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Discrete Series for p-adic SO(2n) and
Restrictions of Representations of O(2n)

Chris Jantzen

Abstract. In this paper we give a classification of discrete series for SO(2n, F), F p-adic, similar to

that of Mœglin–Tadić for the other classical groups. This is obtained by taking the Mœglin–Tadić

classification for O(2n, F) and studying how the representations restrict to SO(2n, F). We then extend

this to an analysis of how admissible representations of O(2n, F) restrict.

1 Introduction

In [M-T] (also, cf. [Mœ2]), Mœglin and Tadić construct the discrete series for a num-

ber of families of classical groups. However, they only address discrete series for the

split classical group SO(2n, F), not the split ones. The basic reason for this is that the

Weyl groups are different: the groups considered by Mœglin and Tadić all have Weyl

groups of the form W ∼= { permutations and sign changes on n letters }, whereas the

Weyl group for SO(2n, F) requires the number of sign changes to be even. This in-

troduces a number of complications, which we take a moment to discuss.

The complications go beyond simple changes in the combinatorics. For example,

one datum that appears in the admissible triples used by Mœglin and Tadić in the

classification of discrete series is the partial cuspidal support of an irreducible rep-

resentation. For SO(2n, F), there is not a corresponding notion of partial cuspidal

support (or more precisely, the corresponding partial cuspidal support can consist

of more than one representation; see Example 8.1). At a subtler level, for the groups

they consider, the Jordρ (where Jordρ = {(ρ ′, a) ∈ Jord | ρ ′ ∼= ρ}) for different

ρ are essentially independent of each other (cf. [M-T, Section 14.5] for a more de-

tailed discussion). From the standpoint of [J1,J4], this has its roots in the observation

(cf. [G1, G2]) that if ρ1, . . . , ρk are irreducible unitary supercuspidal representations

of general linear groups and σ is an irreducible supercuspidal representation of an

appropriate classical group, then Ind ((ρ1 ⊗ · · · ⊗ ρ1) ⊗ · · · ⊗ (ρk ⊗ · · · ⊗ ρk) ⊗ σ)
has 2m components, where m = |{i | Ind(ρi ⊗ σ) is reducible }|. For SO(2n, F), the

situation is different (cf. [G1]), e.g., one can have Ind(ρ1 ⊗ ρ2 ⊗ σ0) reducible even if

both Ind(ρ1 ⊗ σ0) and Ind(ρ2 ⊗ σ0) are irreducible. At a more practical level, the µ∗

structure of [T2], which figures prominently in the paper, did not have an SO(2n, F)

counterpart (though note the subsequent development of such in [J5]).

This leaves two obvious strategies for the classification of discrete series for the

groups SO(2n, F). One approach is to emulate the work of Mœglin and Tadić,

making the requisite changes along the way. Another approach is to start with the
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Mœglin-Tadić classification of discrete series for the groups O(2n, F) and study re-

strictions to SO(2n, F). By a lemma of [G-K] (essentially Mackey theory, see Lemma

2.3 below), this is equivalent to studying when ĉπ ∼= π, where ĉ denotes the character

of O(2n, F) that is 1 on SO(2n, F) and −1 on O(2n, F) \ SO(2n, F). We adopt the lat-

ter approach. Note that this requires retaining the Basic Assumption (BA) of [M-T],

which we do (though the former approach would certainly require something like

this as well). Owing to its somewhat technical nature, we forgo a discussion of their

Basic Assumption until Section 3, by which point the necessary background will have

been introduced.

We use the results of [J4] (in particular, the extension of [J1] to O(2n, F)) to

simplify matters. In particular, this reduces the problem of studying restrictions

of general irreducible representations to studying restrictions for irreducible rep-

resentations in R((ρ, α); σ), i.e., with supercuspidal support on sets of the form

{νxρ, ν−xρ̃}x∈α+Z ∪ {σ}. More precisely, an irreducible π in R((ρ, α); σ) ap-

pears as a subquotient of some parabolically induced representation of the form

IndG
P (ρ1 ⊗ · · · ⊗ ρk ⊗ σ) with each ρi ∈ {νxρ, ν−xρ̃}x∈α+Z (see Section 2 for more).

Here, ρ is an irreducible unitary supercuspidal representation of a general linear

group, ν = |det| on a general linear group, σ is an irreducible supercuspidal repre-

sentation of an even orthogonal group, and 0 ≤ α < 1 (if ρ̃ ∼= ρ, we take 0 ≤ α ≤ 1
2
).

Now, let π ∈ R((ρ, α); σ) be an irreducible representation. By the Langlands

classification (see Section 2), we may write π = L(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ τ ), with

τi an irreducible tempered representation of GL(mi , F), τ an irreducible tempered

representation of O(2m, F), and x1 < · · · < xk < 0. Then ĉπ ∼= L(νx1τ1 ⊗ · · · ⊗
νxkτk ⊗ ĉτ ) (see Lemma 2.4). In particular, ĉπ ∼= π if and only if either ĉτ ∼= τ
or τ = 1 (the trivial representation of O(0, F), the trivial group). To address the

question of when ĉτ ∼= τ , observe that by a result of Harish-Chandra (extended to

O(2n, F) in the appendix), τ →֒ Ind(δ1 ⊗ · · · ⊗ δℓ ⊗ δ), where δi is a discrete series

representation of GL(ri , F) and δ is a discrete series representation of O(2r, F). Note

that since the inducing representation is unique up to conjugation, (the equivalence

class of) δ is uniquely determined by τ . In particular, if ĉδ 6∼= δ, then ĉτ 6∼= τ .

However, it is possible to have ĉδ ∼= δ but still have ĉτ 6∼= τ . To better understand this,

as well as motivating the definition of (1.1) below, we consider what is happening at

the SO(2n, F) level. Suppose ĉδ ∼= δ. We then have cδ0 6∼= δ0, where δ0 is a component

of ResO
SO δ, the restriction of δ to SO(2r, F). Now, let τ0 be a component of ResO

SO τ .

Then

τ0 →֒ Ind(δ1 ⊗ · · · ⊗ δℓ ⊗ δ0),

where δ0 is the appropriate component of ResO
SO δ. As long as ρ 6∼= ρ̃ or ρ is a

representation of GL(d, F) with d even, the result of Harish-Chandra tells us δ0 is

uniquely determined by τ . (If these fail, one can have δ1 ⊗ · · · ⊗ δℓ ⊗ δ0 conjugate

to δ1 ⊗ · · · ⊗ δℓ ⊗ cδ0 in SO(2n, F), so δ0 need not be uniquely determined.) Under

these conditions, we then have cτ0
∼= τ0 implies cδ0

∼= δ0, which translates to ĉτ 6∼= τ
implies ĉδ 6∼= δ via the lemma of [G-K]. We remark that this discussion also indicates

why we need to allow the possibility of more than one representation in the partial

cuspidal support for SO(2n, F).

The analysis breaks into three cases. The simplest case is when ĉσ 6∼= σ. In this
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case, supercuspidal support considerations tell us an irreducible representation in

R((ρ, α); σ) restricts irreducibly (cf. Theorem 4.1). The second case is when ĉσ ∼= σ
or σ = 1 and the following condition fails:

(1.1) ρ ∼= ρ̃ and ρ is a representation of GL(m, F) with m odd.

In this case, we use an approach from [J1] to show that an irreducible representation

in R((ρ, α); σ) restricts reducibly (cf. Theorem 5.3). Note that in both of these cases,

the results follow from general arguments and apply to discrete series; the Mœglin–

Tadić classification is not used.

The third case is when ĉσ ∼= σ or σ = 1, and (1.1) holds. In this case, we show that

a nonsupercuspidal discrete series representation in R((ρ, α); σ) restricts irreducibly

(cf. Theorem 6.5). We note that in this case, one must have α = 0 to support dis-

crete series. In this case, the Mœglin–Tadić classification is central to the argument.

We then use this along with the fact that non-discrete series irreducible tempered

representations embed in induced discrete series to study restrictions of irreducible

tempered representations in R((ρ, α); σ). We note that in this case only α = 0 and

α =
1
2

support tempered representations. When α = 0, they restrict irreducibly;

when α =
1
2
, they restrict reducibly (cf. Proposition 7.2). Finally, we use the Lang-

lands classification to address the question for irreducible admissible representations.

In this case, the restriction is irreducible unless α = 0 and certain other conditions

on the Langlands data are satisfied (cf. Proposition 7.3).

We take a moment to remark on the conditions arising in the third case (ĉσ ∼= σ
or σ = 1 and (1.1) holding). Let σ0 be an irreducible representation that occurs in

the restriction ResO
SO σ (with σ0 = 1–the trivial representation of the trivial group

SO(0, F)–if σ = 1). Then the parabolically induced representations Ind(νxρ ⊗ σ0)

and Ind(νxρ ⊗ σ) of SO(2n, F), O(2n, F), resp., are reducible for the same values of

x ∈ R except when the conditions for the third case are satisfied. When that happens,

Ind(ρ⊗σ0) is irreducible, but Ind(ρ⊗σ) reduces. It is essentially this difference that

makes the third case subtler.

To unify the conditions ĉσ ∼= σ and σ = 1, we formally define ĉ1 = 1 for the

trivial representation of O(0, F). Thus the three cases above become ĉσ 6∼= σ, ĉσ ∼= σ
with (1.1) failing, and ĉσ ∼= σ with (1.1) holding. In the same spirit, we also use

1 ⊗ e and 1 ⊗ c (e and c denoting the usual representatives for O(2n, F)/SO(2n, F);

see Section 2) for the trivial representation of SO(0, F), with different interpretations

for parabolic induction (see Definition 2.1). These conventions simplify a number of

statements in the paper.

It is not a difficult matter to combine the results about restrictions of representa-

tions in R((ρ, α); σ) to obtain results about restriction of general discrete series; we

do this in Section 8. We note that we actually obtain a bit more for discrete series: we

can define an action of ĉ on the admissible triples that corresponds to the action of ĉ

on the corresponding discrete series.

We briefly describe the contents section by section. The next section reviews no-

tation and background results. We also introduce the afore-mentioned convention

to allow σ = 1 and σ0 = 1 to be dealt with on an equal footing with other rep-

resentations. In the third section, we discuss the construction of Mœglin–Tadić as
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well as a variation (of part of the construction) given in [T5, T6] (with some lem-

mas for later application to SO(2n, F)). Section 4 studies restrictions to SO(2n, F)

of irreducible representations in R((ρ, α); σ) for the case where ĉσ 6∼= σ; Section 5

when ĉσ ∼= σ with (1.1) not holding. The more difficult case when ĉσ ∼= σ and (1.1)

holds is covered by Sections 6 and 7, with Section 6 addressing discrete series only

and Section 7 building on the results of Section 6 to address irreducible tempered

representations and irreducible admissible representations in general. In Section 8,

we begin to put the pieces together. Theorem 8.4 is the main result on the restriction

of discrete series, indicating when discrete series for O(2n, F) reduce upon restriction

to SO(2n, F) in terms of their Mœglin–Tadić data. Building up from discrete series,

in Section 9 we give corresponding results for the restriction of irreducible tempered

representations and irreducible admissible representations. In Sections 10 and 11, we

reformulate the results of Section 8 so that the definitions and statements are made

without reference to objects for O(2n, F). In Section 10, we define admissible triples

for SO(2n, F); in Section 11, we characterize the bijective correspondence between

admissible triples and discrete series. We close with an appendix, which extends a

result of Harish-Chandra for connected groups to O(2n, F). In particular, it shows

that if an irreducible tempered representation τ has τ →֒ Ind(δ1) and τ →֒ Ind(δ2)

with δ1, δ2 discrete series of standard parabolic subgroups (cf. Section 2 for what we

mean by standard parabolic subgroups for O(2n, F)), then δ1 and δ2 (and the corre-

sponding Levi factors) are conjugate.

2 Notation and Preliminaries

Let F be a p-adic field with charF = 0. We make use of results from [G2] (both

directly and indirectly) in this paper, hence need this assumption.

In parts of this paper, we work in the Grothendieck group (i.e., with semisimpli-

fied representations) rather than with the actual composition series. To make the

distinction, if π1, π2 are smooth finite-length representations, we write π1 = π2

if π1 and π2 have the same irreducible subquotients with same multiplicities. We

write π1
∼= π2 if π1 and π2 are actually equivalent. We write π = π1 + · · · + πk if

m(ρ, π) = m(ρ, π1) + · · · + m(ρ, πk) for every irreducible ρ, where m(ρ, π) denotes

the multiplicity of ρ in π. Similarly, we write π ≥ π0 if m(ρ, π) ≥ m(ρ, π0) for every

such ρ.

We use the notation of [B-Z] in parts of this paper. If P = MU is a standard

parabolic subgroup of G, then we let iG,M and rM,G denote the normalized induction

and normalized Jacquet functors (or their semisimplifications), resp. We use IndO
SO

(resp., ResO
SO) for induction (resp., restriction) of representations from SO(2n, F) to

O(2n, F) (resp., O(2n, F) to SO(2n, F)).

The special orthogonal group SO(2n, F), n ≥ 1, is the group

SO(2n, F) = {X ∈ SL(2n, F) | τ XX = I2n} .

Here τ X denotes the matrix of X transposed with respect to the second diagonal. For

n = 1, we get

SO(2, F) =

{(
λ 0

0 λ−1

) ∣
∣
∣λ ∈ F×

}

∼= F×.
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SO(0, F) is defined to be the trivial group. The orthogonal group O(2n, F), n ≥ 1, is

the group

O(2n, F) =
{

X ∈ GL(2n, F) | τ XX = I2n

}
.

We have O(2n, F) = SO(2n, F) ⋊ C, where C is the group C = {1, c} with

c =







In−1

0 1

1 0

In−1







∈ O(2n, F),

which acts on SO(2n, F) by conjugation. We take O(0, F) to be the trivial group.

We now describe the standard parabolic subgroups of SO(2n, F). First, fix the

minimal parabolic subgroup P∅ ⊂ SO(2n, F) consisting of all upper triangular ma-

trices in SO(2n, F). Let Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en}
denote the simple roots for SO(2n, F). For a simple root α, let sα denote the corre-

sponding simple reflection. The standard parabolic subgroups have the form PΦ =

〈P∅, sα〉α∈Φ, where Φ is a subset of Π. If P = MU is a standard parabolic sub-

group of SO(2n, F), then M = GL(m1, F) × · · · × GL(mk, F) × SO(2m, F) with

m1 + · · · + mk + m = n. More precisely, if αn−1, αn 6∈ Φ, then m = 0 and mk = 1; if

exactly one of αn−1, αn is in Φ, then m = 0 and mk > 1; and if αn−1, αn ∈ Φ, then

m > 0 and mk > 1. Note that cαi = αi for i < n − 1 and cαn−1 = αn. In par-

ticular, if Φ contains exactly one of αn−1, αn, then PΦ and PcΦ = c(PΦ) are standard

parabolic subgroups that are conjugate in O(2n, F).

For O(2n, F), we use the standard parabolic subgroups used in [M-T, J4, B1], etc.,

(though this definition is not completely standard). In particular, fix the minimal

parabolic subgroup P∅ ⊂ O(2n, F) consisting of all upper triangular matrices in

O(2n, F). Let S = {sα1
, . . . , sαn−1

, c}. The standard parabolic subgroups have the

form PΦ = 〈P∅, s〉s∈Φ, where Φ is a subset of S. If P = MU is a standard parabolic

subgroup of O(2n, F), then M = GL(m1, F) × · · · × GL(mk, F) × O(2m, F) with

m1 + · · · + mk + m = n.

Suppose that ρ1, . . . , ρk are representations of GL(m1, F), . . . , GL(mk, F) and σ is

a representation of O(2m, F). Let G = O(2n, F), where n = m1 + · · · + mk + m. Let

M = GL(m1, F) × · · · × GL(mk, F) × O(2m, F) be a standard Levi subgroup of G.

Following [B-Z, T1], set

ρ1 × · · · × ρk ⋊ σ = iG,M(ρ1 ⊗ · · · ⊗ ρk ⊗ σ).

For G = SO(2n, F), suppose that ρ1, . . . , ρk are representations of

GL(m1, F), . . . , GL(mk, F)

and σ0 is a representation of SO(2m, F), with m > 0. Let G = SO(2n, F), where

n = m1 + · · · + mk + m. Again, we write

ρ1 × · · · × ρk ⋊ σ0 = iG,M(ρ1 ⊗ · · · ⊗ ρk ⊗ σ0).
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To allow the trivial representations of O(0, F), SO(0, F) to be dealt with on an

equal footing with representations of O(2n, F), SO(2n, F) for n > 0, rather than re-

quiring special cases throughout the paper, we introduce a few conventions here. In

terms of the actions of c, ĉ, we would like to have the trivial representation of O(0, F)

be fixed under the action of ĉ while the trivial representation of SO(0, F) is changed

by the action of c. Thus, for the trivial representation of O(0, F), we take ĉ1 = 1. For

the trivial representation of SO(0, F), we introduce the following convention.

Definition 2.1 We let both 1 ⊗ e and 1 ⊗ c denote the trivial representation of

SO(0, F), but with different interpretations when used with parabolic induction. In

particular, suppose P = MU is a standard parabolic subgroup with αn 6∈ Φ. Then

M = GL(m1, F) × · · · × GL(mk, F). For representations τ1, . . . , τk of

GL(m1, F), . . . , GL(mk, F),

we let τ1⊗· · ·⊗τk⊗(1⊗e) denote a representation of M, while τ1⊗· · ·⊗τk⊗(1⊗c)

denotes a representation of c(M) (the Levi factor of the standard parabolic subgroup

c(P)). Thus, we write

τ1 × · · · × τk ⋊ (1 ⊗ e) = iG,M(τ1 × · · · × τk),

and

τ1 × · · · × τk ⋊ (1 ⊗ c) = c(iG,M(τ1 × · · · × τk)),

noting that by Lemma 2.4, the latter is equivalent to iG,c(M)(τ ⊗ · · · ⊗ τk). We remark

that if αn−1, αn 6∈ Φ, then M and c(M) are the same, hence so are τ1×· · ·×τk⋊(1⊗e)

and τ1 × · · · × τk ⋊ (1 ⊗ c). In terms of the action of c, we take c(1 ⊗ e) = 1 ⊗ c and

c(1 ⊗ c) = 1 ⊗ e.

These are interpreted in the obvious way with respect to IndO
SO and ResO

SO.

We note that while this simplifies matters in what follows, it has the consequence

that rather than having only the trivial representation of SO(0, F) in the discrete se-

ries, we have both 1 ⊗ e and 1 ⊗ c.

We now discuss some structure theory from [Z, T2, B1]. First, let

R =
⊕

n≥0

R(GL(n, F)) and R[O] =
⊕

n≥0

R(O(2n, F)),

where R(G) denotes the Grothendieck group of the category of smooth finite-length

representations of G. We define multiplication on R as follows: suppose ρ1, ρ2

are representations of GL(n1, F), GL(n2, F), resp. We have that M = GL(n1, F) ×
GL(n2, F) is the Levi factor of a standard parabolic subgroup of G = GL(n, F), where

n = n1 + n2, and set τ1 × τ2 = iG,M(τ1 ⊗ τ2). This extends (after semisimpli-

fication) to give the multiplication × : R × R −→ R. To describe the comulti-

plication on R, let M(i) denote the standard Levi factor for G = GL(n, F) having

M(i) = GL(i, F) × GL(n − i, F). For a representation τ of GL(n, F), we define

m∗(τ ) =

n∑

i=0

rM(i),Gτ ,
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the sum of semisimplified Jacquet modules (lying in R ⊗ R). This extends to a map

m∗ : R → R ⊗ R. We note that with this multiplication and comultiplication (and

antipode map given by the Zelevinsky involution, a special case of the general du-

ality operator of [Aub, S-S]), R is a Hopf algebra. Similarly, if one extends ⋊ from

above to a map ⋊ : R ⊗ R[O] → R[O], we have R[O] as a module over R. Now, let

M(i) = GL(i, F) ⊗ O(2(n − i), F), a standard Levi factor for G = O(2n, F). For a

representation π of O(2n, F), we define

µ∗(π) =

n∑

i=0

rM(i),Gπ,

the sum of semisimplified Jacquet modules (lying in R ⊗ R[O]). This extends to a

map µ∗ : R[O] → R ⊗ R[O]. This gives R[O] the structure of an M∗-module over R

(cf. [B1, T2]):

Theorem 2.2 Define M∗ : R → R ⊗ R by

M∗
= (m ⊗ 1) ◦ (̃ ⊗ m∗) ◦ s ◦ m∗,

where m denotes the multiplication × : R⊗R → R, ˜denotes contragredient, and s : R⊗
R → R⊗R the extension of the map defined on representations by s : τ1 ⊗τ2 7→ τ2 ⊗τ1.

Then

µ∗(τ ⋊ π) = M∗(τ ) ⋊ µ∗(π),

where ⋊ on the right-hand side is determined by (τ1⊗τ2)⋊(τ⊗θ) = (τ1×τ )⊗(τ2⋊θ).

As in [B-Z], we set ν = |det| for general linear groups. Let ρ be an irreducible rep-

resentation of GL(n, F). We say that ρ is essentially square-integrable (resp., essen-

tially tempered) if there exists e(ρ) ∈ R such that ν−e(ρ)ρ is square-integrable (resp.,

tempered). If ρ is an irreducible unitary supercuspidal representation of GL(m, F),

then νaρ×νa−1ρ×· · ·×νbρ has a unique irreducible subrepresentation (resp., unique

irreducible quotient), which we denote δ([νaρ, νbρ]) (resp., ζ([νaρ, νbρ])). The rep-

resentation δ([νaρ, νbρ]) is essentially square-integrable, and every irreducible essen-

tially square-integrable representation of a general linear group has this form. Note

that δ([νaρ, νbρ]) and ζ([νaρ, νbρ]) are dual under the duality operator of [Aub, S-

S].

We now discuss the Langlands classification (subrepresentation version) and the

Casselman criterion, first for O(2n, F), then SO(2n, F). We refer the reader to the

appendix of [B-J2] and [M-T, Section 16] for a discussion of how the explicit de-

scriptions below arise from the more general results in [S1, B-W, K, B-J1, C]. We

note that SO(2, F) ∼= F× and O(2, F) ∼= F× ⋊ C . Unitary characters of F× then

correspond to irreducible representations of SO(2, F) that are square-integrable (in

fact, compactly supported) mod center, hence may be viewed as discrete series (or

even supercuspidal). Similar considerations apply to the following representations of

O(2, F): the trivial representation, ĉ, and Ind
O(2,F)
SO(2,F)χ with χ a nontrivial unitary char-

acter of F× ∼= SO(2, F). We note that Mœglin and Tadı́c [M-T] do not allow such an
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interpretation in their construction. (In general, if ρ is an irreducible unitary super-

cuspidal representation of GL(r, F) and σ an irreducible supercuspidal representation

of O(2m, F), then the components of ρ⋊σ are only tempered, not square-integrable.

Treating these representations of O(2, F) as non-square-integrable thus allows them

to fit this general pattern.) We follow this convention throughout this paper.

We begin with the Langlands classification for O(2n, F). Let τ1, . . . , τk be irre-

ducible tempered representations of GL(m1, F), . . . , GL(mk, F), resp., and τ an ir-

reducible tempered representation of O(2m, F) (possibly m = 0 and τ = 1). If

x1 < · · · < xk < 0, then the induced representation νx1τ1 × · · · × νxkτk ⋊ τ has a

unique irreducible subrepresentation, which we denote L(νx1τ1⊗· · ·⊗νxkτk⊗τ ). Fur-

ther, every irreducible admissible representation of O(2n, F) may be written uniquely

in this form. The Langlands classification for SO(2n, F) is similar: let τ1, . . . , τk be

irreducible tempered representations of GL(m1, F), . . . , GL(mk, F), resp., and τ0 an

irreducible tempered representation of SO(2m, F) (possibly m = 0 and τ0 = 1⊗ e or

1⊗c). If x1 < · · · < xk < 0, then the induced representation νx1τ1×· · ·×νxkτk⋊τ has

a unique irreducible subrepresentation, which we denote L(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ τ ).

Further, every irreducible admissible representation of SO(2n, F) may be written

uniquely in (exactly) one of these forms.

We now discuss the Casselman criterion for O(2n, F), n > 1. Suppose π is an

irreducible representation of O(2n, F). Suppose νx1ρ1 ⊗· · ·⊗ νxkρk ⊗σ ≤ rM,Gπ has

ρi an irreducible unitary supercuspidal representation of GL(mi , F) for i = 1, . . . , k,

σ an irreducible supercuspidal representation of O(2m, F), and x1, . . . , xk ∈ R. The

Casselman criterion tells us that if π is tempered, the following hold:

m1x1 ≥ 0

m1x1 + m2x2 ≥ 0
...

m1x1 + m2x2 + · · · + mkxk ≥ 0.

Conversely, if these inequalities hold for any such νx1ρ1 ⊗ · · · ⊗ ρk ⊗ σ (i.e., ρi an ir-

reducible unitary supercuspidal representation of GL(mi , F) and σ an irreducible su-

percuspidal representation of O(2m, F)) appearing in a Jacquet module of π, then π is

tempered. The criterion for square-integrability is the same except that the inequal-

ities are strict. To describe the Casselman criterion for SO(2n, F), n > 1, suppose π0

is an irreducible representation of SO(2n, F). Suppose νx1ρ1 ⊗ · · · ⊗ νxkρk ⊗ σ0 ≤
rM,Gπ0 has ρi an irreducible unitary supercuspidal representation of GL(mi , F) for

i = 1, . . . , k and σ0 an irreducible supercuspidal representation of SO(2m, F) (also

requiring that σ0 be unitary if m = 1; it is automatically unitarizable otherwise). The

Casselman criterion tells us that if π is tempered, the following hold:

m1x1 ≥ 0

m1x1 + m2x2 ≥ 0
...

m1x1 + m2x2 + · · · + mkxk ≥ 0.
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Conversely, if these inequalities hold for all such νx1ρ1 ⊗ · · · ⊗ νxkρk ⊗ σ0 ≤ rM,Gπ0,

then π0 is tempered. The criterion for square-integrability is the same except that the

inequalities are strict.

The duality operator of [Aub,S-S] may be extended to the (non-connected) group

G = O(2n, F), n ≥ 1 (cf. [J4]). We define the duality operator DO by

DO =

∑

Φ⊂S

(−1)|Φ|iG,MΦ
◦ rMΦ,G.

Up to sign, DO sends irreducible representations to irreducible representations. The

duality operator for O(2n, F) has the same basic properties as for connected groups

(compare [J4, Theorem 6.1] with [Aub, Théorème 1.7]). Further, we have

DSO ◦ ResO
SO = ResO

SO ◦DO and DO ◦ IndO
SO = IndO

SO ◦DSO,

where DSO denotes the duality operator for SO(2n, F) (cf. [J4, Proposition 6.3]).

Recall that we let ĉ : O(2n, F) → {±1} denote the nontrivial character of O(2n, F),

n > 0. The following is an immediate consequence of the results in [G-K, Section 2]

(basically Mackey theory).

Lemma 2.3 Suppose π, π0 are irreducible representations of O(2n, F), SO(2n, F),

resp., with n > 0 and π0 ≤ ResO
SO π. Then exactly one of the following holds:

(i) ĉπ ∼= π, in which case cπ0 6∼= π0 and we have

IndO
SO π0

∼= IndO
SO cπ0

∼= π and ResO
SO π ∼= π0 ⊕ cπ0.

(ii) ĉπ 6∼= π, in which case cπ0
∼= π0 and we have

IndO
SO π0

∼= π ⊕ ĉπ and ResO
SO π ∼= ResO

SO ĉπ ∼= π0.

We now summarize some basic properties of the actions of c, ĉ.

Lemma 2.4 (i) If M (resp., M0) is a standard Levi factor for G = O(2n, F) (resp.,

G0 = SO(2n, F)) with n > 1 and θ (resp., θ0) an admissible representation of M

(resp., M0), we have

iG,M ĉθ ∼= ĉ ◦ iG,Mθ and iG0,c(M0)cθ0
∼= c ◦ iG0,M0

θ0.

In particular,

ĉ(λ1 × · · · × λk ⋊ λ) ∼= λ1 × · · · × λk ⋊ ĉλ,

and

c(λ1 × · · · × λk ⋊ λ0) ∼= λ1 × · · · × λk ⋊ cλ0.

(ii) If M (resp., M0) is a standard Levi factor for G = O(2n, F) (resp., G0 = SO(2n, F))

with n > 1 and π (resp., π0) an admissible representation of G (resp., G0), we have

rM,Gĉπ ∼= ĉ ◦ rM,Gπ and rc(M0),G0
cπ0

∼= c ◦ rM0,G0
π.
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(iii) The duality operators DO and DSO satisfy

c ◦ DSO = DSO ◦ c and ĉ ◦ DO = DO ◦ ĉ.

(iv)

ĉL(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ τ ) = L(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ ĉτ )

and

cL(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ τ0) = L(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ cτ0).

Proof The only one of these claims that is not already in the literature is the first part

of (iii), which we check:

DSO ◦ c(π0) =

∑

I⊂Π

(−1)|I|iG,MI
◦ rMI ,G(cπ0)

=

∑

I⊂Π

(−1)|I|c ◦ iG,Mc(I)
◦ rMc(I),G(π0)

by (i) and (ii) (noting c−1
= c). Since c(Π) = Π, as I runs through the subsets of Π,

so does c(I). It then follows that

DSO ◦ c(π0) = c ◦
∑

I⊂Π

(−1)|I|iG,MI
◦ rMI ,G(π0) = c ◦ DSO(π0),

as needed.

As for the remaining results, (i) follows from [B-Z, Proposition 1.9(f)] and [B2,

Corollary 4.1]. [J5, Lemma 3.2] gives (ii). The second part of (iii) is [J4, Corol-

lary 6.4]. For (iv), see [B-J1, Proposition 4.5] and [B-J2, Lemma 4.6], which prove

the same result for a slightly different form of the Langlands classification; the same

considerations apply here.

We now discuss cuspidal reducibility for orthogonal groups and special orthogo-

nal groups. Let ρ be an irreducible unitary supercuspidal representation of GL(m, F)

and σ0 an irreducible supercuspidal representation of SO(2r, F). If ρ⊗σ0 6∼= ρ̃⊗cmσ0,

then νxρ⋊σ0 is irreducible for all x ∈ R; if ρ⊗σ0
∼= ρ̃⊗cmσ0, there is a unique x ≥ 0

such that νxρ ⋊ σ0 is reducible. We call this value of x the cuspidal reducibility point

for (ρ, σ) and, in a variation on the notation in [Mœ1], denote it by red(ρ; σ0) (if

νx ⋊ σ0 is irreducible for all x ∈ R, we write red(ρ; σ0) = ∞). The uniqueness of x is

a consequence of the results in [S2]; the Basic Assumption of [M-T] (which we also

assume) implies that x ∈ 1
2

Z. Characterizations of the particular value of x where

reducibility occurs (assuming certain conjectures) are given in [Mœ1] and [Zh]; for

the case of ρ ⊗ σ0 generic, see [Sh1, Sh2]. A corresponding result may be deduced

for the (non-connected) orthogonal groups (cf. [B-J2, Corollary 4.4]): let σ be an

irreducible supercuspidal representation of O(2r, F) (allowing r = 0 and σ = 1). If

ρ 6∼= ρ̃, then νxρ ⋊ σ is irreducible for all x ∈ R; if ρ ∼= ρ̃, there is a unique x ≥ 0

such that νxρ ⋊ σ is reducible. Again, we denote this value of x by red(ρ; σ). The

proposition below (cf. [B-J2, Theorem 4.3]) relates the cuspidal reducibility points

for orthogonal and special orthogonal groups.
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Proposition 2.5 Suppose σ0, σ are irreducible supercuspidal representations of

SO(2r, F), O(2r, F), resp., with σ0 ≤ ResO
SO σ. Suppose ρ is an irreducible unitary su-

percuspidal representation of GL(m, F). Then red(ρ; σ) = red(ρ; σ0) (possibly infinite)

unless the following hold: (i) ρ ∼= ρ̃ with m odd, and (ii) σ0 6∼= cσ0. In this case,

red(ρ; σ0) = ∞, but red(ρ; σ) = 0.

Note that condition (ii) is equivalent to σ ∼= ĉσ (including σ = 1); condition (i)

is just (1.1).

Our analysis of discrete series uses the results of [J4, Section 7] (which extends

the correspondence of [J1] to orthogonal groups). We take a moment to recall this

correspondence, as well as discuss how it behaves under the action of ĉ.

Let ρ be an irreducible unitary supercuspidal representation of GL(n, F), α ∈ R.

Set

S(ρ, α) = {νβρ, ν−β ρ̃}β∈α+Z.

If ρ ∼= ρ̃, we may take 0 ≤ α ≤ 1
2
; otherwise 0 ≤ α < 1. Suppose ρ1, ρ2, . . . , ρm are

irreducible, unitary, supercuspidal representations of GL(n1, F), . . . , GL(nm, F), and

α1, α2, . . . , αm ∈ R, with 0 ≤ αi ≤
1
2

if ρi
∼= ρ̃i , 0 ≤ αi < 1 if not. Further, assume

that S(ρ1, α1), . . . , S(ρm, αm) are disjoint. We let R((ρ1, α1), . . . , (ρm, αm)) denote

the Hopf subalgebra of R generated by representations with supercuspidal support in

S(ρ1, α1)∪S(ρ2, α2)∪· · ·∪S(ρm, αm). We note that every irreducible representation

of O(2n, F) has supercuspidal support on a set of the form S(ρ1, α1) ∪ S(ρ2, α2) ∪
· · ·∪S(ρm, αm)∪{σ}, where σ is an irreducible supercuspidal representation of some

O(2r, F). Let R((ρ1, α1), . . . , (ρm, αm); σ) ⊂ R[O] be generated by representations

with supercuspidal support in S(ρ1, α1) ∪ S(ρ2, α2) ∪ · · · ∪ S(ρm, αm) ∪ {σ}, an

M∗-module over R((ρ1, α1), . . . , (ρm, αm)).

Note that R((ρ, α); σ) contains the supercuspidal representation σ; it supports

non-supercuspidal discrete series if and only if α ≡ red(ρ; σ) mod1 (requiring

red(ρ; σ) < ∞, so ρ ∼= ρ̃–cf. [T4, Theorem 6.2] and [J2, Proposition 4.3.1]). It fol-

lows that R((ρ, α); σ) supports non-supercuspidal tempered representations if and

only if α = 0 or 1
2
.

We now recall some results from [J1, J4]. Suppose

π ∈ R
(

(ρ1, α1), (ρ2, α2), . . . , (ρm, αm); σ
)

is an irreducible representation. Then there exist irreducible representations τ1, τ2,
. . . , τm−1 of GL(k1, F), GL(k2, F), . . . , GL(km−1, F), and an irreducible representa-

tion θm of O(2km + r, F) such that

(i) π →֒ τ1 × τ2 × · · · × τm−1 ⋊ θm

(ii) τi ∈ R(ρi , αi) and θm ∈ R((ρm, αm); σ).

Further, θm is unique. Similarly, one could single out (ρ1, α1), . . . , (ρm−1, αm−1),

resp., to produce θ1, . . . , θm−1, resp., in R((ρ1, α1); σ), . . . , R((ρm−1, αm−1); σ), resp.

Write ψ(ρi ,αi )(π) = θi .

Definition 2.6 For a representation π ∈ R((ρ1, α1), (ρ2, α2), . . . , (ρm, αm); σ), let

µ∗
(ρ1,α1),...,(ρk,αk)(π) denote the sum of every τ ⊗ θ ∈ µ∗(π) such that

τ ∈ R
(

(ρ1, α1), . . . , (ρk, αk)
)

and θ ∈ R
(

(ρk+1, αk+1), . . . , (ρm, αm); σ
)
.
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Similarly, for a representation

λ ∈ R
(

(ρ1, α1), (ρ2, α2), . . . , (ρm, αm)
)
,

let M∗
(ρ1,α1),...,(ρk,αk)(λ) denote the sum of every τ ⊗ τ ′ in M∗(λ) such that

τ ∈ R
(

(ρ1, α1), . . . , (ρk, αk)
)

and τ ′ ∈ R
(

(ρk+1, αk+1), . . . , (ρm, αm)
)
.

We summarize the results we need in the following theorem. Additional prop-

erties may be found in [J1, Theorem 9.3, Proposition 9.8], and the refinements in

[J1, Section 10].

Theorem 2.7 Suppose (ρi , αi) and σ are as above. Let Irr((ρ1, α1), . . . , (ρm, αm); σ)

denote the set of all irreducible representations of all O(2n, F), n ≥ 0, supported on

S(ρ1, α1)∪· · ·∪S(ρm, αm)∪{σ} and similarly for Irr((ρi , αi); σ), . . . , Irr((ρm, αm); σ).

Then the map

π 7−→ ψ(ρ1,α1)(π) ⊗ · · · ⊗ ψ(ρm,αm)(π)

implements a bijective correspondence

Irr
(

(ρ1, α1), . . . , (ρm, αm); σ
)
←→ Irr

(
(ρ1, α1); σ) ⊗ · · · ⊗ Irr((ρm, αm); σ

)
.

We let Ψ denote the inverse map. We have the following:

(i) With notation as in Definition 2.6,

µ∗
(ρ1,α1),...,(ρk,αk)(τ ⋊ θ) = M∗

(ρ1,α1),...,(ρk,αk)(τ ) ⋊ µ∗
(ρ1,α1),...,(ρk,αk)(θ).

(ii) Suppose we have irreducible representations τ ∈ R((ρ1, α1), . . . , (ρi , αi)) and

θ ∈ R((ρi+1, αi+1), . . . , (ρm, αm); σ). If τ ⋊ σ =
∑

j m jθ j (a sum of irreducible

representations with multiplicities), then

τ ⋊ θ =

∑

j

m jΨ
(
ψ(ρ1,α1)(θ j), . . . , ψ(ρi ,αi )(θ j), ψ(ρi+1,αi+1)(θ), . . . , ψ(ρm,αm)(θ)

)
.

(iii) ψ(ρi ,αi )(π̂) = ̂ψ(ρi ,αi )(π).

(iv) An irreducible representation π ∈ R((ρ1, α1), . . . , (ρm, αm); σ) is tempered (resp.,

square-integrable) if and only if ψ(ρ1,α1)(π), . . . , ψ(ρm,αm)(π) are all tempered

(resp., square-integrable).

(v) ψ(ρ,α)(ĉπ) = ĉ
(
ψ(ρ,α)(π)

)
(noting ψ(ρ,α)(ĉπ) ∈ R((ρ, α); ĉσ)).

(vi) Suppose that in the Langlands classification,

π((ρi , αi); σ) = L(νx1τ1(ρi , αi) ⊗ · · · ⊗ νxkτk(ρi , αi) ⊗ T((ρi , αi); σ))

for i = 1, . . . , m. (NB: τ j(ρi , αi) may be the trivial representation of GL(0, F);

T(ρi , αi ; σ) may just be σ.) Then

Ψ
(

(π(ρ1, α1); σ), . . . , π((ρm, αm); σ))
)

=

L
(

νx1
(
τ1(ρ1, α1) × · · · × τ1(ρm, αm)

)
⊗ · · · ⊗ νxk

(
τk(ρ1, α1) × · · · × τk(ρm, αm)

)

⊗ Ψ
(

T
(

(ρ1, α1); σ
)
, . . . , T

(
(ρm, αm); σ)

)))

.
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Proof The only claim not already in the literature is (v), which follows immediately

from the characterization of ψ(ρ,α)(π) above and Lemma 2.4. The remaining claims

are in [J1] (cf. [J4, Theorem 7.2 and Remark 7.3]): see [J1, Proposition 7.4, Theorem

9.3 (4),(6),(7),(8)] and their refinements from Section 10 of [J1].

We take a moment to remark on a key obstacle to extending this result to

SO(2n, F), an issue that also arises when reformulating our results in terms of

SO(2n, F) only.

Remark 2.8 Suppose ρ1, . . . , ρℓ as above are pairwise inequivalent and self-contra-

gredient. Let σ be as above with σ0 ≤ ResO
SO σ irreducible. Let us assume that ρi ⋊ σ

is reducible for each i. Set

I = ρ1 × · · · × ρ1)
︸ ︷︷ ︸

k1

× · · · × (ρℓ × · · · × ρℓ)
︸ ︷︷ ︸

kℓ

⋊σ

and

I0 = ρ1 × · · · × ρ1)
︸ ︷︷ ︸

k1

× · · · × (ρℓ × · · · × ρℓ)
︸ ︷︷ ︸

kℓ

⋊σ0.

By [G2], I has 2ℓ components, pairwise inequivalent. Thus, choosing a component

of ρi ⋊ σ for each i is equivalent to choosing a component of I. More precisely, write

ρi ⋊ σ ∼= T1(ρi ; σ) ⊕ T−1(ρ; σ). Then the choice of T ≤ I is equivalent to choosing

Tεi
(ρi ; σ), 1 ≤ i ≤ ℓ, where

T ≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρℓ ⋊ Tεi
(ρi , σ)

and

T 6≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρℓ ⋊ T−εi
(ρi , σ).

On the other hand, suppose ĉσ ∼= σ. If the ρi are enumerated so that ρ1, . . . , ρm do

not satisfy (1.1) and ρm+1, . . . , ρℓ do, then it follows from Proposition 2.5 that ρi ⋊σ0

is reducible for 1 ≤ i ≤ m and irreducible for m + 1 ≤ i ≤ ℓ. By [G1, Theorems 6.8

and 6.11], I0 has 2ℓ−1 components. In particular, a choice of components of ρi ⋊ σ0

for each i is not, in general, equivalent to a choice of components of I0.

This issue arises when reformulating our results in terms of SO(2n, F) data only

(see the end of Section 3 as well as Remark 11.2 and the discussion immediately pre-

ceding it). It also is one of the key issues in preventing the preceding theorem from

extending to SO(2n, F); it represents a sort of interaction (in terms of reducibility)

that prevents the different ρi from being treated separately. The identification of a

component of I with components of ρi ⋊ σ is essentially a special case of the corre-

spondence in the theorem, one which is a starting point in proving the theorem.

3 The Mœglin–Tadić Construction

In this section, we review the construction of [M-T] for O(2n, F). (This discus-

sion also borrows freely from the review of the Mœglin–Tadić construction given
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in [Mu2].) There is an alternate characterization of part of the construction, given

in [T5, T6], which we also discuss. We then close with some of lemmas for later use

with SO(2n, F).

Let π be an irreducible admissible representation of O(2n, F). If π is not super-

cuspidal, we may write

π →֒ νx1ρ1 × · · · × νxℓρℓ ⋊ σ,

with x1, . . . , xℓ ∈ R, ρ1, . . . , ρℓ irreducible, unitary, supercuspidal representations

of general linear groups, and σ an irreducible supercuspidal representation of an

orthogonal group (possibly σ = 1). Recall that Mœglin–Tadić do not treat represen-

tations of O(2, F) as supercuspidal, so do not allow a representation of O(2, F) to be

the partial cuspidal support. Since SO(2, F) ∼= F×, an irreducible representation of

O(2, F) can be embedded in a representation of the form IndO
SO χ ∼= χ ⋊ 1 with χ a

character of F×. Thus we may take σ = 1 as the partial cuspidal support. The σ that

appears is unique, and the partial cuspidal support of π is defined to be this σ.

Let δ be a discrete series representation for O(2n, F). Jord(δ) is defined to be the

set of pairs (ρ, a), where ρ is an irreducible unitary supercuspidal representation of a

general linear group having ρ ∼= ρ̃ and a ∈ N, which satisfy the following:

(i) a is even if and only if the L-function L(ρ, Rd, s) has a pole at s = 0. Here, for

ρ a representation of GL(d, F), L(ρ, Rd, s) is the L-function defined by Shahidi

(cf. [Sh1, Sh2]), where Rd the representation of GL(d, C) on ∧2
C

d.

(ii) δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]) ⋊ δ is irreducible.

We note that the first condition ensures the parity of a matches the parity of

2 red(ρ; σ) + 1. (Notice that the parity does not depend on σ, though the partic-

ular reducibility value does.) In the second condition, we note that

δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ σ

is reducible for all a ∈ N having the correct parity and that satisfy a ≥ 2 red(ρ; σ) + 1.

Replacing σ with δ essentially produces irreducibility at the values of a that corre-

spond to the segment ends for the generalized Steinberg representations of general

linear groups that occur in the construction of δ (noting that some of these irre-

ducibility points may correspond to segments that are degenerate, so do not actually

appear in the construction). (Modulo these degenerate segments, the values of a−1
2

correspond to the nonnegative values of the ai , bi in [J3, Theorem 1.1]. This would

allow for an alternate characterization of Jord(δ) in terms of Jacquet modules of π
rather than induced representations built from π.)

We remark that, for convenience, we use representations in the following descrip-

tion of admissible triples when we actually want equivalence classes of representa-

tions; the reader should interpret the discussion below accordingly. (Working this

way saves us from having to make a somewhat awkward but obvious definition of

equivalence of triples.)

Let Trip denote the collection of all triples ( Jord, σ, ε) which satisfy the following:

(i) Jord is a finite set of pairs (ρ, a), where ρ is an irreducible unitary supercuspidal

representation of a general linear group having ρ̃ ∼= ρ, and a ∈ N with a even if

and only if L(s, ρ, Rdρ
) has a pole at s = 0.
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(ii) σ is an irreducible supercuspidal representation of an even orthogonal group.

(iii) ε : S → {±1} is a function on a subset S ⊂ Jord ∪ ( Jord × Jord) that satisfies

certain conditions, which we discuss in more detail momentarily.

Let us start by describing the domain S of ε. S contains all (ρ, a) ∈ Jord except those

having a odd and (ρ, a ′) ∈ Jord(σ) for some a ′ ∈ N; S contains
(
(ρ, a), (ρ′, a ′)

)
∈

Jord × Jord when ρ ∼= ρ ′ and a 6= a ′. Several compatibility conditions must also be

satisfied:

(i) if (ρ, a), (ρ, a ′) ∈ S, we must have ε((ρ, a), (ρ, a ′)) = ε(ρ, a)ε−1(ρ, a ′);

(ii)

ε((ρ, a), (ρ, a ′ ′)) = ε((ρ, a), (ρ, a ′))ε((ρ, a ′), (ρ, a ′ ′))

for all (ρ, a), (ρ, a ′), (ρ, a ′ ′) ∈ Jord having a, a ′, a ′ ′ distinct; and

(iii) ε((ρ, a), (ρ, a ′)) = ε((ρ, a ′), (ρ, a)) for all
(
(ρ, a), (ρ, a ′)

)
∈ S.

We follow the notation of [M-T] and, in light of (i) above, write ε(ρ, a)ε−1(ρ, a ′) for

ε
(
(ρ, a), (ρ, a ′)

)
even when ε is undefined on (ρ, a) and (ρ, a ′) separately (i.e., even

when (ρ, a) and (ρ, a ′) are not in S).

We now discuss triples of alternated type. Suppose (ρ, a) ∈ Jord. We define

(ρ, a−) by taking a− = max{a ′ ∈ N | (ρ, a ′) ∈ Jord and a ′ < a}, noting that

(ρ, a−) may be undefined. Also, let us write Jordρ = {(ρ ′, a) ∈ Jord | ρ ′ ∼= ρ}
and Jordρ(σ) = {(ρ ′, a) ∈ Jord(σ) | ρ ′ ∼= ρ}. We call ( Jord, σ, ε) ∈ Trip a triple of

alternated type if the following hold:

(i) ε(ρ, a)ε(ρ, a−)−1
= −1 whenever (ρ, a−) is defined, and

(ii) | Jordρ| = | Jord ′
ρ(σ)|, where

Jord ′
ρ(σ) =

{

Jordρ(σ) ∪ {(ρ, 0)} if a is even and ε(ρ, min Jordρ) = 1,

Jordρ(σ) otherwise.

We write Tripalt for the subset of all alternated triples in Trip.

This brings us to admissible triples. First, suppose ( Jord, σ, ε) ∈ Trip has (ρ, a) ∈
Jord with (ρ, a−) defined and ε(ρ, a)ε(ρ, a−)−1

= 1. Set

Jord ′
= Jord \ {(ρ, a), (ρ, a−)}

and let ε ′ be the restriction of ε to S ∩ [ Jord ′ ∪ ( Jord ′ × Jord ′)]. One can check

that ( Jord ′, σ, ε ′) ∈ Trip. We say that ( Jord ′, σ, ε ′) is subordinate to ( Jord, σ, ε). We

say the triple ( Jord, σ, ε) is admissible if there is a sequence of triples ( Jordi , σ, εi),

1 ≤ i ≤ k, such that

/rm(i) ( Jord1, σ, ε1) = ( Jord, σ, ε),

/rm(ii) ( Jordi+1, σ, εi+1) is subordinate to ( Jordi , σ, εi) for all 1 ≤ i ≤ k − 1, and

/rm(iii) ( Jordk, σ, εk) is of alternated type.

Let us call such a sequence of triples an admissible sequence (for ( Jord, σ, ε) or the

discrete series representation associated to ( Jord, σ, ε) by Mœglin and Tadić). We

write Tripadm for the set of admissible triples.

Mœglin and Tadić establish a bijection between the set of all equivalence classes

of discrete series for orthogonal groups (not including O(2, F)) and the set of all
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admissible triples. We now describe that correspondence. If δ is a discrete series

representation for an orthogonal group, we write ( Jord(δ), σδ, εδ) for the associated

admissible triple. Here, Jord(δ) is as above and σδ is the partial cuspidal support of

δ. It remains to describe εδ .

We first describe εδ on pairs. Suppose (ρ, a) ∈ Jordδ with a− defined. Then

(3.1) εδ(ρ, a)ε−1
δ (ρ, a−) = 1

KS

®¶

there is an irreducible representation δ ′ such that δ →֒ δ([ν
a
−

+1

2 ρ, ν
a−1

2 ρ]) ⋊ δ ′.

This property is sufficient to define εδ on that part of S contained in Jord(δ)× Jord(δ)

(use property (iii)(ii) from the definition of triple above). Now, suppose (ρ, a) ∈
Jord(δ) with a even. We then formally set εδ(ρ, 0) = 1; (3.1) is then sufficient to de-

termine εδ(ρ, a) for all such (ρ, a). If (ρ, a) ∈ S with a odd (in which case there is no

b with (ρ, b) ∈ Jord(σδ)), we use normalized standard intertwining operators to de-

fine εδ(ρ, a) (cf. [Mœ2, Proposition 6.1]; the normalizations are taken from [Mœ1]).

In particular, since δ([ν−a+1/2ρ, νa−1/2ρ])⋊δ is irreducible, the normalized standard

intertwining operator that sends

νsδ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

⋊ δ −→ ν−sδ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

⋊ δ

is a scalar at s = 0. More precisely, if we let ι : g 7−→ τ g−1 on general linear groups,

the right-hand side is

iG,M

(

w0

(
νsδ

(
[ν

−a+1
2 ρ, ν

a−1
2 ρ]

)
⊗ δ

))

= νsδ([ν
−a+1

2 ρ, ν
a−1

2 ρ])) ◦ ι ⋊ δ,

where M is the appropriate standard Levi factor, and if M = GL(m, F)×O(2n, F), w0

corresponds to sign changes on the first m (diagonal) entries. Starting with a nonzero

map E : Vρ → Vρ that intertwines ρ and ρ ◦ ι (noting ρ ◦ ι ∼= ρ̃) and has E2
= I, we

obtain a nonzero map for the equivalence

δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

◦ ι ∼= δ
([

ν
−a+1

2 ρ ◦ ι, ν
a−1

2 ρ ◦ ι
])

∼= δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

,

and then a map E giving the equivalence

δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

⋊ δ ∼= δ
([

ν
−a+1

2 ρ, ν
a−1

2 ρ
])

◦ ι ⋊ δ.

Since E2
= I, we have E2

= I. At s = 0, the normalized standard intertwining op-

erator is a scalar multiple of E; we let εδ(ρ, a) denote this scalar, necessarily ±1. (We

note that by [Mœ2], this is consistent with the characterization of εδ(ρ, a)ε−1
δ (ρ, a−)

above.) Mœglin-Tadić note that the function εδ is only partially defined in this case,

which is due to the necessity of making a choice (of ±E) in this process.
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Before proceeding further, let us take a moment to recall the Basic Assumption

under which the Mœglin and Tadić construction is done, and which we retain. Let

ρ be an irreducible unitary supercuspidal representation of a general linear group

having ρ ∼= ρ̃ and σ an irreducible supercuspidal representation of some O(2n, F).

Then there is a unique nonnegative xρ ∈ R such that νxρρ ⋊ σ reduces (cf. [S2] and

Proposition 2.5). The basic assumption is

xρ =







(aρ,max + 1)/2 if Jordρ(σ) 6= ∅,
1
2

if L(ρ, Rdρ
, s) has a pole at s = 0 and Jordρ(σ) = ∅,

0 otherwise,

where aρ,max is the largest value of a for which (ρ, a) ∈ Jord. The reader is referred to

[M-T, Section 12] for more on this assumption.

In [T5,T6], Tadić gives another way of defining εδ(ρ, a) when (ρ, a) ∈ S with a odd

(cf. [T5, Sections 16.5 and 16.6 ]; with proofs and refinements in [T6]). In this case,

the choice needed to fix ε on Jordρ is a choice of components of ρ⋊σδ (which allows

for a nice interpretation in terms of some available structures; cf. [J2, Section 3.3]).

This definition will be useful when we work with admissible triples for SO(2n, F)

(cf. Section 11). We next review this definition.

First, we note that in his definition, Tadić uses the decomposition of [J1, J4] to

restrict to the case where δ ∈ R((ρ, α); σ) (with α = red(ρ; σ)). We make this

assumption while reviewing his construction. However, for SO(2n, F), we do not

have such a decomposition, so we need to work more generally. Thus, after reviewing

Tadić’s definition, we give some lemmas for later applications to SO(2n, F).

Remark 3.1 With notation as in Section 2, let πi ∈ R(ρi , αi); σ), 1 ≤ i ≤ m,

be discrete series and π ∈ R((ρ1, α1), . . . , (ρm, αm); σ) the corresponding discrete

series from Theorem 2.7. If πi has Mœglin–Tadić data ( Jordi , σ, εi), then π has data

( Jord, σ, ε), where

Jord =

m⋃

i=1

Jordi ,

and ε = εi on Sπ ∩ [ Jordi ∪ ( Jordi × Jordi)] = Sπi
(noting that Sπ = ∪m

i=1Sπi
).

This is a result for the classification in [M-T] (cf. [M-T, Remark 14.5]) and holds by

definition in the approach from [T5, T6].

We note that for a discrete series representation δ ∈ R((ρ, α); σ), we have

Jord(δ) = Jordρ(δ) ∪
(

Jord(σ) \ Jordρ(σ)
)
.

In particular, in the other direction, ψ(ρ,α)(δ( Jord,σ,ε)) has corresponding triple
(

Jordρ ∪
(

Jord(σ) \ Jordρ(σ)
)
, σ, ερ

)

,

where ερ is the restriction of ε to

S ∩
(

Jordρ ∪
(

Jord(σ) \ Jordρ(σ)
))

∪
[(

Jordρ ∪
(

Jord(σ) \ Jordρ(σ)
))

×
(

Jordρ ∪
(

Jord(σ) \ Jordρ(σ)
))]

.
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To start, we make a choice of components, writing ρ ⋊ σ ∼= τ1(ρ; σ) ⊕ τ−1(ρ; σ).

Then for a ∈ N and η ∈ {±1}, let δ([νρ, νaρ]; τη(ρ; σ)) denote the unique irre-

ducible subrepresentation of δ([νρ, νaρ]) ⋊ τη(ρ; σ). If amax is the largest value of a

such that (ρ, a) ∈ Jord, we define εδ(ρ, amax) as follows: εδ(ρ, amax) = η if and only

if there is an irreducible θ such that

δ →֒ θ ⋊ δ
([

νρ, ν
amax−1

2 ρ
]

; τη(ρ; σ)
)
.

Observe that once εδ(ρ, amax) is known, (3.1) is enough to determine εδ on S (re-

calling that even without εδ(ρ, amax) known, (3.1) is enough to determine εδ on

S ∩ ( Jord × Jord))

The following lemma (as well as Lemma 3.4) eliminates the need for the results of

[J1, J4] in Tadić’s definition. This will be of use when working with SO(2n, F), where

one does not have such results.

Lemma 3.2 Let δρ = ψ(ρ,0)(δ). Then there exists an irreducible θ such that

δρ →֒ θ ⋊ δ
([

νρ, ν
amax−1

2 ρ
]

; τη(ρ; σ)
)

if and only if there is an irreducible θ ′ such that

δ →֒ θ ′
⋊ δ

([
νρ, ν

amax−1
2 ρ/bigr]; τη(ρ; σ)

)

Proof For (⇒), observe that it follows from [J1, J4] (cf. [J1, Section 7]) that there is

an irreducible θ ′ ′ such that δ →֒ θ ′ ′ ⋊ ψ(ρ,0)(δ). Therefore,

δ →֒ θ ′ ′
⋊ δρ →֒ (θ ′ ′ × θ) ⋊ δ/bigl(

[
νρ, ν

amax−1
2 ρ

]
; τη(ρ; σ)

)
.

Since θ ′ ′ × θ is irreducible (by [Z]), the implication (⇒) follows.

For (⇐), we know δρ →֒ θ ⋊ δ([νρ, ν
amax−1

2 ρ]; τη ′(ρ; σ)) for some η ′ ∈ {±1} (in

particular, η ′
= εδρ

(ρ, amax)); we need to show η ′
= η. Note that it follows from

Frobenius reciprocity that

θ ⊗ δ([νρ, ν
amax−1

2 ρ]; τη ′(ρ; σ)) ≤ µ∗(δρ).

Now, δ →֒ θ ′ ⋊ δ([νρ, ν
amax−1

2 ρ]; τη(ρ; σ)). By [Z], we may write θ ′ ∼= θ × θρ with

θρ ∈ R((ρ, 0)) and θ ∈ R((ρ1, α1), . . . , (ρm, αm)) with (ρi , αi) 6= (ρ, 0) for any i.

Therefore,

δ →֒ θ × θρ ⋊ δ([νρ, ν
amax−1

2 ρ]; τη(ρ; σ))

(cf. [J1, Lemma 5.5])
®¶

δ →֒ θ ⋊ δ ′
ρ
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for some irreducible δ ′
ρ ≤ θρ ⋊ δ([νρ, ν

amax−1
2 ρ]; τη(ρ; σ)). By ψ(ρ,0) considerations

(e.g., see Theorem 2.7(i)), we must have δ ′
ρ
∼= δρ. Therefore,

δρ ≤ θρ ⋊ δ([νρ, ν
amax−1

2 ρ]; τη(ρ; σ))

®¶

θ ⊗ δ([νρ, ν
amax−1

2 ρ]; τη ′(ρ; σ)) ≤ µ∗
(

θρ ⋊ δ
(

[νρ, ν
amax−1

2 ρ]; τη(ρ; σ)
))

.

It now follows from a straightforward µ∗ argument that η = η ′ (use Theorem 2.2

and the fact that

µ∗
(

δ
(

[νρ, ν
amax−1

2 ρ]; τη(ρ; σ)
))

= 1 ⊗ δ
(

[νρ, ν
amax−1

2 ρ]; τη(ρ; σ)
)

+
∑

i

τi ⊗ θi ,

where no θi contains ν
amax−1

2 ρ in its supercuspidal support).

We now give a variation of the preceding lemma that will also be used when work-

ing with SO(2n, F). To start, we introduce a bit of notation. Suppose ρ 6∼= ρ ′ have

ρ ′ ⋊ σ and ρ ⋊ σ reducible. By [G2], we may write

ρ × ρ′
⋊ σ ∼=

⊕

i, j∈{±1}

τi, j(ρ, ρ′; σ),

where τi, j(ρ, ρ′; σ) is characterized by

τi, j(ρ, ρ′; σ) →֒ ρ ⋊ τ j(ρ
′; σ) and ρ ′

⋊ τi(ρ; σ).

Note 3.3 It follows from the characterization above and Lemma 5.1 below that

ĉτi, j(ρ, ρ′; σ) ∼=







τ−i,− j(ρ, ρ′; σ) if ρ, ρ ′ both satisfy (1.1),

τ−i, j(ρ, ρ′; σ) if ρ satisfies (1.1), but ρ ′ does not,

τi, j(ρ, ρ′; σ) if neither satisfies (1.1).

Lemma 3.4 Suppose ρ 6∼= ρ ′ have ρ ⋊ σ and ρ ′ ⋊ σ reducible. For a, a ′ ∈ N odd and

η, η ′ ∈ {±1},

δ
([

νρ, ν
a−1

2 ρ
])

× δ
([

νρ ′, ν
a ′−1

2 ρ ′
])

⋊ τη,η ′(ρ, ρ′; σ)

has a unique irreducible subrepresentation that we denote

δ
([

νρ, ν
a−1

2 ρ
]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; τη,η ′(ρ, ρ′; σ)

)
.

It is square-integrable. Further, in the notation of Section 2,

ψ(ρ,0)

(

δ
([

νρ, ν
a−1

2 ρ
]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; τη,η ′(ρ, ρ′; σ)

))

=

δ
([

νρ, ν
a−1

2 ρ
]

; τη(ρ; σ)
)
,

and similarly for ψ(ρ ′,0).
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Proof Standard µ∗ arguments tell us that

δ
([

νρ, ν
a−1

2 ρ
])

× δ
([

νρ ′, ν
a ′−1

2 ρ ′
])

⊗ τη,η ′(ρ, ρ′; σ)

occurs with multiplicity one in the following:

(i) µ∗
(

δ
([

νρ, ν
a−1

2 ρ
])

× δ
([

νρ ′, ν
a ′−1

2 ρ ′
])

× ρ × ρ′ ⋊ σ
)

(ii) µ∗
(

δ
([

νρ, ν
a−1

2 ρ
])

× δ
([

νρ ′, ν
a ′−1

2 ρ ′
])

⋊ τη,η ′(ρ, ρ′; σ)
)

(iii) µ∗
(

δ
([

ρ, ν
a−1

2 ρ
])

⋊ δ
([

νρ ′, ν
a ′−1

2 ρ ′
]

; τη ′(ρ ′; σ)
))

(iv) µ∗
(

δ
([

ρ ′, ν
a ′−1

2 ρ ′
])

⋊ δ
([

νρ, ν
a−1

2 ρ
]

; τη(ρ; σ)
))

.

We also note that the induced representations appearing in (ii)–(iv) all embed in the

induced representation appearing in (i). It then follows (from (ii) and Frobenius

reciprocity) that

δ
([

νρ, ν
a−1

2 ρ
])

× δ
([

νρ ′, ν
a ′−1

2 ρ ′
])

⋊ τη,η ′(ρ, ρ′; σ)

has a unique irreducible subrepresentation δ. Further (using (iii) and (iv)), δ must

also appear as a subquotient of both

δ
([

ρ, ν
a−1

2 ρ
])

⋊ δ
([

νρ ′, ν
a ′−1

2 ρ ′
]

; τη ′(ρ ′; σ)
)
,

δ
([

ρ ′, ν
a ′−1

2 ρ ′
])

⋊ δ
([

νρ, ν
a−1

2 ρ
]

; τη(ρ; σ)
)
.

In particular, it follows from ψ(ρ,0) and ψ(ρ ′,0) considerations (see Theorem 2.7(i))

that

ψ(ρ,0)(δ) = δ
([

νρ, ν
a−1

2 ρ
]

; τη(ρ; σ)
)

and

ψ(ρ ′,0)(δ) = δ
([

νρ ′, ν
a ′−1

2 ρ ′
]

; τη ′(ρ ′; σ)
)
.

Now, Theorem 2.7(iv) tells us δ is square-integrable, finishing the proof.

Lemma 3.5 With notation as in the previous lemma, let δρ,ρ ′ ∈ R((ρ, 0), (ρ′, 0); σ)

be such that ψ(ρ,0)(δρ,ρ ′) = ψ(ρ,0)(δ) and ψ(ρ ′,0)(δρ,ρ ′) = ψ(ρ ′,0)(δ). Then there exist

irreducible θ, θ ′ such that

δρ →֒ θ ⋊ δ
([

νρ, ν
amax−1

2 ρ
]

; τη(ρ; σ)
)

and

δρ ′ →֒ θ ′
⋊ δ

([
νρ ′, ν

a ′max−1

2 ρ ′
]

; τη ′(ρ ′; σ)
)

if and only if there is an irreducible θ ′ ′ such that
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δ →֒ θ ′ ′
⋊ δ

([
νρ, ν

amax−1
2 ρ

]
,
[
νρ ′, ν

a ′max−1

2 ρ ′
]

; τη,η ′(ρ, ρ′; σ)
)
.

Proof The implication (⇐) is a straightforward consequence of the fact that

δ
([

νρ, ν
amax−1

2 ρ
]
,
[
νρ ′, ν

a ′max−1

2 ρ ′
]

; τη,η ′(ρ, ρ′; σ)
)

→֒ δ
([

ρ, ν
amax−1

2 ρ
])

⋊ δ
([

νρ ′, ν
a ′max−1

2 ρ ′
]

; τη ′(ρ ′; σ)
)

and

δ
([

νρ, ν
amax−1

2 ρ
]
,
[
νρ ′, ν

a ′max−1

2 ρ ′
]

; τη,η ′(ρ, ρ′; σ)
)

→֒ δ
([

ρ ′, ν
a ′max−1

2 ρ ′
])

⋊ δ
([

νρ, ν
amax−1

2 ρ
]

; τη(ρ; σ)
)
.

For the implication (⇒), we first argue that

δ →֒ θ ′ ′
⋊ δ

([
νρ, ν

amax−1
2 ρ

]
,
[
νρ ′, ν

a ′max−1

2 ρ ′
]

; τξ,ξ ′(ρ, ρ′; σ)
)

for some ξ, ξ ′ ∈ {±1}. To this end, we first show that δ has an admissible se-

quence ( Jordi , σ, εi), 1 ≤ i ≤ k, having Jordk = Jordk−1 \ {(ρ, b), (ρ, amax)} for

some b. It is not difficult to see that we may arrange Jordk = Jordk−1 \{(ρ, b), (ρ, a)}
for some a, b. It therefore suffices (by iteration) to show that if | Jordρ| > 2, then

(ρ, amax) does not have to be part of the first pair removed from Jordρ. Suppose

the first pair from Jordρ is removed at the i-th stage. Let amax,− = (amax)−. If

εi(ρ, amax)ε−1
i (ρ, amax,−) 6= 1, this is clear–the pair (ρ, amax,−), (ρ, amax) is not eligi-

ble to be removed. If εi(ρ, amax)ε−1
i (ρ, amax,−) = 1, we claim there is some (ρ, a) ∈

Jordρ with a 6= amax and εi(ρ, a)ε−1
i (ρ, a−) = 1. This follows from consider-

ing the resulting Jordi+1 = Jordi \ {(ρ, amax), (ρ, amax,−)}, which must then have

εi+1(ρa)ε−1
i+1(ρ, a−) = 1 for some such a by admissibility. We may then remove this

{(ρ, a), (ρ, a−)} at the i-th stage instead. A similar argument tells us we may arrange

Jordk−1 = Jordk−2 \ {(ρ ′, b ′), (ρ ′, a ′
max)} for some b ′. It then follows that

δ →֒ δ1 × · · · × δk−3 × δ
([

ν
−b ′+1

2 ρ ′, ν
a ′max−1

2 ρ ′
])

× δ
([

ν
−b+1

2 ρ, ν
amax−1

2 ρ ′
])

⋊ δalt.

We give the argument below using “commuting arguments” (λ1 × λ2
∼= λ2 × λ1

when irreducible) and “inverting arguments” (λ ⋊ µ ∼= λ̃ ⋊ µ when irreducible). We

note that the irreducibility for the commuting arguments follows from [Z] (noting

that Jordρ and Jordρ ′ do not contribute to δalt as Jordρ(σ) = ∅ and Jordρ ′(σ) = ∅)

while the irreducibility for the inverting arguments follows from [Mu1]. We obtain
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the following:

δ →֒ δ1 × · · · × δk−3 × δ([ν
−b ′+1

2 ρ ′, ν
a ′max−1

2 ρ ′]) × δ([ν
−b+1

2 ρ, ν
amax−1

2 ρ]) ⋊ δalt

⇓

δ →֒ δ1 × · · · × δk−3 × δ([ρ ′, ν
a ′max−1

2 ρ ′]) × δ([ν
−b ′+1

2 ρ ′, ν−1ρ ′])

× δ([ρ, ν
amax−1

2 ρ]) × δ([ν
−b+1

2 ρ, ν−1ρ]) × δ ′
1 × · · · × δ ′

m ⋊ σ

(commuting arguments)

∼= δ1 × · · · × δk−3 × δ ′
1 × · · · × δ ′

m × δ([ρ ′, ν
a ′max−1

2 ρ ′]) × δ([ρ, ν
amax−1

2 ρ])

× δ([ν
−b ′+1

2 ρ ′, ν−1ρ ′]) × δ([ν
−b+1

2 ρ, ν−1ρ]) ⋊ σ

(inverting and commuting arguments)

∼= δ1 × · · · × δk−3 × δ ′
1 × · · · × δ ′

m × δ([ρ ′, ν
a ′max−1

2 ρ ′])

× δ([ρ, ν
amax−1

2 ρ]) × δ([νρ ′, ν
b ′−1

2 ρ ′]) × δ([νρ, ν
b−1

2 ρ]) ⋊ σ

(commuting arguments)

∼= δ1 × · · · × δk−3 × δ ′
1 × · · · × δ ′

m × δ([νρ ′, ν
b ′−1

2 ρ ′])

× δ([νρ, ν
b−1

2 ρ]) × δ([ρ′, ν
a ′max−1

2 ρ ′]) × δ([ρ, ν
amax−1

2 ρ]) ⋊ σ
⇓ (cf. [J1, Lemma 5.5])

δ →֒ δ ′ ′
1 × · · · × δ ′ ′

m ⋊ π

for some irreducible π ≤ δ([ρ ′, ν
a ′max−1

2 ρ ′])× δ([ρ, ν
amax−1

2 ρ]) ⋊ σ (writing the other

representations that appear as δ ′ ′
1 , . . . , δ ′ ′

m for convenience). We need to show

π = δ
([

νρ, ν
amax−1

2 ρ
]
,
[
νρ ′, ν

a ′max−1

2 ρ ′
]

; τξ,ξ ′(ρ, ρ′; σ)
)

for some ξ, ξ ′ ∈ {±1}.

To this end, observe that (by [Mu1] and Theorem 2.7(ii),(vi)) the irreducible sub-

quotients of

δ
([

ρ ′, ν
a ′max−1

2 ρ ′
])

× δ
([

ρ, ν
amax−1

2 ρ
])

⋊ σ

are the following:

(i) δ([νρ, ν
amax−1

2 ρ], [νρ ′, ν
a ′max−1

2 ρ ′]; τξ,ξ ′(ρ, ρ′; σ)) with ξ, ξ ′ ∈ {±1},

(ii) L(δ([ν
−a ′max+1

2 ρ ′, ρ′]) ⊗ δ([νρ, ν
amax−1

2 ρ]; τξ(ρ; σ))) with ξ ∈ {±1},

(iii) L(δ([ν
−amax+1

2 ρ, ρ]) ⊗ δ([νρ′, ν
a ′max−1

2 ρ ′]; τξ ′(ρ ′; σ))) with ξ ′ ∈ {±1}, and
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(iv) the appropriate one of the following:

L(δ([ν
−amax+1

2 ρ, ρ]) ⊗ δ([ν
−a ′max+1

2 ρ ′, ρ′]) ⊗ σ) if amax > a ′
max,

L(δ([ν
−a ′max+1

2 ρ ′, ρ′]) ⊗ δ([ν
−amax+1

2 ρ, ρ]) ⊗ σ) if amax < a ′
max,

L(δ([ν
−amax+1

2 ρ, ρ]) × δ([ν
−a ′max+1

2 ρ ′, ρ′]) ⊗ σ) if amax = a ′
max

(noting that only one of these will have the right form to satisfy the require-

ments for a Langlands subrepresentation).

We show that having π as one of the other subquotients would contradict the Cassel-

man criterion for the square-integrability of δ. We note that any π other than

δ
([

νρ, ν
amax−1

2 ρ
]
,
[
νρ ′, ν

a ′max−1

2 ρ ′
]

; τη,η ′(ρ, ρ′; σ)
)

with ξ, ξ ′ ∈ {±1} has

π →֒ δ
([

ν
−amax+1

2 ρ, ρ
])

⋊ π ′ or π →֒ δ
([

ν
−a ′max+1

2 ρ ′, ρ′
])

⋊ π ′;

for purposes of an indirect argument, we assume the former. Then

δ →֒ δ ′ ′
1 × · · · × δ ′ ′

m × δ
([

ν
−amax+1

2 ρ, ρ
])

⋊ π ′.

Now, observe that (cf. [Z]) if c > s (c, d, s necessarily less than amax), then

δ
([

ν
−d+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
−amax+1

2 ρ, ν
s−1

2 ρ
])

=

δ
([

ν
−amax+1

2 ρ, ν
c−1

2 ρ
])

× δ
([

ν
−amax+1

2 ρ, ν
s−1

2 ρ
])

+ L
(

δ
([

ν
−amax+1

2 ρ, ν
s−1

2 ρ
])

, δ
([

ν
−d+1

2 ρ, ν
c−1

2 ρ
]))

,

is a sum of irreducible representations; otherwise,

δ([ν
−amax+1

2 ρ, ν
s−1

2 ρ]) × δ([ν
−d+1

2 ρ, ν
c−1

2 ρ])

is irreducible. In particular, any subquotient

λ ≤ δ
([

ν
−amax+1

2 ρ, ν
s−1

2 ρ
])

× δ
([

ν
−d+1

2 ρ, ν
c−1

2 ρ
])

has

λ →֒ δ
([

ν
−amax+1

2 ρ, ν
s ′−1

2 ρ
])

× δ
([

ν
−d ′+1

2 ρ, ν
c ′−1

2 ρ
])

for some c ′, d ′, s ′ (a permutation of c, d, s). Therefore,

δ →֒ δ ′

1 × δ ′

j × δ([ν
−d+1

2 ρ, ν
c−1

2 ρ]) × δ([ν
−amax+1

2 ρ, ν
s−1

2 ρ]) × δ ′

j+3 × · · · × δℓ ⋊ π ′

(by [J1, Lemma 5.5])
®¶

δ →֒ δ ′
1 × δ ′

j × λ × · · · δ ′
j+3 × δℓ ⋊ π ′
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for some irreducible λ ≤ δ([ν
−amax+1

2 ρ, ν
s−1

2 ρ]) × δ([ν
−d+1

2 ρ, ν
c−1

2 ρ]). It then follows

that

δ →֒ δ ′
1 × δ ′

j × δ
([

ν
−amax+1

2 ρ, ν
s ′−1

2 ρ
])

× δ
([

ν
−d ′+1

2 ρ, ν
c ′−1

2 ρ
])

× · · · δ ′
j+3 × δℓ ⋊ π ′

for some c ′, d ′, s ′ (a permutation of c, d, s). Iterating, we see that

δ →֒ δ
([

ν
−amax+1

2 ρ, ν
t ′−1

2 ρ
])

× · · · ,

contradicting the Casselman criterion for the square-integrability of δ. Thus we must

have

π = δ
([

νρ, ν
amax−1

2 ρ
]
,
[
νρ ′, ν

a ′max−1

2 ρ ′
]

; τη,η ′(ρ, ρ′; σ)
)

with ξ, ξ ′ ∈ {±1}, as claimed.

The remainder of the proof is similar to that of Lemma 3.2.

We close with one modification to Tadić’s definition that will prove more conve-

nient when shifting to SO(2n, F). Let ρ1, . . . , ρℓ be inequivalent representations such

that the following holds: (ρ, a) ∈ S with a odd if and only if ρ ∼= ρi for some i.

Instead of making ℓ choices of components, one for each ρi ⋊ σ, it follows from [G2]

that it is equivalent to choose a single component T (out of the 2ℓ possibilities)

T ≤ ρ1 × · · · × ρℓ ⋊ σ.

Then Tε(ρi ; σ), ε ∈ {±1}, is characterized by

T ≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρℓ ⋊ T1(ρi ; σ)

but

T 6≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρℓ ⋊ T−1(ρi ; σ).

We remark that this modification is helpful in dealing with SO(2n, F), where the

reducibility is a bit subtler (see Remark 2.8 for a brief discussion of these subtleties).

4 The Case σ 6= ĉσ

In this section, we consider ResO
SO π for an irreducible π ∈ R((ρ, α); σ) when ĉσ 6∼= σ.

In this case, it is not difficult to show that ResO
SO π is irreducible.

Theorem 4.1 Suppose ĉσ 6∼= σ. Let π ∈ R((ρ, α); σ) be irreducible. Then ResO
SO π is

irreducible.

Proof The partial cuspidal support of π is σ; by Lemma 2.4(ii), the partial cuspidal

support of ĉπ is ĉσ. Since ĉσ 6∼= σ, it follows that ĉπ 6∼= π. The theorem now follows

from Lemma 2.3.
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Remark 4.2 We take a moment to compare the parameterizations for δ and ĉδ
under these circumstances. It is a fairly easy consequence of Lemma 2.4(i) that

Jord(ĉδ) = Jord(δ). As noted in the preceding proof, σĉδ = ĉσδ . It also follows

from Lemma 2.4(i) that εĉδ = εδ on that part of S contained in Jord × Jord, and

therefore also when ρ is a representation of GL(m, F) with m even. If ρ is a rep-

resentation of GL(m, F) with m odd and εδ(ρ, a) defined for some a (so ρ ⋊ σ is

reducible), the definition from [T5, T6] requires a choice of one of the two compo-

nents of ρ ⋊ σ. We make our choice consistent with the action of ĉ: if τ has been

chosen for ρ⋊σ, we choose ĉτ for ρ⋊ ĉσ. With this choice, ĉδ has the corresponding

triple ( Jord(δ), ĉσδ, εδ).

5 The Case σ = ĉσ with ρ not Satisfying (1.1)

In this section, we consider ResO
SO π for an irreducible π ∈ R((ρ, α); σ) when ĉσ ∼= σ

but (1.1) not satisfied–i.e., either ρ is a representation of GL(m, F) with m even, or

ρ 6∼= ρ̃ (noting that when ρ 6∼= ρ̃, there are no discrete series). In this case, we show

that ResO
SO π is reducible.

We start with a lemma, noting that part (iii) of the lemma requires (1.1) to be

satisfied and is not used in this section (but is used later).

Lemma 5.1 Suppose ĉσ ∼= σ. Let σ0 ≤ ResO
SO σ be irreducible.

(i) Suppose ρ ⋊ σ is irreducible. Then ĉ(ρ ⋊ σ) ∼= ρ ⋊ σ.
(ii) Suppose ρ ⋊ σ and ρ ⋊ σ0 are both reducible. Write

ρ ⋊ σ ∼= τ1(ρ; σ) ⊕ τ−1(ρ; σ).

Then ĉτi(ρ; σ) ∼= τi(ρ; σ) for i = ±1.

(iii) Suppose ρ ⋊ σ is reducible but ρ ⋊ σ0 is irreducible (noting that this requires (1.1)

be satisfied; see Proposition 2.5). Write

ρ ⋊ σ ∼= τ1(ρ; σ) ⊕ τ−1(ρ; σ).

Then ĉτi(ρ; σ) ∼= τ−i(ρ; σ) for i = ±1.

Proof We start with an observation that will allow us to address both the cases σ = 1

and σ 6= 1 together. Let σ0 ≤ ResO
SO σ be irreducible. If ξ is a representation of a

general linear group and σ 6= 1, then by Lemma 2.3 and induction in stages, we have

ξ ⋊ σ ∼= ξ ⋊ IndO
SO σ0

∼= IndO
SO(ξ ⋊ σ0),

and this also holds when σ = 1.

We now consider (i). We have

ρ ⋊ σ ∼= IndO
SO(ρ ⋊ σ0),

which implies ρ ⋊ σ0 is irreducible and induces irreducibly to O(2n, F). Therefore,

by Lemma 2.3, c(ρ ⋊ σ0) 6∼= ρ ⋊ σ0 and ĉ(ρ ⋊ σ) ∼= ρ ⋊ σ, as needed.
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We now consider (ii). We have

τ1(ρ; σ) ⊕ τ−1(ρ; σ) ∼= ρ ⋊ σ ∼= IndO
SO(ρ ⋊ σ0)

∼= IndO
SO

(
τ1,0(ρ; σ0) ⊕ τ−1,0(ρ; σ0)

)
,

where ρ ⋊ σ0 = τ1,0(ρ; σ0) ⊕ τ−1,0(ρ; σ0). Therefore, τi,0(ρ; σ0), i = ±1, induces

irreducibly. Without loss of generality, we may write

τi(ρ; σ) ∼= IndO
SO τi,0(ρ; σ0).

Further, by Lemma 2.3, it follows that for i = ±1

cτi,0(ρ; σ0) 6∼= τi,0(ρ; σ0), ĉτi(ρ; σ) ∼= τi(ρ; σ),

as needed.

We now address (iii). In this case, we have

τ1(ρ; σ) ⊕ τ−1(ρ; σ) ∼= ρ ⋊ σ ∼= IndO
SO(ρ ⋊ σ0) ∼= IndO

SO τ0(ρ; σ0),

with τ0(ρ; σ0) ∼= ρ ⋊ σ0 (irreducible). Therefore, τ0(ρ; σ0) induces reducibly. It now

follows from Lemma 2.3 that

cτ0(ρ; σ0) ∼= τ0(ρ; σ0), ĉτi(ρ; σ) 6∼= τi(ρ; σ).

Further, since IndO
SO(ρ ⋊ σ0) ∼= τi(ρ; σ)⊕ ĉτi(ρ; σ), we see that ĉτi(ρ; σ) ∼= τ−i(ρ; σ),

as needed.

Lemma 5.2 Suppose ĉσ ∼= σ and ρ does not satisfy (1.1), i.e., either ρ is a represen-

tation of GL(m, F) with m even, or ρ 6∼= ρ̃. Suppose π ∈ R((ρ, α); σ) is an irreducible

representation satisfying

π →֒ ρ × · · · × ρ
︸ ︷︷ ︸

ℓ

⋊σ

with ℓ > 0. Then ĉπ ∼= π.

Proof First, suppose ρ ⋊ σ is irreducible. It follows from [G2] that ρ × · · · × ρ
︸ ︷︷ ︸

ℓ

⋊ σ
is also irreducible. Thus π = ρ × · · · × ρ

︸ ︷︷ ︸

ℓ

⋊σ. By Lemma 5.1(i),

ĉ(ρ ⋊ σ) ∼= ρ ⋊ σ.

By Lemma 2.4(i),

ĉπ ∼= ĉ(ρ × · · · × ρ
︸ ︷︷ ︸

ℓ

⋊σ) ∼= ρ × · · · × ρ
︸ ︷︷ ︸

ℓ−1

⋊ĉ(ρ ⋊ σ) ∼= π,

as needed.
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Now, suppose ρ ⋊ σ is reducible. It follows from [G2] that ρ × · · · × ρ
︸ ︷︷ ︸

ℓ

⋊σ has

two components, so ρ × · · · × ρ
︸ ︷︷ ︸

ℓ−1

⋊τi(ρ; σ) is irreducible for i = ±1. Thus, π =

ρ × · · · × ρ
︸ ︷︷ ︸

ℓ−1

⋊τi(ρ; σ) for some i. By Lemma 2.4(i) and 5.1(ii) (noting that Proposi-

tion 2.5 implies we are in Lemma 5.1(ii)),

ĉπ ∼= ĉ

(

ρ × · · · × ρ
︸ ︷︷ ︸

ℓ−1

⋊τi(ρ; σ)

)

∼= ρ × · · · × ρ
︸ ︷︷ ︸

ℓ−1

⋊ĉτi(ρ; σ) ∼= π,

as needed.

Theorem 5.3 Suppose ĉσ ∼= σ and ρ does not satisfy (1.1), i.e., either ρ is a represen-

tation of GL(m, F) with m even, or ρ 6∼= ρ̃. Let π ∈ R((ρ, α); σ) be irreducible. Then

ResO
SO π is reducible. In particular, we may write

ResO
SO π ∼= π0 ⊕ cπ0

with cπ0 6∼= π0.

Proof By Lemma 2.3, it suffices to show that ĉπ ∼= π. The proof is by induction on

the parabolic rank. The basis step follows from looking at the possible subquotients

of νsρ ⋊ σ, s ∈ R. If νsρ ⋊ σ is irreducible, the result follows from Lemma 2.4(i). If

νsρ⋊σ is reducible and s = 0, the result follows from Lemma 5.1(ii) and Lemma 2.3.

When νsρ ⋊ σ is reducible and s > 0, then νsρ ⋊ σ = L(ν−sρ ⊗ σ) + δ(νsρ; σ), with

δ(νsρ; σ) the square-integrable subrepresentation and L(ν−sρ ⊗ σ) the Langlands

quotient (written using subrepresentation data; see Section 2). By Lemma 2.4(iv),

ĉL(ν−sρ ⊗ σ) ∼= L(ν−sρ ⊗ ĉσ) ∼= L(ν−sρ ⊗ σ)

since ĉσ ∼= σ by assumption. By duality (see Lemma 2.4(iii)), it follows that

ĉδ(νsρ; σ) ∼= δ(νsρ; σ).

The case s 6= 0 then follows.

For the inductive step, observe that by [J1, Corollary 4.2] (which also applies to

O(2n, F); cf. [J4]), (at least) one of the following holds:

(i) π is nontempered,

(ii) DOπ is nontempered, or

(iii) π →֒ ρ × · · · ×
︸ ︷︷ ︸

ℓ

ρ ⋊ σ for some ℓ.

We break the argument into three cases accordingly.

In case (i), write

π = L(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ τ ).
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By Lemma 2.4(iv), we have

ĉπ = L(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ ĉτ ).

Thus ĉπ ∼= π if and only if ĉτ ∼= τ , which holds by inductive hypothesis.

For case (ii), recall that DO(ĉπ) ∼= ĉDOπ by Lemma 2.4(iii). It then follows that

ĉπ ∼= π if and only if ĉDOπ ∼= DOπ, which follows from case (i).

Case (iii) follows from Lemma 5.2, finishing the proof.

6 The Case σ = ĉσ with ρ Satisfying 1.1, Part I: Discrete Series

In this section, we consider discrete series representations in R((ρ, α); σ), when

σ ∼= ĉσ and ρ satisfies (1.1). We remark that red(ρ; σ) = 0 here, a consequence

of Proposition 2.5, so we must have α = 0 to support non-supercuspidal discrete se-

ries. In this case, Theorem 6.5 shows that ĉδ 6∼= δ. More precisely, if ( Jord, σ, ε) is the

admissible triple for δ, then ( Jord, σ, ĉε) is the admissible triple for ĉδ (cf. Definition

6.2). Thus ResO
SO δ is irreducible. We note that we have not worked in the general-

ity of admissible representations, as we did in the previous cases, for a reason. An

irreducible admissible representation π ∈ R((ρ, α); σ) may or may not have ResO
SO π

reducible. We take up this issue in the next section.

Suppose δ = δ( Jord,σ,ε) is a non-supercuspidal discrete series representation in

R((ρ, α); σ). Recall that in this case, Jord = Jordρ ∪ ( Jord(σ) \ Jordρ(σ)), a disjoint

union (cf. Remark 3.1). We note that the values of ε on Jordρ are enough to determine

ε on its domain. In particular, the values on Jordρ determine the values on Jordρ ×
Jordρ by the compatability conditions required of triples; the values elsewhere are

determined by εσ (i.e., from the triple ( Jord(σ), σ, εσ) for σ). Write

Jordρ = {(ρ, a1), . . . , (ρ, ak)},

with a1 < · · · < ak. We may then identify ε with the k-tuple ε = (c1, . . . , ck), where

ci = ε(ρ, ai). We note that in order for ( Jord, σ, ρ) to be admissible, we must have

k even (see [M-T, Section 14]). Further, in this situation, there are no nontrivial

alternated triples (as Jordρ(σ) = ∅).

We note that the following lemma is not essential for the arguments below, but

makes a number of claims clearer.

Lemma 6.1 Suppose k is even and ε = (c1, . . . , ck) with k even. Then ε is ad-

missible, i.e., ( Jord, σ, ε) is admissible, if and only if 〈ε, εalt,k〉 = 0, where εalt,k =

(1,−1, 1,−1, . . . , 1,−1
︸ ︷︷ ︸

k

) and 〈·, ·〉 is the (restriction of the) usual inner product on R
k.

Proof The proof is by induction on k. For k = 0 there is nothing to prove; for

k = 2, (1, 1) and (−1,−1) are clearly the admissible ǫ (cf. section 14 [M-T]). We

now assume the lemma holds for k − 2 and check that it holds for k.

Suppose ε is admissible. Since ( Jord, σ, ε) is admissible and not alternated, there

is some i with ε(ρ, ai)ε(ρ, ai−1)−1
= 1 such that Jord ′ ′

= Jord \ {(ρ, ai), (ρ, ai−1)}
and ε ′ ′

= ε| Jord ′ ′ has ( Jord ′ ′, σ, ε ′ ′) admissible. Now,

ε ′ ′
= (c1, . . . , ci−2, ci+1, . . . , ck),
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and ci−1 = ci . By the inductive hypothesis,

0 = 〈ε ′ ′, εalt,k−2〉 =

i−1∑

j=1

(−1) j−1c j +

k∑

j=i+1

(−1) j−3c j

=

i−1∑

j=1

(−1) j−1c j +

k∑

j=i+1

(−1) j−1c j + [(−1)i−2ci−1 + (−1)i−1ci]

= 〈ε, εalt,k〉,

as needed.

Now, suppose 〈ε, εalt,k〉 = 0. Then there is some i such that ci = ci−1–if not,

ε = ±εalt,k, and we would clearly have 〈ε, εalt,k〉 6= 0. Let

Jord ′ ′
= Jord \ {(ρ, ai), (ρ, ai−1)} and ε ′ ′

= (c1, . . . , ci−2, . . . , ci+1, . . . , ck)

(noting ε ′ ′
= ε| Jord ′ ′). Reversing the calculation above shows 〈ε ′ ′, εalt,k−2〉 = 0,

so by the inductive hypothesis, ( Jord ′ ′, σ, ε ′ ′) is admissible. Since ( Jord ′ ′, σ, ε ′ ′) is

subordinate to ( Jord, σ, ε), it is also an admissible triple, as needed.

The lemma now follows by induction.

Definition 6.2 With ( Jord, σ, ǫ) as above, write ε = (c1, . . . , ck). Let

ĉε = (−c1,−c2, . . . ,−ck).

The following is fairly obvious even without the preceding lemma.

Corollary 6.3 ( Jord, σ, ǫ) is admissible if and only ( Jord, σ, ĉε) is admissible.

Remark 6.4 For a fixed Jord as above, write k = 2m. Then the number of ε having

( Jord, σ, ε) admissible is
(

2m
m

)
. More generally, one can show inductively that the

number of ε having 〈ε, εalt,k〉 = 2 j is
(

2m
m+ j

)
.

Theorem 6.5 Let δ( Jord,σ,ε) ∈ R((ρ, 0); σ), (ρ, σ as above) be a discrete series repre-

sentation. Then ĉδ( Jord,σ,ε) = δ( Jord,σ,ĉε). In particular, ResO
SO δ( Jord,σ,ε) is irreducible.

Proof By Lemma 2.3, the irreducibility of ResO
SO δ( Jord,σ,ε) follows once we show

ĉδ( Jord,σ,ε) = δ( Jord,σ,ĉε).

We prove this by induction on | Jordρ|. Since | Jordρ| = 0 just corresponds to σ, we

start the induction with | Jordρ| = 2.

When | Jordρ| = 2, we have either ε = (1, 1) or (−1,−1). By the construction in

[M-T], we have

δ( Jord,σ,ε) →֒ δ([ν
−a1+1

2 ρ, ν
a2−1

2 ρ]) ⋊ σ.
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By duality (cf. Section 2) and [B-J2, Proposition 3.3],

DOδ( Jord,σ,ε)

≤ ζ([ν
−a2+1

2 ρ, ν
a1−1

2 ρ]) ⋊ σ

= L(ν
−a2+1

2 ρ ⊗ · · · ⊗ ν
−a1−1

2 ρ ⊗ (ν
−a1+1

2 ρ × ν
−a1+1

2 ρ)

⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ τ1(ρ; σ))

+ L(ν
−a2+1

2 ρ ⊗ · · · ⊗ ν
−a1−1

2 ρ ⊗ (ν
−a1+1

2 ρ × ν
−a1+1

2 ρ)

⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ τ−1(ρ; σ))

+ L(ν
−a2+1

2 ρ ⊗ · · · ⊗ ν
−a1−1

2
−1ρ ⊗ δ([ν

−a1−1

2 ρ, ν
−a1+1

2 ρ) ⊗ δ([ν
−a1+1

2 ρ, ν
−a1+3

2 ρ)

⊗ · · · ⊗ δ([ν−1ρ, ρ]) ⊗ σ).

Since

π3 = L(ν
−a2+1

2 ρ ⊗ · · · ⊗ ν
−a1−1

2
−1ρ⊗

δ([ν
−a1−1

2 ρ, ν
−a1+1

2 ρ) ⊗ δ([ν
−a1+1

2 ρ, ν
−a1+3

2 ρ) ⊗ · · · ⊗ δ([ν−1ρ, ρ]) ⊗ σ)

is the unique irreducible quotient, Frobenius reciprocity implies

µ∗(π3) ≥ ζ([ν
−a1+1

2 ρ, ν
a2−1

2 ρ]) ⊗ σ.

Therefore, µ∗(DOπ3) ≥ δ([ν
−a2+1

2 ρ, ν
a1−1

2 ρ]) ⊗ σ. Since a1 < a2, we see that DOπ3 is

not square-integrable (the Casselman criterion). Therefore, we have

DO

(
δ( Jord,σ,ε)

)
=

L(ν
−a2+1

2 ρ⊗· · ·⊗ν
−a1−1

2 ρ⊗ (ν
−a1+1

2 ρ×ν
−a1+1

2 ρ)⊗· · ·⊗ (ν−1ρ×ν−1ρ)⊗τi(ρ; σ))

for some i =∈ {±1}. By Lemma 5.1(iii), ĉτi(ρ; σ) = τ−i(ρ; σ). Therefore, by

Lemma 2.4(iv), we have

ĉL(ν
−a2+1

2 ρ⊗· · ·⊗ν
−a1−1

2 ρ⊗(ν
−a1+1

2 ρ×ν
−a1+1

2 ρ)⊗· · ·⊗(ν−1ρ×ν−1ρ)⊗τ1(ρ; σ)) =

L(ν
−a2+1

2 ρ ⊗ · · · ⊗ ν
−a1−1

2 ρ ⊗ (ν
−a1+1

2 ρ × ν
−a1

2 ρ)

⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ τ−1(ρ; σ)).

Since ĉ ◦ DO = DO ◦ ĉ (cf. Lemma 2.4(iii)), we then have ĉδ( Jord,σ,ε) = δ( Jord,σ,ĉε),

finishing the case | Jordρ| = 2 and the basis step.

We now move to the inductive step, assuming the theorem holds for | Jordρ| =

k = 2m, m > 1, and showing it holds for | Jordρ| = 2m + 2.
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Let ( Jord, σ, ε) be an admissible triple with ε = (c1, . . . , c2m+2). Since there are

no nontrivial alternating triples, we must have ci = ci+1 for some i. We consider two

cases, depending on whether or not there is more than one such i.

Case 1: ci = ci+1 and c j = c j+1 for some i 6= j

Let ε1 = ε = (c1, . . . , c2m+2) and set

ε2 = (c1, . . . , ci−1,−ci ,−ci+1, ci+2, . . . , c2m+2)

and

ε3 = (c1, . . . , c j−1,−c j ,−c j+1, c j+2, . . . , c2m+2)

(i.e., changing the signs of the i, i +1 and j, j +1 entries, respectively). By Lemma 6.1,

( Jord, σ, εℓ), ℓ = 1, 2, 3, are all admissible; let δℓ = δ( Jord,σ,εℓ). Now, set

ε∗ = (c1, . . . , ci−1, ci+2, . . . , c2m+2) and ε∗∗ = (c1, . . . , c j−1, c j+2, . . . , c2m+2)

(i.e., deleting the i, i + 1 and j, j + 1 entries, respectively). By [M-T, Lemma 5.1], we

have

δ1, δ2 →֒ δ([ν
−ai +1

2 ρ, ν
ai+1−1

2 ρ]) ⋊ δ( Jord∗,σ,ε∗)

and

δ1, δ3 →֒ δ([ν
−a j +1

2 ρ, ν
a j+1−1

2 ρ]) ⋊ δ( Jord∗∗,σ,ε∗∗),

where Jord∗
= Jord \ {(ρ, ai), (ρ, ai+1)}, Jord∗∗

= Jord \ {(ρ, a j), (ρ, a j+1)} and

ε∗, ε∗∗ are the restrictions above (noting that the resulting triples are admissible). By

the inductive hypothesis,

ĉδ( Jord∗,σ,ε∗) = δ( Jord∗,σ,ĉε∗) and ĉδ( Jord∗∗,σ,ε∗∗) = δ( Jord∗∗,σ,ĉε∗∗).

Therefore, (cf. Lemma 2.4)

ĉδ1, ĉδ2 →֒ ĉ
(

δ
([

ν
−ai +1

2 ρ, ν
ai+1−1

2 ρ
])

⋊ δ( Jord∗,σ,ε∗)

)

∼= δ
([

ν
−ai +1

2 ρ, ν
ai+1−1

2 ρ
])

⋊ ĉδ( Jord∗,σ,ε∗)

∼= δ
([

ν
−ai +1

2 ρ, ν
ai+1−1

2 ρ
])

⋊ δ( Jord∗,σ,ĉε∗).

Similarly,

ĉδ1, ĉδ3 →֒ δ
([

ν
−ai +1

2 ρ, ν
ai+1−1

2 ρ
])

⋊ δ( Jord∗∗,σ,ĉε∗∗).

[M-T, Lemma 5.1] applied directly to δ( Jord,σ,ĉε) tells us

δ( Jord,σ,ĉε1), δ( Jord,σ,ĉε2) →֒ δ
([

ν
−ai +1

2 ρ, ν
ai+1−1

2 ρ
])

⋊ δ( Jord∗,σ,ĉε∗)

and

δ( Jord,σ,ĉε1), δ( Jord,σ,ĉε3) →֒ δ
([

ν
−a j +1

2 ρ, ν
a j+1−1

2 ρ
])

⋊ δ( Jord∗∗,σ,ĉε∗∗).
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It then follows that

{ĉδ1, ĉδ2} = {δ( Jord,σ,ĉε1), δ( Jord,σ,ĉε2)} and {ĉδ1, ĉδ3} = {δ( Jord,σ,ĉε1), δ( Jord,σ,ĉε3)}.

Therefore, ĉδ1 = ĉδ( Jord,σ,ε1) = δ( Jord,σ,ĉε1), as needed for Case 1. Further, and this

is needed in Case 2 below, we can also conclude ĉδi = ĉδ( Jord,σ,εi ) = δ( Jord,σ,ĉεi ) for

i = 2, 3 as well.

Case 2: ci = ci+1 and c j 6= c j+1 for all j 6= i

We remark that in this case, we cannot compare two different induced represen-

tations containing δ( Jord,σ,ε) as we did in Case 1. Instead, we essentially realize this as

the δ2 from Case 1.

First, we claim that i 6= 1, 2m + 1. If i = 1, the only triple subordinate to

( Jord, σ, ε) would be ( Jord ′, σ, ε ′), where ε ′
= (c3, c4, . . . , c2m+2) and Jord ′

=

Jord \ {(ρ, 2a1 + 1), (ρ, 2a2 + 1)}. Since c j 6= c j+1 for all j 6= 1 and m > 1, we

have ( Jord ′, σ, ε ′) a nontrivial alternating triple, a contradiction. A similar argu-

ment shows i 6= 2m + 1. Therefore, ε = (c1, . . . , ci−1, ci , ci+1, ci+2, . . . , c2m+2) with

(c1, . . . , ci−1) and (ci+2, . . . , c2m+2) alternating. Further, by the Case 2 assumption,

we must have ci−1 = ci+2 = −ci = −ci+1.

Set ε2 = ε and ε1 = (c1, . . . , ci−1,−ci ,−ci+1, ci+2, . . . , c2m+2). Then ( Jord, σ, ε1)

is an admissible triple which falls under Case 1. Further, ( Jord, σ, ε2) is exactly the

admissible triple for δ2 in Case 1. Therefore, by the results of Case 1, we have

ĉδi = ĉδ( Jord,σ,εi ) = δ( Jord,σ,ĉεi )

for i = 1, 2, as needed.

The theorem now follows from induction.

7 The Case σ = ĉσ with ρ Satisfying (1.1), Part II: Admissible
Representations

In this section, we consider the question of when an irreducible π ∈ R((ρ, α); σ)

has ResO
SO π irreducible, or equivalently, when ĉπ ∼= π. In the previous section, we

showed that if π is a non-supercuspidal discrete series, then ĉπ 6∼= π. In the general

case, the answer is not so simple. For π ∈ R((ρ, α); σ), the answer depends on α.

We use the result for discrete series and the classification of irreducible tempered

representations in terms of discrete series to deal with the case of π tempered. We

then use the result for tempered representations and the Langlands classification to

deal with π irreducible admissible.

Note 7.1 When ρ ⋊ σ is reducible, which includes the situation under considera-

tion, R((ρ, α); σ) contains non-supercuspidal discrete series (i.e., other than σ) only

for α = 0, and non-supercuspidal tempered representations only for α = 0, 1
2
.

Proposition 7.2 Suppose σ ∼= ĉσ and ρ satisfies (1.1), i.e., ρ ∼= ρ̃ and ρ is a represen-

tation of GL(m, F) with m odd.
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(i) If τ ∈ R((ρ, 1
2
); σ) is a non-supercuspidal, irreducible, tempered representation,

then ĉτ ∼= τ . In particular, ResO
SO τ is reducible.

(ii) If τ ∈ R((ρ, 0); σ) is a non-supercuspidal, irreducible, tempered representation,

then ĉτ 6∼= τ . In particular, ResO
SO τ is irreducible.

Proof We start with (i). Suppose a ∈ N. By [B-J2, Proposition 3.3], we have

ζ([ν−a+ 1
2 ρ, νa− 1

2 ρ]) ⋊ σ is irreducible. It then follows from duality (cf. Section 2)

that δ([ν−a+ 1
2 ρ, νa− 1

2 ρ]) ⋊ σ is irreducible. Now, by the classification of irreducible

tempered representations, we have

τ →֒ δ1 × · · · × δℓ ⋊ σ

for some discrete series δ1, . . . , δℓ (noting we must have σ as the O(2n, F) repre-

sentation as R((ρ, 1
2
); σ) admits no non-supercuspidal discrete series). To have τ ∈

R((ρ, 1
2
); σ), we must have δi = δ([ν−ai +

1
2 ρ, νai−

1
2 ρ]), ai ∈ Z, for i = 1, . . . , ℓ. Thus

δi ⋊ σ is irreducible for all i. By [G2], we then have δ1 × · · · × δℓ ⋊ σ irreducible, so

τ = δ1 × · · · × δℓ ⋊ σ.

Since ĉσ ∼= σ, we have (as in the proof of Lemma 5.1)

δ1 × · · · × δℓ ⋊ σ ∼= IndO
SO(δ1 × · · · × δℓ ⋊ σ0),

with σ0 ≤ ResO
SO σ irreducible. Therefore, δ1 ×· · ·× δℓ ⋊σ0 (necessarily irreducible)

induces irreducibly. Part (i) now follows from Lemma 2.3.

We now turn to (ii). Note that if τ is square-integrable, the result follows from

Theorem 6.5. If not, we have τ →֒ δ1 × · · · × δℓ ⋊ δ with δ1, . . . , δℓ discrete series of

general linear groups and δ a discrete series in R((ρ, 0); σ).

If δ 6= σ, then ĉδ 6∼= δ (cf. Theorem 6.5). Now, by Lemma 2.4(i), ĉτ →֒ δ1 × · · · ×
δℓ ⋊ ĉδ. The uniqueness up to conjugacy of the inducing data in the classification

of irreducible tempered representations (see the appendix) then implies that ĉτ 6∼= τ
(since ĉδ 6∼= δ).

This reduces us to the case δ = σ. We start with the case ℓ = 1. First, we note that

for a ∈ Z with a ≥ 0, we have (see [B-J2, Proposition 3.3])

ζ([ν−aρ, νaρ]) ⋊ σ ∼= L((ν−aρ × ν−aρ) ⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ τ1(ρ; σ))

⊕ L((ν−aρ × ν−aρ) ⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ τ−1(ρ; σ)).

By Lemma 2.4(iv) and Lemma 5.1(iii), we have

ĉL((ν−aρ × ν−aρ) ⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ τi(ρ; σ))

∼= L((ν−aρ × ν−aρ) ⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ ĉτi(ρ; σ))

∼= L((ν−aρ × ν−aρ) ⊗ · · · ⊗ (ν−1ρ × ν−1ρ) ⊗ τ−i(ρ; σ)).
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Therefore, if we write

δ([ν−aρ, νaρ]) ⋊ σ ∼= T1([ν−aρ, νaρ]; σ) ⊕ T−1([ν−aρ, νaρ]; σ),

duality (cf. section 2) tells us

ĉTi([ν−aρ, νaρ]; σ) ∼= T−i([ν−aρ, νaρ]; σ).

The case ℓ = 1 follows.

Now, suppose ℓ > 1. Then

τ →֒ δ1 × · · · × δℓ−1 ⋊ (δℓ ⋊ σ)

®¶

τ →֒ δ1 × · · · × δℓ−1 ⋊ Ti(δℓ; σ)

for some i, where we write δℓ ⋊ σ ∼= T1(δℓ; σ) ⊕ T−1(δℓ; σ). It follows from the fact

that δ1 × · · · × δℓ−1 × δℓ ⋊ σ decomposes with multiplicity one (cf. [G2]) that δ1 ×
· · ·×δℓ−1 ⋊T1(δℓ; σ) and δ1×· · ·×δℓ−1 ⋊T−1(δℓ; σ) ∼= ĉ(δ1×· · ·×δℓ−1 ⋊T1(δℓ; σ))

have no components in common. Since

τ →֒ δ1 × · · · × δℓ−1 ⋊ Ti(δℓ; σ) and ĉτ →֒ ĉ(δ1 × · · · × δℓ−1 ⋊ Ti(δℓ; σ)),

we see that ĉτ 6∼= τ , as needed.

Proposition 7.3 Suppose σ ∼= ĉσ and ρ satisfies (1.1). Let π ∈ R((ρ, α); σ) be a

non-supercuspidal, irreducible, admissible representation.

(i) If α 6= 0, then ĉπ ∼= π. In particular, ResO
SO π is reducible.

(ii) If α = 0, write π = L(νx1τ1⊗· · ·⊗νxℓτℓ⊗τ ). Then ĉπ ∼= π if and only if τ = σ.

In particular, ResO
SO π is reducible if and only if τ = σ.

Proof By Lemma 2.4(iv),

ĉL(νx1τ1 ⊗ · · · ⊗ νxℓτℓ ⊗ τ ) ∼= L(νx1τ1 ⊗ · · · ⊗ νxℓτℓ ⊗ ĉτ ).

If α 6∈ {0, 1
2
}, then τ = σ (since there are no non-supercuspidal tempered repre-

sentations except when α ∈ {0, 1
2
}) and (i) is immediate. If α ∈ {0, 1

2
}, (ii) follows

from Proposition 7.2.

8 Discrete Series for SO(2n, F) via Restriction

In this section, we classify the non-supercuspidal discrete series for SO(2n, F)

(cf. Theorem 8.4). In particular, we combine the results from the previous sections to
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give a characterization in terms of restrictions from O(2n, F). Note that in Sections

10 and 11, these results are reformulated in terms of admissible triples for SO(2n, F).

We start with the notion of partial cuspidal support for representations of special

orthogonal groups, which plays an important role in Theorem 8.4 and the results of

Sections 10 and 11. Let π0 be an irreducible admissible representation of SO(2n, F).

Suppose π0 is not supercuspidal. If there is a standard Levi M having rM,Gπ0 ≥
νx1ρ1 ⊗ · · · ⊗ νxℓρℓ ⊗ σ0 with ρ1, . . . , ρℓ, σ0 supercuspidal, we say that σ0 is in the

partial cuspidal support of π0. In particular, if there is a standard Levi factor M

having rM,Gπ ≥ νx1ρ1 ⊗ · · · ⊗ νxℓρℓ (resp., rM,Gπ ≥ c(νx1ρ1 ⊗ · · · ⊗ νxℓρℓ)) with

ρ1, . . . , ρℓ supercuspidal, we say 1 ⊗ e (resp., 1 ⊗ c) is in the partial cuspidal support

of π0. Let π be an irreducible representation of O(2n, F) such that ResO
SO π ≥ π0.

If σ is the partial cuspidal support of π, then any σ0 in the partial cuspidal support

of π0 must satisfy σ0 ≤ ResO
SO σ–an easy consequence of the observation rM0,G0π0 ≤

rM0,G0 ◦ ResO
SO π = ResO

SO ◦rM,Gπ. In particular, the only possibilities are that there

is a unique such σ0 in the partial cuspidal support, or the partial cuspidal support is

{σ0, cσ0} with cσ0 6∼= σ0. The following example shows that the latter can occur.

Example 8.1 Suppose σ ∼= ĉσ and (ρ, σ) satisfies (1.1). Write ResO
SO σ ∼= σ0 ⊕ cσ0,

where cσ0 6∼= σ0. For a ∈ N, let δη = δ([νρ, νaρ]; τη(ρ; σ)), η ∈ {±1} be the discrete

series representations defined in Section 3. These are dual in the sense of [Aub, S-

S] (cf. [J4] for O(2n, F)) to the generalized degenerate principal series subquotients

L(ν−aρ⊗ν−a+1ρ⊗· · ·⊗ν−1ρ⊗τη(ρ; σ)) (cf. [B-J2, Proposition 3.3]). It follows that

ĉδη
∼= δ−η (cf. Lemma 2.4(iv) and Lemma 5.1(iii)) and their Jacquet modules have

rM,Gδη = νaρ⊗νa−1ρ⊗· · ·⊗νρ⊗ρ⊗σ for the appropriate M. (These are similar to

the generalized Steinberg representations of [Mu3], but fall short of his definition as

the first such representations in the families–τη(ρ; σ)–are not discrete series.) Then

ResO
SO δ1 = ResO

SO δ−1 = δ0 a discrete series representation for SO(2n, F). Therefore,

rM0,G0δ0
∼= ResO

SO ◦rM,Gδη
∼= ResO

SO(νaρ ⊗ · · · ⊗ ρ ⊗ σ)

∼= (νaρ ⊗ · · · ⊗ ρ ⊗ σ0) ⊕ (νaρ ⊗ · · · ⊗ ρ ⊗ cσ0).

In particular, δ0 is a discrete series for SO(2n, F) that has {σ0, cσ0} for its partial

cuspidal support.

Lemma 8.2 Let π →֒ νx1ρ1 × · · · × νxkρk ⋊ σ0 be an irreducible representation of

SO(2n, F), where ρ1, . . . , ρk (not necessarily distinct) are irreducible, unitary, supercus-

pidal representations of GL(m1, F), . . . , GL(mk, F) (resp., x1, . . . , xk ∈ R), and σ0 an

irreducible supercuspidal representation of SO(2m, F).

(i) If σ0
∼= cσ0, then π has partial cuspidal support σ0.

(ii) If σ0 6∼= cσ0 and m1, . . . , mk are all even, then π has partial cuspidal support σ0.

(iii) If σ0 6∼= cσ0 and some mi is odd, then π has partial cuspidal support {σ0, cσ0}.

Proof Part (i) is clear. Part (ii) follows from [J5] applied to νx1ρ1 ×· · ·× νxkρk ⋊σ0.

(Roughly speaking, since m1, . . . , mk are all even, there are no leftover sign changes

available to change σ0 to cσ0.)
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For (iii), let i be the largest value for which mi is odd. Then noting that νxi ρi ×
νx j ρ j

∼= νx j ρ j × νxi ρi (by irreducibility), we have

π →֒ νx1ρ1 × · · · × νxkρk ⋊ σ0

®¶

π →֒ νx1ρ1 × · · · × νxi−1ρi−1 × νxi+1ρi+1 × · · · × νxkρk × νxi ρi ⋊ σ0

(cf. [J1, Lemma 5.5])®¶

π →֒ νx1ρ1 × · · · × νxi−1ρi−1 × νxi+1ρi+1 × · · · × νxkρk ⋊ θ

for some irreducible θ ≤ νxi ρi ⋊σ0. By Proposition 2.5, θ = νxi ρi ⋊σ0. Since νxi ρi ⋊

σ0 contains both σ0 and cσ0 in its supercuspidal support, the result follows.

Definition 8.3 Let ( Jord, σ, ε) be an admissible triple.

(i) If ĉσ 6∼= σ, we define ĉ( Jord, σ, ε) = ( Jord, ĉσ, ε).
(ii) If ĉσ ∼= σ, we define ĉ( Jord, σ, ε) = ( Jord, σ, ĉε), where ĉε is given by

ĉε(ρ, a) =

{

−ε(ρ, a) if ρ satisfies (1.1),

ε(ρ, a) if not,

and ε remains unchanged on pairs.

Theorem 8.4 Let ( Jord, σ, ε) ∈ Tripadm. Then ĉδ( Jord,σ,ε) = δĉ( Jord,σ,ε). Further, if

σ0 ≤ ResO
SO σ is irreducible, we have the following:

(i) Suppose ĉσ 6∼= σ. If the discrete series are parameterized as in Remark 4.2, then

ĉ( Jord, σ, ε) 6∼= ( Jord, σ, ε) and

ResO
SO δ( Jord,σ,ε)

∼= ResO
SO δ( Jord,ĉσ,ε)

is a discrete series representation for SO(2n, F) having partial cuspidal support

σ0. Every discrete series representation of an even special orthogonal group having

partial cuspidal support σ0 may be written uniquely this way, up to the choice of σ
or ĉσ.

(ii) Suppose ĉσ ∼= σ and there is no (ρ, a) ∈ Jord with ρ satisfying (1.1). Then

ĉ( Jord, σ, ε) = ( Jord, σ, ε) and

ResO
SO δ( Jord,σ,ε)

∼= δσ0
⊕ δcσ0

,

with cδσ0
∼= δcσ0

, a direct sum of inequivalent discrete series having partial cuspidal

support σ0 and cσ0, resp. Every discrete series representation of an even special or-

thogonal group having partial cuspidal support σ0 or cσ0 may be written uniquely

this way.

(iii) Suppose ĉσ ∼= σ and there is some (ρ, a) ∈ Jord with ρ satisfying (1.1). Then

ĉ( Jord, σ, ε) 6= ( Jord, σ, ε) and

ResO
SO δ( Jord,σ,ε)

∼= ResO
SO δ( Jord,σ,ĉε)



Discrete Series for SO(2n, F) 363

is a discrete series representation for SO(2n, F) having partial cuspidal support

{σ0, cσ0}. Every discrete series representation of an even special orthogonal group

having partial cuspidal support {σ0, cσ0} may be written uniquely this way, up to

the choice of ε or ĉε.

Proof To see that ĉδ( Jord,σ,ε) = δĉ( Jord,σ,ε), observe that by Theorem 2.7(v),

ĉψ(ρ,α)(δ( Jord,σ,ε)) = ψ(ρ,α)(ĉδ( Jord,σ,ε)).

By Remark 4.2 and the fact that Jord(σ) = Jord(ĉσ) (if ĉσ 6∼= σ), Theorem 5.3 (if

ĉσ ∼= σ and (1.1) not satisfied), Theorem 6.5 (if ĉσ ∼= σ and (1.1) satisfied), and

Remark 3.1,

ĉψ(ρ,α)δ( Jord,σ,ε) =







ψ(ρ,α)(δ( Jord,ĉσ,ε)) if σ 6∼= ĉσ,

ψ(ρ,α)(δ( Jord,σ,ε)) if σ ∼= ĉσ and ρ does not satisfy (1.1),

ψ(ρ,α)(δ( Jord,σ,ĉε)) if σ ∼= ĉσ and ρ satisfies (1.1).

It now follows from Remark 3.1 that ĉδ( Jord,σ,ε) = δĉ( Jord,σ,ε).

In (i)–(iii), the equality or inequality of ĉ( Jord, σ, ε) and ( Jord, σ, ε) follows im-

mediately from the discussion above. The reducibility of ResO
SO δ( Jord,σ,ε) is then an

immediate consequence of Lemma 2.3; square-integrability of the components is au-

tomatic. The supercuspidal support claims are covered by Lemma 8.2. The fact that

any discrete series of SO(2n, F) with the given properties may be written uniquely as

such a restriction is a straightforward consequence of Lemma 2.3.

9 Restrictions of Irreducible Admissible Representations

In this section, we address the general question of when an irreducible admissible

representation of O(2n, F) has ResO
SO π reducible. Proposition 9.1 addresses the case

π tempered, using the classification of tempered representations to reduce to a cor-

responding question about discrete series (covered by Theorem 8.4). Proposition 9.2

uses the Langlands classification to address the admissible case, which easily reduces

to a corresponding question about tempered representations (covered by Proposition

9.1)

Proposition 9.1 Let τ be an irreducible tempered representation of O(2n, F). Write

τ →֒ δ1 × · · · × δk ⋊ δ,

with δ1, . . . , δk discrete series for general linear groups and δ a discrete series represen-

tation for an orthogonal group (possibly δ = 1).

(i) If ĉδ 6∼= δ, then ĉτ 6∼= τ . In particular, ResO
SO τ is irreducible.

(ii) If ĉδ ∼= δ, then ĉτ ∼= τ if and only if no δi has the form δ([ν−aρ, νaρ]) with

a ∈ N ∪ {0} and ρ satisfying (1.1). In particular, ResO
SO τ is reducible if and only

if no δi has this form.

Note that the question of whether ĉδ ∼= δ can be addressed using Theorem 8.4.
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Proof Part (i) follows from an argument like that used in the proof of Proposition

7.2. By Lemma 2.4(i),

ĉτ →֒ ĉ(δ1 × · · · × δk ⋊ δ) ∼= δ1 × · · · × δk ⋊ ĉδ.

Since ĉδ 6∼= δ, it follows from the appendix that δ1 ×· · ·×δk ⋊δ and δ1 ×· · ·×δk ⋊ ĉδ
have no irreducible subquotients in common, so ĉτ 6∼= τ .

For (ii), observe that ĉδ ∼= δ implies ĉσ ∼= σ (cf. Theorem 8.4). Now, first sup-

pose some δi
∼= δ([ν−aρ, νaρ]), with a ∈ N ∪ {0} and ρ satisfying (1.1). Then by

Proposition 7.2(ii), ψ(ρ,0)(τ ) (cf. Section 2) has ĉψ(ρ,0)(τ ) 6∼= ψ(ρ,0)(τ ). Therefore, by

Theorem 2.7(v) ĉτ 6∼= τ . Now, suppose no δi has this form. Then for any (ρ, α) hav-

ing ψ(ρ,α)(τ ) nontrivial (i.e., not σ), we claim ĉψ(ρ,α)(τ ) ∼= ψ(ρ,α)(τ ). If ρ does not

satisfy (1.1), the claim follows from Theorem 5.3; if ρ satisfies (1.1), it follows from

Proposition 7.2(i). The result now follows from Theorem 2.7(v).

Proposition 9.2 Let π be an irreducible admissible representation of O(2n, F). Write

π = L(νx1τ1 ⊗ · · · ⊗ νxkτk ⊗ τ )

(the Langlands classification; cf. Section 2). Then ĉπ ∼= π, and in particular, ResO
SO π

is reducible if and only if ĉτ ∼= τ . Note that the question of whether ĉτ ∼= τ may be

addressed using Proposition 9.1.

Proof This follows immediately from Lemma 2.4(iv).

10 Admissible Triples for SO(2n, F)

In this section, we define admissible triples for SO(2n, F). Theorem 10.7 establishes

an explicit bijective correspondence between admissible triples for SO(2n, F), mod-

ulo an equivalence relation ∼, and discrete series for SO(2n, F). The correspondence

in Theorem 10.7 is described via restrictions of discrete series for O(2n, F). In the

next section, we characterize the correspondence along the lines of [M-T], without

reference to representations of O(2n, F).

We take a moment to give a general discussion motivating our definition.

First, suppose we have σ 6∼= ĉσ. By Theorem 8.4(i), the discrete series for special

orthogonal groups having partial cuspidal support σ0 may be parameterized by the

admissible triples ( Jord, σ, ε) (or ( Jord, ĉσ, ε)). Thus, in this case, our goal is essen-

tially to replace σ (or ĉσ) by σ0 in the definition of admissible triple; i.e., we want

to retain the same combinatorial conditions on Jord and ε but reformulate them in

terms of σ0.

Now, suppose we have σ ∼= ĉσ but (1.1) not satisfied. By Theorem 8.4(ii), the

discrete series having partial cuspidal support σ0 (resp., cσ0) may be parameterized

by the admissible triples having partial cuspidal support σ. (Recall that for σ0 = 1⊗e

or σ0 = 1 ⊗ c, this should be interpreted as in Section 8.) Thus, again our goal is

essentially to keep the same definition of admissible triple, but with σ0 (resp., cσ0)

replacing σ.
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The case σ ∼= ĉσ and (1.1) introduces a new issue. By Theorem 8.4(iii), the

discrete series having partial cuspidal support {σ0, cσ0} may be parameterized by

the admissible triples ( Jord, σ, ε) modulo ∼, where ( Jord, σ, ε) ∼ ( Jord ′, σ ′, ε ′) if

Jord ′
= Jord, σ ′

= σ, and ε ′
= ε or ĉε. Here, we again want to replace σ by σ0

in the definition of admissible triple, but also need to introduce a quotient by ∼ in

formulating the bijective correspondence.

To work without reference to representations of O(2n, F), we must first reformu-

late the definition of Jord(δ) to obtain a corresponding definition for Jord(δ0), where

δ0 ≤ ResO
SO δ are discrete series representations. The following lemma indicates the

changes needed.

Lemma 10.1 Suppose δ0 ≤ ResO
SO δ are discrete series. Then δ([ν− (a−1)

2 ρ, ν
(a−1)

2 ρ]) ⋊

δ is irreducible if and only if the following hold:

(i) δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ0 is irreducible.

(ii) If δ0 6∼= cδ0, then δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ0 6∼= c(δ([ν− (a−1)

2 ρ, ν
(a−1)

2 ρ]) ⋊ δ0).

Proof First, suppose δ0 6∼= cδ0. Then δ ∼= IndO
SO δ0, so we have

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ ∼= IndO

SO

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

.

Now, suppose δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ is irreducible. It is then immediate that

δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ0 must be irreducible, so (i) holds. Further, it must also

induce irreducibly to O(2n, F), from which we see that

c
(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

6∼= δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0,

so that (ii) holds. In the other direction, suppose (i) and (ii) hold. Then

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

is an irreducible representation having

c
(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

6∼= δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0.

Therefore, it induces irreducibly to O(2n, F), so

IndO
SO

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

∼= δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ

is irreducible, as needed.

Now, suppose δ0
∼= cδ0. We note that in this case, condition (ii) does not arise.

We also observe that δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ ĉδ ∼= ĉ(δ([ν− (a−1)

2 ρ, ν
(a−1)

2 ρ]) ⋊ δ)

(cf. Lemma 2.4(i)), so δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ is irreducible if and only if

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ ĉδ
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is. First, suppose that δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ0 is irreducible. Since

IndO
SO

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

has at most two components and is equivalent to

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ

)

⊕
(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ ĉδ

)

,

we see that δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ is irreducible. In the other direction, suppose

δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ is irreducible. Since ĉδ 6∼= δ, it follows from the appendix

that

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ 6∼= δ

([
ν− (a−1)

2 ρ, ν
(a−1)

2 ρ
])

⋊ ĉδ

∼= ĉ
(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ

)

.

Therefore, by Lemma 2.3, ResO
SO(δ([ν− (a−1)

2 ρ, ν
(a−1)

2 ρ]) ⋊ δ) is irreducible. Therefore,

ResO
SO ◦ IndO

SO

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

∼= ResO
SO

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ

)

⊕
(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ ĉδ)

)

has two components. Now (cf. [B-J2, Lemma 4.1]),

ResO
SO ◦ IndO

SO

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

∼=

(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

⊕ c
(

δ
([

ν− (a−1)
2 ρ, ν

(a−1)
2 ρ

])
⋊ δ0

)

.

Thus δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ0 must be irreducible, as needed.

Let δ0 be a discrete series representation for SO(2n, F). Jord(δ0) is defined to be

the set of pairs (ρ, a) having ρ ∼= ρ̃ and a ∈ N that satisfy the following:

(i) a is even if and only if the L-function L(ρ, Rd, s) has a pole at s = 0. (Again, for

ρ a representation of GL(d, F), L(ρ, Rd, s) is the L-function defined by Shahidi,

where Rd is the representation of GL(d, C) on ∧2
C

d).

(ii) δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ0 is irreducible.

(iii) If δ0 6∼= cδ0, then δ([ν− (a−1)
2 ρ, ν

(a−1)
2 ρ]) ⋊ δ0 6∼= c(δ([ν− (a−1)

2 ρ, ν
(a−1)

2 ρ]) ⋊ δ0).

Note that for Σ0 = {σ0, cσ0}, we define Jord(Σ0) = Jord(σ0) = Jord(cσ0) (not-

ing that the last two sets are clearly equal). The following is an immediate conse-

quence of Lemma 10.1.

Corollary 10.2 Jord(δ0) = Jord(δ).
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We are now ready to define TripSO. Again, for convenience, we use representations

in the following description of admissible triples when we actually want equivalence

classes of representations; the reader should interpret the discussion below accord-

ingly. TripSO is the collection of all triples ( Jord,Σ0, ε) that satisfy the following:

(i) Jord is a finite (possibly empty) set of pairs (ρ, a), where ρ is an irreducible,

unitary, supercuspidal representation of a general linear group having ρ̃ ∼= ρ,

and a ∈ N with a even if and only if L(s, ρ, Rdρ
) has a pole at s = 0.

(ii) If Jord does not satisfy (1.1) (i.e., there is no (ρ, a) ∈ Jord with ρ satisfying

(1.1)), then Σ0 = {σ0}, where σ0 is an irreducible, unitary, supercuspidal repre-

sentation of some SO(2n, F), n 6= 1. If Jord satisfies (1.1), then Σ0 = {σ0, cσ0}
(noting that if cσ0

∼= σ0, we again have Σ0 = {σ0}). When Σ0 consists of a sin-

gle element σ0, we will normally write ( Jord, σ0, ε) rather than ( Jord, {σ0}, ε)

for the triple.

(iii) ε : S → {±1} is a function on a subset S ⊂ Jord∪( Jord× Jord) (defined below)

and satisfying conditions (a)–(c) below.

Let us start by describing the domain S of ε. S contains all (ρ, a) ∈ Jord except those

having a odd and (ρ, a ′) ∈ Jord(Σ0) for some a ′ ∈ N; S contains
(
(ρ, a), (ρ ′, a ′)

)
∈

Jord × Jord when ρ ∼= ρ ′ and a 6= a ′. Several compatibility conditions must also be

satisfied:

(a) if (ρ, a), (ρ, a ′) ∈ S, we must have ε
(
(ρ, a), (ρ, a ′)

)
= ε(ρ, a)ε−1(ρ, a ′);

(b)

ε
(
(ρ, a), (ρ, a ′ ′)

)
= ε

(
(ρ, a), (ρ, a ′)

)
ε
(
(ρ, a ′), (ρ, a ′ ′)

)

for all (ρ, a), (ρ, a ′), (ρ, a ′ ′) ∈ Jord having a, a ′, a ′ ′ distinct; and

(c) ε
(
(ρ, a), (ρ, a ′)

)
= ε

(
(ρ, a ′), (ρ, a)

)
for all

(
(ρ, a), (ρ, a ′)

)
∈ S.

We follow the notation of [M-T] and, in light of (i) above, write ε(ρ, a)ε−1(ρ, a ′) for

ε
(
(ρ, a), (ρ, a ′)

)
even when ε is undefined on (ρ, a) and (ρ, a ′) separately (i.e., even

when (ρ, a) and (ρ, a ′) are not in S).

Let σ0 ∈ Σ0. In what follows, we let σ be a component of IndO
SO σ0 (making a

choice, if necessary). The possible σ do not depend on the choice of σ0 ∈ Σ0.

Lemma 10.3 ( Jord, σ, ε) ∈ TripO if and only if ( Jord,Σ0, ε) ∈ TripSO.

Proof This follows immediately from the definitions and the fact that Jord(σ) =

Jord(Σ0) (cf. Corollary 10.2).

We now discuss triples of alternated type. Suppose (ρ, a) ∈ Jord. We again define

(ρ, a−) by taking a− = max{a ′ ∈ N | (ρ, a ′) ∈ Jord and a ′ < a} (noting that

(ρ, a−) may be undefined). Also, let us write Jordρ = {(ρ ′, a) ∈ Jord | ρ ′ ∼= ρ},

Jordρ(Σ0) = {(ρ ′, a) ∈ Jord(Σ0) | ρ ′ ∼= ρ}, and

Jord ′
ρ(Σ0) =

{

Jordρ(Σ0) ∪ {(ρ, 0)} if a is even and ε(ρ, min Jordρ) = 1,

Jordρ(Σ0) otherwise.

We call ( Jord,Σ0, ε) ∈ TripSO a triple of alternated type if the following hold: (i)

ε(ρ, a)ε(ρ, a−)−1
= −1 whenever (ρ, a−) is defined, and (ii) | Jordρ| = | Jord ′

ρ(Σ0)|.
We write TripSO,alt for the subset of all alternated triples in TripSO.
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Lemma 10.4 ( Jord, σ, ε) ∈ TripO,alt if and only if ( Jord,Σ0, ε) ∈ TripSO,alt.

Proof It follows immediately from Corollary 10.2 that Jord ′(σ) = Jord ′(Σ0). The

lemma now follows from the definitions.

This brings us to admissible triples. Here we observe a difference with the case

of O(2n, F), owing to the dependence of Σ0 on Jord (in particular, on whether (1.1)

holds). First, suppose ( Jord,Σ0, ε) ∈ Trip has (ρ, a) ∈ Jord with (ρ, a−) defined

and ε(ρ, a)ε(ρ, a−)−1
= 1. Set Jord ′

= Jord \ {(ρ, a), (ρ, a−)} and let ε ′ be the

restriction of ε to S ∩ [ Jord ′ ∪ ( Jord ′ × Jord ′)]. If Jord satisfies (1.1) but Jord ′ does

not, let Σ
′
0 = {σ0} (i.e., choose an element of Σ0); otherwise, let Σ

′
0 = Σ0. One

can check that ( Jord ′, σ, ε ′) ∈ TripSO. We say that ( Jord ′,Σ ′
0, ε

′) is subordinated

to ( Jord,Σ0, ε). We say the triple ( Jord,Σ0, ε) is admissible if there is a sequence of

triples ( Jordi ,Σ
(i)
0 , εi), 1 ≤ i ≤ k, such that (i) ( Jord1,Σ

(1)
0 , ε1) = ( Jord,Σ0, ε), (ii)

( Jordi+1,Σ
(i+1)
0 , εi+1) is subordinated to ( Jordi ,Σ

(i)
0 , εi) for all 1 ≤ i ≤ k−1, and (iii)

( Jordk,Σ
(k)
0 , εk) is of alternated type. Note that the choice of σ0 ∈ Σ0 that may need

to be made does not affect admissibility since ( Jord, σ0, ε) ∈ TripSO (resp., TripSO,alt)

if and only if ( Jord, cσ0, ε) ∈ TripSO (resp., TripSO,alt). If a choice is required at the

j-th step, one can replace ( Jordi , σ0, εi) for i ≥ j with ( Jordi , cσ0, εi) and still satisfy

the conditions for admissibility (in fact, one can show that the choice made does

not matter). Let us call such a sequence of triples an admissible sequence. We write

TripSO,adm for the set of admissible triples.

Lemma 10.5 ( Jord, σ, ε) ∈ TripO,adm if and only if ( Jord,Σ0, ε) ∈ TripSO,adm.

Proof It is a routine matter to check that if the sequence ( Jordi , σ, εi) satisfies the

conditions needed to have ( Jord, σ, ε) admissible, then the corresponding sequence

( Jordi ,Σ
(i)
0 , εi) satisfies the conditions for ( Jord,Σ0, ε) to be admissible (noting that

( Jordk, σ, εk) ∈ TripO,alt if and only if ( Jordk,Σ
(k)
0 , εk) ∈ TripSO,alt by Lemma 10.4).

We now turn to the task of classifying discrete series for SO(2n, F), n 6= 1, using

admissible triples to parameterize them. More precisely, we use TripSO,adm /∼, where

the equivalence relation ∼ is defined below:

Definition 10.6 We define the equivalence relation ∼ on TripSO by setting

( Jord,Σ0, ε) ∼ ( Jord ′,Σ ′
0, ε

′) if the following all hold:

(i) Jord = Jord ′,

(ii) Σ0 = Σ
′
0, and

(iii) ε ′
=

{

ε or ĉε if Σ0 = {σ0, cσ0} (with σ0 6∼= cσ0) and Jord satisfies (1.1)

ε otherwise.

Here, ĉε is defined as in Definition 8.3(ii).

We remark that the equivalence class containing ( Jord,Σ0, ε) has two elements if

and only if |Σ0| = 2 and there is some ρ ∈ Jord which satisfies (1.1); otherwise, the

equivalence class contains only one element.
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Theorem 10.7 The discrete series representations for SO(2n, F), n 6= 1, are in bijective

correspondence with TripSO,adm /∼. More precisely, we have the following:

(i) If the triple ( Jord, σ0, ε) has cσ0
∼= σ0, then we take

δ( Jord,σ0,ε) = ResO
SO δ( Jord,σ,ε)

(noting that the restriction is irreducible by Theorem 8.4(i)).

(ii) If the triple ( Jord, σ0, ε) has cσ0 6∼= σ0, then we take

δ( Jord,σ0,ε) ≤ ResO
SO δ( Jord,σ,ε),

choosing the component whose partial cuspidal support is σ0 (noting the other

component has partial cuspidal support cσ0; cf. Theorem 8.4(ii)).

(iii) If the triple ( Jord, {σ0, cσ0}, ε) has cσ0 6∼= σ0, then we take

δ( Jord,{σ0,cσ0},ε) = ResO
SO δ( Jord,σ,ε)

(noting that the restriction is irreducible by Theorem 8.4(iii)).

Proof This follows from Theorem 8.4 and Lemma 10.5.

11 Discrete Series for SO(2n, F) via Admissible Triples

Let δ0 be a discrete series representation of SO(2n, F), n 6= 1, and ( Jordδ0
,Σδ0

, εδ0
) ∈

TripSO,adm an admissible triple associated with δ0 by Theorem 10.7 (noting that if Jord

satisfies (1.1), replacing εδ0
by ĉεδ0

will produce a ∼-equivalent associated triple).

Our aim in this section is to describe the data ( Jordδ0
,Σδ0

, εδ0
) in terms of δ0, along

the lines of [M-T, T5, T6].

Let δ be a discrete series representation of O(2n, F) such that δ0 ≤ ResO
SO δ. Write

( Jordδ, σδ, εδ) for its associated admissible triple. Applying Theorem 10.7, the [M-T]

definition (cf. Section 3 of this paper), and Corollary 10.2 successively, we get

Jordδ0
= Jordδ = Jord(δ) = Jord(δ0).

In addition, it follows from Theorem 10.7 that Σδ0
is the partial cuspidal support

of δ0. Thus, all that remains is to describe ε in terms of δ0. To this end, we start with

a lemma.

Lemma 11.1 Let τ be an irreducible admissible representation of GL(m, F), and let

π, π0 be irreducible admissible representations of O(2n, F), SO(2n, F), resp., with π0 ≤
ResO

SO π. Then there is an irreducible representation π ′ of O(2(n − m), F) having π →֒
τ ⋊π ′ if and only if there is an irreducible representation π ′

0 of SO(2(n−m), F) having

π0 →֒ τ ⋊ π ′
0. Note that this includes the possibility that π ′

= 1 and π ′
0 = 1 ⊗ e or

1 ⊗ c.

Proof We prove the case m < n; m = n is essentially the same.
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(⇒): Choose π ′
0 such that π ′ ≤ IndO

SO π ′
0. Then

π →֒ τ ⋊ π ′ →֒ τ ⋊ IndO
SO π ′

0
∼= IndO

SO(τ ⋊ π ′
0)

⇓
π0 →֒ ResO

SO ◦ IndO
SO(τ ⋊ π ′

0) ∼= (τ ⋊ π ′
0) ⊕ c(τ ⋊ π ′

0)

(cf. [B-J2, Lemma 4.1]). Therefore, (cf. Lemma 2.4(i))

π0 →֒ (τ ⋊ π ′
0) ⊕ (τ ⋊ cπ ′

0)

⇓
π0 →֒ τ ⋊ π ′

0 or π0 →֒ τ ⋊ cπ ′
0,

and the result follows.

(⇐): Here, we have

π →֒ IndO
SO π0 →֒ IndO

SO τ ⋊ π ′
0
∼= τ ⋊ IndO

SO π ′
0.

It follows that there is some irreducible π ′ ≤ IndO
SO π ′

0 such that π →֒ τ ⋊ π ′, as

needed.

We note that by Theorem 10.7, we may take εδ0
= εδ (though again, ĉεδ also works

if (1.1) is satisfied). Since ĉεδ and εδ differ only on those (ρ, a) ∈ Jord satisfying

(1.1), we see that εδ0
|S∩( Jord× Jord) does not depend on which is used. It then follows

immediately from the lemma above and (3.1) that

(11.1)
εδ0

(ρ, a)ε−1
δ0

(ρ, a−) = 1

m

there is an irreducible representation δ ′
0 such that δ0 →֒ δ([ν

a
−

+1

2 ρ, ν
a−1

2 ρ]) ⋊ δ ′
0

(noting we could have δ ′
0 = 1 ⊗ e or 1 ⊗ c). By condition (iii)(b) in the defini-

tion of triple (cf. Section 10), this is sufficient to define εδ0
(ρ, a)ε−1

δ0
(ρ, b) for all pairs

((ρ, a), (ρ, b)) ∈ S.

For (ρ, a) ∈ S with a even, we cannot have (1.1) satisfied. Therefore, εδ0
(ρ, a) is

again independent of whether εδ or ĉεδ is used. We again want εδ0
(ρ, a) = εδ(ρ, a).

This may be effected by formally setting εδ0
(ρ, 0) = 1 and using equation (11.1) to

define εδ0
(ρ, a) for (ρ, a) ∈ S.

For (ρ, a) ∈ S with a odd, we can have (ρ, a) satisfying (1.1). In this case, we give

a characterization similar to that of [T5,T6]. Let ρ1, . . . , ρℓ be inequivalent represen-

tations such that the following holds: (ρ, a) ∈ S with a odd if and only if ρ ∼= ρi for

some i. To start, we make a choice of one component

S ≤ ρ1 × · · · × ρℓ ⋊ σ0
∼= ρ1 × · · · × ρℓ ⋊ cσ0.

We remark that when cσ0 6∼= σ0, the equivalence follows from the general observation

that if ρ is a representation of GL(m, F) with m odd, then ρ⊗ cσ0 is a Weyl conjugate

of ρ ⊗ σ0.
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In the case σ0
∼= cσ0, this induced representation has 2ℓ components (cf. [G1,

Theorems 5.16, 5.19, 5.20 (mislabeled), and 6.5]). In the case where σ0 6∼= cσ0 and no

ρi satisfies (1.1), there are also 2ℓ components (cf. [G1, Theorems 5.9, 5.19, and 6.5]).

In these cases, each ρi ⋊ σ0 is reducible; choosing a component of ρ1 × · · · × ρℓ ⋊ σ0

is equivalent to choosing components of ρi ⋊ σ0 for i = 1, . . . , ℓ. In particular, we

have ρi ⋊ σ0
∼= ς1(ρ; σ0) ⊕ ς−1(ρ; σ0), where the components are characterized by

S ≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρℓ ⋊ ς1(ρ; σ0)

and

S 6≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρℓ ⋊ ς−1(ρ; σ0).

In the case where σ0 6∼= cσ0 and some ρi satisfies (1.1), this induced representation

has 2ℓ−1 components (cf. [G1, Theorems 5.8, 5.9, 5.16, 5.19, 6.5, 6.8, and 6.11]).

In this case, for each ρi satisfying (1.1), ρi ⋊ σ0 is irreducible, so we do not have the

option of making the choices separately. We also note that if ℓ = 1, there is no choice

to be made; ρ1 ⋊σ0 is irreducible. (In the corresponding situation for O(2n, F), there

is a choice of components for ρ1 ⋊ σ to be made. Roughly speaking, this choice is

used to distinguish between members of a pair of discrete series, both of which have

the same restriction to SO(2n, F); cf. Theorem 8.4(iii).)

Remark 11.2 For O(2n, F), we fixed a choice of components T ≤ ρ1 ×· · ·×ρℓ ⋊σ
(see the end of Section 3). If we want the parameterizations of discrete series to

behave well with respect to ResO
SO and IndO

SO, we should choose S ≤ ResO
SO T. In what

follows, we assume this holds. In particular, we may choose S arbitrarily and then

make an appropriate choice of T (i.e., T ≤ IndO
SO S).

Lemma 11.3 Suppose δ0, δ are discrete series with δ0 ≤ ResO
SO δ and δ 6∼= 1. For θ

irreducible, we have

ResO
SO(θ ⋊ δ) ∼= θ ⋊ ResO

SO δ ∼=

{

θ ⋊ δ0, if cδ0
∼= δ0,

(θ ⋊ δ0) ⊕ (θ ⋊ cδ0), if cδ0 6∼= δ0.

Proof The first claim follows from [J4, Proposition 3.5] (an extension of [B-Z,

Lemma 2.12] to non-connected groups). The second claim now follows from

Lemma 2.3.

We now break the analysis into three cases, along the same lines as Theorems 8.4

and 10.7.

Case 1. cσ0
∼= σ0: Observe that in this case, if we have chosen T as in Remark 11.2,

then

ResO
SO τη(ρ; σ) = ςη(ρ; σ0)

(by Theorem 4.1). For a ∈ N with a odd and η ∈ {±1}, we claim that

δ([νρ, ν
a−1

2 ρ]) ⋊ ςη(ρ; σ0) has a unique irreducible subrepresentation, which is



372 C. Jantzen

square-integrable. In particular, any irreducible subrepresentation δ0 satisfies

δ0 →֒ δ([νρ, ν
a−1

2 ρ]) ⋊ τη(ρ; σ0)

⇓

IndO
SO δ0 →֒ IndO

SO

(

δ([νρ, ν
a−1

2 ρ]) ⋊ ςη(ρ; σ0)
)

⇓ (cf. Theorem 4.1 and Lemma 2.3)

δ ⊕ ĉδ →֒
(

δ([νρ, ν
a−1

2 ρ]) ⋊ τη(ρ; σ)
)

⊕
(

δ([νρ, ν
a−1

2 ρ]) ⋊ τη(ρ; ĉσ)
)

⇓

δ →֒ δ([νρ, ν
a−1

2 ρ]) ⋊ τη(ρ; σ)) or δ([νρ, ν
a−1

2 ρ]) ⋊ τη(ρ; ĉσ)).

It then follows from Theorem 8.4 that

δ0
∼= ResO

SO δ([νρ, ν
a−1

2 ρ]; τη(ρ; σ)) ∼= ResO
SO δ([νρ, ν

a−1
2 ρ]; τη(ρ; ĉσ)).

The claim then follows. We denote this subrepresentation by

δ0 = δ([νρ, ν
a−1

2 ρ]; ςη(ρ; σ0)).

Lemma 11.4 Let δ and δ0 be discrete series with δ0 ≤ ResO
SO δ. For irreducible θ,

δ →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ]; τη(ρ; σ)) if and only if δ0 →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ]; ςη(ρ; σ0)).

Proof First, by Theorem 8.4, ResO
SO δ ∼= δ0. For (⇒), Lemma 11.3 gives

δ0
∼= ResO

SO δ →֒ ResO
SO

(

θ ⋊ δ
([

νρ, ν
a−1

2 ρ
]

; τη(ρ; σ)
))

∼= θ ⋊ δ
([

νρ, ν
a−1

2 ρ
]

; ςη(ρ; σ0)
)
,

as needed. On the other hand, for (⇐) we have

δ0 →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ]; ςη(ρ; σ0))

⇓

δ ⊕ ĉδ ∼= IndO
SO δ0 →֒

(
θ ⋊ δ([νρ, ν

a−1
2 ρ]; τη(ρ; σ))

)
⊕

(
θ ⋊ δ([νρ, ν

a−1
2 ρ]; τη(ρ; ĉσ))

)

⇓

δ →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ]; τη(ρ; σ))

by partial cuspidal support considerations, as needed.
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In light of Lemma 3.2 and the preceding lemma, we may define εδ0
(ρ, amax) = η if

and only if there is an irreducible θ such that δ0 →֒ θ ⋊ δ([νρ, ν
amax−1

2 ρ]; τη(ρ; σ0)).

Case 2. cσ0 6∼= σ0 and (1.1) not satisfied: Observe that in this case, if we have chosen

T as in Remark 11.2, then

ResO
SO τη(ρ; σ) = ςη(ρ; σ0) ⊕ cςη(ρ; σ0)

(by Lemmas 5.1(ii) and 2.3(i)). An argument similar to that in Case 1 tells us that

for a ∈ N with a odd and η ∈ {±1}, we may define δ([νρ, ν
a−1

2 ρ]; τη(ρ; σ0)) to

be the unique irreducible subrepresentation of δ([νρ, ν
a−1

2 ρ]) ⋊ ςη(ρ; σ0), which is

square-integrable. We note that (cf. Theorem 8.4)

IndO
SO δ([νρ, ν

a−1
2 ρ]; ςη(ρ; σ0)) ∼= IndO

SO δ([νρ, ν
a−1

2 ρ]; ςη(ρ; cσ0))

∼= δ([νρ, ν
a−1

2 ρ]; τη(ρ; σ)).

Lemma 11.5 Let δ and δ0 be discrete series with δ0 ≤ ResO
SO δ. For irreducible θ,

δ →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ]; τη(ρ; σ)) if and only if δ0 →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ]; ςη(ρ; σ0)).

Proof The proof is similar to that of Lemma 11.4.

We remark that the proof uses the assumption that (1.1) is not satisfied (for all of

Jord, not just ρ) in order to apply partial cuspidal support considerations.

Again, in light of Lemmas 3.2 and 11.5, we may define εδ0
(ρ, amax) = η if and only

if there is an irreducible θ such that δ0 →֒ θ ⋊ δ([νρ, ν
amax−1

2 ρ]; τη(ρ; σ0)).

Case 3. cσ0 6∼= σ0 and (1.1) satisfied: In Section 3, we noted that a choice of T

was equivalent to choosing components τ1(ρi ; σ) ≤ ρi ⋊ σ for i = 1, . . . , ℓ. Since

ρi ⋊σ0
∼= ρi ⋊ cσ0 is irreducible for i = 1, . . . , ℓ, we cannot work quite the same way

for SO(2n, F). Instead, we work with ρ1, . . . , ρℓ in pairs. In particular, for 1 ≤ i <
j ≤ k, ρi × ρ j ⋊ σ0

∼= ρi × ρ j ⋊ cσ0 has two components (cf. [G1]); we denote these

by ςε(ρi , ρ j ; Σ0), ε ∈ {±1}. They are characterized by

S ≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρ j−1 × ρ j+1 × · · · × ρℓ ⋊ ς1(ρi , ρ j ; Σ0)

and

S 6≤ ρ1 × · · · × ρi−1 × ρi+1 × · · · × ρ j−1 × ρ j+1 × · · · × ρℓ ⋊ ς−1(ρi , ρ j ; Σ0).

(We remark that it would be awkward to try to choose components of ρi × ρ j ⋊ σ0

directly, as this would require making ℓ − 1 such choices and having the remain-

ing (ℓ−1)(ℓ−2)
2

choices imposed by a compatibility constraint.) Suppose ρ, ρ′ ∈
{ρ1, . . . , ρℓ}, ρ 6∼= ρ ′, with ρ satisfying (1.1). If we choose T as in Remark 11.2, it

follows from Note 3.3 that

ResO
SO τη,η ′(ρ, ρ′; σ) =

{

ςηη ′(ρ, ρ′; Σ0) if ρ ′ also satisfies (1.1)

ςη ′(ρ, ρ′; Σ0) if ρ ′ does not satisfy (1.1).



374 C. Jantzen

For a, a ′ ∈ N with a, a ′ odd and η ∈ {±1}, we define

δ
([

νρ, ν
a−1

2 ρ
]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; ςη(ρ, ρ′; Σ0)

)

to be the unique irreducible subrepresentation of

δ
([

νρ, ν
a−1

2 ρ
])

× δ
([

νρ ′, ν
a ′−1

2 ρ ′
])

⋊ ςη(ρ, ρ′; Σ0),

which is square-integrable. We note that (cf. Theorem 8.4 and Lemma 3.4)

δ
([

νρ, ν
a−1

2 ρ
]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; ςη(ρ, ρ′; Σ0)

)

∼= ResO
SO δ

([
νρ, ν

a−1
2 ρ

]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; τη,1(ρ, ρ′; σ)

)

∼= ResO
SO δ

([
νρ, ν

a−1
2 ρ

]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; τ−η,−1(ρ, ρ′; σ)

)

if ρ ′ satisfies (1.1) and

δ
([

νρ, ν
a−1

2 ρ
]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; ςη(ρ, ρ′; Σ0)

)

∼= ResO
SO δ

([
νρ, ν

a−1
2 ρ

]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; τ1,η(ρ, ρ′; σ)

)

∼= ResO
SO δ

([
νρ, ν

a−1
2 ρ

]
,
[
νρ ′, ν

a ′−1
2 ρ ′

]
; τ−1,η(ρ, ρ′; σ)

)

if not.

Lemma 11.6 Let δ and δ0 be discrete series with δ0 ≤ ResO
SO δ. Let ρ, ρ′ ∈

{ρ1, . . . , ρℓ}, with ρ satisfying (1.1).

(i) If ρ ′ also satisfies (1.1), then for irreducible θ,

δ →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ], [νρ ′, ν
a ′−1

2 ρ ′]; τη,η ′(ρ, ρ′; σ))

or

θ ⋊ δ([νρ, ν
a−1

2 ρ], [νρ ′, ν
a ′−1

2 ρ ′]; τ−η,−η ′(ρ, ρ′; σ))

m

δ0 →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ], [νρ, ν
a ′−1

2 ρ ′]; ςηη ′(ρ, ρ′; Σ0)).

(ii) If ρ ′ does not satisfy (1.1), then for irreducible θ,

δ →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ], [νρ ′, ν
a ′−1

2 ρ ′]; τη,η ′(ρ, ρ′; σ))

or

θ ⋊ δ([νρ, ν
a−1

2 ρ], [νρ ′, ν
a ′−1

2 ρ ′]; τ−η,η ′(ρ, ρ′; σ))

m

δ0 →֒ θ ⋊ δ([νρ, ν
a−1

2 ρ], [νρ, ν
a ′−1

2 ρ ′]; ςη ′(ρ, ρ′; Σ0)).

Proof The proof is similar to that of Lemmas 11.4 and 11.5.
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In light of Lemma 3.5 and the preceding lemma, we may arbitrarily choose a value

ηρ ∈ {±1} for εδ0
(ρ, amax); the remaining values of εδ0

(ρ ′, a ′
max) are then defined by

the following:

(i) If ρ ′ satisfies (1.1),

εδ0
(ρ ′, a ′

max) = η ′ ⇔ δ0 →֒ θ ⋊ δ
([

νρ, ν
amax−1

2 ρ
]
,
[
νρ, ν

a ′max−1

2 ρ ′]; ςηρη ′(ρ, ρ′; Σ0)
)

for some irreducible θ.

(ii) If ρ ′ does not satisfy (1.1),

εδ0
(ρ ′, a ′

max) = η ′ ⇔ δ0 →֒ θ ⋊ δ
([

νρ, ν
amax−1

2 ρ
]
,
[
νρ, ν

a ′max−1

2 ρ ′
]

; ςη ′(ρ, ρ′; Σ0)
)

for some irreducible θ.

We note that the two possible choices for ηρ give rise to ∼-equivalent triples, and

hence correspond to the same element of TripSO /∼.

Having finished the definition of εδ0
, we now have a well-defined map δ0 7→

( Jord(δ0),Σδ0
, εδ0

) sending discrete series for SO(2n, F) into TripSO,adm /∼. We now

summarize the results.

Theorem 11.7 The map δ0 7→ ( Jord(δ0),Σδ0
, εδ0

) implements a bijective correspon-

dence between discrete series for all SO(2n, F), n 6= 1, and TripSO,adm /∼. Further,

cδ( Jord,Σ0,ε) = δ( Jord,cΣ0,ε) (where c · {σ0, cσ0} is understood to be {σ0, cσ0}).

A Extension of a Result of Harish-Chandra

In this appendix, we extend a result of Harish-Chandra (cf. [W, Proposition III.4.1])

to cover the non-connected group O(2n, F). In particular, we show that if an ir-

reducible tempered representation τ has τ →֒ iG,Mδ1 and τ →֒ iG,Mδ2 with δ1, δ2

discrete series of standard parabolic subgroups, then δ1 and δ2 (and the correspond-

ing Levi factors) are conjugate. We note that this does not use (directly or indirectly)

the results of Goldberg, so we may drop the assumption charF = 0 in this appendix

and simply assume charF 6= 2. However, we need to retain the convention that the

trivial representation of O(2, F) is not considered a discrete series.

Lemma A.1 Let τ be an irreducible tempered representation of O(2n, F). Suppose

τ →֒ δ1 × · · · × δk ⋊ δ and τ →֒ δ ′
1 × · · · × δ ′

ℓ ⋊ δ ′

with δi , δ
′
i discrete series for general linear groups and δ, δ ′ discrete series for orthogo-

nal groups. Then k = ℓ, and δ ′
1 ⊗ · · · ⊗ δ ′

k ⊗ δ ′ is a Weyl conjugate of δ1 ⊗ · · · ⊗
δk ⊗ δ or δ1 ⊗ · · · ⊗ δk ⊗ ĉδ. That is, (i) δ ′

1, . . . , δ
′
k, δ̃

′
1, . . . , δ̃ ′

k is a permutation of

δ1, . . . , δk, δ̃1, . . . , δ̃k, subject to the constraint that if δ ′
i
∼= δ j , then δ̃ ′

i
∼= δ̃ j , and (ii)

δ ′ ∼= δ or δ ′ ∼= ĉδ (noting that if δ = 1, this requires δ ′
= 1).

Remark A.2 Of course, if ĉδ ∼= δ, this already gives the result we want.
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Proof Let τ0 be an irreducible subrepresentation (necessarily tempered) of ResO
SO τ .

If δ0 ≤ ResO
SO δ is irreducible (necessarily square-integrable), then it follows from

Lemma 2.3 that

τ0 →֒ ResO
SO(δ1 × · · · × δk ⋊ δ)

∼= δ1 × · · · × δk ⋊ δ0

or

(δ1 × · · · × δk ⋊ δ0) ⊕ c(δ1 × · · · × δk ⋊ δ0),

and similarly for δ ′
1, . . . , δ

′
ℓ , δ

′. From [W, Proposition III.4.1] for SO(2n, F), we must

have ℓ = k and δ ′
1 ⊗· · ·⊗δ ′

k ⊗δ ′
0 a Weyl conjugate of δ1 ⊗· · ·⊗δk ⊗δ0 or c(δ1 ⊗· · ·⊗

δk ⊗ δ0). It then follows that δ ′
1 ⊗· · ·⊗ δ ′

k ⊗ δ ′ is a Weyl conjugate of δ1 ⊗· · ·⊗ δk ⊗ δ
or ĉ(δ1 ⊗ · · · ⊗ δk ⊗ δ).

Lemma A.3 Suppose θ is an irreducible representation of a general linear group such

that

δ([νbρ, νaρ]) × · · · × δ([νbρ, νaρ])
︸ ︷︷ ︸

k

is a subquotient of θ× δ([νc1ρ, νaρ])× · · · × δ([νckρ, νaρ]) with b ≤ ci ≤ a + 1 for all

i. Then θ ∼= δ([νbρ, νc1−1ρ]) × · · · × δ([νbρ, νck−1ρ]).

Proof For a representation π of a general linear group, let us write τ ≤ rminπ if τ is

supercuspidal (not necessarily unitary) and τ ≤ rM,Gπ for some standard Levi factor

M (i.e., rminπ consists of the minimal nonzero Jacquet modules). Observe that

rmin δ([νbρ, νaρ]) × · · · × δ([νbρ, νaρ])
︸ ︷︷ ︸

k

≥

νaρ ⊗ · · · ⊗ νaρ
︸ ︷︷ ︸

k

⊗ νa−1ρ ⊗ · · · ⊗ νa−1ρ
︸ ︷︷ ︸

k

⊗ · · · ⊗ νbρ ⊗ · · · ⊗ νbρ
︸ ︷︷ ︸

k

.

Let ki be the number of times ν iρ appears in the supercuspidal support of

δ([νc1ρ, νaρ]) × · · · × δ([νckρ, νaρ]), i.e., ki = |{ j | c j ≤ i ≤ a}|. Since rmin(θ ×
δ([νc1ρ, νaρ]) × · · · × δ([νckρ, νaρ])) consists of shuffles of rminδ([νc1ρ, νaρ]) =

νaρ⊗νa−1ρ⊗· · ·⊗νc1ρ, . . . , rminδ([νckρ, νaρ]) = νaρ⊗νa−1ρ⊗· · ·⊗νckρ, rminθ,

we see that

rminθ ≥ νaρ ⊗ · · · ⊗ νaρ
︸ ︷︷ ︸

k−ka

⊗ νa−1ρ ⊗ · · · ⊗ νa−1ρ
︸ ︷︷ ︸

k−ka−1

⊗ · · · ⊗ νbρ ⊗ · · · ⊗ νbρ
︸ ︷︷ ︸

k−kb

.

The only irreducible representation with this property is δ([νbρ, νc1−1ρ]) × · · · ×
δ([νbρ, νck−1ρ]), as needed.

Lemma A.4 Suppose τ is an irreducible tempered representation of O(2n, F). Write

τ →֒ δ1 × · · · × δk ⋊ δ,
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with δ1, . . . , δk discrete series for general linear groups and δ a discrete series for an

even orthogonal group. Suppose θ is a discrete series for a general linear group with

θ 6∼= δ1, . . . , δk, δ̃1, . . . , δ̃k.

(i) If θ ∼= θ̃, then µ∗(θ × · · · × θ
︸ ︷︷ ︸

ℓ

⋊τ ) contains θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗τ with multiplicity 2ℓ

and no other terms of the form θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗λ.

(ii) If θ 6∼= θ̃, then µ∗(θ × · · · × θ
︸ ︷︷ ︸

ℓ

⋊τ ) contains θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗τ with multiplicity 1

and no other terms of the form θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗λ.

Proof We start with (i). Writing θ = δ([ν−aρ, νaρ]), an easy calculation, noting

that θ ∼= θ̃ requires ρ ∼= ρ̃–gives

M∗
(
δ([ν−aρ, νaρ])

)
=

a+1∑

i=−a

a+1∑

j=i

δ([ν−i−1ρ, νaρ])×δ([ν jρ, νaρ])⊗δ([ν iρ, ν j−1ρ]).

Write µ∗(τ ) =
∑

h ξh ⊗ ηh. Then

µ∗(θ × · · · × θ
︸ ︷︷ ︸

ℓ

⋊τ )

=

a+1∑

i1=−a

a+1∑

j1=i1

· · ·
a+1∑

iℓ=−a

a+1∑

jℓ=iℓ

∑

h

(

δ
(

[ν−i1−1ρ, νaρ]) × δ([ν j1ρ, νaρ])

× · · · × δ
(

[ν−iℓ−1ρ, νaρ]
)
× δ([ν jℓρ, νaρ]) × ξh

)

⊗
(
δ([ν i1ρ, ν j1−1ρ]

)
× · · · × δ

(
[ν iℓρ, ν jℓ−1ρ]

)
⋊ ηh

)

.

First, suppose ξh = 1 (so ηh = τ ). This gives rise to the 2ℓ copies of

θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗τ :

for each m, we can have either (i) im = a + 1 (so jm = a + 1 and δ([ν−im−1ρ, νaρ]) =

θ) or (ii) im = −a and jm = −a (so δ([ν jmρ, νaρ]) = θ). Any other choice for the

im, jm produces less than ℓ copies of ν−aρ in the supercuspidal support, so cannot

contribute a copy of

θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗τ .

Now, suppose ξh 6= 1. Suppose there were a term of the form θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗λ. The

contribution to θ × · · · × θ
︸ ︷︷ ︸

ℓ

from M∗(θ × · · · × θ
︸ ︷︷ ︸

ℓ

) has the form δ([νk1ρ, νaρ])×· · ·×
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δ([νkℓ ′ ρ, νaρ]), where ℓ′ ≤ ℓ and k1, . . . , kℓ ′ are the values from −i1 − 1, . . . ,−iℓ −
1, j1, . . . , jℓ that are less than or equal to a. Note that since ξh 6= 1, we must have

either ℓ′ < ℓ or at least one km > −a (or both). By Lemma A.3, ξh must contribute

δ([ν−aρ, νk1−1ρ])×· · ·× δ([ν−aρ, νkℓ ′ ρ])× δ([ν−aρ, νaρ]) × · · · × δ([ν−aρ, νaρ])
︸ ︷︷ ︸

ℓ−ℓ ′

(and this is a nontrivial contribution from above). If δ([ν−aρ, νk1−1ρ]) × · · · ×
δ([ν−aρ, νkℓ ′ ρ]) is nontrivial, this contradicts the Casselman criterion for the tem-

peredness of τ (cf. Section 2). Therefore,

ξh = δ([ν−aρ, νaρ]) × · · · × δ([ν−aρ, νaρ])
︸ ︷︷ ︸

ℓ−ℓ ′

.

However, this contradicts θ 6∼= δ1, . . . , δk, δ̃1, . . . , δ̃k. Thus there is no term of the

form θ × · · · × θ
︸ ︷︷ ︸

ℓ

⊗λ when ξh 6= 1.

Part (ii) is similar (but a bit easier). Note that in this case, ρ 6∼= ρ̃.

Theorem A.5 Let τ be an irreducible tempered representation of O(2n, F). Suppose

τ →֒ δ1 × · · · × δk ⋊ δ and τ →֒ δ ′
1 × · · · × δ ′

ℓ ⋊ δ ′

with δi , δ
′
i discrete series for general linear groups and δ, δ ′ discrete series for orthogonal

groups. Then k = ℓ and δ ′
1 ⊗ · · · ⊗ δ ′

k ⊗ δ ′ is a Weyl conjugate of δ1 ⊗ · · · ⊗ δk ⊗ δ.

That is, (i) δ ′
1, . . . , δ

′
k, δ̃

′
1, . . . , δ̃ ′

k is a permutation of δ1, . . . , δk, δ̃1, . . . , δ̃k, subject to

the constraint that if δ ′
i
∼= δ j , then δ̃ ′

i
∼= δ̃ j , and (ii) δ ′ ∼= δ (noting that if δ = 1, this

requires δ ′
= 1).

Proof From Lemma A.1 and Remark A.2, all that needs to be shown is that δ ′ 6∼= ĉδ
when ĉδ 6∼= δ. If ĉδ 6∼= δ, it follows from the previous lemma that µ∗(δ1 ×· · ·×δk ⋊δ)

contains δ1 × · · · × δk ⊗ δ but not δ1 × · · · × δk ⊗ ĉδ. It then follows from Frobenius

reciprocity that we cannot have δ ′ ∼= ĉδ, as needed.
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