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Duality and Supports of Induced
Representations for Orthogonal Groups

Chris Jantzen

Abstract. In this paper, we construct a duality for p-adic orthogonal groups.

1 Introduction

The aim of this paper is to construct a duality operator for representations of p-adic

orthogonal groups (not necessarily split) along the lines of the constructions of [Au1,

Au2, S-S]. As a consequence, we are also able to establish a decomposition for these

groups (as well as certain special orthogonal groups) analogous to that given in [J3]

for Sp(2n, F) and SO(2n + 1, F), F p-adic.

The sorts of duality operators we are interested in have been studied for years in

a number of different contexts; we note the work of [Cu, Al, Kw] for finite groups

of Lie type (Curtis-Alvis duality), [I-M] for Hecke algebras (the Iwahori-Matsumoto

involution), and [Ze] for p-adic (general linear) groups (the Zelevinsky involution).

Our interest here is in producing an alternating sum formula and showing it takes ir-

reducible representations to irreducible representations, as done in [D-L1, D-L2] (fi-

nite groups of Lie type), [Kt] (Hecke algebras), and [Au1, Au2, S-S] (p-adic groups).

We remark that duality questions have been looked at in the non-connected case. In

[D-M], duality for non-connected finite groups of Lie type is addressed; in [J-K],

the Iwahori-Matsumoto involution is discussed for Iwahori-spherical Hecke algebras

associated to non-connected p-adic groups. However, neither of these provides the

sort of alternating sum formula we want (though cf. [D-M, p. 377]).

Duality for p-adic groups has been quite useful in the study of induced represen-

tations (e.g., [J2, Mu, T2]), owing at least in part to its ability to relate reducibil-

ity questions for inducing representations with different asymptotic properties—e.g.,

representations induced from (twists of) the trivial and Steinberg representations are

related by duality. The application of duality to a conjecture of Arthur (cf. [Ba2, Ba3,

Ba-Zh]) is a source of recent interest. However, our immediate interest here is in

extending the structural decomposition of [J3] to cover orthogonal groups.

In what follows, we will work with semisimplified representations. To this end,

if G is a p-adic group, let R(G) denote the Grothendieck group of the category of

smooth, finite-length representations of G. Recall that this means π1 = π2 in R(G)

if m(τ , π1) = m(τ , π2) for every smooth, irreducible representation τ of G, where

m(τ , π) = multiplicity of τ in π. Similarly, π1 + π2 is defined by m(τ , π1 + π2) =

m(τ , π1) + m(τ , π2).
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Let us take a moment to discuss the orthogonal groups. Let J denote the n × n

antidiagonal matrix

Jn =













1

·
·

·
1













.

Fix a q×q matrix Q for a nonisotropic orthogonal form as in [Br, chapter 2, section 3].

Note that q ∈ {0, 1, 2, 3, 4}. Then,

Xn =





Jn

Q

Jn





is the matrix of an orthogonal form, and any orthogonal form is equivalent to one

of these. We let O(Xn, F) denote the group of matrices (with entries in F) preserving

this form. It is a non-connected group with two components (except if n = q = 0,

in which case we have the trivial group). If q = 0, the root system is of type Dn;

if q > 0, it is of type Bn (cf. [Bo, section 6] for more details). Let C be a set of

representatives for G/G0 in W (Weyl group), chosen as in section 2. Then, C acts on

the simple roots, Π. When q > 0, this action is trivial and we have the direct product

decomposition WG = WG0 × C (WG0 ⊂ W the Weyl group for G0). When q = 0, C

interchanges the last two simple roots; we have WG = WG0 ⋊C . In the case q = 0, we

use the structural similarity between O(2n, F) and Sp(2n, F), SO(2n+1, F) in proving

our results; when q > 0, the fact that WG = WG0 ×C will make the arguments easier.

(In fact, if q is odd, we have O(Xn, F) = SO(Xn, F) × {±I}, which can be used to

simplify matters greatly.)

For the purpose of extending the results of [J3], we need to have a duality op-

erator which has essentially the same form as that for Sp(2n, F) or SO(2n + 1, F).

We take a moment to describe how to construct such a duality operator. First, we

consider the case q = 0 (i.e., SO(2n, F) ). Let α1, . . . , αn denote the simple roots

for SO(2n, F). Also, let c denote the nth sign change for O(2n, F) (the usual gen-

erator for O(2n, F)/SO(2n, F) ). We let S = {sα1
, . . . , sαn−1

, c}, with sα denoting

the corresponding root reflection. (We note that for Sp(2n, F) and SO(2n + 1, F),

the nth sign change is a simple reflection, so that S corresponds to the set of sim-

ple root reflections for these groups.) If I ⊂ S, we let PI = MIUI = 〈Pmin, I〉. In

the case q > 0, we take S = {sα1
, . . . , sαn

} (simple reflections). For I ⊂ S, we let

PI,C = MI,CUI = 〈Pmin, I,C〉, where C denotes an appropriate set of representatives

for O(Xn, F)/SO(Xn, F) (cf. section 2). We may now define the duality operators DG

as follows:

Definition 1.1

(1) For q = 0,

DG =

∑

I⊂S

(−1)|I|iG,MI
◦ rMI ,G.
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(2) For q > 0,

DG =

∑

I⊂S

(−1)|I|iG,MI,C
◦ rMI,C ,G.

We remark that the duality operator for q = 0 includes both connected and non-

connected parabolic subgroups, whereas the duality operator for q > 0 uses only

non-connected parabolic subgroups (however, see Remark 6.6).

The proof of the properties of duality given in [Au1, Au2] relies on four key prop-

erties of induction and Jacquet modules (cf. [Au1, (1.1)–(1.4)]), three of which were

proven only in the connected case. Thus, in order to extend duality to the orthog-

onal groups, we first need to extend these results. We remark that even though our

main application will be to orthogonal groups, because of their general usefulness

in the connected case, we verify these results for non-connected groups in greater

generality.

The first result that needs to be generalized is the description of composition fac-

tors for rN,G◦iG,M given in [B-Z, Lemma 2.12] and [Ca, Theorem 6.3.5]. We deal with

this in section 3 (cf. Proposition 3.5). Another result that needs to be generalized is

[BDK, Lemma 5.4(iii)] which says if M is a standard Levi and w ∈ W (Weyl group)

is such that w(M) is also a standard Levi, then iG,w(M) ◦ Ad(w) = iG,M . We do this

in section 4 (cf. Proposition 4.1). Finally, we need to generalize the characterization

of the contragredient of a Jacquet module given in [Ca, Corollary 4.2.5]. We address

this in section 5 (cf. Proposition 5.5).

In the sixth section, we give the results on duality (cf. Theorems 6.1 and 6.5; also

Proposition 6.3). The duality operator for O(Xn, F) is the last ingredient needed to

extend the results of [J3] to the case of orthogonal groups. This extension is given in

the seventh section.

The assumptions on the characteristic of F which are needed vary from section to

section. Therefore, we make no assumptions on the characteristic of F a priori, but

will indicate the necessary assumptions in each section.

2 Notation and Preliminaries

In this section, we introduce notation and give some background results. In sections

3–5, we work with non-connected groups more general than orthogonal groups; we

take a moment to discuss the non-connected groups considered.

Let F be a p-adic field and G the group of F-points of a quasi-split reductive alge-

braic group defined over F. Let G0 denote the connected component of the identity

in G. We assume that C = G/G0 is a finite abelian group (with finiteness automatic).

In the group G0, fix a Borel subgroup P∅ ⊂ G0. We let ∆+ denote the correspond-

ing set of positive roots; Π ⊂ ∆+ the simple roots. For Φ ⊂ Π, we let PΦ = MΦUΦ

denote the standard parabolic subgroup determined by Φ.

Before we go into notation and basic definitions for G, we need to do a couple

of things. First, we fix a choice of representatives for G/G0 which stabilize the Borel

subgroup, hence act on the simple roots. By abuse of notation, we use C for both the

component groups and the image of these representatives in the Weyl group (they

correspond to the elements of the Weyl group having length 0). If c ∈ C , we use c̄ to
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denote its chosen representative in G; we use C̄ for the chosen set of representatives.

If π is an irreducible representation of G0 and c ∈ C , we define c · π by

c · π(g) = π((c̄)−1gc̄),

for all g ∈ G0. The equivalence class of c · π1 does not depend on the choice of

representative c̄.

Let PΦ = MΦUΦ ⊂ G0 be the standard parabolic subgroup of G0 corresponding

to Φ ⊂ Π. Let

C(Φ) = {c ∈ C | c · Φ = Φ}.

We let

MΦ,C(Φ) = 〈MΦ,C(Φ)〉.

More generally, if D ⊂ C(Φ), we let

MΦ,D = 〈MΦ, D̄〉.

(Note that MΦ,1 = MΦ). We note that MΦ,D does not depend on the choice of repre-

sentatives D̄. Suppose that M satisfies

MΦ ≤ M ≤ MΦ,C(Φ)

(such an M has the form MΦ,D). We will consider subgroups of the form P = MU =

MΦ,DUΦ. We write PΦ,D = MΦ,DUΦ. Since M normalizes U , we can define functors

iG,M and rM,G as in [B-Z]. The standard properties of the functors iG,M and rM,G are

described in [B-Z, Proposition 1.9].

In G0, the standard parabolic subgroups are non-conjugate. We arrange this for G

as in [B-J1]. Observe that for any c ∈ C , we have

c̄MΦ(c̄)−1
= Mc·Φ,

cC(Φ)c−1
= C(c · Φ),

so the groups MΦ,C(Φ) and Mc·Φ,C(c·Φ) are conjugate. Similarly, if MΦ ≤ M ≤ MΦ,C(Φ),

then M = MΦ,D, where D ≤ C(Φ), and

c̄M(c̄)−1
= Mc·Φ,cDc−1 ≤ Mc·Φ,C(c·Φ).

To arrange standard parabolic subgroups for G to be non-conjugate, we need to

choose one group from among {Mc·Φ}c∈C , i.e., a representative of the set {c · Φ}c∈C .

Choose an ordering on the elements of Π. Then, one has a lexicographic order on

the subsets of Π. (To be precise, if Φ1 = {β1, . . . , βk} and Φ2 = {γ1, . . . , γl} with

β1 > · · · > βk and γ1 > · · · > γl, we write Φ1 ≻ Φ2 if β1 > γ1 or β1 = γ1 and

β2 > γ2, etc. The absence of a root is lower than a root, so ∅ is minimal.) We define

XC = {Φ ⊂ Π | Φ is maximal among {c · Φ}c∈C}.

In particular, any Φ ⊂ Π is conjugate in G to an element of XC . We take as standard

parabolic subgroups those subgroups of the form P = MUΦ with MΦ ≤ M ≤
MΦ,C(Φ) and Φ ∈ XC .
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3 A Generalization of a Result of Bernstein-Zelevinsky/Casselman to
Non-Connected Groups

In this section, our aim is to extend [B-Z, Lemma 2.12] and [Ca, Theorem 6.3.5]

(which are essentially the same result) to the non-connected groups of section 2. We

remark that since the results in [B-Z, section 5] apply to the non-connected groups

we consider, our task consists primarily of proving the Weyl group results necessary

to formulate this like [B-Z, Lemma 2.12] and [Ca, Theorem 6.3.5]. For this section,

we make no restrictions on the characteristic of F except in Lemmas 3.6 and 3.7,

where we assume char F 6= 2.

First, recall that if PΦ1
, PΦ2

are standard parabolic subgroups of G0, then

W
MΦ1

MΦ2

G0 = {w ∈ WG0 | w · Φ1 ⊂ ∆
+, w−1 · Φ2 ⊂ ∆

+},

where WG0 ⊂ W denotes the Weyl group of G0. This subset plays a key role in

[B-Z, Lemma 2.12] and [Ca, Theorem 6.3.5]. Now, suppose P1 = MΦ1,C1
UΦ1

and

P2 = MΦ2,C2
UΦ2

are two standard parabolic subgroups of G. Our first goal is to

define a suitable subset W MΦ1 ,C1
MΦ2 ,C2 ⊂ W of double-coset representatives for

WΦ2,C2
\W /WΦ1,C1

(with WΦ1,C1
⊂ W the Weyl group of MΦ1,C1

). We start by defining W MΦ1
MΦ2 ⊂ W

and showing it has certain useful properties.

Definition 3.1 We let W MΦ1
MΦ2 ⊂ W be the subset W MΦ1

MΦ2 =
⋃

c∈C (W
Mc(Φ1)MΦ2

G0 c).

Since W =
⋃

c∈C (WG0 c), it is clear that W MΦ1
MΦ2 is a set of double-coset representa-

tives for WΦ2
\W /WΦ1

. It also has the following useful properties:

Lemma 3.2 Suppose w ∈ W MΦ1
MΦ2 . Then,

(1) w · Φ1 ⊂ ∆+ and w−1 · Φ2 ⊂ ∆+.

(2) w is the (unique) element of WΦ1
wWΦ2

of minimal length.

Conversely, if w ∈ W satisfies either (1) or (2) above, then w ∈ W MΦ1
MΦ2 .

Proof For (1), write w = w ′c with w ′ ∈ W
Mc(Φ1)MΦ2

G0 . We check both containments:

To see w · Φ1 ⊂ ∆+, observe that

w · Φ1 = w ′c · Φ1 = w ′ · (c(Φ1)) ⊂ ∆
+

since w ′ ∈ W
Mc(Φ1)MΦ2

G0 . We now check w−1 · Φ2 ⊂ ∆+. Since w ′ ∈ W
Mc(Φ1)MΦ2

G0 , we

have (w ′)−1 · Φ2 ⊂ ∆+. Therefore,

w−1 · Φ2 = (w ′c)−1 · Φ2 = c−1(w ′)−1 · Φ2 ⊂ c−1 · ∆+
= ∆

+

as needed. This finishes (1).
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For (2), we again write w = w ′c as above. Suppose x ∈ WΦ2
wWΦ1

with x 6= w

and ℓ(x) ≤ ℓ(w). Observe that

WΦ2
wWΦ1

= WΦ2
w ′cWΦ1

= WΦ2
w ′Wc(Φ1)c.

Therefore, xc−1 ∈ WΦ2
w ′Wc(Φ1), forcing ℓ(xc−1) > ℓ(w ′) (since w ′ ∈ W

Mc(Φ1)MΦ2

G0 ).

However, since ℓ(x) = ℓ(xc−1) and ℓ(w) = ℓ(w ′), we get ℓ(x) > ℓ(w), a contradic-

tion. Therefore, w is the (unique) element of WΦ2
wWΦ1

of minimal length.

We now address the converses. The converse to (2) follows from the uniqueness

in (2). For (1), write w = w ′c with w ′ ∈ WG0 and c ∈ C . We have

w ′c · Φ1 ⊂ ∆
+ ⇒ w ′ · (c(Φ1)) ⊂ ∆

+

and

(w ′c)−1 · Φ2 ⊂ ∆
+ ⇒ c−1(w ′) · Φ2 ⊂ ∆

+ ⇒ (w ′)−1 · Φ2 ⊂ c · ∆+
= ∆

+.

Therefore, w ′ ∈ W
Mc(Φ1)MΦ2

G0 . The result follows.

We now turn to constructing W MΦ1 ,C1
MΦ2 ,C2 . Recall that

W =

⋃

w∈W
MΦ1

MΦ2

(WΦ2
wWΦ1

).

Now, consider w ∈ W MΦ1
MΦ2 . We have WΦ2,C2

wWΦ1,C1
= WΦ2

C2wC1WΦ1
. We can

choose any element of C2wC1 as a representative for this double-coset. (Of course,

in general C2wC1 can contain elements of W MΦ1
MΦ2 other than w.) This choice needs

to be made only once for each double-coset C2wC1 ⊂ W MΦ1
MΦ2 . Fix such a set

W MΦ1 ,C1
MΦ2 ,C2 .

Lemma 3.3 Suppose w ∈ W MΦ1 ,C1
MΦ2 ,C2 . Then,

(1) w · Φ1 ⊂ ∆+ and w−1 · Φ2 ⊂ ∆+.

(2) w is of minimal length in WΦ2,C2
wWΦ1,C1

(though need not be unique of minimal

length).

Conversely, suppose w ∈ W satisfies either (1) or (2) above. Then, w = c2w ′c1 for

some w ′ ∈ W MΦ1 ,C1
MΦ2 ,C2 and ci ∈ Ci (so w could have been chosen as the representative

of WΦ2
(C2)wWΦ1

(C1) in W MΦ1 ,C1
MΦ2 ,C2 ).

Proof (1) follows from W MΦ1 ,C1
MΦ2 ,C2 ⊂ W MΦ1

MΦ2 and part (1) of the preceding

lemma.

For (2), suppose x ∈ WΦ2,C2
wWΦ1,C1

with ℓ(x) < ℓ(w). Write x = c2w2ww1c1,

with wi ∈ WΦi
and ci ∈ Ci . Then, c−1

2 xc−1
1 = w2ww1. Therefore, c−1

2 xc−1
1 ∈

WΦ2
wWΦ1

with ℓ(c−1
2 xc−1

1 ) = ℓ(x) < ℓ(w), contradicting w of minimal length in

WΦ2
wWΦ1

(which holds by (2) of the preceding lemma). Thus (2) holds.



Duality and Supports of Induced Representations 165

We now look at the converses. For our w satisfying (1) or (2), let w ′ ∈ W MΦ1 ,C1
MΦ2 ,C2

be the chosen double-coset representative. From (2) (just proven), we know ℓ(w ′) ≤
ℓ(w).

By the preceding lemma, w satisfying (1) or (2) above is enough to tell us w ∈
W MΦ1

MΦ2 . Write w = w2c2w ′c1w1. Then c2w ′c1 ∈ WΦ2
wWΦ1

and ℓ(c2w ′c1) =

ℓ(w ′). Since w ∈ W MΦ1
MΦ2 , the preceding lemma implies ℓ(c2w ′c1) ≥ ℓ(w). Thus,

ℓ(c2w ′c1) = ℓ(w ′) = ℓ(w). By (2) of the preceding lemma, c2w ′c1 = w, as needed.

Lemma 3.4 Let H ⊂ G be a subgroup. Set H0 = H ∩ G0 (H0 is normal in H) and

H/H0 = CH . (N.B. CH is a subgroup of C). Suppose that representatives for CH may

be chosen from C̄. If P2 = MΦ2,C2
UΦ2

is a standard parabolic subgroup of G and H0 is

decomposable with respect to MΦ2
UΦ2

(cf. [B-Z, p. 460]), then H is decomposable with

respect to MΦ2,C2
UΦ2

.

Proof We need to show

H ∩ (MΦ2,C2
UΦ2

) = (H ∩ MΦ2,C2
)(H ∩UΦ2

).

An element of H ∩ (MΦ2,C2
UΦ2

) has the form

h = c̄ ′0h0 = c̄ ′2m2u2, c0 ∈ CH, h0 ∈ H0, c2 ∈ C2, m2 ∈ MΦ2
, u2 ∈ UΦ2

,

where c̄ ′0, c̄ ′2 are representatives in H, MΦ2,C2
, resp., of c0, c2. For c̄ ′0h0 and c̄ ′2m2u2

to even lie in the same component of G, we must have c0 = c2. By hypothesis,

we may without loss of generality assume c̄ ′0 = c̄ ′2. Therefore, h0 = m2u2. Since

H0 is decomposable with respect to MΦ2
UΦ2

, we may assume m2 ∈ H0 ∩ MΦ2
and

u2 ∈ H0 ∩ UΦ2
. Therefore, h = c̄ ′2m2u2 has c̄ ′2m2 ∈ H ∩ MΦ2,C2

and u2 ∈ H0 ∩ UΦ2
,

as needed.

Proposition 3.5 With notation as above, let τ be an admissible representation of

MΦ1,C1
. Then, rMΦ2 ,C2

G ◦ iGMΦ1 ,C1
(τ ) has a composition series with factors

iMΦ2 ,C2
,M ′

2
◦ w ◦ rM ′

1 ,MΦ1 ,C1
(τ ), w ∈ W MΦ1 ,C1

MΦ2 ,C2 ,

where M ′
1 = MΦ1,C1

∩ w−1(MΦ2,C2
), M ′

2 = w(MΦ1,C1
) ∩ MΦ2,C2

.

Proof The result follows from [B-Z, Theorem 5.2] once a few facts have been estab-

lished.

First, we need to know that (1)–(4) from the hypotheses of [B-Z, Theorem 5.2]

hold. For our situation, (1)–(3) are clear; we address (4) next.

For condition (4), we show that for w ∈ W MΦ1 ,C1
MΦ2 ,C2 , w(MΦ1,C1

) is decompos-

able with respect to MΦ2,C2
UΦ2

. The remaining decomposability conditions may be

handled similarly. By Lemma 3.4, it is enough to show that w(MΦ1
) is decomposable

with respect to MΦ2
UΦ2

. That is, we want

w(MΦ1
) ∩ (MΦ2

UΦ2
) = (w(MΦ1

) ∩ MΦ2
)(w(MΦ1

) ∩UΦ2
).
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Write w = w1c with w1 ∈ WG0 . Then w(MΦ1
) = w1(Mc(Φ1)). Thus, we want to show

that

w1(Mc(Φ1)) ∩ (MΦ2
UΦ2

) = (w1(Mc(Φ1)) ∩ MΦ2
)(w1(Mc(Φ1)) ∩UΦ2

).

From the connected case, it is enough to check that w1 ∈ W Mc(Φ1)MΦ2 , or more ex-

plicitly, that w1(c(Φ1)) ⊂ ∆+ and w−1
1 (Φ2) ⊂ ∆+. The first of these is trivial:

w1(c(Φ1)) = w(Φ1) ⊂ ∆+ since w ∈ W MΦ1 ,C1
MΦ2 ,C2 . For the second,

w−1
1 (Φ2) = cw−1(Φ2) ⊂ c · ∆+

= ∆
+

since w ∈ W MΦ1 ,C1
MΦ2 ,C2 . Thus, w1 ∈ W Mc(Φ1)MΦ2 and we have the decomposability

claimed.

Finally, we need to check that ε1w−1(ε2) is the trivial character of M ′
1, where εi

is as in [B-Z, section 5.1]. Recall that the modular function for MΦ(D) is just that

for MΦ extended trivially to D. Thus, it is enough to show that w(ε ′
1)ε ′

2 is trivial,

where ε ′
1, ε

′
2 are the restrictions to the connected components. Let L1 = (M1)0 =

MΦ1
∩ w−1(MΦ2

) and L2 = (M2)0 = w(MΦ1
) ∩ MΦ2

. Write ε ′
i = δ

1/2

Li ,MΦi

(essentially

letting δL,M denote the modular function for L < M). Note that by considering the

half-sum of positive roots, one gets c ◦ δL,M = δc(L),c(M). Now, if we write w = w1c as

above,

w(ε ′
1)ε ′

2 = w1c(δL1,MΦ1
)δL2,MΦ2

= w1(δc(L1),Mc(Φ1)
)δL2,MΦ2

.

Since w1 ∈ W Mc(Φ1)MΦ2 as above, we can now conclude that w(ε ′
1)ε ′

2 is trivial from the

connected case.

We now consider these double-coset representatives for O(Xn, F). For this discus-

sion, we want to assume char F 6= 2. We begin with O(2n, F) (i.e., q = 0).

In order to use the analogy between O(2n, F) and Sp(2n, F), SO(2n + 1, F), let W

denote the Weyl group for all of these, viewed as permutations and sign changes. Let

I, J ⊂ S, S as in section 1. For each of the groups Sp(2n, F), SO(2n + 1, F), O(2n, F),

there are corresponding parabolic subgroups PI = MIUI and P J = M JU J . Consider-

ing just Sp(2n, F) or SO(2n+1, F) for the moment, we can let W MI M J ⊂ W denote the

usual (minimal length) set of double-coset representatives for WMI
\W /WM J

. When

W is viewed in terms of permutations and sign changes (i.e., as a Coxeter group),

let D(I, J) denote the corresponding subset of W . The following lemma tells us this

is also a suitable set of double-coset representatives (in the sense of Lemma 3.6) for

O(2n, F).

Lemma 3.6 Let G = O(2n, F) and I, J ⊂ S. Then, we may take W MI M J = D(I, J).

Proof Let ∆+
C (resp., ΠC ) denote the positive (resp., simple) roots for Sp(2n, F) and

∆+
D (resp., ΠD) the positive (resp., simple) roots for O(2n, F). For I ⊂ S, let ΠC (MI)
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(resp., ΠD(MI)) denote the simple roots of MI ⊂ Sp(2n, F) (resp., MI ⊂ O(2n, F)).

By Lemma 3.3, it suffices to show that if w ∈ D(I, J), then w · ΠD(MI) ⊂ ∆+
D and

w−1 · ΠD(M J) ⊂ ∆+
D. We focus on showing w · ΠD(MI) ⊂ ∆+

D below; the argument

for w−1 · ΠD(M J) ⊂ ∆+
D is done the same way.

Now, if we write ΠC = {e1 − e2, . . . , en−1 − en, 2en} and ΠD = {e1 − e2, . . . ,
en−1 − en, en−1 + en}, we can identify the roots in a manner consistent with the action

of W on each. Observe that in this context,

∆
+
D = {α ∈ ∆

+
C | length(α) = 2}.

First, suppose α = ei − ei+1 ∈ ΠD(MI). Then, ei − ei+1 ∈ ΠC (MI). Since the action

of W preserves lengths, we have w · α ∈ ∆+
C and length(w · α) = 2. Therefore,

w ·α ∈ ∆+
D. Now, suppose α = en−1 + en ∈ ΠD(MI). Then, we must have sn−1, c ∈ I.

Therefore, en−1 − en, 2en ∈ ΠC (MI). Since w ∈ D(I, J), we have

w · α = w ·
(

(en−1 − en) + 2en

)

= w · (en−1 − en) + w · (2en) ∈ ∆
+
C .

Since length(α) = length(w · α) = 2, we again have w · α ∈ ∆+
D, as needed.

In the case of q > 0, we have the following:

Lemma 3.7 If q > 0 and I, J ⊂ S, we may take

W MI,C M J,C = W
MI M J

G0 .

Proof In this case, we have W = WG0 ×C , which implies

WM J,C
wWMI,C

= WM J
wWMI

∪WM J
wcWMI

for all w ∈ W . The lemma follows easily from this.

4 A Generalization of a Result of Bernstein-Deligne-Kazhdan to Non-
Connected Groups

In this section, our aim is to extend Lemma 5.4(iii) of [BDK] to the non-connected

groups of section 2. For this section, we make no restriction on the characteristic

of F.

Proposition 4.1 Suppose w ∈ W and L, M are Levi factors of standard parabolic sub-

groups of G such that M = wLw−1. Then,

iG,M ◦ w(τ ) = iG,L(τ )

for any smooth, finite-length representation τ of L. (Note that this is an equality in the

Grothendieck group.)
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Proof The proof of this in [BDK] relies on three results: the linear independence of

characters, the Langlands classification, and [B-Z, Theorem 2.12] (equivalently, [Ca,

Theorem 6.5] ). The linear independence of characters is general, and holds for the

non-connected groups we are considering (cf. [Si2, Lemma 1.13.1]). The Langlands

classification for the groups under consideration is done in [B-J1]; along with [B-J3],

we have the necessary results on the Langlands classification. The extension of The-

orem 2.12 [B-Z] is Proposition 3.5 of this paper. With these observations, the proof

from [BDK] extends to cover the non-connected groups under consideration.

5 A Generalization of a Result of Casselman to Non-Connected
Groups

In this section, our aim is to extend [Ca, Corollary 4.2.5] to non-connected groups.

Here, we assume G = G0
⋊ C , i.e., representatives of C may be chosen which form

a group. We assume C̄ consists of such representatives. We make no assumptions on

the characteristic of F.

Let P = MΦ,DUΦ be a standard parabolic subgroup of G. We remind the reader

that the Jacquet modules rMΦ,G(π) and rMΦ,D,G(π) have the same space, denoted VU =

VUΦ
. We also use πU ,D for the Jacquet module rMΦ,D,G(π).

Lemma 5.1 Let K1, K2 ⊂ G0 be open compact subgroups having Iwahori factoriza-

tions with respect to P. Then K1 ∩ K2 is also an open compact subgroup having an

Iwahori factorization with respect to P.

Proof Clearly, K1 ∩ K2 is an open compact subgroup. If K1 = U−
1 M1U1 and K2 =

U−
2 M2U2 are the respective Iwahori factorizations, we claim that K1 ∩K2 has Iwahori

factorization (U−
1 ∩ U−

2 )(M1 ∩ M2)(U1 ∩ U2). This is straightforward to check; we

omit the details.

Corollary 5.2 Let K0 ⊂ G0 be an open compact subgroup having an Iwahori factor-

ization with respect to P. Then,
⋂

c∈C(Φ)(c̄K0(c̄)−1) ⊂ K0 is an open compact subgroup

which (1) has an Iwahori factorization with respect to P, and (2) is normalized by C(Φ).

Proof It is a straightforward matter to check that c̄K0(c̄)−1 has Iwahori factorization

(c̄U−
0 (c̄)−1)(c̄M0(c̄)−1)(c̄U0(c̄)−1) with respect to P. The result then follows from

Lemma 5.1.

Lemma 5.3 Suppose that U1 is an open compact subgroup of U . Then there is an open

compact subgroup U2 ⊃ U1 of U such that U2 is normalized by all c̄ ∈ C(Φ).

Proof Choose U ′
2 such that c̄U1(c̄)−1 ⊂ U ′

2 for all c ∈ C(Φ). Let

U2 =

⋂

c∈C(Φ)

c̄U ′
2(c̄)−1.

It is straightforward to check that U2 has the desired properties.
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In order to deal with the non-connectedness, we wish to be a bit more restrictive

than [Ca] in our choice of canonical lifts. Since this involves modifications to the

results of [Ca, Section 4], we freely use notation from there.

Suppose x ∈ VU . Choose M0, K0 such that K0 = U−
0 M0U0 (Iwahori factorization)

and x ∈ V M0

U . Replacing K0 by
⋂

c∈C(Φ)(c̄K0(c̄)−1) and M0 by
⋂

c∈C(Φ)(c̄M0(c̄)−1) (cf.

Corollary 5.2), we may assume that M0, K0 are normalized by C(Φ). Choose U1 such

that V K0 ∩ V (U ) ⊂ V (U1). By Lemma 5.3, replacing U1 if needed, we may assume

U1 is normalized by C(Φ). Finally, choose a ∈ A− such that aU1a−1 ⊂ U0. We take

v ∈ V K0
a for our canonical lift (cf. [Ca, section 4.1]). We call this a C(Φ)-canonical

lift to avoid ambiguity.

Lemma 5.4 Let MΦ,DUΦ be a standard parabolic subgroup of G. Suppose x ∈ VU and

v a C(Φ)-canonical lift of x. Then π(d̄)v is a C(Φ)-canonical lift of πU ,D(d̄)x for any

d ∈ D ⊂ C(Φ).

Proof Since v is a C(Φ)-canonical lift of x, we may write v = π(charK0aK0
)v ′, with

K0 = U−
0 M0U0, U1, and a satisfying the conditions above.

Now, since d̄ ∈ C(Φ) normalizes K0, we have

π(d̄)π(charK0aK0
)v ′

= π(charK0a ′K0
)v ′,

where a ′ = d̄ad̄−1 (noting that conjugation by elements of C preserves Haar mea-

sures, cf. [B-J1, Lemma 2.2]). Observe that since d · Π = Π, we have a ′ ∈ A−. Also,

since d̄ normalizes U1, we have a ′U1a ′−1 ⊂ U0. With the trivial observation that

π(d̄)v maps to πU ,D(d̄)x under the canonical projection, we can now conclude that

π(d̄)v is a C(Φ)-canonical lift of πU ,D(d̄)x, as needed.

Let 〈 · , · 〉 be the pairing of V with Ṽ and 〈 · , · 〉U be the canonical pairing of VU

with ṼU− from [Ca, Section 4.2]. We define the pairing 〈 · , · 〉U ,D̄ by

〈x, x̃〉U ,D̄ =

∑

d∈D

〈

πU ,D(d̄)x, π̃U−,D(d̄)x̃
〉

U
.

It is a straightforward matter to verify that 〈 · , · 〉U ,D̄ is MΦ,D-invariant.

We check that 〈 · , · 〉U ,D̄ is non-degenerate. Let v, ṽ be C(Φ)-canonical lifts of x, x̃.

Then, by Lemma 5.4,

〈x, x̃〉U ,D̄ =

∑

d∈D

〈

πU ,D(d̄)x, π̃U−,D(d̄)x̃
〉

U

=

∑

d∈D

〈

π(d̄)v, π̃(d̄)ṽ
〉

= |D|〈v, ṽ〉.

Since 〈 · , · 〉 is non-degenerate, the claim follows. We may now conclude the follow-

ing:

Proposition 5.5 The contragredient of (πU ,D,VU ) is isomorphic to (πU−,D, ṼU−)

(representations of MΦ,D).
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6 Duality for Orthogonal Groups

In this section, we consider the duality operators for orthogonal groups given in Def-

inition 1.1. We establish the basic properties for this operator given in [Au1, Au2].

Since we deal with orthogonal groups, we make the assumption char F 6= 2 in this

section.

Let us begin by introducing one piece of notation which will be useful in this

section. We let sgn denote the nontrivial one-dimensional representation of G =

O(Xn, F) (i.e., sgn is 1 on G0 and −1 on G \ G0). It is an easy consequence of the

results of [G-K, Section 2](cf. [B-J1, Lemma 2.1], e.g., for a convenient formulation)

that twisting by sgn may be accomplished using the involution iG,G0 ◦ rG0,G − Id.

The following is [Au1 Théorème 1.7] for G = O(Xn, F). As in [Au1], for q = 0

(resp., q > 0), we let w J ∈ W M JM∅ (resp., w J ∈ W M J,C M∅,C ) be the element of

maximal length (cf. Lemmas 3.6 and 3.7).

Theorem 6.1 The operator DG for O(Xn, F) (cf. Definition 1.1) has the following

properties:

(1) If ˜ denotes contragredient, we have ˜◦ DG = DG ◦ .̃

(2) For q=0 and any J ⊂ S, we have

DG ◦ iG,M J
= iG,M J

◦ DM J

and

rM J ,G ◦ DG = w J ◦ DM J ′
◦ rM J ′ ,G,

with w J as above and J ′ = w−1
J · J. For q > 0 and any J ⊂ S, we have

DG ◦ iG,M J,C
= iG,M J,C

◦ DM J,C

and

rM J,C ,G ◦ DG = w J ◦ DM J ′ ,C
◦ rM J ′ ,C ,G.

(3) D2
G = Id.

(4) If π is supercuspidal in the sense of [B-J1] (i.e., rG0,Gπ has supercuspidal compo-

nents; cf. [B-J1, Definition 2.5]), then DG(π) = (−1)|S|π unless G = O(2, F), in

which case DG acts by twisting by sgn.

Proof The calculations needed to prove (1)–(3) here are identical to those in the

proof of [Au1 Théorème 1.7]. We note that the properties (1.1)–(1.4) [Au1, p. 2121]

have been established, so we are free to use them here. The only other issue is the

combinatorial identity of Solomon used in the proof of (2). Here, it is quite help-

ful that we have formulated duality for O(2n, F) (i.e., q = 0) in the same way as for

Sp(2n, F) and SO(2n+1, F). In view of Lemma 3.6, it is the same combinatorial iden-

tity whether viewed as occuring in Sp(2n, F), SO(2n + 1, F), or O(2n, F), so remains

valid. In the case of q > 0, Lemma 3.7 allows us to reduce the combinatorial identity

to that for G0. The proof of (4) is trivial.
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We note that the preceding proposition deals with DG◦ iG,M and rM,G◦DG only for

the parabolic subgroups which appear in the definition of DG. While this is sufficient

for the purpose of generalizing [J3], we would like to be able to deal with arbitrary

standard parabolic subgroups. The following proposition allows us to do that. We

begin with an easy lemma.

Lemma 6.2 Let G be a non-connected group and C = G/G0. Let P = MU be a

standard parabolic subgroup of G. Then, for c ∈ C, we have the following equivalences:

c ◦ iG,M
∼= iG,c(M) ◦ c, c ◦ rM,G

∼= rc(M),G ◦ c,

where c(M) denotes the Levi factor of c(P) (not necessarily standard in the sense of

[B-J1]).

Proof Straightforward.

Proposition 6.3 Let G = O(Xn, F). Then,

DG ◦ iG,G0 = iG,G0 ◦ DG0 and rG0,G ◦ DG = DG0 ◦ rG,G0 .

Proof First, let G = O(2n, F) (i.e., q = 0). We focus on the induction claim. We

have

DG ◦ iG,G0 =

∑

I⊂S

(−1)|I|iG,MI
◦ rMI ,G ◦ iG,G0 .

By Proposition 3.5 (noting that c = c−1),

rMI ,G ◦ iG,G0 =

{

rMI ,G0 + c ◦ rMc(I),G0 if c 6∈ I

iMI ,M0
I
◦ rM0

I
,G0 if c ∈ I.

By the preceding lemma and induction in stages, we can break the sum up and rewrite

it as follows:

DG ◦ iG,G0 =

∑

I⊂S
sn−1,c 6∈I

(−1)|I|(iG,MI
◦ rMI ,G0 + iG,Mc(I)

◦ rMc(I),G0 )

+
∑

I⊂S
c 6∈I

sn−1∈I

(−1)|I|(iG,MI
◦ rMI ,G0 + iG,Mc(I)

◦ rMc(I),G0 )

+
∑

I⊂S
c∈I

sn−1 6∈I

(−1)|I|iG,M0
I
◦ rM0

I
,G0 +

∑

I⊂S
sn−1,c∈I

(−1)|I|iG,M0
I
◦ rM0

I
,G0 .

Let Π denote the set of simple roots for G0. The above sums may then be rewritten

as follows:
∑

I⊂S
sn−1,c 6∈I

(−1)|I|(iG,MI
◦ rMI ,G0 + iG,Mc(I)

◦ rMc(I),G0 ) = 2
∑

I⊂Π
αn−1,αn 6∈I

(−1)|I|iG,MI
◦ rMI ,G0 ,
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∑

I⊂S
c 6∈I

sn−1∈I

(−1)|I|(iG,MI
◦ rMI ,G0 + iG,Mc(I)

◦ rMc(I),G0 )

=

∑

I⊂Π
αn−1 6∈I
αn∈I

(−1)|I|iG,MI
◦ rMI ,G0 +

∑

I⊂Π
αn−1∈I
αn 6∈I

(−1)|I|iG,MI
◦ rMI ,G0 ,

∑

I⊂Π
c∈I

sn−1 6∈I

(−1)|I|iG,M0
I
◦ rM0

I
,G0 =

∑

I⊂Π
αn−1,αn 6∈I

(−1)|I|+1iG,MI
◦ rMI ,G0 ,

∑

I⊂S
sn−1,c∈I

(−1)|I|iG,M0
I
◦ rM0

I
,G0 =

∑

I⊂Π
αn−1,αn∈I

(−1)|I|iG,MI
◦ rMI ,G0 .

If we use the above equalities, along with writing iG,MI
= iG,G0 ◦ iG0,MI

, we are reduced

to the following:

DG ◦ iG,G0 =

∑

I⊂Π

(−1)|I|iG,G0 ◦ iG0,MI
◦ rMI ,G0

= iG,G0 ◦ DG0 ,

as needed.

The Jacquet module claim for O(2n, F) is done similarly. The proof for q > 0 is

similar, but easier.

Corollary 6.4 DG(π ⊗ sgn) = DG(π) ⊗ sgn.

Proof It suffices to check that

DG0 ◦ (iG,G0 ◦ rG0,G − Id) = (iG,G0 ◦ rG0,G − Id) ◦ DG,

which is immediate from the preceding proposition. (Alternatively, one can show

this using [B-Z, Proposition 1.9(f).)

Theorem 6.5 The duality operators DG for O(Xn, F) take irreducible representations

to irreducible representations (up to sign).

Proof The proof is essentially the same as that from [Au2, Théorème] and [Au1,

Corollaire 3.9]. We give a brief sketch for G = O(2n, F) (i.e., q = 0), in order to

note where changes or additional arguments are needed. The argument for q > 0

is similar, but with fewer complications. Since we are following Aubert’s proof, we

freely use notation from [Au1, Au2] below.

As in [Au1, Corollaire 3.9], it is enough to show the exactness of

0 −→ E −→
⊕

| J|=|S|−1

Ẽ J −→
⊕

| J|=|S|−2

Ẽ J −→ · · · −→
⊕

| J|=|I|

Ẽ J.
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As in [Au2], this follows if we can show that

0 −→ E −→
⊕

| J|=|S|−1

Ẽ J,I −→
⊕

| J|=|S|−2

Ẽ J,I −→ · · · −→
⊕

| J|=|I|

Ẽ J,I

is exact.

We take Θ as in [Au2]. In particular, Θ consists of all subsets of W having the

property that if w ∈ θ and ℓ(w ′) > ℓ(w), then w ′ ∈ θ. For θ ∈ Θ, let

Gθ =

⋃

w∈θ

BwB,

where B is the Borel subgroup. For I, J given and θ ∈ Θ, let θ ′ ∈ Θ denote the

largest left-W J and right-WI invariant subset of θ. We let Eθ
J,I denote the subspace of

E J,I consisting of functions supported on Gθ. Note that an element of E J,I which is

supported on Gθ is then supported on Gθ ′ (since an element of E J,I is determined by

its values on a set of representatives for P J\G/PI). We remark that this definition of

Eθ
J,I represents a minor correction to [Au2].

Next, we fix a filtration as in [Au2]:

W = θ1 ⊃ θ2 ⊃ · · · ⊃ θt+1 = ∅

with θi ∈ Θ and θi \ θi+1 = {wi}. Let F denote this filtration. Note that in

general, we cannot use the same filtration (i.e., the same ordering of the wi) for

O(2n, F) that is used for SO(2n + 1, F) or Sp(2n, F) (e.g., consider s1s2 and csn−1c

when n > 2). Let W MI M J (F) denote the following set of double-coset representa-

tives: for the double-coset W JwWI , we choose wi ∈ W JwWI having i maximal. We

remark that wi will be of minimal length in W JwWI . While we cannot use the same

filtration as for Sp(2n, F) or SO(2n + 1, F), Lemma 3.6 ensures that we can choose

F so that W MI M J (F) = D(I, J). (E.g., suppose w ∈ W JwWI is of minimal length

but cw, wc, cwc are distinct. While all four have the same length in the Weyl group

for O(2n, F), in SO(2n + 1, F) and Sp(2n, F), one is of minimal length. We choose

the filtration so that this element is the last of the four to appear as a θi \ θi+1. Note

that even if different I, J are considered, we still want this to be the last of the four to

appear.) We fix such a filtration. We note that in the case q > 0, Lemma 3.7 tells us

we can use the same filtration as for SO(Xn, F), thereby simplifying this part of the

argument.

Fix i and let w = wi . As in [Au2], the exactness of

0 −→ E −→
⊕

| J|=|S|−1

Ẽ J,I −→
⊕

| J|=|S|−2

Ẽ J,I −→ · · · −→
⊕

| J|=|I|

Ẽ J,I

follows from the exactness of

0 −→ E −→
⊕

| J|=|S|−1

Ẽθi

J,I/Ẽθi+1

J,I −→
⊕

| J|=|S|−2

Ẽθi

J,I/Ẽθi+1

J,I −→ · · · −→
⊕

| J|=|I|

Ẽθi

J,I/Ẽθi+1

J,I .
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With our results from section 3, the same argument as in [Au2] reduces this to show-

ing the exactness of

· · · −→
⊕

| J|=k
w(I)⊂ J⊂Sw

Ad(w−1)(rG
wMI w−1 (E))

δk−→
⊕

| J|=k−1

w(I)⊂ J⊂Sw

Ad(w−1)(rG
wMI w−1 (E))

δk−1

−→· · · .

As in [Au2], if we consider the maps used to reduce us to showing the exactness of the

preceding complex, we see that δk is the identity tensored with the appropriate sign.

(Note that whereas Aubert uses [Ca] to calculate δk, we must use the results from

[B-Z, Section 5] since O(2n, F) is not connected.) This still reduces to well-known

results, finishing the proof.

Remark 6.6 It is worth taking a moment to discuss duality in more generality. One

property a duality operator should have is to send the trivial representation to the

Steinberg representation (or, in the case of non-connected groups, something which

might reasonably be called a Steinberg representation). We also want our duality

operator to have the form

(∗) DG =

∑

aM iG,M ◦ rM,G,

where the sum is over (the Levi factors of) all standard parabolic subgroups. For a

given group, one can essentially solve DG(trivial) = Steinberg to find the coefficients

aM .

We now discuss Steinberg representations for O(2n, F) (i.e., q = 0). In this case,

there are two representations which might reasonably be called Steinberg representa-

tions. In particular, the representation

iG,M∅
δ

1
2 = iG,M∅

(| · |n−1 ⊗ · · · ⊗ | · |1 ⊗ | · |0)

has two irreducible subrepresentations which we call Sttriv and Stsgn. They are the

unique irreducible subrepresentations of iG,M{c}
(| · |n−1 ⊗ · · · ⊗ | · |1 ⊗ trivO(2)) and

iG,M{c}
(| · |n−1 ⊗ · · · ⊗ | · |1 ⊗ sgnO(2)), respectively. We have Stsgn = Sttriv ⊗ sgn. The

situation for q > 0 is similar.

Examples show that there are only two reasonable duality operators for orthog-

onal groups: DG from Definition 1.1 and its twist by sgn. We note that for q = 0,

DG(triv) = Stsgn; its twist by sgn sends the trivial representation to Sttriv. For q > 0,

DG(triv) = Sttriv and its twist by sgn sends triv to Stsgn. To obtain an explicit re-

alization for DG ⊗ sgn, one can rewrite this as DG ◦ (iG,G0 ◦ rG0,G − Id) to find the

coefficients aM . For q > 0, this operator may be written as

DG ⊗ sgn =

∑

I⊂S ′

(−1)|I|iG,MI
◦ rMI ,G,

with S ′ = {sα1
, . . . , sαn

, c}; for q = 0 there is no particularly nice description.

The question naturally arises as to generalizing this to other non-connected

groups. It is not clear to the author at this point whether a duality operator of the

form (∗) exists in general or not.
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7 On Supports of Induced Representations

In this section, we extend the results of [J3]—originally done for Sp(2n, F) and

SO(2n + 1, F)—to certain other families of groups having similar structural proper-

ties. In particular, we consider the families O(Xn, F) and SO(Xn, F) with q > 1 (q = 1

is just SO(2n + 1, F), already covered). For this section, we can assume char F = 0,

though there is some flexibility possible (cf. Remark 3.1).

The results in [J3] are proven using knowledge about induced representations for

general linear groups ([Ze]) and a number of results for Sp(2n, F), SO(2n + 1, F):

(1) R(S) comodule structure [T1],

(2) The Langlands classification/Cassleman criterion [B-W, Si1, Ca],

(3) Duality [Au1, Au2, S-S],

(4) R-groups results [Go1].

We now discuss these results for the families of groups under consideration. The

R(S) comodule structure of [T1] was extended to O(2n, F) in [Ba1]; the modifi-

cations of [T1] necessary for O(Xn, F) with q > 0 and SO(Xn, F) with q > 1 are

given in [M-T]. The Langlands classification of [B-W, Si1] and Cassleman criterion

cover the connected groups SO(Xn, F). For the non-connected groups O(Xn, F), the

Langlands classification is covered by [B-J1, B-J3]; the Casselman criterion is an easy

consequence of the definition of tempered being used (i.e., restriction to G0 having

tempered components—cf. [B-J1, Definition 2.5] ). The duality results of [Au1, Au2,

S-S] also cover the connected groups SO(Xn, F); the non-connected groups O(Xn, F)

are covered by the results of section 6 above. The R-group results analogous to [Go1]

are given in [Go2] for O(Xn, F) with q = 0, 1. These results have not been verified for

O(Xn) with q > 1 or SO(Xn, F) with q > 1, though there is every reason to believe

they hold there as well. In fact, [M-T, Theorem 13.1] which covers all the groups

in question, is a suitable substitute. However, these results require assuming certain

conjectures of Arthur. (On the other hand, it is the use of Goldberg’s results that

imposes the hypothesis char F = 0.) We summarize:

Remark 7.1 For O(Xn, F) with q > 1 and SO(Xn, F) with q > 1, we need to assume

the results of Goldberg hold. Alternatively, we may assume the conjectures necessary

for [M-T], in which case [M-T, Theorem 13.1] serves as a substitute.

To make matters more precise, we first consider general linear groups. Let

R =

⊕

n≥0

R(GL(n, F)).

This has the structure of a Hopf algebra, which we now describe (cf. [Ze]). Recall

that a parabolic subgroup of GL(n, F) has the form P = MU , with M = GL(n1, F) ×
· · · × GL(nk, F) and n1 + · · · + nk = n. Let iG,M and rM,G denote the (normalized)

induction and (normalized) Jacquet functors (cf. [B-Z]). If π1 ∈ Irr(GL(n1, F)), π2 ∈
Irr(GL(n2, F)), we define π1 × π2 as the semisimplification of iG,M(π1 ⊗ π2). This

extends to give

× : R ⊗ R −→ R,
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the Hopf algebra multiplication. The comultiplication m∗ is defined via Jacquet

modules. Let M(n1,...,nk) = GL(n1, F) × · · · × GL(nk, F), the Levi factor of a stan-

dard parabolic subgroup of G = GL(n, F), n = n1 + · · · + nk. On R(GL(n, F)), we

take

m∗
=

n
∑

i=0

rM(i,n−i),G.

This extends to give the comultiplication m∗ : R −→ R ⊗ R.

Let S(n, F) denote one of the following families of groups: O(Xn, F), SO(Xn, F)

with q > 1. Let

R(S) =

⊕

n≥0

R(S(n, F)).

This has the structure of an M∗-Hopf module over R, which we now describe (cf.

[Ba1] for O(2n, F) and [M-T] for the extension of [T1] to the remaining families).

Recall that a parabolic subgroup of S(n, F) has the form P = MU , with M =

GL(n1, F)×· · ·×GL(nk, F)×S(n0, F) and n1 +· · ·+nk +n0 = n. If π ∈ Irr(GL(n1, F))

and θ ∈ Irr(S(n0, F)), we define π ⋊ θ as the semisimplification of iG,M(π ⊗ θ). This

can be extended to give

⋊ : R ⊗ R(S) −→ R(S),

the module structure for R(S) over R. The comodule structure is defined using

Jacquet modules. Let M(n1,...,nk ;n0) = GL(n1, F) × · · · × GL(nk, F) × S(n0, F), the

Levi factor of a standard parabolic subgroup of G = S(n, F), n = n1 + · · · + nk + n0.

Then, on R(S), we take

µ∗
=

n
∑

i=0

rM(i;n−i),G.

This extends to give µ∗ : R(S) −→ R⊗R(S). Let M∗ = (m⊗1)◦(̃ ⊗m∗)◦s◦m∗, where

m denotes the multiplication × for general linear groups, s is defined by s : π1⊗π2 7→
π2 ⊗ π1, and ˜ denotes contragredient. Then, µ∗ gives R(S) the structure of an M∗-

Hopf module over R, that is, µ∗ = M∗
⋊ µ∗. Here, (τ1 ⊗ τ2) ⋊ (τ ⊗ π) is defined to

be (τ1 × τ ) ⊗ (τ2 ⋊ π). We refer the reader to [T1, Ba1, M-T] for more details.

We pause to remark that the Hopf algebra/M∗-Hopf module structures described

above have been very useful in using Jacquet module techniques to study the repre-

sentation theory of classical groups (cf. [T2, J1, T3, J4, J5, M-T, B-J2], etc.). However,

our present interest is in the M∗-Hopf module itself. Buried in this structure is a

great deal of information on the representation theory of classical groups.

First, consider R. Suppose ρ1, . . . , ρk are irreducible, unitary, supercuspidal rep-

resentations of GL(n1, F), . . . , GL(nk, F). Assume no ρi
∼= ρ j for i 6= j. We let

R(ρ1, . . . , ρk) ⊂ R denote the subalgebra generated by representations whose super-

cuspidal support lies in {| det |αρ1}α∈R ∪ · · · ∪ {| det |αρk}α∈R. Then,

R(ρ1, . . . , ρk) ∼= R(ρ1) ⊗ · · · ⊗ R(ρk)

with the isomorphism in one direction defined by π1 ⊗ · · · ⊗ πk 7→ π1 × · · · × πk

(cf. [Ze]) for πi ∈ R(ρi) irreducible. The isomorphism in the other direction may be

described using Jacquet modules.
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Now, consider R(S). Suppose ρ1, . . . , ρk are irreducible, unitary, supercuspidal

representations of GL(n1, F), . . . , GL(nk, F); σ an irreducible, supercuspidal repre-

sentation of S(n0, F). Assume no pair has ρi
∼= ρ j or ρ̃ j . Let R(ρ1, . . . , ρk; σ) ⊂ R(S)

denote the submodule generated by representations with supercuspidal support on

{| det |αρ1, | det |−αρ̃1}α∈R ∪ · · · ∪ {| det |αρk, | det |−αρ̃k}α∈R ∪ {σ}. For Sp(2n, F),

SO(2n + 1, F), the following result is [J3, Proposition 9.8]. We claim that it also holds

for O(Xn, F) and SO(Xn, F) with q > 1.

Theorem 7.2 With notation as above (and assuming Remark 7.1 where appropriate),

we have

R(ρ1, . . . , ρk; σ) ∼= R(ρ1; σ) ⊗ · · · ⊗ R(ρk; σ)

as M∗-Hopf modules over

R(ρ1, ρ̃1, . . . , ρk, ρ̃k) ∼= R(ρ1, ρ̃1) ⊗ · · · ⊗ R(ρk, ρ̃k).

Further, the isomorphism respects contragredience, duality, temperedness, square-integ-

rability, and data for the Langlands classification (cf. [J3, Theorem 9.3] for a more

precise statement).

Proof We begin by describing the isomorphism. Suppose π is an irreducible repre-

sentation with π ∈ R(ρ1, . . . , ρk; σ). By [J3, Lemma 5.7], which is essentially a corol-

lary of Frobenius reciprocity, there exist irreducible representations τ1, . . . , τk−1 and

θk with τi ∈ R(ρi , ρ̃i) and θk ∈ R(ρk; σ) such that

π →֒ τ1 × · · · × τk−1 ⋊ θk.

Further, θk is unique (cf. [J3, Corollary 7.5 and Definition 7.6]). We note that since

[J3, Corollary 7.5] is an easy consequence of the structure theory of [T1]; by [Ba1,

M-T], it also holds for the families under consideration. In a similar fashion, we

could single out ρ1, . . . , ρk−1, resp., to produce θ1, . . . , θk−1, resp. The isomorphism

is then given in one direction by

π 7−→ θ1 ⊗ · · · ⊗ θk.

The proof that this map gives an isomorphism with the desired properties is iden-

tical to that in [J3]—the Langlands classification, Casselman criterion, duality, and

R-group structures have the same forms for the families under consideration as for

SO(2n + 1, F) and Sp(2n, F), so the proofs in [J3] go through verbatim. In particular,

[J3, Propositions 8.1 and 8.4] show that the above map is a bijection; [J3, Theorem

9.3] shows it is an isomorphism of modules (as well as other properties claimed); [J3,

Lemma 9.9] shows it also respects the comodule structure.

Remark 7.3 The refinements to [J3, Proposition 9.8] given in [J3, Proposi-

tion 10.10] are also valid for O(Xn, F) and SO(Xn, F) with q > 1.
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