB,;,, = AU,,;, denote the minimal parabolic, and set
P; = (Ppin» 50 = M, U,. For notational convenience, we let BZ, (1) denote the collection of
representations iyy, o w o T as T runs over the components of r,,,,0 and w runs over WMN,
These are the representations from Theorem 1.4, i.e., the composition factors of ryg ° i, 0 as
computed by Bernstein-Zelevinsky and Casselman.

We now proceed to set up Theorem 3.1, which serves as a starting point for the regular
case, giving necessary and sufficient conditions for reducibility of i;,,0. We require three
things of g. First, we want g irreducible. Second, we want r,,,(¢) # 0. Finally, we require a
regularity condition on g. Let y be a character in r,,,(¢). We require that y be regular with
respect to W (not just W,,). Note that if this is true for one character in r,,,(g), it will be true
for all of them. :

We now associate a graph to # as follows:
vertices: the vertices are the elements of r,;(n),

edges: two vertices y,, , are connected by an edge if there is some Levi N and some
T < ryg(m) such that the following hold:

1. 7 is an irreducible representation of N.

2. 9, Py Sy ().

This brings us to Theorem 3.1.
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Theorem 3.1. Under the conditions above, the following are equivalent:

1. m is irreducible,

2. the graph of © is connected,

3. 1€ BZ\, (n) = 1 is irreducible (for any i and ).

Proof. This is Theorem 3.1.2 of [Jan]. The proof is based on the Jacquet module
techniques of Tadi¢. Although we do not include the proof of this theorem, there is a
discussion in section 3.2 which describes what happens in the case of degenerate principal

series for SO,, ., (F). We also give the following corollary of the proof of the theorem.

Corollary 3.2. Under the same hypotheses, the number of components of m is less than or
equal to the number of components in the graph of =.

Remark 3.3. If one drops the hypothesis of regularity, the theorem no longer holds.
Counterexamples are discussed in Remarks 4.2 and 4.7.

3.2. Applications to degenerate principal series for SO,, , ,(F) in the regular case. In
this section, we apply Theorem 3.1 to the case of degenerate principal series for
G= SOZn+1(F)'

We start by checking when r,,,([x], ® tr,_,) is regular (so

M = GL (F) X SOy4-19+1(F))-

Lemma 3.4. Let

2 2 2

o _ [kl —k+2 k-t
2= ) 5 2 PP 3 .

k
S1={—n—}-l—c—i-l,—-n+lf+2,...,n———1},

Then, 1, ([x]x ® tr,_,) is nonregular precisely when
x € {vaeS}u{VylaesS,},
where w? =1 (i.e., p = 1 or sgn).
Proof. First, we observe that

ra (D01 ® tr, )
—k+1 k+3

=v 2 y@v 2 x®...®v’i§ix®v""“‘*%@...@v’”“%@...®v“%.

Note that if k = n, then all the terms have a . In general, the character y;, ® 1, ® ... ® ¥,
will be nonregular for SO,,,, (F) if either of the following conditions holds:
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i) x;=x; forsomei,jwithi%j
or
ii) ;= x;* for some i, j.

In our situation, these become
1) v‘kiﬂ“x = yrtktem forsome ,mwith0< ISk—-1,0Sm<n—k—-1,
2) (v =5t = yorHkEEEm o1 some ILmwith0<I<k—-1,0Em<n—k-1,

3) vty = (vTE*my) ! for some L,m with 0 < L, m <k —1.

Note that cases 1) and 2) do not occur when n = k. This is accounted for in the lemma by the
fact thatif n =%, S, = S,.

Finally, if we work these out, we see that i) and ii) together give nonregularity for
x € {v*|ae S,}. Case 3) contributes y € {v*pla e S,}.

At this point it is useful to give a concrete description of the action of W4 and the
Jacquet module of n, and then interpret the results in terms of Tadi¢’s approach.

Let G=50,,,;, M =GL,%x 80y, 1+, We now describe how W4 acts on
=11 R ... x ®y, ®... ® Y, If we WM4 we claim that the entries of wu are a
permutation of Xy, ..., Xss Xsi1s > Xk os Wi -+-s Wa—i (any £), subject to the following
constraints:

1. %45 ..., X, occur in that order,
2. x;4, ..., xs! appear in reverse order,
3. vy, ..., ¥, appear in that order.
Furthermore, the action of W4 on u gives every character satisfying the conditions above.

Next, suppose that
L ®LOYQ...e WMy,
e a—— .

t,t+1

By the description of W™“4u above, ... ® v, ® x; ® ...€ W4y as well, where x;, y, are
switched and everything else is the same. Then, 0= ... ® (3; X y) ® ...isin BZy,. If g is
irreducible, then the characters above share an edge and one can “commute” them. More
precisely, if n, is a component of n with ... ® ¥, ® y; ® ... = 1,67, then we get the
following implications:
- @UOY® ... ST,
U
e ®ULBY)® ... SyeTo
0
QYR ® ... SreT,-
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One can do the same thing for ;' x y;, and ;1 x x;- A similar argument works for y; oc 1:

R ST
|
@ (o 1) S iy g7
§

-1
SN TR Py P

In summary, assuming the irreducibility of the appropriate representation of GL, or SO;,
for a character in r,; 7, we can

1. commute adjacent x; and vy,
2. invert y; if it is at the end,

3. commute adjacent y; and y; ',
4. commute adjacent y; and x; ',

and the resulting character will still be in the same component of the graph of =, hence in the
Jacquet module of the same component of #. We comment that if all of the BZ,, are
irreducible, then it is possible to generate all of W4 4 by starting with u and successively
applying the commuting/inverting processes described above. This gives a connected graph
and irreducible representation, as in the theorem. If these representations are not all
irreducible, the resulting characters are still in 7,5 7, but do not need to come from the same
component of the graph of =.

We use this description to tell us when condition 3 of Theorem 3.1 is satisfied. Before
doing this, we pause to note the following:

Lemma 3.5. 1. The representation y, X x, of GL,(F) is reducible if and only if
-1 1
X1 =V 1y We have v=2x xvIy = [x]; + Stgr o (0)-

2. The representation y oc 1 of SO,(F) is reducible if and only if y* = vi'. We have

1 .
73 oc 1 = try + Stso3, and write v3 sgn oc 1 = L(v™2sgn) + Stge 3, (sgn) (thereby giving
the second component a name).

Proof. See [B-Z] for the first claim. The second follows from [Mul].

Lemma 3.6. All the B-Z composition factors of the Jacquet modules ry, ¢ (1), 1 < i < n,
are irreducible (i.e., condition 3 in Theorem 3.1 holds) except when y has one of the following

Sforms:
.k _ Lk _k
xE{V n+2’v n+2+1’.“,vn 2}
or

xre{viE yTENL vk

Exception: if k =1, then y* =1 does not actually give a reducible B-Z composition factor.
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Proof. By the preceding discussion, it is enough to check whether the following
representations are reducible or irreducible.

Q) Tty et for0<i<k—1,

.. —k+1,, mol

(i) (v7z TrpxvTmT2 for0</<k—1,0=mn—k—-1,
on kL +1

@) (v"2 T xv™2 for0<!I<k—1,0=m=n—-k-—1,

() 0 ) x ) for 0<m<k—1,1%m.
Note that (ii) and (iii) do not occur if k = n.
These are reducible at the following points:
(@) xpPe{vhvk*t2 v},
() ye{v™"t3,vrrE V),
| (iii) ye {v”%, v'%“, ey v"’%} ,
(v) yre{v r*t, vtz vk

except that (iv) does not occur if £ = 1, and if k = 2, is not reducible at y* = 1 (but that
is included in (i) anyway). Combining these gives the lemma.

Theorem 3.7. The only values of y for which n = [x], o tr,_, have r,([x]; ® tr,_;)
regular and w reducible are

—a+k Kk k _k
xe{v ""2, v Zsgn, v2sgn, v" 2}.

In each case, the representation has two components. The components are given below:
-n+k ;
(1) x=v~""2, In this case,

3 3 1
=L@y i®.. @ v i v
1 k 3 ' 3 3 1
+LO™TI@ VI Q.. QVT"TIQ S5, 0T @V TR .. @vZ v 7Z).
The former is just the trivial representation, and r,;tr, contains only
3 1
vyl ev il

The Jaquet module of the second contains all of the remaining components of rg ™.
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_k .
(@ x=v72sgn. Letwy =sgn. Then, if k < n/2, we have

= L(v"'*"*% ®..Q® yk-3 ® (v"‘*% X v"“%tp)
®..Q (v Ix v‘%tp)) + L(v'"“”% ®.0v*I® (k2 x vk Iy)

®..® (V—% x v“%w) ® V_% ® Sts0(3)(1P))-

They split up the Jacquet module of m as follows: if p < r,gm has v 71/) in it, then p is in the

Jacquet module of the first component. On the other hand, if u has v7w in it, then it is in the
Jacquet module of the second. The case k > n/2 is similar — here

= L(V_k+%lp ®“' ® v—n+k—%w ® (V—n+k+% X v-—n+k+%w) ® ® (v—% x v-—%w))
+ L(v"“%lp ®..Q v—n+k—%w ® (v—n+k+% % v—n+k+%w)
_3 _3 _1
® ... ® (" IXV2Y) @ v 2 ® Stge, (W)

The Jacquet module splits up the same way.

By Remark 1.5, the cases y = v"'%, v sgn have the same components as (1) and (2)
above.

Proof. Combine Lemmas 3.4 and 3.6 to see that these are exactly the reducibility
points (for the regular case).

We can use Jacquet module considerations to show that the representations given in
the statement of the theorem are components of n. For example, for 7 = [v™" +%]k oC tr, _y,
nis a subrepresentation of T = v EX L x v 3xv™3 oc 1. Since vt 3 ®..0v2IQ® v2
is regular, every character in r,; T appears exactly once. Now,

LO™i@v ™M@, . @v 3@y 2 and Lo 1@ v "I Q ... ®vI® St

are components of 7. Observe that the only copy of yrts ®..® v-3 ® vZin rye T lies
in rAGL(v"‘*% ®..® v-3 ® v‘%) and the only copy of yr+s ®..® v-3 ® vZ lies in
rAGL(v"'*% ®.0v:® Stso(3)). Since r,om contains both ViR @vIeVE
and v "*5 ®..® v-3 ® v%,we must have that = contains both L(v""“% ®..® v“% ® v'%)
and L2 ® .0 v iI® Stso3))- The case x = v*%sgn is similar.

Thus, it remains to argue that they are the only components. We concentrate on the
second (harder) case. By Corollary 3.2, it suffices to show that the graph of z has only two
components. The characterization of the Jacquet modules tells us how to characterize the

. 1
components: one has characters containing v’%tp; the other, thos;e with v2yp. Observe that
the only reducible BZ,,, which occur are of the form ... ® (v"2y oc 1). Then, given the

6 Journal fir Mathematik. Band 441
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description of the action of Jacquet modules preceding Lemma 3.5, it is not hard to see that
these components are connected. This finishes the second case. The first is easier since the
. o -tk -k_, kg -k -k -1
only reducible BZ,, is v ""2@® .. @v 27 @ (27 xv 2)@v 2" ®..®Vv2, so
only one edge is missing. Thus, the representation can have at most two components.

3.3. Applications to degenerate principal series for SO,, (F) (in the regular case). In
this section, we apply Theorem 3.1 to the case of degenerate principal series for
G = S0,,(F).

Again, we start by checking when 7,y (] ® tr,—) With k < n—2, 13, ([],), and
rac{0x1,)) are regular.

Lemma 3.8. Let

k+3 k+3 k+3
S1= —n+T— +—2—-+1 ———2—— .
o _[—k+l —k+2 k-1
2 2 ’ 2 3 ey 2 s
S —n+2 —n+3 n—2
B 2 72 o2 |

Case 1: k<n—1. r,([x] ® tr,_,) is nonregular precisely when
re{viae S} u{viylaesS,},
where v? = 1.

Case 2: k=n. ry([x],) is nonregular for ye{v*y|aeS}, where y*=1.
roq ([x],) has the same regularity points as r ({[x1.})-

Proof. First, we observe that

L1 ® tr,_y)
v EN @V T ®..®VIT @V Ry 2 e L @ v,
2t (D =V T 2@V T ® .. @V Ty ®@v T L

In general, the character y;, ® 1, ® ... ® x, will be nonregular for SO,,(F) if either of the
following conditions holds:

0 u=yx for some i, j with i # j,
i) x=ux" for some i # j,

or
i) 3, ="' x; =27 for some i+
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We remark that since the Weyl group inverts x;’s in pairs, there must actually be a pair of
statements in case iii). For k = n, case iii) contributes nothing. If k + n, then this case just
requires y; = x; ' since one can use x; = 1 for the other. The computations required to verify
the lemma are straightforward and are omitted.

Lemma 3.9. All the B-Z composition factors of the Jacquet modules ny (),
1 £ i £ n, are irreducible except when y has one of the following forms:

_ I_c_+_1_ _k+1 _ _ _
XG{V "+T v n+ +1 “',vn T} or XZE{V k+1’v k+2,‘“’vk 1}

with the exception that if k = 1, x = sgn does not occur and if k = 2, x* =1 does not occur.

Proof. Asin Lemma 3.6, it is enough to check whether the following representations
are reducible or irreducible.

G 5 ) xy el for 0<I<k-1,0=m<n—k—1,
(i) (2 ) xymtd for 0<I<k-1,0sm<n—k—1,

(i) 0"z E “x)X(v = m)l for 0ZIm<k—1,1+m.
Note that (i) and (ii) do not occur if k = n; (iii) does not occur if k = 1.

. . . . . TS S T | _k#1
Cases (i) and (ii) combine to give redu01b111tyfor xe{vrt oy Ly

The third gives reducibility for 2 € {v"***,v7¥*2 . v*71}. Observe thatif k = n, then this
contains the first set, so there is no problem with the lemma (even though (i) and (ii) do not
occur). Also, note that (iii) does not occur if k = 1, and if k = 2, is not reducible at x> = 1.

Theorem 3.10. 1. The representation [x], o« tr,_, with k <n—1 is reducible in the
regular case when y = v”"*k‘;‘l or v”_k‘%”l, and irreducible for all other regular y. For

X = v”"’“k_}l, we have
=L "M®.QvI®vI®I
YL ®.. @yl StcL(z)(V-HH%) RV IR vI®1).

The first of these is just the trivial representation, and its Jacquet module contains only the

character v "*' ® ... ® v_' ® 1. The Jacquet module of the second contains all the remaining
k+1
components of r,g . By Remark 1.5, the case y = v"~ Z has the same components.

2. The representation [x], oc 1 is reducible in the regular case when y = vEC3) or
yt('7h) sgn, and irreducible for all other regular x. If x = v - sgn, then, letting p = sgn

T=Le "My ®..0v 2@ v ip@p+ LMY ®.. Qv Y ® {Stouz)("_%‘l’)})
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If y= v‘%l, the result is the same, except with y replaced by 1. Again, the cases
n—1 n—
A=V ) sgn, v('2) have the same components as those above.

3.{[x],} oc 1 has the same regular reducibility points as [x], oc 1. If y = v

letting v = sgn

sgn, then,

t=L0v""p®.0v 2@ vy +LG "My ... 0v P ® StGL(Z)(v”%w)).

Again, if y = v”%i, the result is the same, except with y replaced by 1. Also, the cases

= v(%) sgn, (2 have the same components as those above.
Proof. Combining Lemmas 3.8 and 3.9 gives the claims about points of reducibility.

By Jacquet module considerations like those in Theorem 3.7, the representations given
in the statement of the theorem are components of . Thus, it remains to argue that they are
the only components. In each case, there is only one reducible BZ, , hence the graph has at
most two components.

4. Reducibility for the low-rank cases

4.1. The case of SO,. In this section, we analyze degenerate principal series for
SO, (F). We rely mainly on the Jacquet module techniques of Tadi¢, but also need the results
of chapter 2.

Let L ~ F* X SO3(F) © (Ppin> S,y and M = GL,(F) < (P, 5, be the Levi factors
of the standard maximal parabolic subgroups of G = SO, (F). Then, the subsets of W which
are used in Theorem 1.4 are

MA
WHMA = {1,5,,5,.5,,8,815,},

LA _
Wha ={1,5,,5,8,,5,8,8,}.

The Jacquet modules and graphs of y oc tr; and [x], oc 1 are given in Figures 1-2. Note
that the tables are set up to respect taking Jacquet modules in stages. For example, for a
representation under ry 7, the characters in r,; 7 obtained by applying r,,, to it are
connected to it by lines. Although, we have defined the graph only for the regular case, by
labeling vertices with elements of the Weyl group instead of characters in the Jacquet
module, the notion can be extended to the nonregular case (cf. section 4.1 of [Jan] for
details). The edges are “colored” according to which of r,; or r; gives rise to them. The
values of x listed in parentheses by an edge indicate the values of y for which that edge
disappears, i.e., for which the corresponding B-Z composition factor reduces.
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e g e

1
. x®v'Z — y®tr
vi®y

1
3 1
(x=v72,v2)
§1828, Sy
3 1 1 1
(X = VI& v_i) Lt (X = vi79 vii Sgn)
s;sl

Figure 1. Jacquet modules and graph of y o try in SOs(F)

MG Le g

[X]Z - v—%x®v%x
>v‘%x ® (v%x oc 1)
v iy @v iy

vZy l@ vy
v'%x’l ® (v"%x oc 1)
Dl = iyt @ iyt
1
L (r=v"Y, v 'sgn, 1, sgn)
5,818, 53
(x =1, sgn, v, vsgn) (x = vi%,vi%sgn)
5;32

Figure 2. Jacquet modules and graph for [x], oc 1 in SOs(F)
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We now give the main result of this section (in fact, the only one).

Theorem 4.1. 1.7 =[], o 1 is reducible if and only if y € {v*!, v¥'sgn, 1, sgn}. The
components are described below:

(a) x=1.
T = L(V-% ® Stso3) + L(V_% x V-%),

1 _1 1
g L(v 2 ® Stgpa) = v 2@ v2,

rAGL(v'% X v‘%) = 2(v‘% ® v'%) + v3 ® Vi,

(b) x =sgn. Lety = sgn. Then,

i 1 1
n = L1 ® Stsom @) + L dp x v iy),
- 1 1
e L(v %‘P ® Stsom(w» =V"2p @ v2yp,
ne L0ty xvip) =207ty @ v iy) +vip @ viy. '
© x=v"
3 _3 1
QGL(V_% ® Stso(3) = v=3 ® vi4vi ® v 342 ® v%,
QGL(V‘% ® v’%) =v3 ® V3.
_3 _1
Note that L(v"2 @ v™2) = tr,.
(d) xy=v lsgn. Again, letting p = sgn,
-% _3 _1
n=L(v 2y Q® StSO(3)(w)) +L(v2p @ v 2y),
_3 _3 1 1 3. 1 3
L™ 2p ® Stsoy (@) = v 2y @ vip +vip ®v 3p+vip @iy,
&GL("_%'P ®vip =vipeviy.

By Remark 1.5, the cases y = v, v sgn have the same components as (c) and (d), respectively.

2. =y oc tr, is reducible if and only if y € {v*%, vid yt3 sgn}. The components are
described below:

@ y=v1
= L(v‘% X v'%) + T,
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where T, is a tempered representation; a component of St 5, (1) oc 1, withr,g T, = vi ® v3.
We have described r,g L(v‘% X v‘%) in1.(a).
(b) x= v3 sgn. Lety = sgn. Then,
-1 -1 -1
n=L(2Q Stsom(‘P)) +L(v 2y xv72),
-1 11 1 -1
n6 L7 ® Stso () = vI@ vip +vip @ v,

TG LO Tpxv )= Vip@vI4vi@ vy,

.de

© x=v"
n=L0 2@ v2)+ L(Sterp,07Y),

re L(Stgroy (™)) = VIQvI+vi®vitvi@yt.
. _3 _1
Again, L(v"2 ® v72) = tr,.

1 1 3
Again, the cases y = v2, v2sgn, v2 have the same components as (a), (b), (c) above.

Proof. The regular case was done in the previous chapter (cf. Theorem 3.7), so we
need only consider the nonregular case. For [x], oc 1, nonregularity occurs for

XE {vi%, vt sgn, 1, sgn}; for y oc tr,, when y e {vi%, 1, sgn} (cf. Lemma 3.4).

@ Ddyoct, x= v"%, 73 sgn. In this case, Proposition 2.10 tells us that the
representation is irreducible (see Remark 4.2).

@) [x], c 1, x =1, sgn. We do the case x = 1 — the case y = sgn is similar.

First, we show that = is reducible. For y = 1, one of the missing edges corresponds

_— _1 1
to the reducibility of y-3 ® (v% oc 1). Let 7, and 7, be the components of v 3 ® (v2 oc ).
Then, g, = v3 ® v and el = v3 ® y=7 Set n; = i, 7;- Then, by Theorem 1.4,

-1 1 1 _1 1 1 1 1
LeTi =V 2@ V24 V2@V 24+Vv2Q v2+v2R V2
and

Nj=

_1 _1 _1 1 1 1 1 _
eMa=V 2@V 2+v 2@V 24+v 2@VZ+V2QvY

Now, if n = [1], oc 1 were irreducible, it would have to be a subquotient of n, or =, since
. 11 . .
together they contain all the components of v™2 X v2 oc 1 (which contains n as a sub-

. . . _1 1 .
representation). However, r,; 7 contains two copies of v~ 2 ® v2, and neither 7, m, norr, 7,
does, so this is not the case. Thus, = is reducible.

Next, we claim that  has two components. Although the graph of 7 suggests that there
might be three components, Proposition 2.10 shows that there are only two. We now must
identify the components and determine their Jacquet modules.
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To identify the components, consider v ixvicl. mis a subrepresentation of
v“% X v% oc 1 and = accounts for the two copies each of v“% ® v% and v'% ® v‘% which
occur in 7,4 (v"'li x v oc 1). Therefore, any component of v~% % v2 oc 1 which contains a
copy of either v3 ® v¥orv3 ® v=3 in its Jacquet module must be a component of =,
Thus, L(v“% X v‘%) and L(v‘% ® Stg0(3)) are the components of n. Since

QG(v'% oC Stso(s)) = v‘% ® v% + v% ® v“% + 2(v% ® v%),

1 1
the fact that 0 % r,, L(v72 ® St50(3) S 116 TN 16 (v 2 o€ Stgp(s)) tells us that we must
1 1 1
have 1, L(v™2 ® Stgp3)) = v 2 ® v2, and therefore,

QGL(V‘% X v‘%) =2 ® v + 2(v'% ® v“%).

_1 . _1 . .
(iiif) x oc tr;, x =v~2. First, observe that ®# = v™2 oc tr, is a subrepresentation of
1 1 . 1.1 .
v™2 X v™2 oc 1, which has the same components as v~ 2 X v2 oc 1. Therefore, it is clear from
. . 1. 1

the same Jacquet module considerations as above that L(v~2 X v~2) must be a component

. . . 1o 1
of n, and therefore that 7 is reducible. Since we know r,o7 and 7, L (v™2 X v™2), we can

1 1 .
conclude that the other component of = has Jacquet module vz ® v™2 (so there can, in fact be
only one other component). Now, observe that 7, (S?5,,,(1) oc 1)= 2(v2 ® v‘i) + 2(v2 ® v2)

and the components of Stg;,) (1) oc 1 are components of v™2 Xy -3 o . Therefore, by
Jacquet, module considerations, the other component of = must also be a component of
Stg12)(1) oc 1, hence tempered. We denote this representation as T;.

(iv) y ctr;, x=1,sgn. We take y =1; y =sgn is done similarly. We show
n =1 oc tr, is irreducible, essentially by using the irreducibility argument from the proof of
Theorem 3.1.

First, note that o, =2(1® v"%) + 2(v“% ® 1). Let n, be a subquotient of 7 such
that r,; 7, contains a copy of 1 ®v -3, Then, since 1 X v :12 = v Ix1is irreducible, ;7
must contain a copy of 1 X v -3, Thus, we also get

v

[

RISy (I xv” 7)<54M°’MGTC0 TG To-

Next, since 7,57, contains a copy of v‘%® 1, we get that r;m, must contain

1 ® (1 oc 1) (since 1 oc 1 is irreducible). Thus, since 7,; (v'% ® (1 oc 1)) £ 1,7y, We see
that 7,; m, will contain both copies of y3 ® 1. Finally, if r,; 7, contains both copies of
® 1, then r,; m, must contain both copies of 1 X v~2. Thus, we conclude that 7,; 7,

contains both copies of 1 ® v=1 as well. Since we now have reTo = Iig T, Ty cannot be a
proper subquotient. This tells us 7 must be irreducible. .




Jantzen, Degenerate principal series 85

Remark 4.2. [x], o1 for y = v=% is irreducible. However, one of the B-Z com-
position factors is v™! x 1, which is reducible. This shows that if one drops the regularity
hypothesis in Theorem 3.1, then (1) = (3) no longer holds. (A similar phenomenon occurs

in GL;(F) — cf. Lemma 4.4).

4.2. The case of SO,. In this section, we look at degenerate principal series for
SO, (F) using the techniques of the preceding section.

Let L > GL,(F) = {Pyn, Spy and M = GL,(F) < {P,,, 5, be the Levi factors of the
standard maximal parabolic subgroups of G = SO, (F). Then, the subsets of W which are
used in Theorem 1.4 are

WLA = {1, Sl}’ WMA = {1, Sz} .

We can use these and Theorem 1.4 to construct the composition factors of the Jacquet
modules for SO, (F). The results are summarized in Figures 3 and 4.

MG e e
_1 1
V 2y ®v2y D,
{v‘%x X v‘%x‘l} <
y iyt @ vyt x ',

Figure 3. Jacquet modules of [x], oc 1 in SO, (F)

M6 he e

{[X]Z} v—%x ® v’%x“l
1 -1
vV 2ZyXy fx
_1 -1 1 >
VYT ®vi2y

Figure 4. Jacquet modules of {[x], «c 1} in SO, (F)

{x'12}

Recall from Lemma 3.8 that nonregularity for [x], oc 1 and for {[x],} oc 1 occurs at
x = 1, sgn. At these points, the same sort of argument used in the preceding section tells us
that the representations are irreducible. The regular case is covered by Theorem 3.10.

Theorem 4.3. 1. [x], oc 1 is reducible if and only if xe{vi%,vi% sgn}. We have
_1 _ 21
[v72l, 1 =L ® 1) + L({Ste (v 2)}).

L' =v1®1,

’AGL({SIGL(Z)(V_%)}) =1Q@v.
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Similarly, letting v = sgn, [v‘%tp]2 xcl=L0vp@y)+ L({StGL(z)(v‘%w)}) .

neLO0'y @) =vyp®y,

1
16 L({Stery (V7 20)}) = p @ vp.
The cases y = v%, v sgn have the same components as those above by Remark 1.5.
2. {[x1,} oc 1 is reducible if and only if y € {vi%, ytd sgn}. We have

{[v"31,) o 1= L™ ® 1) + L(Stgpa(v ).
L@ =v1Q1,

-1 -
e L(Stor(v)) =1®@v7".

Similarly, letting v = sgn, {[v"3y],} oc 1= L™ p ® ) + L(S1g1)(v"79)).-
neL0v7 'y @) =v'yp @y,

~1 _
QGL(StGL(z)(V ) =yp Qv 'y.
1 1
Again, the cases y = v2,v2sgn have the same components as those above.

4.3. The case of SO,. First, let the Levi factors of the standard parabolics be denoted
as follows:
Le(Fn 52,830, Ly=M; c{Fyn,53,
M < (Byins 81,830, Ly = Ny Byin> 520,
N (Byins 515527, My = Ny =< B> 510

The Jacquet modules for degenerate principal series for SO, (F) are tabulated in the
appendix. For completeness, we list the subsets of the Weyl group used to compute r,; 7.

LA _
WE = {1,51,5,51,535,51,5,535,51, 515,535, 5.},

1,555,885, 85355, 5185355, 85,8385, 85,8;535,,
MA
W = S1S2S3S2,S3S2S1S3S2,81S281S3S2, N
838152815355, 5,53518,51535;

NA _
WA = {1,855, 85,83, 838,53, 515,53, 51538553, 8,5,535,53,5385,8;535,53} -

Lemma 4.4. The representation [x,]1, X x, of GL;(F) is reducible if and only if

A = v-3 x or v%x. Furthermore,

Dl xv i =20 @ v i@ vip +Z(Storpy (v D) @ vig).
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The first has one-dimensional Jacquet module consisting of v-3 1 ® v"%x ® v ¥ the second

1 1 3 1
has Jacquet module v 2y @ v2y @ v 2x+v 2y ® v‘%x ® V%X- The case x, = v%xl is
similar to the first.

Proof. The reducibility points follow from [Zel]. The decomposition in the reducible
cases follows easily from Jacquet module considerations.

Theorem 4.5. 1. @ = y oc tr, is reducible if and only if y € {vi%, vi%, vt3 sgn}. The

+5 41 1,
cases y = v*2,v*2sgn are regular, hence covered by Theorem 3.7. The case y = v~ 2 is

described below:
r=LO 3@ ixv i) +Le 30 T),

=

L3I0 ixv ) =vigvievitaviovievh+vieviei,
QGL(v‘% ®T)= v73 ® v2 ® vI 43 ® v-3 ® v'%,
where T, is described in Theorem 4.1.2 (a). By Remark 1.5, the case y = vE has the same
components as the case y = v~ 3.
2. n=[x], oc tr, is reducible if and only if ye {v*? vi' v*!sgn, sgn}. The cases
x = vE2, v sgn are regular, hence covered by the results of Theorem 3.7. For the nonregular

cases, the components are described below:

(a) x =sgn. Let v =sgn. Then

1= L((r"3 X v"Tp) ® Stosy ) + L~ I x v Ipx v 2y),
TG L(("_% x V_%W) ® Stso) (W) = VI @VIp @V IFvIp® Vi@ v%w
+VI®VIp @ vip,

ne L0 1 iyxy iy =207ty @ vipev 20ty evieviy
F207E@ v Ip @ viIp) v Iip @ vip @ v i
+ v"%w ® v’% ® v%w + v’% ® V—%tp ® v%q).

(b) x=v1

n= L(v_% ® (V_% x V‘%)) + L(StGL(z)(V_l) ® Sts0(3))
+ L(V-% ®T)+ L(StGL(S)(v-%:)) )
116 L(Stgr(v™Y) ® Stsos) = yigvievivievievitvieiiel,
rAGL(SzGL(a)(v-%)) —vi@vi@viivievie vivieviev,
and QGL(V‘% ® (v‘% X v‘%)) and ;(GL(V‘% ® T,) as in part 1.

Again, the case y = v has the same components as (b) above.
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3. n = [x]; «c 1 is reducible if and only if y € {v*%, vi%sgn, vi%, ytd sgn}. The cases
= vi%, vt3 sgn are regular, hence covered by Theorem 3.7. For the nonregular cases, the
components are described below:

@ x=v1.

3 1 _3 1. L -
A=L("2® v I® Stsee)+L(v2® (v Ixy 2)) + L(Stgr) (v ™) ® Stsoe)) s
IAGL(V—% ® v3 ® Stso3y) = v3 ® v3 ® v%,
-1 1 3 L 1 1 3 1 1 3
'AGL(StGL(z)(V )®Stso(3))=v ZQV2IQVZ4Hv 2@ V2ZQV 24HYV 2Q V2R V2
. _3 1. _1 .
with 1, L(v™"2 ® (v™2 xv™2)) as in part 1.

(b) x= v‘%sgn. Let y = sgn. Then,

n = L(V_%lp ®Vvip® Stsoe () + L(V‘%'P ® (v Ipx v'%w))
+ L(SIGL(z)(V_l Y) ® Stsos, ),

_3 _1 _3 21 1
AGL(" 2p v 71P®Sts0(3)(ll’))=v 2y @ v 2y @ vay,

.l

neL(ip ® (" IpxvIY) =207y ® v Iy ® v Iy)
-+ VIp® v Ip® vy
+ v‘%w ® v’%w ® v%w,
116 L(Ster0) (7' 9) ® Stsa) (W) = V—%w ® v‘%w ® V%‘P
+v I @ Vi ®v Ty
+ v‘%w ® v%lp ® v%w.

101
Again, the cases y = v2,v2 sgn have the same components as (a) and (b), respectively.

Proof. The regular case was done in the preceding chapter, so we only need to
consider the nonregular case. By Lemma 3.4, for y oc tr,, nonregularity occurs for

X€E {v*%, v*%, 1, sgn}. For [], oc tr;, nonregularity occurs for y e {v*!, yE3, vt sgn, 1, sgn}.
Finally, for [y], oc 1, there is nonregularity when y € {v*!, v¥!sgn, vi%, ytd sgn, 1, sgn}.

. 1 - _1 . c
First note that v=2 oc tr,, [v7'], oc 1, and [v™2]; oc 1 all have their semisimplifica-

tions contained in that of t=v"3 xv 3 xv I o Also, r,t consists of 24 distinct
characters, each occurring with multiplicity two. We use this implicitly in (i)—(iii) below.

@) xoctr,x= 3. First, an argument like that used for [x], oc 1in SO4(F) can be
used to see that nis reducible: [v~!], x vi= 6, + 0, is a reducible B-Z composition factor. If
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n were irreducible, it would have to be a component of either igy o, or iy 6,. However, since
16T ¥ 1cigyoy and rgm £ 1,6 igy 05, this cannot be the case (cf. Theorem 1.4).

Next, one of the B-Z composition factors for = is
y32 ® (v“% oc try) = v3 ® L(v’% X v'%) + v3 ®T;.
Let m, be the component of © such that y=3 ® L(v‘% X v‘%) S rygm,. Then,
e 220 3@ v i@ v +v i@ v il

. . . _3 _1 -1
Therefore since r,gm, contains both copies of v 2@ v 2 ® v'2, we must have

3
v 2><[v 11, £ ryem, and consequently must also have v 'f® 2Qv “7< L™y
Clearly, since

vigvievisy, re L(v™ i@ ixy z))

3 1 1 . .
we must have n, = L(v™2 ® (v~ 2 x v~2)). That r,; n, contains nothing else follows from
the next paragraph.

Let 7, denote the other component of = (there is only one other, and this will become

. 3.1
obvious). Now, (v72 X v2) ® tr; < rye 7, (or else n; = m). Thus,

-3 1 -1 1 -3 -1
LgM, =V 2@VvVZ2@ VvV 2+12Q@ Vv 2Q v 2.

We claim 7, = L(v’% ® T;). Observe that =3 x Sterp(1) 1= v3 o T, + v3 o T,
also has its semisimplification contained in 7. We recall that r,; T, has one component, so
¢ T, must have three (by Bruhat theory, there are only two components of St 5, (1) oc 1).

Both coples of v=3 ® v2 ®v ~Zarein (™ 3 x Stgry o 1), one in each of 1, (v72 oc Ty),
(™ 3o T,) - 1n fact, they must be m neL(v” 3 ® Tl) and o L(v™ 3 ® T,). Now, =,
cannot be L(v~ 3 ® T,) since r,g L(v™ 3 Q@T))=r, (v 3 ® T,) has at least three compo-
nents. Therefore, 7, = L(v‘% ® T).

@) [x]; c 1, y =v~2. First, by Jacquet module considerations, it is clear that
L(v“% ® (v"iF X v“%)) must be a component of m. Also, there are two copies of
_3 1 1., . _3 _1 _1 .
VI®vZ®vZinrgt, onein L(v' 2 ® (v™2 x v~2)), the other in

3 1
gLV 2@ v 2Q® Stso()-
. . 3 1
Since r,; # has both copies, L(v"2 ® v_2 ® St503,) must also be a component of .

Next observe that L(v™ 3 Rv -3 ® Sts0(3)) is the unique irreducible subrepresentation
of v3xv 3o Stso(s)» hence a subrepresentation of [v™'], oc Stgo(3). None of the three
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components of 7, 7 still unaccounted for can be in 7,5 ([v™'], & Stgy3,), hence cannot be
. - 1
inrgL(v 3 ® v72 ® Stso(3y)- Therefore, we have
-3 -1 _3 -1 1
e LO07Z@ Vv 2Q® Stg3) =v 2@V 2R V2,
and there must be at least one more component of x.

One reducible B-Z composition factor for r ;7 is

vI® v 1]yl = Vi@ tr, + vI®LGI® Stso(3)-

.. -1 -3
Observe that the remaining components of r,; 7 are exactly 7, (v "2 ® L(v™2 ® Stp3)).
Thus, there is only one more component, m,, and r,;m; contains the remaining
three components of r,,n. By Frobenius reciprocity, m; is a subrepresentation of

- _3 _1 _3
v L(v"2 @ Stgp(s)), hence of v™2 X v72 oc Stgp5). Now,

1 3
- -3 - -1 -1
VT2IX VT2 oC Stgo3y = Stgray (V) o Stgomy + [V, o€ Stgos)-

A comparison of Jacquet modules forces my to be in Stg,)(v™!) oc Stgps,. Since,

r;,GL(StGL(z)(v'l) ® S‘som) contains the only copy of V3 ® y=3 ® v in

LG (Stcz.(z)("_l) oc Stsom) >

we see that ny = L(SIGL(z) o He® Stsms))-

@iii) [x], oc tr,, x =v~!. First, Jacquet module considerations tell us that
L(v‘% ® (v‘% X v‘%)) is a component of 7. The same argument as in (i) tells us that one of
L(v"2® T)) is also a component of n, and again, it must be L(v‘% ® T)).

The remaining components of n contribute

(v‘%@ v"%@ v%-{»v"% ® v%@ v‘%+v"%® v%@ v%)
+(v%® v‘%® v‘%+v%® v‘%® v%+v%\® v%® v'%).

By cons1dermg v ® L(Stg(v™"), a component of the reducible B-Z composition
factor v ® W~ 3« tr,), we see that the last three come from the same component. Similarly,
v 7 ® L(v~ %® Stso3), a component of the reducible B-Z composition factor

v-1 ® ([v™'], oc 1), tells us that the first three come from the same component. Therefore,
there are at most two more components of 7.

It is not difficult to show that there are two more components. Consider
yEixvixyict= (1], < (v"% oc 1) + Stgp (1) o (v© 4o 1), which has the same com-

ponents as t. It is easy to check that 7,6 ([1], oc (v~2 o 1)) and 16 (Stgray (1) oc (v- )
are disjoint and
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ovitevievitvievieviivievievd <. re([11, 0c (v™ gocl))

VIV I®VI+VI@vI®VI+VI®VI®vI) S 1g(Stere () oc (v 3 1)).

Thus, there are two more components, with Jacquet modules as above. Let n; denote the
first, 7, the second.

The same sort of argument as in (i) shows that 7y = L(St5.;,(v7") ® Stso))-
Next, observe that

1 - _1 _ 1
V2X St 007 = St (v 2) + E(StGL(Z)(v H®v2).

By Frobenius reciprocity, since r on, = v ® L(StGL(Z)(v 1), n, is a component of

1
vI X StGL(Z)(v"’) oc 1, therefore of either Stgy)(v72) oc 1 or L (Story0H® v2) oc 1.
A comparison of Jacquet modules shows that =, is not a component of the latter hence

must be a component of Stgra(v™ ‘f)ocl Since the copy of v2®v 7®v 3 in
16 (Stera (™ %) oc 1) lies in 1 L(Storsy(v™ 7)), we see that my = L(Stgra (™ ).

(1v) [)(:I2 oc try, ¥ =sgn. Let p = sgn. Note that n is a subrepresentation of

1
T'=v th X vftp Xv 2ocl and that rg(v” 71p X v21p X V73 o 1) contains 24 dlstmct
characters, each occurring with multiplicity 2.

Observe that L((v“% X v‘iw) ® Stgo3(®)) is a component of 7' and has
v ‘2’ ®v ’th ® V71p in its Jacquet module. Smce rnem contains both copies of
3 ®v 21p ® vzw, we must have that L((v 5 Y le) ® Stso(s)(lp)) is a component of .
A similar argument tells us that L(v™ 21p XV Exy élp) is also a component of 7.

1 1 1
Next, we note that we must have [p], X v 2 S ryg L(v 2Xv 2p) @ Stso(3)(lp)).
Therefore, we can conclude that

1 1 _1 _1 1
e L((7ZxvIp) @ Stsom(‘P)) 2V 2IRv 2y ®v2y

DN

+vip@vigvip iy @iy @ v
Similarly, we observe that v'%tp X V73 x v”%tp < rNGL(v‘%tp X v73 X v‘%tp), and therefore
_1 _1 _1 _1 _1 1 1 _1 _1
e L 2y xv Ixv Ip) 220072y @ v 2y @ v ) +2(v 2y @ v 2R v 2y)
+207 i@ v iy @ vIy).
. 1 1 1 _1 _1 1 _1 1 _1
This leaves v 2@ v 2p @ vZy + v 2p @ v 2@ vZy+v 2p® vZy ® v~ 2 unac-

counted for. The same argument as above shows that they come from the same component of
n. Now, the B-Z composition factor

v 3@ ([y], 1) = v 3 ® L3y ® Steop @) +v72 ® L Ty x v 1y).
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By Jacquet module considerations, we see that
VE@L( Ry xvTIy) Sng LRy xvix v ly),

1 1 1 1 1 1 ..
therefore v 2@ v 2y @ vy S L(v 2y X v 2Xx v 2y). Therefore, the remaining
. _1 1 _1
characters are in 1, L(v 2y X v"2 X v 2y).

(v) [x]; < try, x =1. In this case, we need to show irreducibility. First, note that

re® = 3(v‘% QL Ixv D) +20 2@ T)+v I@ LI ® Stsoe)) -

|o-

Now suppose m, is a component of =© such that v -3 ® v“7® v 2 Zr,6m,- Then,

v Ex Iy 2<rNGno and thlS 1mp11es 6(v” 2®v 7®v 7)< I, Mo. From this, we
1

can deduce that 3(v™2 ® L(v™"2 X v"2)) < r,q7,, hence 3(v™2 ® v™2 ® v3) < 1,4 7,. This

1 . )
forces 2([1], X v72) < ryg Mo, which is enough to tell us that ryg my = ryg m. Thus, 7, cannot
be a proper subquotient of .

(vi) Remaining cases. There is one remaining case where there is reducibility,
1 . . . .
namely [x]; oc 1 for y = v¥2 sgn. This case is essentially the same as (ii).

The remaining cases are y = vi%, 1,sgn for y oc tr,, x = vi%, vts sgn for [x], o try,
and y = v, v¥lsgn, 1, sgn for [x]; oc 1. All of these give rise to irreducible representa-
tions. We do not go into detail on these — the arguments are similar to that used in case (v)
above (or those for the SO (5) results).

4.4. The case of SO;. Let the parabolic subgroups be denoted as in the preceding
section (based on which of the simple reflections are used in generating them). We now give
the subsets of the Weyl group which serve as a starting point. The Jacquet modules are listed
in the appendix.

LA _

W4 ={1,5,,5,51, 5351, 85,5351, 515,535}
MA _

WMA ={1,5,,5,5,,535.5,},

NA _
WA = {1, 53,5,53,5,5.83}.

We start with a lemma giving certain reducibility results for SO, (F) which will be
needed in Theorem 4.8.

Lemma 4.6. In SO,, the following hold:
1. The representation 1 x 1 oc 1 is irreducible.

2. Let yp = sgn denote an order 2 character. The representation p x 1 oc 1 is the direct
sum of two inequivalent tempered representations, which we denote T, and T,. For i = 1 2,
wehaver T;=p®@1+1Q y.
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3. The representation v x 1 oc 1 reduces as follows:
- - ~1 _
vixicl=L(v'®1)+ L(StGL(Z)(V 7)) + L({StGL(Z)(v %)}) + Sts0a) -

Each of the components has a one-dimensional Jacquet module. In order, they are v'' @ 1,

1®v L, 1®v, andv ® 1.

Proof. The fact that (1) is irreducible and (2) has two inequivalent components
follows from the R-group results of [Keys]. The Jacquet module claims for (2) are
straightforward. Next, observe that

yix1ocl = [v72], 01 + Stgp (V"2 o
and

v Ux1ocl = {[v"2],} oc 1 + {Stgp ) (v 2)} oc 1.

Then, it is easy to show from Jacquet module considerations and the reducibility results in
Theorem 4.3 that there are four components, and to identify those that occur in Theorem 4.3.
The fact that the fourth component is the Steinberg representation follows from [Cas1].

Remark 4.7. It is worth pointing out that the B-Z composition factors for y x 1 oc 1
are all irreducible, yet the representation itself is reducible. This provides a counterexample
to (3) = (1) in Theorem 3.1 if one drops the regularity hypothesis.

Theorem 4.8. Degenerate principal series for SOg(F) have the following reducibility:

1.7 = x oc tr, is reducible if and only if y € {vt?,v*!, sgn}. The case y = v*? is regular,
hence covered by Theorem 3.10.

(@ x=v"

=L xvH@1)+ L0 ® Stsow)
e L1 xvH®1) =20071@vI@N+vI@1I@vI+vI®1I®y,
e L™ ® Stsoe) = VI @V @1+y @ v ®1.

(b) y =sgn. Let yp=sgn. Then,
n=L0v'@T)+L('®T,)
where T, and T, are described in Lemma 4.6.
L@ =p@VvIRI+v ' @y®1+v'I®1IQ®Y
fori=1,2.
By Remark 1.5, the case y = v has the same components as (a) above.

2. {[x15} oc 1 is reducible if and only if y € {v*', v*' sgn}. Both cases are regular, hence
covered by Theorem 3.10.

7 Journal fiir Mathematik. Band 439
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3. [x15 oc 1 is reducible if and only if y € {v*', v*! sgn}. Both cases are regular, hence
covered by Theorem 3.10.

Proof. Again, the regular case was done in the preceding chapter, so here we are only
concerned with the nonregular case. For y oc tr,, nonregularity occurs for y € {v*!, 1, sgn}.

"For {[x]3} o« 1, nonregularity occurs for y € {v*%, vt} sgn, 1, sgn}. [x]; oc 1 has the same
nonregularity points as {[x],} oc 1.

First, we note that the nonregular cases for {[x],} oc 1 and [x]; oc 1 all correspond to
points of irreducibility. The arguments used to show irreducibility are the same basic
irreducibility arguments that have appeared throughout — one shows that all the elements of
r ™ lie in the Jacquet module for the same component of n by using components of
intermediate Jacquet modules to connect them. Thus, we are reduced to the following cases.

(i) x oc tr, for y =1. Again, this is the same basic irreducibility argument that has
been used throughout this paper. However, it should be pointed out that Lemma 4.6 (1) is
required in order to make this argument work.

(ii) y oc tr, for y =sgn. Let y =sgn. First, observe that the irreducibility of

1 . . .
p X [v72], < ryen implies that there are at most two components of n. Furthermore, if
T = 7y + 7,, then

eTi=v@vI®I+v'IiI®uRI+vIiRI®y
for i=1,2. Now, observe that by Lemma 4.6 (2), wx1ocl1=T+7T, with
nei=y®1+1Q®y, for i=1,2. There are two copies of v '@p®1 in

rg( ' xypx1al) - onein r, L(v"' ® T,), the other in r,, L(v"' ® T3). Since 67
contains both copies of v! @ p ® 1, weget n = L(v'® T,) + L(v"! ® T,), as needed.

(iii) y ctr, for x=v7'. First, the irreducibility of v7!x [v'il’ij2 < rye T,

1
{vIx[v72],} Sryem and (v'1xv) ® 1 S ry,e7 and the usual Jacquet module argu-
ments show that n has at most two components, and further, that if = = n, + 7, we
must have

e =201@vI@D++vIRI®vI+vI®I®v,

e =v3®@vR1+v@vi®I1.
Now, since there are only two copies of v '@ v ®1 in r,s(v ! xv ' x10c1) and =,
contains both, we must have n, = L((v"* x v™!) ® 1). Note that this representation is just
[1]; oc 1, which has Jacquet module exactly that of =, above (and so 7 is reducible).

Finally, we identify n,. Observe that by Lemma 4.4,
DL xv=20"1@1® )+ L (! ® Stg ().

Now, rygm, = Z(v1 ® StGm)(v%)). Therefore, by Frobenius reciprocity, 7, must be a
subrepresentation of £(v'® StGL(z,(v%)) oc 1, hence of v7!x StGL(z,(v%) oc 1. Now,
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1 -
since Stgp) (v2) oc 1 = Stgo + L(Stgra (v %)), we see that 7, must be a component of

vt o Stgoy Or v oc L(Stgy ;) (v™2)). By Jacquet module considerations, it must be the
former. Since the only copy of v™! ® v @ 1 in 1,6 (v o Stgp4)) isin L(v™! ® Stg), the
fact that v"! ® v ® 1 S 7, forces m, = L(v™' @ Stgoq).

Appendix

Below, we give the B-Z/Casselman composition factors for degenerate principal series
for SO, (F).

T =) o tr,.

nem=1@vi®vitvieyevitvievie;y
+vigvigyieviertievitiievigvt,
23 3 3 1
net=X®v 2@t +v IR 1@t +v 2@ v 2@ (x x1)
+v’%®x“®trl+x“1®v‘%®trl,
1 _3 _1 _3 i
Net=XQ@ D7 L+v IR (Xv2)+v 2@ (M 2xy ™)
+X_1®[V—1]2a
= -3 -1 -1 -1 -1
et =Q@>Xv 2)@v 2+ ', @1+ "', ®1x
+o Ix @V,
3 -
et =@t +v 2@ (x o tr) +x 1 ® tr,,

et =XV )@ty + v, @ e )+ Ixy ) @ 1y,

e =X, + v x 7t

n = [x], oc tr;.
Lem = V'll‘x ® v%x ®vitvize® vi® v%x
vioviyeviy+viy@vieviyt
+vi ® v"%x ® v‘%x“ + v‘%x ® v‘%x‘l ® v-3
+vig v‘%x‘l ® v’%x + v‘%x'1 ® v“%x Qv-1
+vI® v‘%)("1 ® v%x“ + v‘%x“ ®vi® V-%X
+virtevieviytviieviyievt




96 Jantzen, Degenerate principal series

n.eh= v‘éx ® v%x ® tr, + v‘%x ® v3 ® (v%x oc 1)
+vig v"i’x ® (v%x oc 1)+ v‘%x ®viyi® tr,
vt @v iy +vieviyie v izal)
+ v"%x"‘ Qv i (v‘%x ) +v it @vi® tr,,

Rt =V I @ 0y h+vie il +v i@ o i x v iy
+vER (i v iy )+t @ v iy xvh)
VIR L +v i @ (R x vy,
et =0, ® v i+ iy @ viy+ iy h @ v iy
+ 0 x v i) @ v I+ i xv iy @ vy
T Ex v i) @i+ [, ® v,
-1 % _1 -1 _1
ret=v2y@W2xoctr) +v 2@ ([xloc N+v7 2" @ (v Zx oc try),

net =Dl @t + (0 Iy H @iy N+ Iy e
+(v'% X v_%x_l) ® (V_%X )+, ®tr,

rve™ = [x], % vi + v"%x x v% x v'%)(_1 + v72 [x 1.

n=[x]3cl.
gT=v 'y @x@vi+v 1y @x@v Iy +v Iy ®@v Iy '®y
Fv @ v @ v I T v @
+ v—lx—l ® v—'lx ® x—l + v—lx—l ® X—l ® v—lx
+ v—lx—l ® X—l ® vx—l’
et =v i@ @) +v Iy @ vy @ (roc)
Fv TRV D+ I ®xTI® (I ),

M =v'21Q® D +v @ Gxviy ) +v iy @ v iy,
+y it @il +v it @ iy x ) + vy @ i,

Ty6T = D, @+l i, @ v iyt + 0oy ) @
FO v ) @+ i, @ v+ i, @ vt

nem =y ® (i, c D +v Iy @ (v igd, « 1),
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o= D1, ® e D+ x v @ (r e 1)
i
+v Iy, @ r ),

_1 -1 - _ -1 _ _
et =D+ D72, xv iy v i x v I L, + [ s

Next, we give the B-Z/Casselman composition factors for degenerate principal series
for SO (F).

T =) oC tr,.
et=x®v'I®1+v'!I@r®@1+v'®1® ™
+vIRI@r+vI@x Q1+ @ v I,

rem=1® (v I} +vi® (X 1} +vi® {1x g7
+27 @ {[v 11},

et =1® [V IL+v 1@ @x1)+vi® (tx1)
+r @ v,

net =@ xv ) @1+ 1, @y + v, ®x
+ I x gy Het,

net =A@t +v '@ (x1oc )+ @ try,
1 1 _
e ={xx v 21} +{[v 2], x x '},
_1 1 i
e =x XD 2, +[v 2], xx .
m = {[x]; < 1}.

et =v 7A@ x®v iy +vrev Iy @x+vI T @ v I ®x
+y e e v

R = v ® {Ivigl) +v i @ (I L v e <Y,
Rt = v ® X v+ @ il + v @ il
Mo = Vg1, @ vl + i x v iy ) @ g+ v i, @ vy,
rem=vr® (i} ) +v7 1y @ O El; < 1),
mwem = {[xs} + (v x 3105},

1 I -
e =22, v x  + x5
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n=[x]cl.
et=v @@ v+ v @ v Iy '@yt +v iy @viy® ™!
+v Iyt @ @ vy,

=V ® (x v vy @ (v i) v it ® (v,
et =v i @Dl +v i@ i L +v it @ 6y x 7Y,
Mo =D, ® v+ 0 x vy ) @ 1+ v iy, @ vy,

nem =vx® (vixl, c D+ vyt @ (v i} ),

rea™ = (Vi X v R} + (I s)

rve® =[x +v7 g x [V—%X_ljz-
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