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On Square-Integrable Representations of
Classical p-adic Groups
Chris Jantzen

Abstract. In this paper, we use Jacquet module methods to study the problem of classifying discrete series for
the classical p-adic groups Sp(2n, F) and SO(2n + 1, F).

1 Introduction

1.1 Introduction

One of the central questions in the representation theory of p-adic groups is to determine
the discrete series. This paper studies the problem of determining the noncuspidal dis-
crete series for the classical groups Sp2n(F) and SO2n+1(F). Let Sn(F) denote Sp2n(F) or
SO2n+1(F) (we treat the two families simultaneously). Now, a noncuspidal discrete series
representation occurs as a subquotient of a (parabolically) induced representation. Here,
we constrain where one needs to look for such discrete series representations. Ultimately,
we hope that such an analysis can be used to help prove exhaustion for the noncuspidal
discrete series.

First, we reduce the problem of classifying the discrete series to classifying those square-
integrable representations supported on sets of the form S

(
(ρ, β);σ

)
= {ναρ}α∈β+Z∪{σ},

where ρ ∼= ρ̃ is an irreducible unitary supercuspidal representation of GLn(F), ν = | det |,
σ an irreducible supercuspidal representation of Sr(F), and β = 0 or 1

2 . In general, if π is
an irreducible representation (not necessarily square-integrable) supported on S

(
(ρ, β);σ

)
as above, we define χ0(π). This is a subquotient of the (normalized) Jacquet module taken
with respect to the smallest standard parabolic subgroup admitting a nonzero Jacquet mod-
ule; it is minimal with respect to an appropriate ordering. This is used to produce δ0(π),
which has the form

δ0(π) = δ([νb1ρ, νa1ρ])⊗ · · · ⊗ δ([νbkρ, νakρ])⊗ σ,

where a1 ≤ a2 ≤ · · · ≤ ak (δ([νbρ, νaρ]) denotes the generalized Steinberg representation
of GL(a−b+1)n(F) whose minimal Jacquet module is νaρ ⊗ νa−1ρ ⊗ · · · ⊗ νbρ). If m =
(a1−b1 +1)n + · · ·+(ak−bk +1)n + r, let P = MN denote the standard parabolic subgroup
of Sm(F) with Levi factor

M = GL(a1−b1+1)n(F)× · · · × GL(ak−bk+1)n(F)× Sr(F).

Then, we show that

π ↪→ IndG
P

(
δ0(π)

)
.
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Further, we show that π is square-integrable if and only if ai + bi > 0 for all i. Thus,
every square-integrable representation supported on S

(
(ρ, β);σ

)
with ρ, β, σ as above, is

a subrepresentation of an induced representation of this form. We note that not every δ0
having the form described above occurs as δ0(π) for a square-integrable π. However, we
expect that with a couple of additional conditions on ai , bi , that will be the case.

We now discuss the contents section by section. The next section introduces notation
and recalls some general results that will be needed later.

Section 2.1 reviews some results of Zelevinsky on induced representations for general
linear groups. In Section 2.2, we define χ0(π), δ0(π) for π an irreducible representation of
GLm(F) supported on a set of the form {ναρ}α∈β+Z, where ρ is an irreducible unitary su-
percuspidal representation. We also establish some of the basic properties of χ0(π), δ0(π).
In Section 2.3, we show how these can be used to show that the only irreducible square-
integrable representations of GLm(F) are the generalized Steinberg representations, a result
originally due to Bernstein. The connection between δ0(π) and the Langlands data (sub-
representation version of the Langlands classification) is established in Section 2.4.

We use Section 3.1 to review some background material on the representation theory of
Sn(F). In Section 3.2, we recall a result which allows us to reduce the problem of classify-
ing the discrete series of Sr(F) to that of classifying the square-integrable representations
supported on sets of the form S

(
(ρ, β);σ

)
. In Section 3.3, we give a conjecture which,

when coupled with recent work of Mœglin, leads to an expected parameterization of such
square-integrable representations, at least for pairs (ρ, σ) with “generic reducibility”.

The definitions and basic properties of χ0(π), δ0(π) mentioned above are discussed in
detail in Section 4.1. In Section 4.2, we give the criterion for square-integrability mentioned
above. In Section 4.3, we use this to determine which sets S

(
(ρ, β);σ

)
support square-

integrable representations. Section 4.4 gives some basic constraints on δ0(π).
In the fifth chapter, we give an example to show how these results may be applied. We

restrict our attention to the case where IndG
P (ν

1
2 ρ ⊗ σ) is reducible, where P is the stan-

dard parabolic subgroup of Sn+r(F) with Levi factor M ∼= GLn(F) × Sr(F). By results in
Section 4.3, only S

(
(ρ, 1

2 );σ
)

will support square-integrable representations, so we restrict
our attention to representations supported on this set. The goal of this chapter is to classify
those irreducible, square-integrable representations whose δ0 has k = 2. The case k = 1 is
already known (cf. [Tad5]); we discuss this case in Section 5.1. In Section 5.2, we show that
if π is an irreducible, square-integrable representation and k = 2, then δ0(π) has one of the
following forms:

1. δ0(π) = δ([ν−dρ, νcρ])⊗ δ([ν−bρ, νaρ])⊗ σ, or
2. δ0(π) = δ([ν−cρ, νbρ])⊗ δ([ν−dρ, νaρ])⊗ σ

for a, b, c, d ∈ 1
2 + Z with a > b > c > d ≥ − 1

2 . Further, anything of form 1. or 2. above
actually occurs as δ0(π) for some irreducible, square-integrable representation π. This fol-
lows from the discussion in Section 5.3. We note that the irreducible, square-integrable
representations appearing in IndG

P

(
δ([ν−dρ, νcρ])⊗ δ([ν−bρ, νaρ])⊗ σ

)
are classified by

the results in [Tad5] (where P and G are clear from context). In Section 5.3, we do a corre-
sponding analysis for IndG

P

(
δ([ν−cρ, νbρ])⊗ δ([ν−dρ, νaρ])⊗σ

)
, though our approach is

somewhat different.
I would like to take this opportunity to thank a few people. In particular, conversations

with Henry Kim, Alan Roche, Paul Sally, and Marko Tadić have been quite helpful during
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various stages of the research for this paper. My thanks go out to all of them, and to the
referee as well.

1.2 Notation and Preliminaries

In this section, we introduce notation and recall some results that will be needed in the rest
of the paper. This largely follows the setup used in [Tad1].

Let F be a p-adic field with char F = 0. Let | · | denote the absolute value on F, normal-
ized so that || = q−1, a uniformizer. As in [B-Z], we let ν = | det | on GLn(F) (with the
value of n clear from context). Define× on GL(F) as in [B-Z]: if ρ1, . . . , ρk are representa-
tions of GLn1 (F), . . . ,GLnk (F), let ρ1× · · ·× ρk denote the representation of GLn1+···+nk (F)
obtained by inducing ρ1⊗ · · ·⊗ ρk from the standard parabolic subgroup of GLn1+···+nk (F)
with Levi factor GLn1 (F)× · · · × GLnk (F).

Frequently, we work in the Grothendieck group setting. That is, we work with the
semisimplified representation. So, for any representation π and irreducible representa-
tion ρ, let m(ρ, π) denote the multiplicity of ρ in π. We write π = π1 + · · · + πk if
m(ρ, π) = m(ρ, π1) + · · · + m(ρ, πk) for every irreducible ρ. Similarly, we write π ≥ π0

if m(ρ, π) ≥ m(ρ, π0) for every such ρ. For clarity, we use = when defining something or
working in the Grothendieck group;∼= is used to denote an actual equivalence.

We now turn to symplectic and odd-orthogonal groups. Let

Jn =




1
1

. . .

1
1




denote the n× n antidiagonal matrix above. Then,

SO2n+1(F) = {X ∈ SL2n+1(F) | TX J2n+1X = J2n+1},

Sp2n(F) =

{
X ∈ GL2n(F)

∣∣∣ TX

(
− J

J

)
X =

(
− J

J

)}
.

We use Sn(F) to denote either SO2n+1(F) or Sp2n(F). In either case, the Weyl group is
W = {permutations and sign changes on n letters}.

We take as minimal parabolic subgroup in Sn(F) the subgroup P∅ consisting of upper
triangular matrices. Let α = (n1, . . . , nk) be an ordered partition of a nonnegative integer
m ≤ n into positive integers. Let Mα ⊂ Sn(F) be the subgroup

Mα =







X1

. . .
Xk

X
τXk

. . .
τX1




∣∣∣∣ Xi ∈ GLni (F),X ∈ Sn−m(F)



,
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where τX = JTX−1 J. Then Pα = MαP∅ is a parabolic subgroup of Sn and every parabolic
subgroup is of this form (up to conjugation). For α = (n1, . . . , nk), let ρ1, . . . , ρk be rep-
resentations of GLn1 (F), . . . ,GLnk (F), respectively, and σ a representation of Sn−m(F). Let
ρ1×· · ·×ρk�σ denote the representation of Sn(F) obtained by inducing the representation
ρ1 ⊗ · · · ⊗ ρk ⊗ σ of Mα (extended trivially to Pα). If m = n, we write ρ1 × · · · × ρk � 1,
where 1 denotes the trivial representation of S0(F).

We recall some structures which will be useful later (cf. Section 1 of [Zel1] and Sec-
tion 4 of [Tad3]). Let R

(
GLn(F)

)
(resp., R

(
Sn(F)

)
) denote the Grothendieck group of

the category of all smooth finite-length GLn(F)-modules (resp., Sn(F)-modules). Set R =⊕
n≥0 R

(
GLn(F)

)
and R[S] =

⊕
n≥0 R

(
Sn(F)

)
. The operators× and � lift naturally to

× : R⊗ R −→ R and � : R⊗ R[S] −→ R[S].

With these multiplications, R becomes an algebra and R[S] a module over R.
Let π be an irreducible representation of Sn(F). Then, there is a standard Levi M and

an irreducible supercuspidal representation ρ1 ⊗ · · · ⊗ ρk ⊗ σ of M (with ρi an irreducible
supercuspidal representation of GLni (F) and σ an irreducible supercuspidal representation
of Sn−m(F)) such that π is a subquotient of ρ1 × · · · × ρk × σ. We say that the multiset
{ρ1, . . . , ρk;σ} is in the support of π. Further, M and ρ1 ⊗ · · · ⊗ ρk ⊗ σ are unique up to
conjugation (cf. Theorem 2.9, [B-Z]). By Propositions 4.1 and 4.2 of [Tad3],

ρ1 × · · · × ρi−1 × ρi × ρi+1 × · · · × ρk � σ

= ρ1 × · · · × ρi−1 × ρ̃i × ρi+1 × · · · × ρk � σ,

where ˜ denotes contragredient. Thus, if {ρ1, . . . , ρi−1, ρi, ρi+1, . . . , ρk;σ} is in the support
of π, so is {ρ1, . . . , ρi−1, ρ̃i, ρi+1, . . . , ρk;σ}. Therefore, every {ρ ′1, . . . , ρ

′
k;σ}, with ρ ′i = ρi

or ρ̃i , is in the support of π. Further, these exhaust the support of π. More generally,
we extend the definition of support as in [Tad5]: If π is a finite-length representation and
{ρ1, . . . , ρk;σ} is in the support of π ′ for every irreducible subquotient π ′ of π, we say that
{ρ1, . . . , ρk;σ} is in the support of π.

We recall some notation of Bernstein-Zelevinsky [B-Z]. If P = MU is a standard para-
bolic subgroup of G and ξ a representation of M, we let iGM(ξ) denote the representation
obtained by (normalized) parabolic induction. Similarly, is π is a representation of G, we
let rMG(π) denote the (normalized) Jacquet module of π with respect to P.

Next, we introduce some convenient shorthand for Jacquet modules (cf. [Tad3]). If
π is a representation of some Sn(F) and α is a partition of m ≤ n, let sα(π) denote
the Jacquet module with respect to Mα. Note that, by abuse of notation, we also al-
low sα to be applied to representations Mβ when Mβ > Mα (cf. Section 2.1, [B-Z]).
Further, we define sGL as in [Tad5]: for π ≤ ρ1 × · · · × ρk � σ with ρi a supercusp-
idal representation of GLni (F) and σ a supercuspidal representation of Sn−m(F), we set
sGL (π) = s(n1+···+nk)(π). We will occasionally use similar notation for representations of
GLn(F). If α = (n1, . . . , nk) is a partition of m ≤ n, GLn(F) has a standard parabolic
subgroup with Levi factor Lα ∼= GLn1 (F) × · · · × GLnk (F) × GLn−m(F) (Lα consists of
block-diagonal matrices; the corresponding parabolic subgroup of block upper triangular
matrices). If π is a representation of GLn(F), we let rα(π) denote the Jacquet module of π
with respect to Lα.
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Finally, suppose π is a representation of Sn(F). Consider

Mmin = {M standard Levi | rMG(π) �= 0 but rLG(π) = 0 ∀L < M}.

Note that if π has supercuspidal support in the sense above, these are all conjugate. Then,
formally set

smin(π) =
∑

M∈Mmin

rMG(π).

If π has supercuspidal support of parabolic rank m, then smin(π) ∈ R⊗ · · · ⊗ R︸ ︷︷ ︸
m

⊗R[S]. We

may define rmin similarly for representations of GLn(F).

2 The Case of GLn(F)

2.1 Background Material

We now review some results on induced representations for GLn(F). This section is all
based on the work of Zelevinsky [Zel1].

First, if ρ is an irreducible supercuspidal representation of GLr(F) and m ≡ n mod 1,
we define the segment

[νmρ, νnρ] = {νmρ, νm+1ρ, . . . , νnρ}.

We note that the induced representation νmρ× νm+1ρ×· · ·× νnρ has a unique irreducible
subrepresentation, which we denote by ζ([νmρ, νnρ]), and a unique irreducible quotient,
which we denote by δ([νmρ, νnρ]).

Lemma 2.1.1 Let ρ1, ρ2 be irreducible unitary supercuspidal representations of GLr1 (F),
GLr2 (F). Suppose m1 ≤ n1, m2 ≤ n2 satisfy m1 ≡ n1 mod 1, m2 ≡ n2 mod 1. Then,
δ([νm1ρ1, ν

n1ρ1])× δ([νm2ρ, νn2ρ]) is reducible if and only if all of the following hold:

1. ρ1
∼= ρ2

2. m1 ≡ n1 ≡ m2 ≡ n2

3. either (a) m1 < m2 and m2−1 ≤ n1 ≤ n2−1, or (b) m1 > m2 and m1−1 ≤ n2 ≤ n1−1.

ζ([νm1ρ1, ν
n1ρ1])× ζ([νm2ρ2, ν

n2ρ2]) is irreducible if and only if the same conditions hold.

Proof This is a special case of Theorem 4.2 [Zel1].

Next, consider a representation of the form

χ = (ρ(1)
1 ⊗ · · · ⊗ ρ

(k1)
1 )⊗ (ρ(1)

2 ⊗ · · · ⊗ ρ
(k2)
2 )⊗ · · · ⊗ (ρ(1)

m ⊗ · · · ⊗ ρ
(km)
m )

with ρ( j)
1 an irreducible representation of GLr( j)

i
(F) for all i, j. By a shuffle ofχ, we mean the

usual: a permutation onχ such that for all i, ρ(1)
i , . . . , ρ

(ki )
i appear in that order. (That is, the

relative orders in the parenthesized pieces are preserved.) Further, if χ is a representation
of a standard Levi M of GLn(F) and sh(χ) is a shuffle of χ, then sh(χ) is a representation
of a standard Levi subgroup of GLn(F) which we denote by sh(M). We have the following:
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Lemma 2.1.2 (shuffling)

1. Suppose π is an irreducible representation of GLn(F) such that rMG(π) ≥ χ, where χ has
the form

(να1,1ρ1 ⊗ · · · ⊗ ν
α1, j1ρ1)⊗ (να2,1ρ2 ⊗ · · · ⊗ ν

α2, j2ρ2)⊗ · · · ⊗ (ναm,1ρm ⊗ · · · ⊗ ν
αm, jmρm),

where

(a) ρ1, . . . , ρm are irreducible unitary supercuspidal representations of GLr1 (F), . . . ,
GLrm (F),

(b) αi,k ∈ R with αi,1 ≡ αi,2 ≡ · · · ≡ αi, ji mod 1 for all i, and such that

(c) if ρi
∼= ρk, then αi,1 �≡ αk,1 mod 1.

Then, for every shuffle sh(χ) of χ, we have rsh(M)G(π) ≥ sh(χ). Further, if rsh(M)G(π) ≥
sh(χ) for any such shuffle, we necessarily have rMG(π) ≥ χ, and therefore rsh(M)G(π) ≥
sh(χ) for every such shuffle.

2. iGM(χ) ∼= iGsh(M)

(
sh(χ)

)
for any such shuffle.

Proof See Lemma 5.4 and Section 10 of [Jan3].

Lemma 2.1.3 Let (ρ1, α1), . . . , (ρm, αm) be pairs with ρ1, . . . , ρm irreducible unitary super-
cuspidal representations of GLr1 (F), . . . ,GLrm (F); α1, . . . , αm ∈ R such that ρi

∼= ρ j implies
αi �≡ α j mod 1. Let τ (ρi, αi) be an irreducible representation of a general linear group sup-
ported on {ναρi}α∈αi +Z. Let M be the standard Levi subgroup of G = GLn(F) which admits
τ (ρ1, α1)⊗ · · · ⊗ τ (ρm, αm) as a representation. Then,

1. τ (ρ1, α1)× · · · × τ (ρm, αm) is irreducible.
2.

mult
(
τ (ρ1, α1)⊗ · · · ⊗ τ (ρm, αm), rMG

(
τ (ρ1, α1)× · · · × τ (ρm, αm)

))
= 1.

Further, if τ ′(ρi , αi) is an irreducible representation of a general linear group supported on
{ναρi}α∈αi +Z, then

mult
(
τ ′(ρ1, α1)⊗ · · · ⊗ τ ′(ρm, αm), rMG

(
τ (ρ1, α1)× · · · × τ (ρm, αm)

))
= 0

unless τ ′(ρi , αi) ∼= τ (ρi, αi) for all i.
3. If π is an irreducible representation of GLn(F) and rMG(π) ≥ τ (ρ1, α1)⊗· · ·⊗τ (ρm, αm),

then

π = τ (ρ1, α1)× · · · × τ (ρm, αm).

Proof The first claim is an immediate consequence of [Zel1, Proposition 8.5]. Claims 2.
and 3. follow fairly easily—see Corollary 5.6 and [Jan3, Section 10] for details.
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2.2 A Basic Lemma for GLn(F)

Let ρ be an irreducible unitary supercuspidal representation of GLn(F), 0 ≤ α0 < 1. Sup-
pose π is a representation of GLmn(F) of finite length, supported on {ναρ}α∈α0+Z. Then,
we make the following definition:

Definition 2.2.1 Let χ0(π) denote the lowest element of rmin(π) with respect to the lexi-
cographic order. χ0(π) is unique up to multiplicity.

Lemma 2.2.2 χ0(π) has the form

χ0(π) = (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1 )⊗ · · · ⊗ (νakρ⊗ νak−1ρ⊗ · · · ⊗ νbkρ),

with a1 ≤ a2 ≤ · · · ≤ ak and ai ∈ α0 + Z for all i.

Proof Write

χ0 = ν
α1ρ⊗ να2ρ⊗ · · · ⊗ ναmρ.

Clearly, αi ∈ α0 + Z for all i. Let j ≥ 1 be the smallest integer such that α j+1 ≥ α1.
Suppose j > 1. Then, we claim that α2 = α1−1. To see this, observe that if α2 < α1−1

χ0 = (να1ρ⊗ να2ρ)⊗ να3ρ⊗ · · · ⊗ ναmρ ≤ rmin(π)

⇓

(να1ρ× να2ρ)⊗ να3ρ⊗ · · · ⊗ ναmρ ≤ r(2n,n,...,n)(π)

⇓

χ ′0 = (να2ρ⊗ να1ρ)⊗ να3ρ⊗ · · · ⊗ ναmρ ≤ rmin(π),

since να1ρ × να2ρ ∼= να2ρ × να1ρ is irreducible. However, χ0 < χ
′
0 in the lexicographic

order, contradicting the definition of χ0(π). Thus, α2 = α1 − 1.
Next, suppose j > 2. Then, we claim that α3 = α1 − 2 = α2 − 1. First, if α3 < α2 − 1,

then the same argument as above tells us that

χ ′0 = ν
α1ρ⊗ να3ρ⊗ να2ρ⊗ να4ρ⊗ · · · ⊗ ναmρ ≤ rmin(π).

Again, χ ′0 < χ0 lexicographically, contradicting the definition of χ0. Thus, α3 = α1 − 1 =
α2 or α3 = α1 − 2 = α2 − 1. However, if α3 = α1 − 1 = α2, we have

χ0 = ν
α1ρ⊗ να1−1ρ⊗ να1−1ρ⊗ να4ρ⊗ · · · ⊗ ναmρ ≤ rmin(π)

⇓(
δ([να1−1ρ, να1ρ])× να1−1ρ

)
⊗ να4ρ⊗ · · · ⊗ ναmρ ≤ r(3n,n,...,n)(π)

⇓

χ ′0 = ν
α1−1ρ⊗ να1ρ⊗ να1−1ρ⊗ να4ρ⊗ · · · ⊗ ναmρ ≤ rmin(π),
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(noting that δ([να1−1ρ, να1ρ]) × να1−1ρ is the only irreducible representation of GL3n(F)
containing να1ρ ⊗ να1−1ρ ⊗ να1−1ρ in its minimal Jacquet module) and again, we have
χ ′0 < χ0 lexicographically, a contradiction. Thus, we are left with α3 = α1 − 2, as claimed.

We now move to the more general step. Suppose j > i. Inductively, we may assume

χ0(π) = να1ρ⊗ να1−1ρ⊗ · · · ⊗ να1−i+2ρ⊗ ναiρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ.

We want to show that αi = α1 − i + 1. First, if αi < α1 − i + 1, we can use the same
argument that we used to show α2 = α1 − 1 to get

χ ′0 = ν
α1ρ⊗ να1−1ρ⊗ · · · ⊗ να1−i+3ρ⊗ (ναiρ⊗ να1−i+2ρ)⊗ ναi+1ρ⊗ · · · ⊗ ναmρ

≤ rmin(π).

However, χ ′0 < χ0 lexicographically, contradicting the definition of χ0. Similarly, if αi =
α1 − i + 2, we can use the same argument we used to show α3 = α2 − 1 to get

χ ′0 = ν
α1ρ⊗ · · · ⊗ να1−i+4ρ⊗ (να1−i+2ρ⊗ να1−i+3ρ⊗ να1−i+2ρ)⊗ ναi+1ρ⊗ · · · ⊗ ναmρ

≤ rmin(π).

Again, χ ′0 < χ0 lexicographically, a contradiction. Thus, αi ∈ {α1 − 1, α1 − 2, . . . ,
α1 − i + 3} ∪ {α1 − i + 1}.

Now, suppose αi = α1 − k with k ≤ i − 3. Then,

χ0 = ν
α1ρ⊗ · · · ⊗ να1−kρ⊗ να1−k−1ρ⊗ να1−k−2ρ⊗ · · · ⊗ να1−i+3ρ

⊗ (να1−i+2ρ⊗ να1−kρ)⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π)

⇓

να1ρ⊗ · · · ⊗ να1−kρ⊗ να1−k−1ρ⊗ να1−k−2ρ⊗ · · · ⊗ να1−i+3ρ

⊗ (να1−i+2ρ× να1−kρ)⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ r(n,...,n,2n,n,...,n)(π)

⇓

χ0 = ν
α1ρ⊗ · · · ⊗ να1−kρ⊗ να1−k−1ρ⊗ να1−k−2ρ⊗ · · · ⊗ να1−i+3ρ

⊗ να1−kρ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π)

⇓

(similarly commuting να1−kρ around να1−i+3ρ, . . . , να1−k−2ρ)

⇓

να1ρ⊗ · · · ⊗ να1−kρ⊗ να1−k−1ρ⊗ να1−kρ⊗ να1−k−2ρ⊗ · · · ⊗ να1−i+3ρ

⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π).
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Next,

να1ρ⊗ · · · ⊗ να1−k+1ρ⊗ (να1−kρ⊗ να1−k−1ρ⊗ να1−kρ)⊗ να1−k−2ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π)

⇓

να1ρ⊗ · · · ⊗ να1−k+1ρ⊗
(
δ([να1−k−1ρ, να1−kρ])× να1−kρ

)
⊗ να1−k−2ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ r(n,...,n,3n,n,...,n)(π)

or

να1ρ⊗ · · · ⊗ να1−k+1ρ⊗
(
ζ([να1−k−1ρ, να1−kρ])× να1−kρ

)
⊗ να1−k−2ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ r(n,...,n,3n,n,...,n)(π)

⇓

να1ρ⊗ · · · ⊗ να1−k+1ρ⊗ (να1−kρ⊗ να1−kρ⊗ να1−k−1ρ)⊗ να1−k−2ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π)

or

να1ρ⊗ · · · ⊗ να1−k+1ρ⊗ (να1−k−1ρ⊗ να1−kρ⊗ να1−kρ)⊗ να1−k−2ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π).

We can rule out the second of these possibilities since it is lexicographically lower than χ0.
Thus, we have (shifting parentheses)

να1ρ⊗ · · · ⊗ να1−k+2ρ⊗ (να1−k+1ρ⊗ να1−kρ⊗ να1−kρ)⊗ να1−k−1ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π)

⇓

να1ρ⊗ · · · ⊗ να1−k+2ρ⊗
(
δ([να1−kρ⊗ να1−k+1ρ])× να1−kρ

)
⊗ να1−k−1ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rn,...,n,3n,n,...,n(π)

⇓

χ ′0 = ν
α1ρ⊗ · · · ⊗ να1−k+2ρ⊗ (να1−kρ⊗ να1−k+1ρ⊗ να1−kρ)⊗ να1−k−1ρ

⊗ · · · ⊗ να1−i+2ρ⊗ ναi+1ρ⊗ · · · ⊗ ναmρ ≤ rmin(π).

However, χ ′0 < χ0 lexicographically, contradicting the definition of χ0. Thus, we cannot
have αi = α1 − k with k ≤ i − 3. The only possibility remaining is αi = α1 − i + 1, as
needed. Thus, by induction, we have αi = α1 − i + 1 for 1 ≤ i ≤ j.

Now, in the statement of the lemma, we have a1 = α1 and b1 = α1 − j + 1. Repeating
this argument to deal with a2, b2 through ak, bk finishes the lemma.
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Definition 2.2.3 With notation as above, if

χ0(π) = (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1ρ)⊗ · · · ⊗ (νakρ⊗ νak−1ρ⊗ · · · ⊗ νbkρ),

set

δ0(π) = δ([νb1ρ, νa1ρ])⊗ · · · ⊗ δ([νbkρ, νakρ]).

Corollary 2.2.4 Let π be an irreducible representation with χ0(π), δ0(π) be as above. Let
M = GL(a1−b1+1)n(F)× · · · × GL(ak−bk+1)n(F). Then,

π ↪→ iGM

(
δ0(π)

)
.

Proof First, observe that by central character considerations, there is a direct summand V0

of the space of rMminG(π) such that the semisimplification of V0 consists of copies of χ0(π).
By Frobenius reciprocity, this implies π ↪→ iGMmin

(
χ0(π)

)
. By Lemma 5.5 of [Jan3], there

is an irreducible subquotient θ of iMMmin

(
χ0(π)

)
such that π ↪→ iGM(θ). We claim that θ =

δ0(π). Suppose not. Consider any χ ≤ rMminM(θ). Then, χ < χ0(π) lexicographically since

χ0(π) is the highest term in rMminM

(
iMMmin

(
χ0(π)

))
. However, by Frobenius reciprocity,

θ ≤ rMG(π). This implies χ ≤ rMminG(π), contradicting the definition of χ0(π). Thus,
θ = δ0(π).

2.3 A Result of Bernstein

We now give an application of the results of the previous section. A well-known theo-
rem of Bernstein (cf. [Zel1, Theorem 9.3]) says that an irreducible representation of a
p-adic general linear group is essentially square-integrable if and only if it has the form
δ([ναρ, να+kρ]) for some irreducible unitary supercuspidal representation ρ and some non-
negative integer k. A proof of this fact may be obtained fairly easily at this point.

We first recall the Casselman criterion. Let π be an irreducible square-integrable repre-
sentation of GLn(F). Suppose

χ = να1ρ1 ⊗ · · · ⊗ ν
αkρk ≤ rmin(π),

with ρi an irreducible unitary supercuspidal representation of GLni (F), αi ∈ R, and
n1 + · · · + nk = n. Then,

n1α1 > 0

n1α1 + n2α2 > 0

...

n1α1 + n2α2 + · · · + nk−1αk−1 > 0

n1α1 + n2α2 + · · · + nk−1αk−1 + nkαk = 0.

Conversely, if π is an irreducible representation such that the inequalities above hold for
every χ ≤ rmin(π), then π is square-integrable.
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Theorem 2.3.1 (Bernstein) π is an irreducible square-integrable representation of GLn(F)
if and only if π has the form π = δ([ν−mρ, νmρ]), where ρ is an irreducible unitary supercus-
pidal representation of GLk(F), m ∈ 1

2 Z with m ≥ 0, and n = (2m + 1)k.

Proof As noted in [Zel1, Theorem 9.3], the Casselman criterion implies δ([ν−mρ, νmρ]) is
square-integrable.

In the other direction, we first claim that if π is square-integrable, supp(π) must be
contained in a set of the form {ναρ}α∈α0+Z for some irreducible unitary supercuspidal ρ
and some α0 ∈ R. This follows easily from Lemma 2.1.2. For example, suppose supp(π) ⊂
{ναρ1}α∈α0+Z ∪{νβρ2}β∈β0+Z, but not completely in either. (Here, we allow the possibility
that ρ1

∼= ρ2 or α0 ≡ β0 mod 1, but not both.) By Lemma 2.1.2, we could obtain

χ1 = ν
α1ρ1 ⊗ · · · ⊗ ν

αkρ1 ⊗ ν
β1ρ2 ⊗ · · · ⊗ ν

β�ρ2 ≤ rmin(π)

and

χ2 = ν
β1ρ2 ⊗ · · · ⊗ ν

β�ρ2 ⊗ ν
α1ρ1 ⊗ · · · ⊗ ν

αkρ1 ≤ rmin(π)

for some α1, . . . , αk, β1, . . . , β�. One of the Casselman criterion inequalities for χ1 gives
n1α1 + · · · + n1αk > 0. Similarly, one of the Casselman criterion inequalities for χ2 gives
n2β1 +· · ·+n2β� > 0. Adding these gives n1α1 +· · ·+n1αk +n2β1 +· · ·+n2β� > 0. However,
by the Casselman criterion, we must have n1α1 + · · · + n1αk + n2β1 + · · · + n2β� = 0,
a contradiction. Thus, supp(π) must be contained in a set of the form {να}α∈α0+Z, as
claimed.

Since supp(π) ⊂ {να}α∈α0+Z, we can apply Lemma 2.2.2. Let χ0 be as in Lemma 2.2.2.
If k = 1 (notation as in Lemma 2.2.2), then the Casselman criterion inequalities require
a1 = −b1. By Corollary 2.2.4, e.g., we then get π = δ([ν−a1ρ, νa1ρ]), as needed. Suppose
k ≥ 2. The Casselman criterion inequalities require a1 > −b1. So, suppose ai > −bi

for i = 1, . . . , j − 1 and a j ≤ −b j (note that if such a j did not exist, we would have(
a1 + (a1− 1) + · · ·+ b1

)
+ · · ·+

(
ak + (ak− 1) + · · ·+ bk

)
> 0, contradicting the Casselman

criterion). Since a j ≥ a1, . . . , a j−1 and b j ≤ b1, . . . , b j−1, we have

δ([νbiρ, νaiρ])× δ([νb jρ, νa jρ]) ∼= δ([νb jρ, νa jρ])× δ([νbiρ, νaiρ])

is irreducible for all i ≤ j − 1. From this fact and Corollary 2.2.4, we have

π ↪→ δ([νb1ρ, νa1ρ])× · · · × δ([νb j−2ρ, νa j−2ρ])

× {δ([νb j−1ρ, νa j−1ρ])× δ([νb jρ, νa jρ])}

× δ([νb j+1ρ, νa j+1ρ])× · · · × δ([νbkρ, νakρ])

∼= δ([νb1ρ, νa1ρ])× · · · × δ([νb j−2ρ, νa j−2ρ])

× {δ([νb jρ, νa jρ])× δ([νb j−1ρ, νa j−1ρ])}

× δ([νb j+1ρ, νa j+1ρ])× · · · × δ([νbkρ, νakρ])
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...

∼= δ([νb jρ, νa jρ])× δ([νb1ρ, νa1ρ])× · · · × δ([νb j−2ρ, νa j−2ρ])

× δ([νb j−1ρ, νa j−1ρ])× δ([νb j+1ρ, νa j+1ρ])× · · · × δ([νbkρ, νakρ]).

Therefore, by Frobenius reciprocity,

rmin(π) ≥ (νa jρ⊗ νa j−1ρ⊗ · · · ⊗ νb jρ)⊗ νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1ρ⊗ · · · ⊗ νbkρk.

In particular, since a j ≤ −b j , we see that

na j + n(a j − 1) + · · · + nb j ≤ 0,

contradicting the Casselman criterion. Thus, if π is square-integrable, we must have k = 1,
as needed.

2.4 Connection with the Langlands classification

In this section, we establish the connection between δ0(π) and the Langlands data for π.
We shall also give a lemma which will be needed later.

Let us briefly review the Langlands classification for general linear groups. First, if δ is
an essentially square-integrable representation of GLn(F), then there is an ε(δ) ∈ R such
that ν−εδδ is unitarizable. Suppose δ1, . . . , δk are irreducible, essentially square-integrable
representations of GLn1 (F), . . . ,GLnk (F) with ε(δ1) ≤ · · · ≤ ε(δk). (We allow weak in-
equalities since we are assuming δi is essentially square-integrable; if we allowed δi essen-
tially tempered, we would have strict inequalities. The formulations are equivalent.) Then,
δ1 × · · · × δk has a unique irreducible subrepresentation (Langlands subrepresentation).
Further, any irreducible representation of a general linear group may be realized this way.
We favor the subrepresentation version of the Langlands classification over the quotient
version since π ↪→ δ1 × · · · × δk tells us δ1 ⊗ · · · ⊗ δk appears in the (appropriate) Jacquet
module for π.

For notational convenience, let δ(ρ,m) = δ([ν
−m+1

2 ρ, ν
m+1

2 ρ]) for m ∈ Z with m ≥ 0.
Then, ναδ(ρ,m) = δ([ν

−m+1
2 +αρ, ν

m+1
2 +αρ]). Write

δ0(π) = να1δ(ρ,m1)⊗ να2δ(ρ,m2)⊗ · · · ⊗ ναkδ(ρ,mk).

In particular, αi =
ai +bi

2 and mi = (ai − bi + 1). We then have the following:

Proposition 2.4.1 Let δ0(π) be as above and να
′
1 δ(ρ,m ′1), να

′
2 δ(ρ,m ′2), . . . , να

′
k δ(ρ,m ′k) be

a permutation of να1δ(ρ,m1), να2δ(ρ,m2), . . . , ναkδ(ρ,mk) with α ′1 ≤ α
′
2 ≤ · · · ≤ α

′
k.

Then,

να
′
1 δ(ρ,m ′1)× να

′
2 δ(ρ,m ′2)× · · · × να

′
k δ(ρ,m ′k)

∼= να1δ(ρ,m1)× να2δ(ρ,m2)× · · · × ναkδ(ρ,mk).

Further,

δ ′0(π) = να
′
1 δ(ρ,m ′1)⊗ να

′
2 δ(ρ,m ′2)⊗ · · · ⊗ να

′
k δ(ρ,m ′k)

is the Langlands data for π.
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Proof First, we focus on showing

να
′
1 δ(ρ,m ′1)× να

′
2 δ(ρ,m ′2)× · · · × να

′
k δ(ρ,m ′k)

∼= να1δ(ρ,m1)× να2δ(ρ,m2)× · · · × ναkδ(ρ,mk).

Suppose that να
′
1 δ(ρ,m ′1) = ναiδ(ρ,mi). For j < i, we have a j ≤ ai (definition of δ0(π)).

Further, since αi ≥ α j , we must have b j ≥ bi . Thus, by Lemma 2.1.1,

να jδ(ρ,m j)× ν
αiδ(ρ,mi) ∼= ν

αiδ(ρ,mi)× ν
α j δ(ρ,m j)

is irreducible. Thus, we can commute ναiδ(ρ,mi) to the front as follows:

να1δ(ρ,m1)× · · · × ναi−2δ(ρ,mi−2)× ναi−1δ(ρ,mi−1)× ναiδ(ρ,mi)

× ναi+1δ(ρ,mi+1)× · · · × ναkδ(ρ,mk)

∼= να1δ(ρ,m1)× · · · × ναi−2δ(ρ,mi−2)× ναiδ(ρ,mi)× ν
αi−1δ(ρ,mi−1)

× ναi+1δ(ρ,mi+1)× · · · × ναkδ(ρ,mk)

∼= να1δ(ρ,m1)× · · · × ναiδ(ρ,mi)× ν
αi−2δ(ρ,mi−2)× ναi−1δ(ρ,mi−1)

× ναi+1δ(ρ,mi+1)× · · · × ναkδ(ρ,mk)

...

∼= ναiδ(ρ,mi)× ν
α1δ(ρ,m1)× ναi−2δ(ρ,mi−2)× ναi−1δ(ρ,mi−1)

× ναi+1δ(ρ,mi+1)× · · · × ναkδ(ρ,mk)

= να
′
1 δ(ρ,m ′1)× να1δ(ρ,m1)× ναi−2δ(ρ,mi−2)× ναi−1δ(ρ,mi−1)

× ναi+1δ(ρ,mi+1)× · · · × ναkδ(ρ,mk).

Next, we identify να
′
2 δ(ρ,m ′2) among the remaining terms. We can then use the same

argument to commute it into the second position, giving

να1δ(ρ,m1)× · · · × ναkδ(ρ,mk) ∼= να
′
1 δ(ρ,m ′1)× να

′
2 δ(ρ,m ′2)× · · · .

Iterating this procedure, after k− 1 steps, we obtain

να1δ(ρ,m1)× · · · × ναkδ(ρ,mk) ∼= να
′
1 δ(ρ,m ′1)× · · · × να

′
k δ(ρ,m ′k),

as claimed.
The claim regarding the Langlands data is now straightforward. By Corollary 2.2.4, we

have

π ↪→ να1δ(ρ,m1)× · · · × ναkδ(ρ,mk) ∼= να
′
1 δ(ρ,m ′1)× · · · × να

′
k δ(ρ,m ′k),

which has a unique irreducible subrepresentation whose Langlands data is δ ′0(π). Thus,
δ ′0(π) must be the Langlands data for π.
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The lemma below will be needed in Section 4.2. Suppose

χ1 = (να1ρ⊗ να2ρ⊗ · · · ⊗ να jρ)

χ2 = (νβ1ρ⊗ νβ2ρ⊗ · · · ⊗ νβkρ).

We let

m.l.s. (χ1, χ2) = νγ1ρ⊗ νγ2ρ⊗ · · · ⊗ νγ j+kρ

with νγ1ρ ⊗ νγ2ρ ⊗ · · · ⊗ νγ j+kρ the shuffle of χ1 and χ2 which is minimal with respect to
the lexicographic order (m.l.s. for “minimal lexicographic shuffle”).

Lemma 2.4.2 Let π1, π2 be finite-length representations supported on {ναρ}α∈α0+Z. Then,

χ0(π1 × π2) = m.l.s.
(
χ0(π1), χ0(π2)

)
.

Proof First, by the characterization of the minimal Jacquet module of an induced repre-
sentation via shuffles, we have

m.l.s.
(
χ0(π1), χ0(π2)

)
≤ rmin(π1 × π2).

Thus, χ0(π1 × π2) ≤ m.l.s.
(
χ0(π1), χ0(π2)

)
lexicographically.

On the other hand, by the characterization of the minimal Jacquet module of an induced
representation via shuffles, we have

χ0(π1 × π2) = sh0(χ1, χ2)

for some χ1 ≤ rmin(π1), χ2 ≤ rmin(π2), and a shuffle sh0. By definition, χ0(π1) ≤ χ1 and
χ0(π2) ≤ χ2 lexicographically. Therefore, sh0

(
χ0(π1), χ0(π2)

)
≤ sh0(χ1, χ2) lexicograph-

ically. Thus,

m.l.s.
(
χ0(π1), χ0(π2)

)
≤ sh0

(
χ0(π1), χ0(π2)

)
≤ sh0(χ1, χ2) = χ0(π1 × π2)

lexicographically. Combining the inequalities gives the lemma.

3 Supercuspidal Supports

3.1 Background material

In this section, we give some additional background material for Sn(F). In particular, we
review the Casselman criterion, the Langlands classification, as well as some additional
structures on R, R[S] which we need later.

First, we review the Casselman criterion for the temperedness (resp., square-integra-
bility) of representations of Sn(F). Let π be an irreducible representation of Sn(F) and
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να1ρ1⊗· · ·⊗ναkρk⊗σ ≤ smin(π), with ρi an irreducible unitary supercuspidal representa-
tion of GLmi (F), σ an irreducible supercuspidal representation of Sm(F) and αi ∈ R. Then,
if π is tempered, 



m1α1 ≥ 0,

m1α1 + m2α2 ≥ 0,
...

m1α1 + m2α2 + · · · + mkαk ≥ 0.

Conversely, if the corresponding inequalities hold for every element of smin(π), then π is
tempered. The criterion for square-integrability is the same except that the weak inequali-
ties are replaced by strict inequalities.

Next, we review the Langlands classification for Sn(F). As in Section 2.4, if δ is an ir-
reducible, essentially square-integrable representation of GLn(F), we have ε(δ) ∈ R such
that ν−ε(δ)δ is unitarizable. Let δ1, . . . , δk be irreducible essentially square-integrable rep-
resentations of GLn1 (F), . . . ,GLnk (F) satisfying ε(δ1) ≤ · · · ≤ ε(δk) < 0 and τ a tempered
representation of Sn−m(F). Then, δ1×· · ·× δk � τ has a unique irreducible subrepresenta-
tion which we denote by L(δ1, . . . , δk; τ ). (Equivalently, we could formulate the Langlands
classification with δ1, . . . , δk essentially tempered and ε(δ1) < · · · < ε(δk) < 0.) Further,
any irreducible representation may be realized this way. As with general linear groups, we
favor the subrepresentation version of the Langlands classification for the following reason:
In the subrepresentation version, δ1 ⊗ · · · ⊗ δk ⊗ τ ≤ s(n1,...,nk)

(
L(δ1, . . . , δk; τ )

)
.

The Langlands classification is done in its general form in [Sil1] and [B-W]; the Cas-
selman criterion in [Cas]. The discussion above is largely based on [Tad1]. The reader is
referred there for more details. We now turn to some structures we will need later.

Definition 3.1.1

1. If τ is a representation of GLn(F), set

m∗(τ ) =
n∑

i=0

r(i)(τ ).

2. If π is a representation of Sn(F), set

µ∗(π) =
n∑

i=0

s(i)(π).

Observe that we may lift m∗ to a map m∗ : R −→ R ⊗ R. With multiplication given
by × and comultiplication given by m∗, R has the structure of a Hopf algebra (cf. [Zel1,
Section 1.7]). In particular, if we define × : (R ⊗ R) ⊗ (R ⊗ R) −→ (R ⊗ R) by taking
(τ1⊗τ2)×(τ ′1⊗τ

′
2 ) = (τ1×τ ′1 )⊗(τ2×τ ′2 ) and extending bilinearly, we have m∗(τ1×τ2) =

m∗(τ1)×m∗(τ2).
Now, define s : R⊗R −→ R⊗R by taking the map s : τ1⊗ τ2 �−→ τ2⊗ τ1 and extending

it bilinearly. For notational convenience, write m : R ⊗ R −→ R for multiplication. Set
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M∗ = (m ⊗ 1) ◦ (˜ ⊗ m∗) ◦ s ◦m∗. If we define � : (R ⊗ R) ⊗ (R ⊗ R[S]) −→ R ⊗ R[S]
by taking (τ1 ⊗ τ2) � (τ ⊗ θ) = (τ1 × τ )⊗ (τ2 � θ) and extending bilinearly, we have the
following:

Theorem 3.1.2 (Tadić) For τ ∈ R, θ ∈ R[S], we have

µ∗(τ � θ) = M∗(τ ) � µ∗(θ).

In other words, with � and µ∗, R[S] acquires the structure of an M∗-Hopf module over
R (cf. [Tad2]). We note that there is a corresponding result for the groups O2n(F) [Ban].
Therefore, we expect that once certain issues related to disconnectedness are addressed, it
will be possible to bring O2n(F) into this discussion as well.

Finally, we shall make use of the following:

Definition 3.1.3 Suppose ρ is an irreducible, unitary, supercuspidal representation of
GLn(F) and σ and irreducible, supercuspidal representation of Sr(F). For α ≥ 0, we say
that (ρ, σ) satisfies (Cα) if ναρ�σ is reducible and νβ�σ is irreducible for all β ∈ R\{±α}.

It is well-known that if ρ � ρ̃, then νβρ � σ is irreducible for all β ∈ R. If ρ ∼= ρ̃, then
there is an α ≥ 0 such that ναρ�σ is reducible (cf. [Tad5]). Further, it is then the case that
νβρ� σ is irreducible for all β ∈ R \ {±α} (cf. [Sil2]).

If σ is generic and (ρ, σ) satisfies (Cα), then α ∈ {0, 1
2 , 1} (cf. [Sha1], [Sha2]). If σ

is nongeneric, one can have (ρ, σ) satisfying (Cα) for α > 1 (cf. [Re]). In general, it is
expected—and we shall assume—that α ∈ 1

2 Z. (Assuming certain conjectures, this has
recently been verified in [Mœ2] and [Zh].) The problem of determining α for a given pair
(ρ, σ) is difficult. However, we note that in the case σ = 1, much is known. In particular,
when n ≥ 2 and ρ ∼= ρ̃ is tamely ramified (cf. [Adl]), the value of α has been explicitly
calculated in [M-R] for a large collection of such ρ using a criterion from [Sha2].

3.2 Reducing the Problem Based on Supercuspidal Supports

Let ρ be an irreducible unitary supercuspidal representation of GLn(F), β ∈ R. Set

S(ρ, β) = {ναρ, ν−αρ̃}α∈β+Z.

If ρ = ρ̃, we may take 0 ≤ β ≤ 1
2 ; otherwise 0 ≤ β < 1. Suppose ρ1, ρ2, . . . , ρm are irre-

ducible, unitary, supercuspidal representations of GLn1 (F), . . . ,GLnm (F), and β1, β2, . . . ,
βm ∈ R, with 0 ≤ βi ≤

1
2 if ρi

∼= ρ̃i , 0 ≤ βi < 1 if not. Further, assume that
S(ρ1, β1), . . . , S(ρm, βm) are disjoint. Set

S
(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm)

)
= S(ρ1, β1) ∪ S(ρ2, β2) ∪ · · · ∪ S(ρm, βm).

If σ is an irreducible supercuspidal representation of Sr(F), set

S
(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm);σ

)
= S(ρ1, β1) ∪ S(ρ2, β2) ∪ · · · ∪ S(ρm, βm) ∪ {σ}.

We note that every irreducible representation of Sn(F) has supercuspidal support on a set
of this form.
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We now recall some results from [Jan3]. Suppose π is an irreducible representation
supported on S

(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm);σ

)
. Then, there exist irreducible represen-

tations τ1, τ2, . . . , τm−1 of GLk1 (F),GLk2 (F), . . . ,GLkm−1 (F) and an irreducible representa-
tion θm of Skm+r(F) such that

π ↪→ τ1 × τ2 × · · · × τm−1 � θm

2. τi is supported on S(ρi , βi) and θm is supported on S
(
(ρm, βm);σ

)
.

Further, θm is unique. Similarly, one could single out (ρ1, β1), . . . , (ρm−1, βm−1), resp.,
to produce θ1, . . . , θm−1, resp., supported on S

(
(ρ1, β1);σ

)
, . . . , S

(
(ρm−1, βm−1);σ

)
, resp.

Write (ρi , βi)(π) = θi .

Theorem 3.2.1 Let Irr
(
(ρ1, β1), . . . , (ρm, βm);σ

)
denote the set of all irreducible represen-

tations of all Sn(F), n ≥ 0, supported on S
(
(ρ1, β1), . . . , (ρm, βm);σ

)
. Then, the map

π �−→ (ρ1, β1)(π)⊗ · · · ⊗ (ρm, βm)(π)

implements a bijective correspondence

Irr
(
(ρ1, β1), . . . , (ρm, βm);σ

)
←→ Irr

(
(ρ1, β1);σ

)
⊗ · · · ⊗ Irr

(
(ρm, βm);σ

)
.

Further, π is square-integrable (resp., tempered) if and only if (ρ1, β1)(π), . . . , (ρm, βm)(π)
are all square-integrable (resp., tempered).

Remark 3.2.2 The correspondence described above also respects contragredience, dual-
ity, Langlands data, induction, and Jacquet modules in a sense made precise in [Jan3]. For
our purposes, the key feature is that it respects square-integrability.

3.3 A Conjecture of Tadić

Suppose that (ρ1, β1), (ρ2, β2), . . . , (ρm, βm), σ are as in Section 3.2. We let
R
(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm)

)
denote the subalgebra of R generated by the represen-

tations supported in S
(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm)

)
. Then,

R
(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm)

)
∼= R

(
(ρ1, β1)

)
⊗ R

(
(ρ2, β2)

)
⊗ · · · ⊗ R

(
(ρm, βm)

)
as Hopf subalgebras of R (cf. Remark 8.7 of [Zel1]). On irreducible representations,
this tensor product decomposition is determined by the (appropriate) Jacquet
module (cf. Lemma 2.1.3 2.). If we let R

(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm);σ

)
de-

note the additive subgroup of R[S] generated by representations supported in
S
(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm);σ

)
, then

R
(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm);σ

)
∼= R

(
(ρ1, β1);σ

)
⊗ R

(
(ρ2, β2);σ

)
⊗ · · · ⊗ R

(
(ρm;βm);σ

)
as R

(
(ρ1, β1), (ρ2, β2), . . . , (ρm, βm)

)
∼= R

(
(ρ1, β1)

)
⊗R

(
(ρ2, β2)

)
⊗· · ·⊗R

(
(ρm, βm)

)
M∗-

Hopf modules (cf. [Jan3, Proposition 10.10]). On irreducible representations, this tensor
product decomposition corresponds to that described in Theorem 3.2.1 above.
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Conjecture 3.3.1 Suppose (ρ1, σ1), (ρ2, σ2) both satisfy (Cα) (same value of α), 0 ≤ β ≤
1
2 . Then,

R
(
(ρ1, β);σ1

)
∼= R

(
(ρ2, β);σ2

)
as R

(
(ρ1, β)

)
∼= R

(
(ρ2, β)

)
M∗-Hopf modules. A similar result should hold if ρi � ρ̃i for

i = 1, 2.
Of course, if two irreducible representations correspond under the isomorphism, they

should have supercuspidal support of the same parabolic rank. We also note that this iso-
morphism should send tempered (resp., square-integrable) representations to tempered
(resp., square-integrable) ones and commute with ˜ and ˆ =duality operator (cf. [Aub],
[S-S]).

That R
(
(ρ1, β)

)
∼= R

(
(ρ2, β)

)
is conjectured in [Zel2] (or more precisely, is an im-

mediate consequence of a conjecture in [Zel2]). That it holds follows from the results in
chapter 7 of [B-K]. The conjecture above was suggested by Marko Tadić.

It is not difficult to describe the conjectured isomorphism. For concreteness, suppose
that (ρ1, σ1), (ρ2, σ2) both satisfy (C1/2). For R

(
(ρ1, β)

)
∼= R

(
(ρ2, β)

)
, we want

δ([νβ+xρ1, ν
β+yρ1])←→ δ([νβ+xρ2, ν

β+yρ2])

and

δ([ν−β+xρ1, ν
−β+yρ1])←→ δ([ν−β+xρ2, ν

−β+yρ2])

for all x, y ∈ Z with x ≤ y. This gives a bijective correspondence between irreducible es-
sentially square-integrable representations in R

(
(ρ1, β)

)
and those in R

(
(ρ2, β)

)
. This im-

mediately extends to a bijective correspondence between irreducible essentially tempered
representations in R

(
(ρ1, β)

)
and those in R

(
(ρ2, β)

)
(since any irreducible essentially tem-

pered representation in R
(
(ρi , β)

)
may be written as an irreducible product of irreducible

essentially square-integrable representations in R
(
(ρi , β)

)
). Finally, in general, two irre-

ducible representations correspond if their Langlands data correspond. Equivalently, two
irreducible representations π1 ∈ R

(
(ρ1, β)

)
, π2 ∈ R

(
(ρ2, β)

)
correspond if δ0(π1) and

δ0(π2) correspond (cf. Chapter 2).
We cannot be quite as explicit about the isomorphism R

(
(ρ1, β);σ1

)
∼= R

(
(ρ2, β);σ2

)
,

but we can describe an inductive procedure. Suppose we know the map for irreducible rep-
resentations whose supercuspidal support has parabolic rank ≤ n − 1. Let π1 ∈
R
(
(ρ1, β);σ1

)
, π2 ∈ R

(
(ρ2, β);σ2

)
be irreducible representations with supercuspidal sup-

port of parabolic rank n. If π1, π2 are nontempered, π1 ←→ π2 if their Langlands data
correspond. This is a question of whether a collection of irreducible essentially tempered
representations from R

(
(ρ1, β)

)
and R

(
(ρ2, β)

)
correspond and whether a tempered rep-

resentation from R
(
(ρ1, β);σ1

)
and one from R

(
(ρ2, β);σ2

)
—both having supercuspidal

support of parabolic rank < n—correspond. Thus, if π1, π2 are nontempered, we can
check if π1 ←→ π2. If π1, π2 are tempered but π̂1, π̂2 are nontempered, we can simply
check whether π̂1 ←→ π̂2. Thus, the only problem is when π1, π2 and π̂1, π̂2 are all tem-
pered. By [Jan3, Corollary 4.2], this forces β = 0 and

π1 = ρ1 × ρ1 × · · · × ρ1︸ ︷︷ ︸
n

�σ π2 = ρ2 × ρ2 × · · · × ρ2︸ ︷︷ ︸
n

�σ2,
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noting that the hypothesis (C1/2) forces both of these to be irreducible (by [Gol]). These
should correspond under the isomorphism, finishing the inductive procedure. The same
argument works for (Cα) withα �= 0 or (C0) when β �= 0 (or in the case where ρi � ρ̃i). In
the case whereα = 0 and β = 0, we have ρi �σi = T1(ρi ;σi)⊕T2(ρi ;σi). For isomorphism
purposes, these cannot be distinguished, giving rise to two such isomorphisms.

While it is easy enough to describe the expected isomorphism, it is likely to be very diffi-
cult to show that it respects � and µ∗. It is included here mainly for motivation; which we
take up momentarily. As for evidence for this conjecture, we point to the fact that the con-
ditions (Cα), α = 0, 1

2 , . . . generally seem to be enough to determine how induced repre-
sentations supported on S

(
(ρ, β);σ

)
decompose, especially when Jacquet module methods

are employed (cf. [Tad3], [Tad4], [Tad5], [Jan1], [Jan2]).
To see the significance of this conjecture to the problem at hand, suppose, e.g., (ρ, σ)

satisfies (C1/2). Then, the conjecture gives a bijective correspondence between irreducible
square-integrable representations supported on S

(
(ρ, β);σ

)
and those supported on

S
(
(ρ ′, β);σ ′

)
for any other (ρ ′, σ ′) satisfying (C1/2). Now, if we let ρ ′ be the trivial rep-

resentation of F× and σ ′ the trivial representation of SO1(F), we have (ρ ′, σ ′) satisfying
(C1/2). In this case, Mœglin [Mœ1] has parameterized the irreducible square-integrable
representations based on the results of Kazhdan-Lusztig [K-L]. Thus, we can expect an
analogous parameterization for any pair (ρ, σ) satisfying (C1/2).

4 Basic Results

4.1 A Basic Lemma for Sn(F)

Let ρ be an irreducible unitary supercuspidal representation of GLn(F), σ an irreducible
supercuspidal representation of Sr(F).

Definition 4.1.1 Let π be an irreducible representation supported on S
(

(ρ, β);σ
)
. Set

X(π)

= {χ ≤ smin(π) | χ = να1ρ⊗ · · · ⊗ ναmρ⊗ σ has α1 + · · · + αm minimal for smin(π)}.

Then, let χ0(π) ∈ X(π) which is minimal in the lexicographic ordering.

Lemma 4.1.2 Assume β ∈ 1
2 Z. Then, χ0(π) has the form

χ0(π) = (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1ρ)⊗ · · · ⊗ (νakρ⊗ νak−1ρ⊗ · · · ⊗ νbkρ)⊗ σ,

with a1 ≤ a2 ≤ · · · ≤ ak.

Proof Take τ ⊗ σ ≤ sGL (π) irreducible such that χ0(π) ≤ smin(τ ⊗ σ). Since β ∈ 1
2 Z, we

may apply Lemma 2.2.2 for τ to finish the proof.

Definition 4.1.3 With notation as above, if β ∈ 1
2 Z and

χ0(π) = (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1ρ)⊗ · · · ⊗ (νakρ⊗ νak−1ρ⊗ · · · ⊗ νbkρ),
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set

δ0(π) = δ([νb1ρ, νa1ρ])⊗ · · · ⊗ δ([νbkρ, νakρ])⊗ σ.

Lemma 4.1.4 Suppose χ0(π), δ0(π) as above, β ∈ 1
2 Z. Let M = GL(a1−b1+1)n(F) × · · · ×

GL(ak−bk+1)n(F)× Sr(F). Then,

π ↪→ iGM

(
δ0(π)

)
.

Proof The proof parallels that of Corollary 2.2.4.

4.2 A criterion for square-integrability

Theorem 4.2.1 Suppose π is an irreducible representation with χ0(π) = (νa1ρ ⊗ · · ·
⊗ νb1ρ)⊗ · · · ⊗ (νamρ⊗ · · · ⊗ νbmρ)⊗ σ.

1. π is nontempered if and only if ai + bi < 0 for some i.
2. π is tempered but not square-integrable if and only if ai + bi ≥ 0 for all i and equality

occurs for at least one i.
3. π is square-integrable if and only if ai + bi > 0 for all i.

Proof (3)(⇒) Suppose not—say π is square-integrable but ai + bi ≤ 0 for some i. Fix i to
be the smallest value of i for which ai + bi ≤ 0. Now, for j < i we know that a j ≤ ai and
a j + b j > 0 ≥ ai + bi . Therefore, b j > bi . Thus,

δ([νb jρ, νa jρ])× δ([νbiρ, νaiρ]) ∼= δ([νbiρ, νaiρ])× δ([νb jρ, νa jρ])

by irreducibility. Using these equivalences, we may commute δ([νbiρ, νaiρ]) forward:

π ↪→ δ([νb1ρ, νa1ρ])× · · · × δ([νbi−1ρ, νai−1ρ])× δ([νbiρ, νaiρ])

× δ([νbi+1ρ, νai+1ρ])× · · · × δ([νbmρ, νamρ]) � σ

∼= δ([νb1ρ, νa1ρ])× · · · × δ([νbiρ, νaiρ])× δ([νbi−1ρ, νai−1ρ])

× δ([νbi+1ρ, νai+1ρ])× · · · × δ([νbmρ, νamρ]) � σ

...

∼= δ([νbiρ, νaiρ])× δ([νb1ρ, νa1ρ])× · · · × δ([νbi−1ρ, νai−1ρ])

× δ([νbi+1ρ, νai+1ρ])× · · · × δ([νbmρ, νamρ]) � σ.

Therefore, by Frobenius reciprocity,

sminπ ≥ (νaiρ⊗ · · · ⊗ νbiρ)⊗ (νa1ρ⊗ · · · ⊗ νbiρ)⊗ · · · .

However, since ai + bi ≤ 0, this violates the Casselman criterion for square-integrability.
Thus, π square-integrable implies ai + bi > 0 for all i.
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(2)(⇒) The proof that π tempered implies ai + bi ≥ 0 for all i is essentially the same as
that used in (3)(⇒) above.

We now argue that if π is not square-integrable, then ai + bi = 0 for some i. If π is
tempered but not square-integrable, we have

π ↪→ δ([ν−α1ρ, να1ρ])× · · · × δ([ν−αkρ, ναkρ]) � δ

for some square-integrable δ. We have k ≥ 1. For convenience, we will use δ([νβiρ, ναiρ])
and δ([ν−αiρ, ναiρ]) interchangeably when i ≤ k. Write δ0(δ) = δ([νβk+1ρ, ναk+1ρ]) ⊗ · · ·
⊗ δ([νβ�ρ, να�ρ]). Note that

π ↪→ δ([ν−α1ρ, να1ρ])× · · · × δ([ν−αkρ, ναkρ]) � δ

↪→ δ([ν−α1ρ, να1ρ])× · · · × δ([ν−αkρ, ναkρ])

× δ([νβk+1ρ, ναk+1ρ])× · · · × δ([νβ�ρ, να�ρ]) � σ.

Let δ([νβ
′
1 ρ, να

′
1ρ]), . . . , δ([νβ

′
� ρ, να

′
� ρ]) be the permutation of δ([νβ1ρ, να1ρ]), . . . ,

δ([νβ�ρ, να�ρ]) satisfying

1. α ′1 ≤ α
′
2 ≤ · · · ≤ α

′
�

2. if α ′i = α
′
i+1, then β ′i+1 ≥ β

′
i .

We claim that

δ([νβ1ρ, να1ρ])× · · · × δ([νβ�ρ, να�ρ]) ∼= δ([νβ
′
1 ρ, να

′
1ρ])× · · · × δ([νβ

′
� ρ, να

′
� ρ]).

Since the proof of this claim is very similar to the proof of Proposition 2.4.1, we omit the
details. (To apply that argument here, one also needs the following observation: By (1)(⇒)
above, β j + α j > 0 for j > k.) As a consequence,

π ↪→ δ([νβ
′
1 ρ, να

′
1ρ])× · · · × δ([νβ

′
� ρ, να

′
� ρ]) � σ.

Therefore, by Frobenius reciprocity we see that

smin(π) ≥ (να
′
1 ρ⊗ · · · ⊗ νβ

′
1 ρ)⊗ · · · ⊗ (να

′
� ρ⊗ · · · ⊗ νβ

′
� ρ)⊗ σ.

We shall show that this is, in fact, χ0(π).
We now check that

χ0(π) = (να
′
1 ρ⊗ · · · ⊗ νβ

′
1 ρ)⊗ · · · ⊗ (να

′
� ρ⊗ · · · ⊗ νβ

′
� ρ)⊗ σ.

In fact, we show more—we check that

χ0

(
δ([ν−α1ρ, να1ρ])× · · · × δ([ν−αkρ, ναkρ]) � δ

)
= (να

′
1ρ⊗ · · · ⊗ νβ

′
1 ρ)⊗ · · · ⊗ (να

′
� ρ⊗ · · · ⊗ νβ

′
� ρ)⊗ σ.
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To do this, consider τ ⊗ σ ≤ sGL

(
δ([ν−α1ρ, να1ρ]) × · · · × δ([ν−αkρ, ναkρ]) � δ

)
with

τ irreducible and χ0

(
δ([ν−α1ρ, να1ρ]) × · · · × δ([ν−αkρ, ναkρ]) � δ

)
≤ smin(τ ⊗ σ). To

calculate this, we write

M∗GL

(
δ([νβρ, ναρ])

)
=
α+1∑
i=β

δ([ν−i+1ρ, ν−βρ])× δ([ν iρ, να1ρ])

as in [Tad5]. It follows from Theorem 3.2 that

sGL

(
δ([ν−α1ρ, να1ρ])× · · · × δ([ν−αkρ, ναkρ]) � δ

)
= M∗GL

(
δ([ν−α1ρ, να1ρ])

)
× · · · ×M∗GL

(
δ([ν−αkρ, ναkρ])

)
× s0

GL(δ)⊗ σ,

where we use s0
GL(δ) to denote that part of sGL (δ) attached to the general linear group (i.e.,

sGL (δ) = s0
GL (δ) ⊗ σ). For δ([ν−α jρ, να jρ]) with j ≤ k, the i = −α j , α j + 1 terms

in M∗GL

(
δ([νβ jρ, να jρ])

)
(which both give rise to a copy of δ([ν−α jρ, να jρ])) minimize

[(−i + 1) + (−i + 2) + · · · + α j] + [i + (i + 1) + · · · + α j]. Thus, τ ≤ δ([ν−α1ρ, να1ρ]) ×
· · · × δ([ν−αkρ, ναkρ])× s0

GL (δ). If we let

sX(δ)
GL (δ) = {τ ′ ≤ s0

GL(δ) | τ ′ irreducible and smin(τ ′ ⊗ σ) ≤ X(δ)},

we must clearly have τ ≤ δ([ν−α1ρ, να1ρ]) × · · · × δ([ν−αkρ, ναkρ]) × sX(δ)
GL (δ). Now, by

Lemma 2.4.2 (writing χ0(δ) = χ0
0(δ)⊗ σ as above)

χ0

(
δ([ν−α1ρ, να1ρ])× · · · × δ([ν−αkρ, ναkρ])× sX(δ)

GL (δ)⊗ σ
)

= m.l.s.
(

(να1ρ⊗ · · · ⊗ ν−α1ρ), . . . , (ναkρ⊗ · · · ⊗ ν−αkρ), χ0
0(δ)

)
⊗ σ

= (να
′
1 ρ⊗ · · · ⊗ νβ

′
1 ρ)⊗ · · · ⊗ (να

′
� ρ⊗ · · · ⊗ νβ

′
� ρ)⊗ σ,

by the construction of (να
′
1 ρ⊗ · · · ⊗ νβ

′
1 ρ)⊗ · · · ⊗ (να

′
� ρ⊗ · · · ⊗ νβ

′
� ρ)⊗ σ, as needed.

Since π is assumed not to be square-integrable, we have k ≥ 1 and −α1 + α1 = 0.
Therefore, β ′i + α ′i = 0 for some i. This finishes the case (2)(⇒).

(1)(⇒) Write π = L
(
δ([νβ1ρ, να1ρ]), . . . , δ([νβkρ, ναkρ]); T

)
. Write

δ0(T) = δ([νβk+1ρ, ναk+1ρ])⊗ · · · ⊗ δ([νβ�ρ, να�ρ])⊗ σ.

Then,

π ↪→ δ([νβ1ρ, να1ρ])× · · · × δ([νβkρ, ναkρ])

× δ([νβk+1ρ, ναk+1ρ])× · · · × δ([νβ�ρ, να�ρ]) � σ.

We can now argue as we did to show ai + bi = 0 for some i in (2)(⇒).
The converse directions now follow immediately.
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4.3 Supports for Square-Integrable Representations

Proposition 4.3.1 Suppose ρ is an irreducible unitary supercuspidal representation of
GLn(F) and σ an irreducible supercuspidal representation of Sr(F). Let S

(
(ρ, β);σ

)
be as

in Section 3.

1. If ρ � ρ̃, there are no irreducible square-integrable representation supported on
S
(
(ρ, β);σ

)
for any β.

2. Suppose ρ ∼= ρ̃ and (ρ, σ) satisfies (Cα). Then, there are irreducible square-integrable
representations supported on S

(
(ρ, β);σ

)
if and only if β ≡ α mod 1.

Proof Claim 1 follows from [Tad4, Theorem 6.2]. In the case where β /∈ 1
2 Z, the second

claim also follows from [Tad4, Theorem 6.2].
We consider 2. when β ∈ 1

2 Z. First, assume that (ρ, σ) satisfies (Cα) and β �≡ α mod 1.
Now, suppose there were an irreducible square-integrable representation π supported on
S
(
(ρ, β);σ

)
. Write

χ0(π) = (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1ρ)⊗ (νa2ρ⊗ νa2−1ρ⊗ · · · ⊗ νb2ρ)

⊗ · · · ⊗ (νakρ⊗ νak−1ρ⊗ · · · ⊗ νbkρ)⊗ σ,

noting that ai, bi ≡ β ≡ −β mod 1. By Lemma 4.1.4, we have

π ↪→ δ([νb1ρ, νa1ρ])× · · · × δ([νbk−1ρ, νak−1ρ])× δ([νbkρ, νakρ]) � σ.

Observe that, by [Tad3, Theorem 13.2], δ([νbkρ, νakρ]) � σ ∼= δ([ν−akρ, ν−bkρ]) � σ is
irreducible. Thus,

π ↪→ δ([νb1ρ, νa1ρ])× · · · × δ([νbk−1ρ, νak−1ρ])× δ([ν−akρ, ν−bkρ]) � σ.

Therefore, by Frobenius reciprocity,

smin(π) ≥ (νa1ρ⊗ νa1−1ρ⊗ · · · ⊗ νb1ρ)⊗ · · · ⊗ (νak−1ρ⊗ νak−1−1ρ⊗ νbk−1ρ)

⊗ (ν−bkρ⊗ ν−bk−1ρ⊗ · · · ⊗ ν−akρ)⊗ σ.

However, it follows from Theorem 4.2.1 that we have−bk + (−bk− 1) + · · ·+ (−ak) < 0 <
ak + (ak − 1) + · · · + bk, contradicting the construction of χ0(π). Thus, there can be no
irreducible square-integrable representation supported on S

(
(ρ, β);σ

)
, as claimed.

The converse direction of 2. follows immediately from the fact that να�σ has a square-
integrable subrepresentation.

We note that in the case where σ is generic, the above proposition follows from [Mu].
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4.4 Some Constraints on χ0(π)

Lemma 4.4.1 Suppose (ρ, σ) satisfies C(α) and π is an irreducible representation supported
on S

(
(ρ, β);σ

)
with β ≡ α mod 1. If

χ0(π) = (νa1ρ⊗ · · · ⊗ νb1ρ)⊗ · · · ⊗ (νakρ⊗ · · · ⊗ νbkρ)⊗ σ,

then for each 1 ≤ i ≤ k, we have bi ≤ α. Further, if α > 0, there is at most one i for which
bi = α.

Proof First, we define a representation we will need in the proof. If α ≥ 1, let θα =
ναρ � δ(ναρ;σ), which is irreducible (cf. [Tad3]). If α = 1

2 , let θα denote the irreducible

subquotient common to ν
1
2 ρ � δ(ν

1
2 ρ;σ) and δ([ν−

1
2 ρ, ν

1
2 ρ]) � σ (θα is needed only for

α > 0). We observe that θα is the only irreducible representation containing ναρ⊗ναρ⊗σ
in its minimal Jacquet module. Further, smin(θα) ≥ ναρ⊗ ν−αρ⊗ σ.

Let i be the largest value for which bi > 0. Then, [νbiρ, νaiρ] ⊂ [νb jρ, νa jρ] for all j > i.
Therefore, commuting arguments give

π ↪→ δ([νb1ρ, νa1ρ])× · · · × δ([νbi−1ρ, νai−1ρ])× δ([νbiρ, νaiρ])

× δ([νbi+1ρ, νai+1ρ])× · · · × δ([νbkρ, νakρ]) � σ

∼= δ([νb1ρ, νa1ρ])× · · · × δ([νbi−1ρ, νai−1ρ])× δ([νbi+1ρ, νai+1ρ])

× · · · × δ([νbkρ, νakρ])× δ([νbiρ, νaiρ]) � σ.

If bi �= α, we get

π ↪→ (νa1ρ× · · · × νb1ρ)× · · · × (νai−1ρ× · · · × νbi−1ρ)× (νai+1ρ× · · · × νbi+1ρ)

× · · · × (νakρ× · · · × νbkρ)× (νaiρ× · · · × νbi +1ρ× νbiρ) � σ

∼= (νa1ρ× · · · × νb1ρ)× · · · × (νai−1ρ× · · · × νbi−1ρ)× (νai+1ρ× · · · × νbi+1ρ)

× · · · × (νakρ× · · · × νbkρ)× (νaiρ× · · · × νbi +1ρ× ν−biρ) � σ

since νbiρ� σ ∼= ν−biρ� σ is irreducible. However, by Frobenius reciprocity, this contra-
dicts the minimality of χ0(π) above. Thus, bi = α.

Now, suppose bi = α and j < i is the largest value for which b j > 0. Then, a commuting
argument gives

π ↪→ δ([νb1ρ, νa1ρ])× · · · × δ([νbkρ, νakρ]) � σ

∼= δ([νb ′1ρ, νa ′1ρ])× · · · × δ([νb ′k−2ρ, νa ′k−2ρ])

× δ([νb jρ, νa jρ])× δ([νbiρ, νaiρ]) � σ,
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where a ′m = am if m < j, am+1 if j ≤ m < i, am+2 if i ≤ m, and similarly for b ′m. If
b j > α = bi , we can use a commuting argument to get

π ↪→ δ([νb ′1ρ, νa ′1ρ])× · · · × δ([νb ′k−2ρ, νa ′k−2ρ])

× δ([νbiρ, νaiρ])× δ([νb jρ, νa jρ]) � σ

⇓

π ↪→ (νa ′1ρ× · · · × νb ′1ρ)× · · · × (νa ′k−2ρ× · · · × νb ′k−2ρ)

× (νaiρ× · · · × νbiρ)× (νa jρ× · · · × νb j +1ρ× νb jρ) � σ

↪→ (νa ′1ρ× · · · × νb ′1ρ)× · · · × (νa ′k−2ρ× · · · × νb ′k−2ρ)

× (νaiρ× · · · × νbiρ)× (νa jρ× · · · × νb j +1ρ× ν−b jρ) � σ

since νb jρ� σ ∼= ν−b jρ�σ is irreducible. This contradicts the minimality of χ0(π) above.
If b j = α = bi , observe that δ([ναρ, νaiρ]) × δ([ναρ, νa jρ]) ↪→ νaiρ × · · · × νa j +1ρ ×
(νa jρ× νa jρ)× · · · × (ναρ× ναρ). Thus, arguing as above, we get

π ↪→ (νa ′1ρ× · · · × νb ′1ρ)× · · · × (νa ′k−2ρ× · · · × νb ′k−2ρ)

× (νaiρ× · · · × νa j +1ρ)×
(
(νa jρ× νa jρ)× · · · × (ναρ× ναρ)

)
� σ

⇓

s(p,...,p)(π) ≥ (νa ′1ρ⊗ · · · ⊗ νb ′1ρ)⊗ · · · ⊗ (νa ′k−2ρ⊗ · · · ⊗ νb ′k−2ρ)

⊗ (νaiρ⊗ · · · ⊗ νa j +1ρ)⊗
(
(νa jρ⊗ νa jρ)⊗ · · · ⊗ (να+1ρ⊗ να+1ρ)

)
⊗ θα

⇓

smin(π) ≥ (νa ′1ρ⊗ · · · ⊗ νb ′1ρ)⊗ · · · ⊗ (νa ′k−2ρ⊗ · · · ⊗ νb ′k−2ρ)⊗ (νaiρ⊗ · · · ⊗ νa j +1ρ)

⊗
(
(νa jρ⊗ νa jρ)⊗ · · · ⊗ (να+1ρ⊗ να+1ρ)

)
⊗ (ναρ⊗ ν−αρ)⊗ σ,

again contradicting the minimality of χ0(π) above. This finishes the proof.

The following refinement is of interest when α ≥ 1.

Lemma 4.4.2 Suppose (ρ, σ) satisfies C(α) and π is an irreducible representation supported
on S

(
(ρ, α);σ

)
. If (now using−bi for lower ends)

χ0(π) = (νa1ρ⊗ · · · ⊗ ν−b1ρ)⊗ · · · ⊗ (νakρ⊗ · · · ⊗ ν−bkρ)⊗ σ,

then there is a β with α + 1 ≥ β > 0 such that each of {−β,−β − 1, . . . ,−α} appears
exactly once among b1, b2, . . . , bk and there are no other negative bi’s.
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Proof Let [−d1, c1], . . . , [−dk, ck] be the permutation of [−b1, a1], . . . , [−bk, ak] having
d1 ≥ · · · ≥ dk (and if di = di+1, then ci ≤ ci+1). Then, we claim that

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dkρ, νckρ]) � σ.

To see this, observe that if ai ≥ a j and bi ≤ b j , then δ([ν−biρ, νaiρ])× δ([ν−b jρ, νa jρ]) ∼=
δ([ν−b jρ, νa jρ])×δ([ν−biρ, νaiρ]) (by irreducibility). One can get from δ([ν−b1ρ, νa1ρ])×
· · · × δ([ν−bkρ, νakρ]) to δ([ν−d1ρ, νc1ρ]) × · · · × δ([ν−dkρ, νckρ]) through a sequence of
such transpositions, hence equivalences are preserved. Therefore,

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dkρ, νckρ]) � σ,

as claimed.
If dk ≥ 0, we are done: β = α + 1. So, suppose dk < 0. By Lemma 4.4.1, dk ≥ −α.

Then, we need to check that dk = −α. If dk > −α, we would have

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dk−1ρ, νck−1ρ])

× δ([ν−dk+1ρ, νckρ])× ν−dkρ� σ

∼= δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dk−1ρ, νck−1ρ])

× δ([ν−dk+1ρ, νckρ])× νdkρ� σ,

which, by Frobenius reciprocity, contradicts the minimality of δ0(π) (switching signs on
−dk lowers the exponent total). Thus, if dk < 0, we have dk = −α.

Now, consider dk−1. If dk−1 ≥ 0, we are done: β = α. So, suppose dk−1 < 0. We
have dk−1 ≥ dk = −α. Further, by Lemma 4.4.1, we cannot have dk−1 = dk = −α, so
dk−1 > −α. We need to check that dk−1 = −α + 1. Suppose this were not the case. Then,

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dk−2ρ, νck−2ρ])

× δ([ν−dk−1+1ρ, νck−1ρ])× ν−dk−1ρ× δ([ν−dkρ, νckρ]) � σ

∼= δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dk−2ρ, νck−2ρ])

× δ([ν−dk−1+1ρ, νck−1ρ])× δ([ν−dkρ, νckρ])× ν−dk−1ρ� σ

∼= δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−dk−2ρ, νck−2ρ])

× δ([ν−dk−1+1ρ, νck−1ρ])× δ([ν−dkρ, νckρ])× νdk−1ρ� σ

by the irreducibility of ν−dk−1ρ � σ. Again, by Frobenius reciprocity, this contradicts the
minimality of δ0(π).

Finally, suppose we have di = di+1 +1 for all i < j with j ≤ k−2. If d j ≥ 0, we are done:
β = −d j+1. So, suppose d j < 0. An argument similar to that in the preceding paragraph
shows that we cannot have d j > d j+1 + 1. Thus, it remains to show that we cannot have
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d j = d j+1. Suppose that were the case—say d j = d j+1 = γ. Then,

π ↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−d j−1ρ, νc j−1ρ])× δ([ν−γ+1ρ, νc jρ])

× ν−γρ× δ([ν−γρ, νc j+1ρ])× δ([ν−γ+1ρ, νc j+2ρ])× · · · × δ([ναρ, νckρ]) � σ

∼= δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−d j−1ρ, νc j−1ρ])× δ([ν−γ+1ρ, νc jρ])

× δ([ν−γρ, νc j+1ρ])× ν−γρ× δ([ν−γ+1ρ, νc j+2ρ])× · · · × δ([ναρ, νckρ]) � σ

↪→ δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−d j−1ρ, νc j−1ρ])× δ([ν−γ+1ρ, νc jρ])

× δ([ν−γ+1ρ, νc j+1ρ])× ν−γρ× ν−γρ× δ([ν−γ+2ρ, νc j+2ρ])× ν−γ+1ρ

× δ([ν−γ+2ρ, νc j+3ρ])× · · · × δ([ναρ, νckρ]) � σ

∼= δ([ν−d1ρ, νc1ρ])× · · · × δ([ν−d j−1ρ, νc j−1ρ])× δ([ν−γ+1ρ, νc jρ])

× δ([ν−γ+1ρ, νc j+1ρ])× δ([ν−γ+2ρ, νc j+2ρ])× ν−γρ× ν−γρ× ν−γ+1ρ

× δ([ν−γ+2ρ, νc j+3ρ])× · · · × δ([ναρ, νckρ]) � σ.

Now, the only irreducible representation of GL3n(F) containing ν−γρ⊗ ν−γρ⊗ ν−γ+1ρ in
its rmin is ν−γρ× ζ([ν−γρ, ν−γ+1ρ]). Since

rmin

(
ν−γρ× ζ([ν−γρ, ν−γ+1ρ])

)
≥ ν−γρ⊗ ν−γ+1ρ⊗ ν−γρ,

we see that

sapp (π) ≥ δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−d j−1ρ, νc j−1ρ])⊗ δ([ν−γ+1ρ, νc jρ])

⊗ δ([ν−γ+1ρ, νc j+1ρ])⊗ δ([ν−γ+2ρ, νc j+2ρ])⊗ ν−γρ⊗ ν−γ+1ρ

⊗ ν−γρ⊗ δ([ν−γ+2ρ, νc j+3ρ])⊗ · · · ⊗ δ([ναρ, νckρ])⊗ σ,

where sapp denotes the Jacquet module taken with respect to the appropriate parabolic
subgroup. Now, the only irreducible representation of GLn(c j+3+γ)(F) containing ν−γρ ⊗
δ([ν−γ+2ρ, νc j+3ρ]) in its m∗ is ν−γρ× δ([ν−γ+2ρ, νc j+3ρ]). However,

m∗
(
ν−γρ× δ([ν−γ+2ρ, νc j+3ρ])

)
≥ δ([ν−γ+2ρ, νc j+3ρ])⊗ ν−γρ.

Thus,

sapp (π) ≥ δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−d j−1ρ, νc j−1ρ])⊗ δ([ν−γ+1ρ, νc jρ])

⊗ δ([ν−γ+1ρ, νc j+1ρ])⊗ δ([ν−γ+2ρ, νc j+2ρ])⊗ ν−γρ⊗ ν−γ+1ρ

⊗ δ([ν−γ+2ρ, νc j+3ρ])⊗ ν−γρ⊗ δ([ν−γ+3ρ, νc j+4ρ])

⊗ · · · ⊗ δ([ναρ, νckρ])⊗ σ.
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Iterating this argument, we can eventually commute ν−γρ to the right end to get

sapp (π) ≥ δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−d j−1ρ, νc j−1ρ])⊗ δ([ν−γ+1ρ, νc jρ])

⊗ δ([ν−γ+1ρ, νc j+1ρ])⊗ δ([ν−γ+2ρ, νc j+2ρ])⊗ ν−γρ⊗ ν−γ+1ρ

⊗ δ([ν−γ+2ρ, νc j+3ρ])⊗ · · · ⊗ δ([ναρ, νckρ])⊗ ν−γρ⊗ σ.

Finally, we observe that the only irreducible representation of Sn+r(F) containing ν−γρ⊗σ
in its smin is ν−γρ� σ. However,

smin(ν−γρ� σ) ≥ νγρ⊗ σ.

Therefore,

sapp (π) ≥ δ([ν−d1ρ, νc1ρ])⊗ · · · ⊗ δ([ν−d j−1ρ, νc j−1ρ])⊗ δ([ν−γ+1ρ, νc jρ])

⊗ δ([ν−γ+1ρ, νc j+1ρ])⊗ δ([ν−γ+2ρ, νc j+2ρ])⊗ ν−γρ⊗ ν−γ+1ρ

⊗ δ([ν−γ+2ρ, νc j+3ρ])⊗ · · · ⊗ δ([ναρ, νckρ])⊗ νγρ⊗ σ,

contradicting the minimality of δ0(π) (by total exponent considerations). This finishes the
proof.

Remark 4.4.3 It is an easy consequence of the arguments above that if i < j with both
bi , b j < 0, then bi > b j .

5 Example: the Two-Segment, (C 1
2 ) Case

In this chapter, we give an example to show how our results can be applied. Through-
out this chapter, we assume (ρ, σ) satisfies (C 1

2 ). We then use the results of the preceding
sections to help classify the square-integrable representations supported on S

(
(ρ, 1

2 );σ
)

in
the case where δ0 consists of two generalized Steinbergs; k = 2 in the notation of Defini-
tion 4.1.3. In light of Lemma 4.4.1, we may write δ0 for such a representation in the form
δ([ν−b1ρ, νa1ρ])⊗ δ([ν−b2ρ, νa2ρ])⊗ σ with b1, b2 ≥ −

1
2 ; for convenience, we do so.

5.1 The One-Segment Case

In this section, we discuss the square-integrable representations with δ0 consisting of one
generalized Steinberg representation (i.e., k = 1 in the notation of Definition 4.1.3). This
discussion is based on results from [Tad5].

Lemma 5.1.1 Suppose b ∈ 1
2 + Z with b ≥ 1

2 . Then, δ([ν−bρ, νbρ]) � σ decomposes as a
direct sum of two irreducible representations (both tempered, neither square-integrable). We
write

δ([ν−bρ, νbρ]) � σ ∼= δ([ν−bρ, νbρ];σ)1 ⊕ δ([ν−bρ, νbρ];σ)2.
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Proof See [Tad5, Theorem 3.2].

By convention, we let δ([ν−bρ, νbρ];σ)1 denote the component with the larger Jacquet
module.

By Theorem 4.2.1 and Lemma 4.4.1, a square-integrable representation supported on a
single segment appears as a subrepresentation of δ([ν−bρ, νaρ]) � σ for some a, b ∈ 1

2 + Z
with a > b ≥ − 1

2 . (Alternatively, we could use a more direct argument for the one-
segment case to reduce to just considering the above induced representations; cf. [Tad5,
Proposition 4.4]).

Theorem 5.1.2 Suppose a, b ∈ 1
2 + Z with a > b ≥ − 1

2 .

1. If b = − 1
2 , we have

δ([ν
1
2 ρ, νaρ]) � σ = δ([ν

1
2 ρ, νaρ];σ) + L

(
δ([ν−aρ, ν−

1
2 ρ]);σ

)
.

The unique irreducible quotient (Langlands quotient) is L
(
δ([ν−aρ, ν

1
2 ρ]);σ

)
; the unique

irreducible subrepresentation is δ([ν
1
2 ρ, νaρ];σ). Further, δ([ν

1
2 ρ, νaρ];σ) is square-

integrable.
2. If b > − 1

2 , we have

δ([ν−bρ, νaρ]) � σ = δ([ν−bρ, νaρ];σ)1 + δ([ν−bρ, νaρ];σ)2 + L
(
δ([ν−aρ, νbρ]);σ

)
.

The unique irreducible quotient (Langlands quotient) is L
(
δ([ν−aρ, νbρ]);σ

)
;

δ([ν−bρ, νaρ];σ)1 and δ([ν−bρ, νaρ];σ)2 are subrepresentations. Further,
δ([ν−bρ, νaρ];σ)1 and δ([ν−bρ, νaρ];σ)2 are square-integrable. We note that
δ([ν−bρ, νaρ];σ)1 (resp., δ([ν−bρ, νaρ];σ)2) may be characterized as the unique irre-
ducible subquotient common to δ([ν−bρ, νaρ]) � σ and δ([νb+1ρ, νaρ]) �
δ([ν−bρ, νbρ];σ)1 (resp., δ([νb+1ρ, νaρ]) � δ([ν−bρ, νbρ];σ)2).

We note that δ0
(
δ([ν−bρ, νaρ];σ)t

)
= δ([ν−bρ, νaρ]) ⊗ σ (by convention, if b = − 1

2 ,

we take t = 1 and write δ([ν
1
2 ρ, νaρ];σ)1 = δ([ν

1
2 ρ, νaρ];σ)).

Proof For 1., the properties of δ([ν
1
2 ρ, νaρ];σ) are given in [Tad5, Theorem 2.1]. That

δ([ν
1
2 ρ, νaρ]) � σ has two irreducible subquotients follows from [Jan1, Proposition 3.6]

and [Aub] or [S-S]. The identity of the other irreducible subquotient follows immediately
from δ([ν

1
2 ρ, νaρ]) � σ = δ([ν−aρ, ν−

1
2 ρ]) � σ (cf. [BDK, Lemma 5.4]).

For 2., the properties of δ([ν−bρ, νaρ];σ)t are given in Theorems 3.3, 4.2, and 4.3 of
[Tad5]. That δ([ν−bρ, νaρ]) � σ has three irreducible subquotients follows from [Jan1,
Proposition 3.6] and [Aub] or [S-S]. The identity of the other irreducible subquotient fol-
lows immediately from δ([ν−bρ, νaρ]) � σ = δ([ν−aρ, νbρ]) � σ.

Finally, the fact that δ0
(
δ([ν−bρ, νaρ];σ)t

)
= δ([ν−bρ, νaρ]) ⊗ σ follows from Theo-

rems 2.1, 3.3(ii), and 4.2(iv) of [Tad5].

We will need the following lemma in the next section.
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Lemma 5.1.3 Suppose a, b, f , g ∈ 1
2 + Z.

1. Suppose a > f ≥ b ≥ − 1
2 . Then,

δ([ν−bρ, νaρ];σ)t ↪→ δ([ν f +1ρ, νaρ]) � δ([ν−bρ, ν f ρ];σ)t

and is the unique irreducible subrepresentation.
2. Suppose a > b > g > − 1

2 . Then,

δ([ν−bρ, νaρ];σ)t ↪→ δ([νg+1ρ, νbρ]) � δ([ν−gρ, νaρ];σ)t

and is the unique irreducible subrepresentation.

Proof We start with 2. First, we check that δ([νg+1ρ, νbρ]) ⊗ δ([ν−gρ, νaρ];σ)t

appears with multiplicity one in s((b−g)n)
(
δ([νg+1ρ, νbρ]) � δ([ν−gρ, νaρ];σ)t

)
. Write

µ∗
(
δ([ν−gρ, νaρ];σ)t

)
=

∑
k τk ⊗ θk with τk, θk irreducible (repetition possible). We note

that since

s(n)

(
δ([ν−gρ, νaρ];σ)t

)
≤ s(n)

(
δ([ν−gρ, νaρ]) � σ

)
= νgρ⊗ δ([ν−g+1ρ, νaρ]) � σ + νaρ⊗ δ([ν−gρ, νa−1ρ]) � σ,

we have that an element of rmin(τk) begins with either νgρ or νaρ unless τk = 1. Now, by
Theorem 3.1.2,

µ∗
(
δ([νg+1ρ, νbρ]) � δ([ν−gρ, νaρ];σ)t

)
=

∑
k

b+1∑
i=g+1

b+1∑
j=i

δ([ν−i+1ρ, ν−g−1ρ])× δ([ν jρ, νbρ])× τk ⊗ δ([ν iρ, ν j−1ρ]) � θk.

To obtain a copy of δ([νg+1ρ, νbρ]) ⊗ δ([ν−gρ, νaρ];σ)t , we must have τk = 1 (since
rmin

(
δ([νg+1ρ, νbρ])

)
contains neither νgρ nor νaρ), hence θk = δ([ν−gρ, νaρ];σ)t . Fur-

ther, since rmin

(
δ([νg+1ρ, νbρ])

)
does not contain ν−g−1ρ, we must have i = g + 1. Then,

j = g + 1 gives the only copy of δ([νg+1ρ, νbρ])⊗ δ([ν−gρ, νaρ];σ)t . Note that by Frobe-
nius reciprocity, we immediately see that δ([νg+1ρ, νbρ]) � δ([ν−gρ, νaρ];σ)t has a unique
irreducible subrepresentation.

Calculate:

δ([ν−bρ, νaρ];σ)t ↪→ δ([ν−bρ, νaρ]) � σ

↪→ δ([ν−gρ, νaρ])× δ([ν−bρ, ν−g−1ρ]) � σ

∼= δ([ν−gρ, νaρ])× δ([νg+1ρ, νbρ]) � σ

∼= δ([νg+1ρ, νbρ])× δ([ν−gρ, νaρ]) � σ,

where δ([ν−bρ, ν−g−1ρ])�σ ∼= δ([νg+1ρ, νbρ])�σ is irreducible by [Tad3, Theorem 9.1].
By [Jan3, Lemma 5.5], we have δ([ν−bρ, νaρ];σ)t ↪→ δ([νg+1ρ, νbρ]) � θ for some irre-
ducible θ ≤ δ([ν−gρ, νaρ]) � σ.
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Next, we claim that θ �= L
(
δ([ν−aρ, νgρ]);σ

)
. If we had θ = L

(
δ([ν−aρ, νgρ]);σ

)
, then

by Frobenius reciprocity,

smin

(
δ([ν−bρ, νaρ];σ)t

)
≥ (νbρ⊗ νb−1ρ⊗ · · · ⊗ νg+1ρ)

⊗ (νgρ⊗ νg−1ρ⊗ · · · ⊗ ν−aρ)⊗ σ.

By the Casselman criterion, this would contradict the square-integrability of
δ([ν−bρ, νaρ];σ)t (or alternatively, the fact that χ0

(
δ([ν−bρ, νaρ];σ)t

)
= (νaρ⊗ νa−1ρ⊗

· · · ⊗ ν−bρ)⊗ σ, which follows from the preceding theorem).
Finally, that δ([ν−bρ, νaρ];σ)1 ↪→ δ([νg+1ρ, νbρ]) � δ([ν−gρ, νaρ];σ)1 follows from

the fact that δ([ν−bρ, νaρ];σ)1 may be characterized as the irreducible subquotient of
δ([ν−bρ, νaρ])�σ containing νaρ⊗νa−1ρ⊗· · ·⊗νb+1ρ⊗(νbρ⊗νbρ)⊗· · ·⊗(ν

1
2 ρ⊗ν

1
2 ρ)⊗σ

in its smin (an easy consequence of Theorems 3.3(i) and 4.2(iv) of [Tad5]). Then, the fact
that δ([ν−bρ, νaρ];σ)2 ↪→ δ([νg+1ρ, νbρ]) � δ([ν−gρ, νaρ];σ)2 follows from the fact that
δ([νg+1ρ, νbρ]) � δ([ν−gρ, νaρ];σ)1 admits a unique irreducible subrepresentation.

A similar argument may be used to verify 1. (it is slightly easier).

5.2 Constraints on χ0(π)

Definition 5.2.1 Suppose τ is an irreducible representation of GLm(F) and π a represen-
tation of Sn(F). Write

µ∗(π) =
∑

i

miξi ⊗ θi,

where ξi ⊗ θi is irreducible and mi is its multiplicity. Let Iτ = {i | ξi = τ}. We set

µ∗τ (π) =
∑
i∈Iτ

miξi ⊗ θi =
∑
i∈Iτ

miτ ⊗ θi.

Similarly, if ξ is a representation of GLr(F) and

M∗(ξ) =
∑

j

n jξ
(1)
j ⊗ ξ

(2)
j ,

let Jτ = { j | ξ(1)
j = τ}. We set

M∗τ (ξ) =
∑
j∈ Jτ

n jξ
(1)
j ⊗ ξ

(2)
j =

∑
j∈ Jτ

n jτ ⊗ ξ
(2)
j .

Lemma 5.2.2 Let τ , ξ, π be as in Definition 5.2.1.

1. Suppose supp(τ ) ∩ [supp(ξ) ∪ supp(ξ̃)] = ∅. Then,

µ∗τ (ξ � π) = (1⊗ ξ) � µ∗τ (π).
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2. Suppose supp(τ ) ∩ supp(π) = ∅. Then,

µ∗τ (ξ � π) = M∗τ (ξ) � (1⊗ π).

Proof First, with notation as above,

µ∗(ξ � π) =
∑

i

∑
j

min j(ξ
(1)
j × ξi)⊗ (ξ(2)

j � θi).

For 1., observe that if ξ(1)
j �= 1, then ξ(1)

j ×ξi � τ (since supp(ξ(1)
j ) ⊂ [supp(ξ)∪supp(ξ̃)]).

Therefore, ξ(1)
j = 1. From the formula M∗ = (m⊗1)◦ (̃ ⊗m∗)◦ s◦m∗, this forces ξ(2)

j = ξ
and n j = 1. Therefore, we must have ξi = τ . The claim 1. follows.

For 2., observe that if ξi �= 1, then ξ(1)
j × ξi � τ (since supp(ξi) ⊂ supp(π)). Therefore,

ξi = 1. Then, we must have θi = π and mi = 1. Therefore, we must have ξ(1)
j = τ . The

claim 2. follows.

Lemma 5.2.3 Let a, b ∈ 1
2 + Z with a > b ≥ − 1

2 .

1. Suppose b ≤ f < a. Then,

µ∗δ([ν f +1ρ,νaρ])

(
δ([ν−bρ, νaρ];σ)t

)
= δ([ν f +1ρ, νaρ])⊗ δ([ν−bρ, ν f ρ];σ)t .

2. Suppose − 1
2 < g < b. Then,

µ∗δ([νg+1ρ,νbρ])

(
δ([ν−bρ, νaρ];σ)t

)
= δ([νg+1ρ, νbρ])⊗ δ([ν−gρ, νaρ];σ)t .

Proof This follows immediately from the proof of Lemma 5.1.3.

Suppose a ≥ b ≥ c ≥ d ≥ − 1
2 have a, b, c, d ∈ 1

2 + Z. Set

πt = δ([ν−cρ, νaρ]) � δ([ν−dρ, νbρ];σ)t

π ′t = δ([ν−cρ, νbρ]) � δ([ν−dρ, νaρ];σ)t

π ′ ′t = δ([ν−bρ, νaρ]) � δ([ν−dρ, νcρ];σ)t .

Consider the following multisets:

Xt = {θ ≤ πt | θ is irreducible and µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(θ) �= 0}

X ′t = {θ ≤ π
′
t | θ is irreducible and µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(θ) �= 0}

X ′ ′t = {θ ≤ π
′ ′
t | θ is irreducible and µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(θ) �= 0}.

We note the following:

Lemma 5.2.4 Suppose π is an irreducible subrepresentation of πt . Then, π ∈ Xt .
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Proof This follows immediately from Frobenius reciprocity and the fact that
δ([νc+1ρ, νbρ])×δ([νc+1ρ, νaρ])⊗δ([ν−cρ, νcρ])×δ([ν−dρ, νcρ]) ≤ m∗

(
δ([ν−cρ, νaρ])×

δ([ν−dρ, νbρ])
)

.

Lemma 5.2.5 Xt = X ′t = X ′ ′t .

Proof 1. Xt = X ′ ′t .
If b = c, there is nothing to prove. Suppose b �= c.
Let π∗∗t = δ([ν−cρ, νaρ]) × δ([νc+1ρ, νbρ]) � δ([ν−dρ, νcρ];σ)t . From Lemma 5.1.3,

we have πt ≤ π∗∗t . Also,

π ′ ′t ≤ δ([ν−cρ, νaρ])× δ([ν−bρ, ν−c−1ρ]) � δ([ν−dρ, νcρ];σ)t = π
∗∗
t .

Now, Lemma 5.2.2 2. and an easy calculation give

µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(π
∗∗
t ) = δ([νc+1ρ, νbρ])× δ([νc+1ρ, νaρ])

⊗ δ([ν−cρ, νcρ]) � δ([ν−dρ, νcρ];σ)t .

Since M∗δ([νc+1ρ,νaρ])

(
δ([ν−cρ, νaρ])

)
= δ([νc+1ρ, νaρ]) ⊗ δ([ν−cρ, νcρ]) and (by

Lemma 5.2.3) µ∗
δ([νc+1ρ,νbρ])

(
δ([ν−dρ, νbρ];σ)t

)
= δ([νc+1ρ, νbρ])⊗ δ([ν−dρ, νcρ];σ)t , we

get

µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(πt ) ≥ δ([νc+1ρ, νbρ])× δ([νc+1ρ, νaρ])

⊗ δ([ν−cρ, νcρ]) � δ([ν−dρ, νcρ];σ)t .

Since πt ≤ π∗∗t , we must have equality. Similarly, since

M∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])

(
δ([ν−bρ, νaρ])

)
= δ([νc+1ρ, νbρ])× δ([νc+1ρ, νaρ])⊗ δ([ν−cρ, νcρ]),

Lemma 5.2.2 2. tells us

µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(π
′′
t ) = δ([νc+1ρ, νbρ])× δ([νc+1ρ, νaρ])

⊗ δ([ν−cρ, νcρ]) � δ([ν−dρ, νcρ];σ)t .

From this, it is immediate that

Xt = X ′ ′t = {θ ≤ π
∗∗
t | θ is irreducible and µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(θ) �= 0}.

2. Xt = X ′t .
If a = b, there is nothing to prove. Suppose a �= b.
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The proof is similar to the proof that Xt = X ′ ′t . Let π∗t = δ([ν−cρ, νbρ]) ×
δ([νb+1ρ, νaρ]) � δ([ν−dρ, νbρ];σ)t . Then one can easily check that πt ≤ π∗t , π ′t ≤ π

∗
t .

Now, calculations like those above tell us

µ∗δ([νb+1ρ,νaρ])(πt ) = µ
∗
δ([νb+1ρ,νaρ])(π

′
t ) = µ∗δ([νb+1ρ,νaρ])(π

∗
t )

= δ([νb+1ρ, νaρ])⊗ δ([ν−cρ, νbρ]) � δ([ν−dρ, νbρ];σ)t .

Since µ∗
δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(θ) �= 0 implies µ∗

δ([νb+1ρ,νaρ])(θ) �= 0, we get

Xt = X ′t = {θ ≤ π
∗
t | θ is irreducible and µδ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(θ) �= 0}.

as needed.

Suppose π is an irreducible, square-integrable representation supported on S
(

(ρ, 1
2 );σ

)
.

Further, suppose δ0(π) consists of two generalized Steinberg representations (and σ). By
the results in chapter 4, δ0(π) has one of the following forms:

1. δ0(π) = δ([ν−dρ, νbρ])⊗ δ([ν−cρ, νaρ])⊗ σ
2. δ0(π) = δ([ν−cρ, νbρ])⊗ δ([ν−dρ, νaρ])⊗ σ
3. δ0(π) = δ([ν−dρ, νcρ])⊗ δ([ν−bρ, νaρ])⊗ σ

for a, b, c, d ∈ 1
2 + Z with a ≥ b ≥ c ≥ d ≥ − 1

2 . The three possible forms are distinct if
the inequalities among a, b, c, d are strict. In the next two propositions, we show that the
inequalities are strict and that the first possible form does not actually occur. We note that
if σ is generic, the fact that the inequalities are strict follows from [Mu] (and holds for δ0
with an arbitrary number of segments).

Proposition 5.2.6 For π, δ0(π) as above, a > b > c > d ≥ − 1
2 .

Proof First, suppose that δ0(π) is of the form 1. above. Then,

π ↪→ δ([ν−dρ, νbρ])× δ([ν−cρ, νaρ]) � σ ∼= δ([ν−cρ, νaρ])× δ([ν−dρ, νbρ]) � σ

⇓

π ↪→ δ([ν−cρ, νaρ]) � δ([ν−dρ, νbρ];σ)t or δ([ν−cρ, νaρ]) � L
(
δ([ν−bρ, νdρ]);σ

)
(some t) by [Jan3, Lemma 5.5] and Theorem 5.1.2. However, if π ↪→ δ([ν−cρ, νaρ]) �
L
(
δ([ν−bρ, νdρ]);σ

)
, we would have

χ ′0 = (νaρ⊗ νa−1ρ⊗ · · · ⊗ ν−cρ)⊗ (νdρ⊗ νd−1ρ⊗ · · · ⊗ ν−bρ)⊗ σ ≤ smin(π),

giving the contradiction χ ′0 < χ0(π). Thus, if δ0(π) is of the form 1. above, we must have
π ↪→ πt (notation as above). Similarly, if δ0(π) is of the form 2. (resp., 3.) above, then
π ↪→ π ′t (resp., π ↪→ π ′′t ).

Suppose δ0(π) is of one of the forms above with b = c. By Theorem 4.2.1, it is not of the
second form; for b = c, forms 1. and 3. are the same. Note that in this case, πt = π

′′
t . By
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Lemmas 5.2.4 and 5.2.5, π ∈ Xt = X ′t , so π ≤ δ([ν−bρ, νbρ]) � δ([ν−dρ, νaρ];σ)t . Since
δ([ν−bρ, νbρ]) � δ([ν−dρ, νaρ];σ)t is unitary, Frobenius reciprocity tells us

χ ′0 = (νbρ⊗ νb−1ρ⊗ · · · ⊗ ν−bρ)⊗ (νaρ⊗ νa−1ρ⊗ · · · ⊗ ν−dρ)⊗ σ ≤ smin(π),

giving the contradiction χ ′0 < χ0(π). Thus, b > c.
A similar argument gives a > b.
Suppose c = d. We write c for both. By Lemma 4.4.1, c > − 1

2 . By Theorem 4.2.1,
δ0(π) is not of form 3.; forms 1. and 2. are the same. First, it is an easy consequence of
Lemma 5.2.2 that

µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])

(
δ([ν−bρ, νaρ];σ)t

)
= δ([νc+1ρ, νbρ])× δ([νc+1ρ, νaρ])⊗ δ([ν−cρ, νcρ];σ)t .

Therefore, an argument like that in the proof that Xt = X ′ ′t (Lemma 5.2.5) tells us

µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(πt ) = µ
∗
δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(π

†
t )

= µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(π
�
t )

= δ([νc+1ρ, νbρ])× δ([νc+1ρ, νaρ])

⊗ δ([ν−cρ, νcρ]) � δ([ν−cρ, νcρ];σ)t .

where π†t = δ([ν−cρ, νcρ]) � δ([ν−bρ, νaρ];σ)t and π�t = δ([ν−cρ, νcρ]) ×
δ([νc+1ρ, νbρ]) × δ([νc+1ρ, νaρ]) � δ([ν−cρ, νcρ];σ)t . Now, πt ≤ π

�
t and π†t ≤ π

�
t . Thus,

Xt = X†t , where

X†t = {θ ≤ π
†
t | θ is irreducible and µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(θ) �= 0}.

Then, π ∈ Xt = X†t has

π ≤ π†t = δ([ν−cρ, νcρ]) � δ([ν−bρ, νaρ];σ)t .

As above, this tells us

χ ′0 = (νcρ⊗ νc−1ρ⊗ · · · ⊗ ν−cρ)⊗ (νaρ⊗ νa−1ρ⊗ · · · ⊗ ν−bρ)⊗ σ ≤ smin(π),

giving the contradiction χ ′0 < χ0(π).

Proposition 5.2.7 Suppose a > b > c > d ≥ − 1
2 . Then, δ0(π) cannot have the form

δ([ν−dρ, νbρ])⊗ δ([ν−cρ, νaρ])⊗ σ.

Proof Suppose this were possible. As noted in the proof of the previous proposition,
if δ0(π) = δ([ν−dρ, νbρ]) ⊗ δ([ν−cρ, νaρ]) ⊗ σ, then π ↪→ πt (some t). Thus, by
Lemma 5.1.3,

π ↪→ πt ↪→ π
∗∗
t
∼= δ([νc+1ρ, νbρ])× δ([ν−cρ, νaρ]) � δ([ν−dρ, νcρ];σ)t .
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Therefore, by [Jan3, Lemma 5.5],

π ↪→ δ([νc+1ρ, νbρ]) � θ

for some (irreducible) θ ≤ δ([ν−cρ, νaρ]) � δ([ν−dρ, νcρ];σ)t . Further, since
µ∗
δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(π) �= 0, we claim that µ∗δ([νc+1ρ,νaρ])(θ) �= 0. (In the proof of

Lemma 5.2.5, we observed that

µ∗δ([νc+1ρ,νbρ])×δ([νc+1ρ,νaρ])(π
∗∗
t ) = δ([νc+1ρ, νbρ])× δ([νc+1ρ, νaρ])

⊗ δ([ν−cρ, νcρ]) � δ([ν−dρ, νcρ];σ)t ,

which may be rewritten as M∗
δ([νc+1ρ,νbρ])

(
δ([νc+1ρ, νbρ])

)
� µ∗δ([νc+1ρ,νaρ])

(
δ([ν−cρ, νaρ]) �

δ([ν−dρ, νcρ];σ)t

)
. The claim follows.) Therefore, by Lemma 5.2.5 (with b = c), we

have θ ≤ δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t . Since δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t is
unitary, the fact that π ↪→ δ([νc+1ρ, νbρ]) � θ and Frobenius reciprocity combine to tell us

χ ′0 = (νbρ⊗ νb−1ρ⊗ · · · ⊗ νc+1ρ)⊗ (νcρ⊗ νb−1ρ⊗ · · · ⊗ ν−cρ)

⊗ (νaρ⊗ νa−1ρ⊗ · · · ⊗ ν−dρ)⊗ σ ≤ smin(π).

However, this gives the contradiction χ ′0 < χ0(π).

We summarize these results below:

Corollary 5.2.8 Suppose (ρ, σ) satisfies (C 1
2 ) and π is an irreducible, square-integrable rep-

resentation supported on S
(
(ρ, 1

2 );σ
)
. If δ0(π) consists of two generalized Steinberg represen-

tations (and σ)—i.e., k = 2 in the notation of Definition 4.1.3—then δ0(π) has one of the
following forms:

(a) δ([ν−cρ, νbρ])⊗ δ([ν−dρ, νaρ])⊗ σ; or
(b) δ([ν−dρ, νcρ])⊗ δ([ν−bρ, νaρ])⊗ σ

for a, b, c, d ∈ 1
2 + Z with a > b > c > d ≥ − 1

2 .

In the next section, we shall see that both possibilities actually occur.

5.3 The Two-Segment Case

By Corollary 5.2.8, we need to look for square-integrable subrepresentations in
δ([ν−dρ, νcρ]) × δ([ν−bρ, νaρ]) � σ and δ([ν−cρ, νbρ]) × δ([ν−dρ, νaρ]) � σ (where
we continue to assume a > b > c > d ≥ − 1

2 ). The first of these is covered by the results
in [Tad5, Section 8]; we summarize what we need in Theorem 5.3.1 below. The remainder
of this section will focus on δ([ν−cρ, νbρ]) × δ([ν−dρ, νaρ]) � σ (or more precisely, on
δ([ν−cρ, νbρ]) � δ([ν−dρ, νaρ];σ)t ).

Theorem 5.3.1 δ([ν−dρ, νcρ])× δ([ν−bρ, νaρ]) � σ has exactly four irreducible subrepre-
sentations. They are all square-integrable and are pairwise inequivalent. (In Remark 5.3.3 2.
below, we will show that δ0 = δ([ν−dρ, νcρ])⊗ δ([ν−bρ, νaρ])⊗ σ for all four.)
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Proposition 5.3.2 Suppose π is an irreducible subquotient of δ([ν−b1ρ, νa1ρ]) × · · · ×
δ([ν−bkρ, νakρ]) � σ. Assume that a1, . . . , ak ≡

1
2 mod 1 with

1. ak ≥ · · · ≥ a1 > 0.
2. ai > bi for all i.
3. bi ≥ −

1
2 and there is at most one value of i for which bi = −

1
2 .

Then, δ0(π) has the form δ([ν−b ′1ρ, νa ′1ρ]) ⊗ · · · ⊗ δ([ν−b ′k ρ, νa ′k ρ]) ⊗ σ with a ′1, . . . , a
′
k,

b ′1, . . . , b
′
k a permutation of a1, . . . , ak, b1, . . . , bk.

Proof First, for c ≡ 1
2 mod 1 with c ≥ 0, let m(c) be the number of terms of the form νcρ

or ν−cρ which appear in a given element of χ0(π). We note that m(c) is well-defined and is
the same for every subquotient of δ([ν−b1ρ, νa1ρ]) × · · · × δ([ν−bkρ, νakρ]) � σ (it is just
a matter of the supercuspidal support).

Write δ0(π) = δ([ν−b ′1ρ, νa ′1ρ]) ⊗ · · · ⊗ δ([ν−b ′mρ, νa ′mρ]) ⊗ σ. We first claim m = k.
Observe that bi = −

1
2 for some (exactly one) i if and only if m( 1

2 ) is odd. Similarly, by
Lemma 4.4.1, we have that b ′j = −

1
2 for some (exactly one) j if and only if m( 1

2 ) is odd.

Now, suppose m( 1
2 ) is even. Then, every δ([ν−biρ, νaiρ]) contains ν

1
2 ρ and ν−

1
2 ρ exactly

once each. Therefore k = 1
2 m( 1

2 ). On the other hand, any term in smin(π) must be of the
form νxρ ⊗ · · · with x ∈ {a1, . . . , ak, b1, . . . , bk} (an easy consequence of Theorem 3.1.2,
e.g.). In particular, we must have a ′1 > 0. Thus, a ′m ≥ · · · ≥ a ′1 > 0. Since m( 1

2 ) is even,

b ′j ≥
1
2 for all j. Therefore, each δ([ν−b ′j ρ, νa ′j ρ]) contains ν

1
2 ρ and ν−

1
2 ρ exactly once

each. Thus, m = 1
2 m( 1

2 ) = k.

The argument when m( 1
2 ) is odd is similar but a little more involved. The same sort of

argument as above tells us k = 1
2 [m( 1

2 ) + 1]. To relate m to m( 1
2 ), we consider three cases:

a ′1 �= −
1
2 , a ′2 > a ′1 = −

1
2 , and a ′2 = a ′1 = −

1
2 . If a ′1 �= −

1
2 , we can argue as above to get

m = 1
2 [m( 1

2 ) + 1]. Suppose a ′2 > a ′1 = −
1
2 . If b ′j �= −

1
2 for any j, we get one copy of ν−

1
2 ρ

from each of δ([ν−b ′1ρ, νa ′1ρ]), . . . , δ([ν−b ′mρ, νa ′mρ]) and one copy of ν
1
2 ρ from each of

δ([ν−b ′2ρ, νa ′2ρ]), . . . , δ([ν−b ′mρ, νa ′mρ]), giving a total of 2m−1. Thus, m = 1
2 [m( 1

2 )+1]. If
we had a ′2 > a ′1 = −

1
2 and b ′j = −

1
2 for some j (exactly one), we would get a total of 2m−2

copies of ν±
1
2 ρ. Since this has the wrong parity, we could not have had b ′j = −

1
2 . Finally,

suppose a ′2 = a ′1 = −
1
2 . Since δ([ν−b ′1ρ, ν−

1
2 ρ])×δ([ν−b ′2ρ, ν−

1
2 ρ]) is irreducible, we have

that µ∗(π) contains a term of the form
(
δ([ν−b ′1ρ, ν−

1
2 ρ])×δ([ν−b ′2 ρ, ν−

1
2 ρ])

)
⊗· · · . Fur-

ther, since rmin

(
δ([ν−b ′1ρ, ν−

1
2 ρ])× δ([ν−b ′1 ρ, ν−

1
2 ρ])

)
contains terms of the form ν−

1
2 ρ⊗

ν−
1
2 ρ⊗· · · , we see that smin(π) also contains terms of the form ν−

1
2 ρ⊗ ν−

1
2 ρ⊗· · · . How-

ever, we claim this cannot occur. If bi is the (unique) element of {a1, . . . , ak, b1, . . . , bk}
which has bi = −

1
2 , then a term of the form ν−

1
2 ρ⊗ νxρ⊗ · · · must have x ∈ {a1, . . . , ak,

b1, . . . , bi−1, bi−1, bi+1, . . . , bk}. Since− 1
2 is not in this set, we have a contradiction. Thus

we cannot have a ′2 = −
1
2 . We now have m = 1

2 [m( 1
2 ) + 1] = k for the case m( 1

2 ) odd, as
needed.

We now claim that a ′1, . . . , a
′
k, b
′
1, . . . , b

′
k are the same as a1, . . . , ak, b1, . . . bk up to per-

mutation. For c ≡ 1
2 mod 1, let n(c) (resp., n ′(c)) be the number of times c appears in
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a1, . . . , ak, b1, . . . , bk (resp., a ′1, . . . , a
′
k, b
′
1, . . . , b

′
k). Observe that

n(c) = n ′(c) =

{
m(c)−m(c + 1) for c ≥ 1

2 ,

m( 1
2 )− 2

⌊
1
2 m( 1

2 )
⌋

for c = − 1
2 ,

where � ·� denotes the greatest integer function. The proposition follows.

Remark 5.3.3

1. One can weaken the second hypothesis to ai ≥ bi for all i without changing the result.
2. It follows from Proposition 5.3.2 and Corollary 5.2.8 that if π is one of the irreducible,

square-integrable subrepresentations of δ([ν−dρ, νcρ]) × δ([ν−bρ, νaρ]) � σ of The-
orem 5.3.1, the only candidates for δ0(π) are δ([ν−dρ, νcρ]) ⊗ δ([ν−bρ, νaρ]) ⊗ σ
and δ([ν−cρ, νbρ]) ⊗ δ([ν−dρ, νaρ]) ⊗ σ. Since δ([ν−dρ, νcρ]) ⊗ δ([ν−bρ, νaρ]) ⊗ σ
corresponds to a lower χ0 (and Frobenius reciprocity tells us δ([ν−dρ, νcρ]) ⊗
δ([ν−bρ, νaρ]) ⊗ σ ≤ s((d+c+1)n,(b+a+1)n)(π)), we see that δ0(π) = δ([ν−dρ, νcρ]) ⊗
δ([ν−bρ, νaρ])⊗ σ.

Now, suppose π is an irreducible subquotient of δ([ν−cρ, νbρ]) � δ([ν−dρ, νaρ];σ)t ≤
δ([ν−cρ, νbρ])× δ([ν−dρ, νaρ]) � σ. By the preceding proposition, δ0(π) must be one of
the following:

δ([ν−cρ, νbρ])⊗ δ([ν−dρ, νaρ])⊗ σ, δ([ν−dρ, νbρ])⊗ δ([ν−cρ, νaρ])⊗ σ,

δ([ν−dρ, νcρ])⊗ δ([ν−bρ, νaρ])⊗ σ, δ([ν−bρ, νcρ])⊗ δ([ν−dρ, νaρ])⊗ σ,

δ([ν−dρ, νcρ])⊗ δ([ν−aρ, νbρ])⊗ σ, δ([ν−aρ, νcρ])⊗ δ([ν−dρ, νbρ])⊗ σ,

δ([ν−cρ, νdρ])⊗ δ([ν−bρ, νaρ])⊗ σ, δ([ν−bρ, νdρ])⊗ δ([ν−cρ, νaρ])⊗ σ,

δ([ν−cρ, νdρ])⊗ δ([ν−aρ, νbρ])⊗ σ, δ([ν−aρ, νdρ])⊗ δ([ν−cρ, νbρ])⊗ σ,

δ([ν−bρ, νdρ])⊗ δ([ν−aρ, νcρ])⊗ σ, δ([ν−aρ, νdρ])⊗ δ([ν−bρ, νcρ])⊗ σ.

We observe that by Corollary 5.2.8, we cannot actually have δ0(π) = δ([ν−dρ, νbρ]) ⊗
δ([ν−cρ, νaρ])⊗ σ.

Next, write µ∗
(
δ([ν−dρ, νaρ];σ)t

)
=

∑
k τk ⊗ θk. Then, by Theorem 3.1.2,

µ∗
(
δ([ν−cρ, νbρ]) � δ([ν−dρ, νaρ];σ)t

)
=

∑
k

b+1∑
i=−c

b+1∑
j=i

δ([ν−i+1ρ, νcρ])× δ([ν jρ, νbρ])× τk ⊗ δ([ν iρ, ν j−1ρ]) � θk.

Consider, e.g., the question of whether we can have δ0(π) = δ([ν−bρ, νdρ]) ⊗
δ([ν−cρ, νaρ]) ⊗ σ. For this to happen, we must have δ([ν−bρ, νdρ]) ⊗ θ ≤
µ∗

(
δ([ν−cρ, νbρ]) � δ([ν−dρ, νaρ];σ)t

)
for some irreducible θ with δ([ν−cρ, νaρ])⊗σ ≤
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sGL(θ). However, since δ([ν−bρ, νdρ]) contains neither νcρ nor νbρ, we must have i = −c
and j = b + 1 above. Thus, τk = δ([ν−bρ, νdρ]). However, we then have

smin

(
δ([ν−dρ, νaρ];σ)t

)
≥ smin

(
δ([ν−bρ, νdρ])⊗ θk

)
≥ (νdρ⊗ νd−1ρ⊗ · · · ⊗ ν−bρ)⊗ · · · ,

in violation of the Casselman criterion. Thus we cannot have δ0(π) = δ([ν−bρ, νdρ]) ⊗
δ([ν−cρ, νaρ]) ⊗ σ. The same argument tells us δ0(π) cannot be δ([ν−aρ, νdρ]) ⊗
δ([ν−cρ, νbρ])⊗σ, δ([ν−bρ, νdρ])⊗δ([ν−aρ, νcρ])⊗σ, δ([ν−aρ, νdρ])⊗δ([ν−bρ, νcρ])⊗
σ, δ([ν−cρ, νdρ])⊗ δ([ν−bρ, νaρ])⊗ σ, or δ([ν−cρ, νdρ])⊗ δ([ν−aρ, νbρ])⊗ σ.

To show that δ0(π) cannot be δ([ν−aρ, νcρ])⊗δ([ν−dρ, νbρ])⊗σ, we use the same basic
argument as above to conclude that j = b + 1 and τk = δ([ν−aρ, ν−iρ]), also violating the
Casselman criterion.

Finally, we consider the possibility that δ0(π) = δ([ν−dρ, νcρ]) ⊗ δ([ν−aρ, νbρ]) ⊗ σ.
We apply the usual commuting argument:

π ↪→ δ([ν−dρ, νcρ])× δ([ν−aρ, νbρ]) � σ

⇓

δ([ν−dρ, νcρ])× δ([ν−aρ, νbρ])⊗ σ ≤ sGL (π)

⇓

δ([ν−aρ, νbρ])⊗ δ([ν−dρ, νcρ])⊗ σ ≤ s((a+b+1)n,(c+d+1)n)(π)

since δ([ν−dρ, νcρ])×δ([ν−aρ, νbρ]) is irreducible. We now argue as above. We must have
a term of the form δ([ν−aρ, νbρ])⊗θ inµ∗

(
δ([ν−cρ, νbρ])�δ([ν−dρ, νaρ];σ)t

)
. If i = −c,

we get τk = δ([ν−aρ, ν j−1ρ]), which leads to a violation of the Casselman criterion. If
i �= −c, then we must have τk = δ([ν−aρ, ν−iρ])× δ([νc+1ρ, ν j−1ρ]) (irreducible). Then,

smin

(
δ([ν−dρ, νaρ];σ)t

)
≥ smin

(
δ([ν−aρ, ν−iρ])× δ([νc+1ρ, ν j−1ρ])⊗ θk

)
≥ (ν−iρ⊗ ν−i−1ρ⊗ · · · ⊗ ν−aρ)⊗ · · · ,

again violating the Casselman criterion. Thus we have the following:

Corollary 5.3.4 If π is an irreducible subquotient of δ([ν−cρ, νbρ]) � δ([ν−dρ, νaρ];σ)t ,
then δ0(π) must be one of the following: δ([ν−cρ, νbρ]) ⊗ δ([ν−dρ, νaρ]) ⊗ σ,
δ([ν−dρ, νcρ])⊗ δ([ν−bρ, νaρ])⊗ σ, or δ([ν−bρ, νcρ])⊗ δ([ν−dρ, νaρ])⊗ σ.

Corollary 5.3.5 δ([ν−cρ, νbρ]) � δ([ν−dρ, νaρ];σ)t has a unique irreducible quotient
(Langlands quotient). All other irreducible subquotients are square-integrable.

Proof The Langlands classification gives the first claim. By [Jan3, Lemma 3.4], there is
no other subquotient with δ0 = δ([ν−cρ, νbρ]) ⊗ δ([ν−dρ, νaρ]) ⊗ σ. By the preceding
corollary and Theorem 4.2.1, all other irreducible subquotients are square-integrable.
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Lemma 5.3.6 δ([ν−cρ, νcρ])�δ([ν−dρ, νaρ];σ)t decomposes as the direct sum of (exactly)
two inequivalent irreducible subrepresentations.

Proof First, we claim that δ([ν−cρ, νcρ])⊗ δ([ν−dρ, νaρ];σ)t appears with multiplicity 2
in µ∗

(
δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t

)
. To see this, write µ∗

(
δ([ν−dρ, νaρ];σ)t

)
=∑

k τk ⊗ θk. Then,

µ∗
(
δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t

)
=

∑
k

c+1∑
i=−c

c+1∑
j=i

δ([ν−i+1ρ, νcρ])× δ([ν jρ, νcρ])× τk ⊗ δ([ν iρ, ν j−1ρ]) � θk.

The only terms which can contribute to µ∗δ([ν−cρ,νcρ]) have either i = −c or j = c + 1

(since νcρ appears only once in δ([ν−cρ, νcρ])). Suppose i = −c. If τk = 1, we have θk =
δ([ν−dρ, νaρ];σ)t and j = −c contributes one copy of δ([ν−cρ, νcρ])⊗δ([ν−dρ, νaρ];σ)t .
If τk �= 1, then any term in rmin(τk) must have the form νdρ⊗ · · · or νaρ⊗ · · · . Therefore,
j = d+1. So, τk = δ([ν−cρ, νdρ]). However, this is not possible: having δ([ν−cρ, νdρ])⊗θk

in µ∗
(
δ([ν−dρ, νaρ];σ)t

)
violates the Casselman criterion for the square-integrability of

δ([ν−dρ, νaρ];σ)t . The same argument works for the case j = c + 1. The claim follows.
Next, a similar argument tells us that the multiplicity of δ([ν−cρ, νcρ]) ⊗

δ([ν−dρ, νaρ];σ)t in δ([ν−cρ, νaρ]) � δ([ν−dρ, νcρ];σ)t ) is one. (One needs the obser-
vation that δ([ν−dρ, νaρ];σ)t appears with multiplicity one in δ([νc+1ρ, νaρ]) �
δ([ν−dρ, νcρ];σ)t , which follows from the proof of Lemma 5.1.3 or [Tad5]).

We can now verify the lemma. By Frobenius reciprocity (or [Go]), δ([ν−cρ, νcρ]) �
δ([ν−dρ, νaρ];σ)t has at most two components. By Lemma 5.2.5, one of those components
is also a subquotient of δ([ν−cρ, νaρ]) � δ([ν−dρ, νcρ];σ)t . The preceding discussion of
multiplicities tells us this component cannot be all of δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t ,
hence we have exactly two components. That they are inequivalent follows from [Go].

Proposition 5.3.7 π ′t admits exactly two irreducible subrepresentations, and they are in-
equivalent. Further, an irreducible subquotient π of π ′t appears as a subrepresentation if and
only if µ∗

δ([νc+1ρ,νbρ])(π) �= 0.

Proof First, we claim that µ∗
δ([νc+1ρ,νbρ])(π

′
t ) = δ([νc+1ρ, νbρ]) ⊗

(
δ([ν−cρ, νcρ]) �

δ([ν−dρ, νaρ];σ)t

)
. To see this, write µ∗

(
δ([ν−dρ, νaρ];σ)t

)
=

∑
k τk ⊗ θk. Then,

µ∗(π ′t ) =
∑

k

b+1∑
i=−c

b+1∑
j=i

δ([ν−i+1ρ, νcρ])× δ([ν jρ, νbρ])× τk ⊗ δ([ν iρ, ν j−1ρ]) � θk.

To contribute to µ∗
δ([νc+1ρ,νbρ]), we must certainly have i = −c. Further, if τk �= 1, then

rmin(τk) consists of terms of the form νdρ ⊗ · · · or νaρ ⊗ · · · . Since νdρ and νaρ do not
appear in δ([νc+1ρ, νbρ]), we must also have τk = 1. Therefore, j = c + 1 and the claim is
immediate.

Next, write δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t = T1⊕T2 (cf. Lemma 5.3.6). The same
basic argument used above tells us µ∗

δ([νc+1ρ,νbρ])

(
δ([νc+1ρ, νbρ]) � Ti

)
= δ([νc+1ρ, νbρ])⊗



Classical p-Adic Groups 579

Ti . Therefore, by Frobenius reciprocity, δ([νc+1ρ, νbρ]) � Ti has a unique irreducible
subrepresentation—call it π ′t

(i). Note that since T1 � T2, we have π ′t
(1) � π ′t

(2). Since

π ′t ↪→δ([νc+1ρ, νbρ]) �
(
δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t

)
∼= δ([νc+1ρ, νbρ]) � (T1 ⊕ T2)

and π ′t
(1), π ′t

(2) appear with multiplicity one in δ([νc+1ρ, νbρ]) �
(
δ([ν−cρ, νcρ]) �

δ([ν−dρ, νaρ];σ)t

)
(by µ∗

δ([νc+1ρ,νbρ]) considerations), we see that π ′t
(1), π ′t

(2) ↪→ π ′t (just

consider the subspace Vπ ′t + (Vπ ′t (1) ⊕ Vπ ′t (2) ) inside the space for δ([νc+1ρ, νbρ]) �(
δ([ν−cρ, νcρ]) � δ([ν−dρ, νaρ];σ)t

)
).

Now, it is an easy consequence of Frobenius reciprocity that µ∗
δ([νc+1ρ,νbρ]) must be non-

zero for an irreducible subrepresentation of π ′t . Therefore, π ′t
(1) and π ′t

(2) are the only
irreducible subrepresentations. Further, since µ∗

δ([νc+1ρ,νbρ])(π
′
t ) = δ([νc+1ρ, νbρ]) ⊗ (T1 +

T2), if π is an irreducible subquotient of π ′t with µ∗
δ([νc+1ρ,νbρ])(π) �= 0, then π = π ′t

(1) or

π ′t
(2). The proposition follows.

Now, Lemma 5.2.2 tells us µ∗
δ([νb+1ρ,νaρ])(π

′′
t ) = δ([νb+1ρ, νaρ]) ⊗ δ([ν−bρ, νbρ]) �

δ([ν−dρ, νcρ];σ)t . An argument like that used for Lemma 5.3.6 tells us δ([ν−bρ, νbρ]) �
δ([ν−dρ, νcρ];σ)t decomposes as the direct sum of two inequivalent irreducible subrep-
resentations. (Here, we need the observation that δ([ν−bρ, νbρ]) ⊗ δ([ν−dρ, νcρ];σ)t

appears with multiplicity one in δ([ν−cρ, νbρ]) � δ([ν−dρ, νbρ];σ)t . To see this, write
µ∗

(
δ([ν−dρ, νbρ];σ)t

)
=

∑
k τk ⊗ θk. Then,

µ∗
(
δ([ν−cρ, νbρ]) � δ([ν−dρ, νbρ];σ)t

)
=

b+1∑
i=−c

b+1∑
j=i

∑
k

δ([ν−i+1ρ, νcρ])× δ([ν jρ, νbρ])× τk ⊗ δ([ν iρ, ν j−1ρ]) � θk.

If i = b + 1, we get one copy δ([ν−bρ, νbρ])⊗ δ([νdρ, νcρ];σt . If i �= b + 1, we must have
τk = δ([ν−bρ, ν j−1ρ]) or τk = δ([ν−bρ, ν−iρ])×δ([νc+1ρ, ν j−1ρ]) (irreducible). In either
case, we get a contradiction to the Casselman criterion for δ([ν−dρ, νbρ];σ)t .) From these
observations and Theorem 5.3.1, or by arguing as in the proof of the preceding proposition,
we get the following:

Proposition 5.3.8 π ′′t admits exactly two irreducible subrepresentations, and they are in-
equivalent. Further, an irreducible subquotient π of π ′′t appears as a subrepresentation if and
only if µ∗

δ([νb+1ρ,νaρ])(π) �= 0.

Theorem 5.3.9 Suppose (ρ, σ) satisfies (C1/2). Let a > b > c > d ≥ − 1
2 with a, b, c, d ∈

1
2 + Z. Then, π ′t = δ([ν−cρ, νbρ])�δ([ν−dρ, νaρ];σ)t has exactly 3 irreducible subquotients
—denote them π ′t

(0), π ′t
(1), π ′t

(2). We may characterize them as follows:

1. π ′t
(0) is the unique irreducible quotient (Langlands quotient). It is nontempered and has
δ0(π ′t

(0)) = δ([ν−bρ, νcρ])⊗ δ([ν−dρ, νaρ])⊗ σ.
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2. π ′t
(1) is a subrepresentation. It is square-integrable and has δ0(π ′t

(1)) = δ([ν−dρ, νcρ])⊗
δ([ν−bρ, νaρ]) ⊗ σ (and is therefore one of the square-integrable representations from
[Tad5] discussed in Theorem 5.3.1 above).

3. π ′t
(2) is a subrepresentation. It is square-integrable and has δ0(π ′t

(2)) = δ([ν−cρ, νbρ]) ⊗
δ([ν−dρ, νaρ])⊗ σ.

Further, we note that π ′1
(2) � π ′2

(2) (assuming d > − 1
2 so that both are defined).

Proof We first address claims 1.–3. In light of Corollary 5.3.5 and Proposition 5.3.7, all we
need to do is show that there are at most three irreducible subquotients and determine δ0
for the subrepresentations.

First, we note that arguments similar those done in Propositions 5.3.7, 5.3.8, and
Lemma 5.2.5 can be used to show that µ∗

δ([ν−cρ,νbρ])(π
′
t ) = 2δ([ν−cρ, νbρ]) ⊗

δ([ν−dρ, νaρ];σ)t and µ∗
δ([ν−bρ,νaρ])(π

′
t ) = δ([ν−bρ, νaρ])⊗ δ([ν−dρ, νcρ];σ)t . Therefore,

we see that δ([ν−cρ, νbρ])⊗δ([ν−dρ, νaρ])⊗σ appears in s((c+b+1)n,(a+d+1)n)(π ′t ) with multi-
plicity 2 and δ([ν−bρ, νaρ])⊗δ([ν−dρ, νcρ])⊗σ appears in s((a+b+1)n,(c+d+1)n)(π ′t ) with mul-
tiplicity 1. Observe that if π is an irreducible representation with δ0(π) = δ([ν−dρ, νcρ])⊗
δ([ν−bρ, νaρ])⊗ σ, then the usual commuting argument tells us

π ↪→ δ([ν−dρ, νcρ])× δ([ν−bρ, νaρ]) � σ

⇓

δ([ν−dρ, νcρ])× δ([ν−bρ, νaρ])⊗ σ ≤ sGL (π)

⇓

δ([ν−bρ, νaρ])⊗ δ([ν−dρ, νcρ])⊗ σ ≤ s((a+b+1)n,(c+d+1)n)(π)

since δ([ν−dρ, νcρ])×δ([ν−bρ, νaρ]) is irreducible. Therefore, by Corollary 5.3.4 and (the
proof of) Corollary 5.3.5, we see that π ′t has at most 4 irreducible subquotients.

By Lemma 5.2.5, choose π ′t
(1) ∈ Xt = X ′t = X ′ ′t (there will turn out to be only one

possible choice). By Propositions 5.3.7 and 5.3.8, we have π ′t
(1) ↪→ π ′t and π ′t

(1) ↪→ π ′ ′t .
Therefore, Frobenius reciprocity tells us µ∗(π ′t

(1)) contains both a copy of δ([ν−cρ, νbρ])⊗
δ([ν−dρ, νaρ];σ)t and δ([ν−bρ, νaρ])⊗ δ([ν−dρ, νcρ];σ)t . Thus, there are at most 3 irre-
ducible subquotients. The claims about δ0(π ′t

(1)) and δ0(π ′t
(2)) are now immediate.

Finally, that π ′1
(2) � π ′2

(2) follows immediately from the observation above that
µ∗
δ([ν−cρ,νbρ])(π

′
t

(2)) = δ([ν−cρ, νbρ])⊗ δ([ν−dρ, νaρ];σ)t .
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Norm. Sup. 10(1977), 441–472.

[B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive
Groups. Princeton University Press, Princeton, 1980.

[B-K] C. Bushnell and P. Kutzko, The Admissible Dual of GL(N) Via Compact Open Subgroups. Princeton
University Press, Princeton, 1993.

[Cas] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups.
Preprint.

[Gol] D. Goldberg, Reducibility of induced representations for Sp(2n) and SO(n). Amer. J. Math. 116(1994),
1101–1151.

[Jan1] C. Jantzen, Degenerate principal series for symplectic and odd-orthogonal groups. Mem. Amer. Math. Soc.
590(1996).

[Jan2] , Reducibility of certain representations for symplectic and odd-orthogonal groups. Comp. Math.
104(1996), 55–63.

[Jan3] , On supports of induced representations for symplectic and odd-orthogonal groups. Amer. J. Math.
119(1997), 1213–1262.

[K-L] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math.
87(1987), 153–215.

[Mœ1] C. Mœglin, Représentations unipotentes et formes automorphes de carré intégrable. Forum Math. 6(1994),
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